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Abstract

Multi-fidelity surrogate modeling aims to learn

an accurate surrogate at the highest fidelity level

by combining data from multiple sources. Tra-

ditional methods relying on Gaussian processes

can hardly scale to high-dimensional data. Deep

learning approaches utilize neural network based

encoders and decoders to improve scalability.

These approaches share encoded representations

across fidelities without including corresponding

decoder parameters. This hinders inference per-

formance, especially in out-of-distribution sce-

narios when the highest fidelity data has lim-

ited domain coverage. To address these limita-

tions, we propose Multi-fidelity Residual Neu-

ral Processes (MFRNP), a novel multi-fidelity

surrogate modeling framework. MFRNP ex-

plicitly models the residual between the aggre-

gated output from lower fidelities and ground

truth at the highest fidelity. The aggregation

introduces decoders into the information shar-

ing step and optimizes lower fidelity decoders

to accurately capture both in-fidelity and cross-

fidelity information. We show that MFRNP sig-

nificantly outperforms state-of-the-art in learning

partial differential equations and a real-world cli-

mate modeling task. Our code is published at:

github.com/Rose-STL-Lab/MFRNP.

1. Introduction

From engineering to climate science, a computational model,

often realized by simulation, is frequently used to character-

ize the input-output relationship of a physical system. These

computational models can be simulated at multiple levels of
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sophistication. The high-fidelity simulators are more accu-

rate but resource demanding, whereas lower-fidelity models

are less accurate but more computationally efficient. For

example, in climate science, people incorporate real-world

observations with computational models to calibrate sim-

ulations (Hersbach et al., 2020; Karami & Kashef, 2020).

While the calibrated data has refined details and accuracy,

the domain coverage is very limited and the simulation

process is computation heavy. Multi-fidelity surrogate mod-

eling (Peherstorfer et al., 2018) aims to balance the compu-

tation efficiency-accuracy trade-off by utilizing data across

fidelities to learn an accurate surrogate at the highest fidelity.

Gaussian Processes (GPs) (Seeger, 2004) are a popular tool

for surrogate modeling. Recent works have attempted to

extend GP to multi-fidelity setting (Perdikaris et al., 2016;

Wang et al., 2021). However, they inherit the limited scal-

ability from GP due to the inversion of the kernel matrix

(Williams & Rasmussen, 1995; Rasmussen, 2003). To solve

this issue, many have proposed deep learning-based surro-

gate models (Damianou & Lawrence, 2013; Raissi & Karni-

adakis, 2016; Salimbeni & Deisenroth, 2017; Wilson et al.,

2016). Neural Processes (NPs) (Wang & Lin, 2020; Heb-

bal et al., 2021) stand out as one of the most appealing

approaches regarding inference performance and scalability.

NPs are capable of encoding fidelity-specific data into low-

dimensional latent representations and use them to improve

inference performance at the highest fidelity, alleviating the

scalability issue from high-dimensional data.

For example, Deep Multi-fidelity Active Learning (DM-

FAL) (Li et al., 2022b;a) proposed to pass information from

lower fidelities to higher fidelities with encoded hidden

representations. This method requires a hierarchical struc-

ture in the latent space passing information from low to

high fidelity level, which can lead to the error propagation

issue. Disentangled Multi-fidelity Deep Bayesian Active

Learning (D-MFDAL) (Wu et al., 2023) alleviates this is-

sue by redesigning the NP using local and global hidden

representations. Nevertheless, these methods rely on latent

representations from only the encoders for cross-fidelity in-

formation sharing. However, the decoder parameters varies

across fidelities and are not shared. At the highest fidelity,

shared representations are decoded with different parame-

ters, making the decoded output inherently inaccurate. This

significantly limits the inference performance, especially
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when the model needs to extrapolate with out-of-distribution

(OOD) inputs when the training data has limited domain

coverage at the highest fidelity.

In this work, we introduce a novel multi-fidelity surro-

gate modeling framework, Multi-fidelity Residual Neural

Process (MFRNP), to address the aforementioned issues.

MFRNP aggregates the predictions from surrogate models

across lower-fidelity levels and employs an NP surrogate to

capture the residual between the aggregated prediction and

the ground truth at the highest fidelity level. By directly uti-

lizing the outputs from lower-fidelity surrogates to share in-

formation, MFRNP includes decoders in cross-fidelity infor-

mation sharing, improving accuracy while maintaining scal-

ability. Moreover, we developed a tailored Evidence Lower

Bound, named Residual-ELBO, to serve as our loss func-

tion. This novel loss function ensures the highest fidelity

latent variable zK depends on all the other latent variables

and decoder parameters across fidelities. Thus, MFRNP en-

sures accurate information aggregation from lower fidelities

to promote residual modeling at the highest fidelity. To

summarize, our contributions include:

• A novel multi-fidelity surrogate model, Multi-fidelity

Residual Neural Process (MFRNP). Its architecture

shares input-specific information from lower fidelities,

tackles the varying decoder problem with no error prop-

agation yet preserving scalability.

• A novel Residual-ELBO to simultaneously promote

learning across fidelities and optimize lower fidelity

decoders for residual modeling at the highest fidelity.

• Superior performance in global scale real-world cli-

mate modeling and numerous benchmark tasks on par-

tial differential equations. MFRNP outperform the state-

of-the-art baseline by ∼90% in average.

2. Background

Multi-Fidelity Modeling. Multi-fidelity modeling aims to

capture the complex mapping from low-dimensional input

variables X ¦ R
dx to high-dimensional output Y ¦ R

dy

of the function f : X → Y . For systems with K fidelities

where K > 1, the cost ck of evaluating fk ∈ {f1, · · · , fK}
increases with the fidelity level (c1 < · · · < cK) as fk
conveying more detailed information in approximating f .

Our goal is to learn a deep surrogate model f̂K to approxi-

mate fK by combining data from K fidelities, each with N
samples (input parameters) {xk,n, yk,n}

K,N
k=1,n=1.

Neural Processes. Combining Gaussian Processes (GPs)

and neural networks (NNs), Neural Processes (NPs) (Gar-

nelo et al., 2018b) constitute a family of latent variable

models for implicit stochastic processes (Wang & Van Hoof,

2020). NPs represent distributions over functions and esti-

mate prediction uncertainties like GPs while featuring scal-

ability in high dimensions (Jha et al., 2022).

Formally, NP consists of latent variables z ∈ R
dz and model

parameters θ, trained on context set Dc ≡ {xc
n, y

c
n}

N
n=1 and

target sets Dt ≡ {xt
m, ytm}Mm=1. Dc and Dt are randomly

split from the training set D. Learning the posterior of z
and θ equals to maximize the posterior likelihood below:

p(yt1:M |xt
1:M ,Dc, θ) =

∫

p(z|Dc, θ)

M
∏

m=1

p(ytm|z, xt
m, θ)dz

(1)

Due to the intractability of marginalizing over latent vari-

ables z, the NP family utilize approximate inference, deriv-

ing the approximated evidence lower bound (ELBO):

log p(yt1:M |xt
1:M ,Dc, θ) ⪆

Eqφ(z|Dc∪Dt)

[

M
∑

m=1

log p(ytm|z, xt
m, θ) + log

qφ(z|D
c)

qφ(z|Dc ∪ Dt)

]

(2)

This variational approach approximates the intractable

true posterior p(z|Dc, θ) with the approximate posterior

qφ(z|D
c). Here, φ parameterize the encoder and θ param-

eterize the decoder of the model. Implementation-wise,

each pair {xc
n, y

c
n} ∈ Dc is first encoded as a latent repre-

sentation rcn, forming a latent representation set {rcn}
N
n=1,

then aggregated to parameterise the latent variable z. For

simplicity, we denote {xn}
N
n=1 as X and {yn}

N
n=1 as Y .

3. Methodology

The high-level goal of MFRNP is to explicitly model the

residual between the aggregated output from the lower fi-

delities and the ground truth in the highest fidelity. It opti-

mizes the aggregation to simultaneously promote in-fidelity

learning and accurate cross-fidelity information sharing.

For each fidelity k ∈ {1...K − 1}, MFRNP learns a NP sur-

rogate f̂k to approximate fk, producing an output ŷk. For

the highest fidelity K, MFRNP learns a NP to approximate

the residual function R(x) = fK(x)− [ 1
K−1

∑K−1
k=1 f̂k(x)].

The lower fidelity predictions are aggregated by linearly

interpolating to the resolution at the highest fidelity and

taking the average. We choose to average over other ag-

gregation methods because this stabilizes the aggregation

and ensures the equal contribution of lower fidelity surro-

gates. We explore other aggregation techniques in section

5.4. Unlike previous work where all the information from

a fidelity is shared via the latent variable during encoding,

MFRNP shares information via the decoded outputs. This

explicitly involves the decoder at each fidelity to improve

information-sharing. The input-specific information-sharing
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Figure 1. Graphical model comparison of MFRNP against the state-of-the-art D-MFD baseline model. Shaded circles denote observed

variables. Right: D-MFD disentangles the latent representations rk,n into local and global representations Lk,n and Gk,n to infer zk.

Each Gk,n is from a different fidelity level, while no information about the decoder parameters θk is shared, making Gk,n inaccurate

regarding θi where i ̸= k. Left: MFRNP dynamically constructs Dtrain
K = {XK , R(XK)} in cross-fidelity optimization step and learn

fidelity-specific information with in-fidelity learning step. The residual function R makes zK dependant on z1:K−1 and θ1:K−1 without

inflating any dimensions. Thus, MFRNP optimizes lower fidelity decoders for better information sharing. We use bold letters in our model

graph to denote a set of variables.

scheme further tackles the error propagation issue and en-

sures the accuracy and full exploitation of lower-fidelity

information.

Approximating the Residual Function. The core idea of

MFRNP is to make the highest fidelity latent variable zK de-

pendent on all other latent variables as well as the decoder

parameters at lower fidelities. We introduce the dependency

by approximating R(x) at the highest fidelity, which mod-

els the residual between ground truth and the proposed ag-

gregation from lower fidelities given input x. Intuitively,

f̂k∈{1,...,K−1} is optimized with two objectives. As shown

in Figure 1, the in-fidelity learning step captures fidelity-

specific information while the cross-fidelity optimization

step encourages lower fidelity surrogates to propose accu-

rate and informative aggregations w.r.t the highest fidelity

given input xK .

During inference, given target input xt, MFRNP approx-

imates fK(xt) by aggregating predictions from lower fi-

delities (1...K − 1) and adding it with the residual term

from fidelity K : f̂K(xt) = R(xt) + [ 1
K−1

∑K−1
k=1 f̂k(x

t)].

MFRNP generates ŷtK by fully exploiting the rich informa-

tion in {ŷ1···K−1}. In the OOD setup where Dtrain
K and

Dtest
K covers different input domains, MFRNP can effectively

explore the regions beyond the Dtrain
K , thus enhancing its

input-domain extrapolation capabilities in modeling fK .

Residual-ELBO. We design a Residual-ELBO (R-ELBO)

for MFRNP. For each fidelity k ∈ {1 · · ·K − 1}, we infer

the latent variable zk with the NN encoder qφk
(zk|D

c) and

decoder pθk(y
t
k|zk, x

t
k). At fidelity K, DK is dynamically

constructed with {XK , R(XK)}. Here XK denotes a set of

input variables xK . We infer the latent variable zK with the

NN encoder qφK
(zK |z1..K−1, θ1..K−1,D

c
K) and decoder

pθk(R(XK)|zK , XK , θK), where R(XK) depends on the

proposed aggregations of lower fidelity predictions via an-

cestral sampling (Wang & Van Hoof, 2020). We derive the

R-ELBO for K > 1 fidelities in two terms:

log p(R(xt
K)|xt

K ,Dc
1:K ∪ Dt

1:K−1, θK)

gEqφK
(zK |Dc

1:K
∪Dt

1:K
)

[

log p(R(xt
K)|zK , xt

K , θK)

+ log
qφK

(zK |Dc
1:K ∪ Dt

1:K−1)

qφK
(zK |Dc

1:K ∪ Dt
1:K)

]

=EqφK
(zK |z1:K−1,θ1:K−1,Dc

K
∪Dt

K
))

[

log p(R(xt
K)|zK , xt

K , θK)

+ log
qφK

(zK |z1:K−1, θ1:K−1,D
c
K)

qφK
(zK |z1:K−1, θ1:K−1,Dc

K ∪ Dt
K))

]

(3)

log p(yt1:K−1|x
t
1:K−1,D

c
1:K−1, θ1:K−1)

gEqφ(z1:K−1|Dc
1:K−1

∪Dt
1:K−1

)
[

log p(yt1:K−1|z1:K−1, x
t
1:K−1, θ1:K−1)

+ ..+ log
qφ(z1:K−1|D

c
1:K−1)

qφ(z1:K−1|Dc
1:K−1 ∪ Dt

1:K−1)

]

=Eqφ1
(z1|Dc

1
∪Dt

1
)..qφK−1

(zK−1|Dc
K−1

∪Dt
K−1

)

[

log p(yt1|z1, x
t
1, θ1)

+ ..+ log p(ytK−1|zK−1, x
t
K−1, θK−1)

+ log
qφ1

(z1|D
c
1)

qφ1
(z1|Dc

1 ∪ Dt
1)

+ ..+
qφK−1

(zK−1|D
c
K−1)

qφK−1
(zK−1|Dc

K−1 ∪ Dt
K−1)

]

(4)

3



Multi-Fidelity Residual Neural Processes

Equation 4 is a unified ELBO accounting for learning from

fidelity specific datasets at lower fidelities. Equation 3 is the

ELBO for the residual function at the highest fidelity. This

term introduces dependency to every fidelity and optimizes

the output aggregations to better approximate R(x).

For training, we calculate the R-ELBO with Monte Carlo

(MC) sampling and ancestral sampling (AS) to optimize the

objective function below:

Lf̂
MC =

∑K−1
k=1

[

1
S

∑S

s=1 log p(y
t
k|x

t
k, z

(s)
k )

−KL[q(zk|D
c
k,D

t
k)∥p(zk|D

c
k)]

]

(5)

LR
MC = 1

S

∑S

s=1 log p(R(xt
K)|xt

K , z
(s)
K )

−KL[q(zK |Dc
K ,Dt

K)∥p(zK |Dc
K)] (6)

LMC = LR
MC + Lf̂

MC (7)

where the time for qφ(z|D
c) to sample z

(s)
k scales linearly

with the number of fidelity levels.

Training & Inference. As shown in Algorithm 1, MFRNP

calculates Lf̂
MC by predicting the set Ŷ t

k given input target

set Xt
k for every fidelity k ∈ {1..K − 1}. For LR

MC , the AS

steps are highlighted in orange in Algorithm 1.

MFRNP introduce decoder to the information aggregation

step by predicting with the highest fidelity level input set

XK at lower fidelity levels. We note the prediction as set

{ôk,K} where k ∈ {1..K − 1}, representing surrogate pre-

dictions given XK at fidelity k. We linearly interpolate

each {ôk,K} to math the dimension of YK . Then we dy-

namically construct the training dataset at fidelity K as

D′
K = {XK , R(XK)}. Finally, we randomly split D′

K

into D′c
K ,D′t

K to obtain LR
MC and perform back propaga-

tion with LMC . Here, LR
MC encourages MFRNP to optimize

lower fidelity surrogates for residual modeling at the highest

fidelity, while Lf̂
MC regulates lower fidelity levels to learn

from fidelity-specific datasets.

The inference process is demonstrated in Algorithm 2

where the AS steps are highlighted in orange. Given in-

put set {xi,K}, MFRNP propose aggregated predictions

{ai,K} from lower fidelities and the predicted residual R̂i

at fidelity K. The final prediction is given as {ŷi,K} =

{ai,K}+ {R̂i}.

4. Related Work

Multi-fidelity Modeling. Multi-fidelity surrogate model-

ing is prevalent across scientific and engineering domains,

Algorithm 1 MFRNP Training Process

Input: Dataset D1···K , number of fidelities K.

for k = 1 to K − 1 do

Randomly split Dk into {Dc
k,D

t
k}

Sample {zi,k} where zi,k ∼ qk(.|D
c
k)

Predict {ŷti,k} where ŷti,k ∼ pk(.|zi,k, x
t
i,k)

Sample {z′i,k} where z′i,k ∼ qk(.|D
c
k)

Predict {ôi,k} where ôi,k ∼ pk(.|z
′
i,k, xi,K)

Linearly interpolate {ôi,k} to the resolution at K.

end for

Get the residual set {Ri} at K where Ri = yi,K −
∑

(ôi,1,..,ôi,K−1)
K−1

Random-split D′
K = {xi,K , Ri} into {D′c

K ,D′t
K}

Sample {zi,K} where zi,K ∼ qK(.|Dc
K)

Predict {R̂t
i} where R̂t

i ∼ pK(.|zti,K , xt
i,K)

Back propagate with LMC = LR
MC + Lf̂

MC in Eqn 7

Algorithm 2 MFRNP Inference Process

Input: Latent variables z1..K , input {xi,K}
for k = 1 to K − 1 do

Sample {z′i,k} from zk.

Predict {ôi,k} where ôi,k ∼ pk(.|z
′
i,k, xi,K)

Linearly interpolate {ôi,k} to the resolution at K.

end for

Obtain aggregation {ai,K} =
∑

(ôi,1,..,ôi,K−1)
K−1

Sample {z′i,K} from zK .

Predict {R̂i} where R̂i ∼ pK(.|zi,K , xi,K)

Return {ŷi,K} = {ai,K}+ {R̂i}

including applications in aerospace systems (Brevault et al.,

2020) and climate science (Hosking, 2020; Valero et al.,

2021). The foundational work of Kennedy & O’Hagan

(2000) employs GPs to connect models of varying fidelity

levels, introducing an autoregressive model. Le Gratiet &

Garnier (2014) introduces a recursive GP with a nested

structure in the input domain to facilitate rapid inference.

Perdikaris et al. (2015; 2016) addresses high-dimensional

GP scenarios by leveraging the Fourier transformation of

the kernel function. Perdikaris et al. (2017) puts forth the

concept of multi-fidelity Gaussian processes (NARGP), as-

suming a nested structure in the input domain for sequential

training at each fidelity level.

Wang et al. (2021) presents a Multi-Fidelity High-Order GP

model for accelerating physical simulations. They extend

the Linear Model of Coregionalization (LMC) to the non-

linear case, incorporating a matrix GP prior on the weight

functions. Deep Gaussian processes (DGPs) (Cutajar et al.,

2019) formulate a unified objective to optimize kernel pa-

rameters jointly across fidelity levels. DGPs face scalability

challenges with high-dimensional data. Infinite-Fidelity
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Coregionalization (IFC) from (Li et al., 2022c) models the

output space as a continuous function of fidelity and input

based on neural ODEs, allowing the model to extrapolate to

higher fidelities. However, IFC faces scalability issue due

to the computation-demanding ODE solver.

Multi-fidelity modeling has been integrated with deep learn-

ing. Guo et al. (2022) employs deep neural networks to

merge parameter-dependent output quantities. Wang et al.

(2023) utilizes diffusion model to fuse fidelity information

into the diffusion-denoising process to solve PDE problems

with a conditional scoring model. Meng & Karniadakis

(2020) proposes a composite neural network for multi-

fidelity data in inverse PDE problems, while Meng et al.

(2021) introduces Bayesian neural nets for multi-fidelity

modeling. De et al. (2020) employs transfer learning to fine-

tune high-fidelity surrogate models using deep neural net-

works trained on low-fidelity data. Despite advancements,

existing deep GP models (Cutajar et al., 2019; Hebbal et al.,

2021) struggle with cases where different fidelities involve

data with varying dimensions. Additionally, multi-fidelity

methods have been investigated in Bayesian optimization,

active learning, and bandit problems (Li et al., 2020; Song

et al., 2019; Li et al., 2022a; Perry et al., 2019; Kandasamy

et al., 2017).

Neural Processes. Neural Processes (NPs) (Garnelo et al.,

2018a; Kim et al., 2018; Louizos et al., 2019; Singh et al.,

2019) emerge as scalable and expressive alternatives to GPs

for modeling stochastic processes. Previous work by Raissi

& Karniadakis (2016) combines multi-fidelity GPs with

deep learning, placing a GP prior on features learned by

deep neural networks. Wang & Lin (2020) proposes a multi-

fidelity neural process with physics constraints (MFPC-

Net), leveraging NPs to capture correlations between multi-

fidelity data. Nonetheless, this model requires paired data

and cannot utilize unpaired data at the low-fidelity level.

The recent work of Wu et al. (2023) proposes to disentan-

gle the latent variable at each fidelity into local and global

representations and share the global part across fidelities.

However, the fidelity-specific decoder parameters are not

included in information sharing. Thus, the highest fidelity

decoder expresses shared representations differently, hinder-

ing the inference performance, especially in OOD scenarios.

Climate Modeling. Climate modeling is a central com-

ponent of modern climate science and the primary tool for

predicting future climate states (Flato et al., 2014). Various

modeling centers around the world have developed distinct

climate models. The semi-independent development pro-

cess has led to many plausible, but disagreeing, climate

models representing the same earth system (Knutti et al.,

2010; Flato et al., 2014). Averaging these models often

leads to improved results compared to using individual mod-

els (Lambert & Boer, 2001; Gleckler et al., 2008; Knutti

et al., 2010). Proper aggregation of different climate mod-

els for a consensus estimate is therefore an important topic

(Tebaldi & Knutti, 2007). Averaging all models with equal

or varying weights has been the most common approach

(Giorgi & Mearns, 2002; Abramowitz et al., 2019), known

as (weighted) ensemble averaging (EA). However, EA tech-

niques often do not retain much spatial information and can

cause severe blurring, corrupting regional signals.

To address this problem, various alternative approaches have

been developed based on Bayesian hierarchical models, re-

gression and machine learning that all use observational data

to improve model aggregation. DeepESD (Baño-Medina

et al., 2022) utilize CNNs to learn the mapping from the EA

of 8 regional climate models to the observation-calibrated

data (Dee et al., 2011) at finer resolution. Similarly, NNGPR

(Harris et al., 2023) utilizes deep kernel GPs to model the

residual between the EA of 16 low-resolution global climate

models and the up-to-date observation-calibrated ERA5-

reanalysis dataset (Hersbach et al., 2020). A lot of progress

have been made in downscaling the climate simulators with

observational data (Kotamarthi et al., 2021), yet lacking the

method to accurately infer the long-term climate scenarios

directly from climate drivers.

5. Experiments

5.1. Datasets

We include 6 Partial Differential Equation benchmarks, a

more complicated fluid simulation task and a real-world cli-

mate modeling task for earth surface temperature prediction.

Partial Differential Equations (PDEs). We include Heat

and Poisson’s equations (Olsen-Kettle, 2011) from compu-

tational physics. We test MFRNP for predicting the spatial

solution fields of these equations. We use numerical solvers

to generate the ground-truth data with dense and coarse

meshes for different fidelity levels. For both Heat and Pois-

son’s equations with 2 fidelity setting, we use 16× 16 and

32× 32 meshes as low and high fidelities. For three fidelity

scenarios, we run the solvers with 64 × 64 meshes at the

highest fidelity level. For five fidelity scenarios, we run

the solvers with 96× 96 and 128× 128 meshes as the two

additional fidelity levels. The heat equation has an input

dimension of 3, corresponding to the thermal diffusivity

coefficient and boundary conditions at the two edges. The

Poisson’s equation has an input dimension of 5, correspond-

ing to the 4 boundary conditions and the magnitude of flow

at the centered point source.

Fluid Simulation. This task simulates the dynamics of a

circular smoke cloud propelled by an inflow force within a

50× 50 grid. The spatial-temporal solution field is derived
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Task (Full) DMF NARGP MFHNP D-MFD SF-NP MFRNP

Heat 2 0.138 ± 4.0e-8 0.31±2.12e-6 0.026±4.01e-5 0.015±1.42e-5 0.308±6.38e-05 0.005±3.27e-4

Heat 3 0.137±1.23e-7 0.309±3.46e-6 0.111±4.82e-6 0.108±4.85e-8 0.307±8.62e-05 0.0039±2.94e-4

Heat 5 0.135±2.55e-4 0.306±1.14e-4 0.115±1.22e-2 0.106±1e-4 0.306±6.90e-05 0.0045±2.94e-4

Poisson 2 0.107 ± 6.58e-5 0.585±9.84e-5 0.093±2.55e-4 0.07 ±2.99e-4 0.575±1.39e-04 0.0076±7.49e-4

Poisson 3 0.121±1.47e-5 0.58 ±1.02e-4 0.335±2.37e-5 0.101±1.81e-4 0.572±1.95e-04 0.0073±5.25e-4

Poisson 5 0.101±2.24e-3 0.571±1.29e-4 0.299±8.84e-3 0.279±3.35e-3 0.571±1.82e-04 0.0046±1.2e-4

Fluid 0.275±4.59e-7 0.353±9.28e-4 0.234±4.82e-6 0.207±1.31e-5 0.383±5.53e-05 0.129±8.19e-4

Table 1. Performance (nRMSE) comparison of 6 different models applied to the Heat and Poisson simulators with two, three, five fidelities

and fluid simulation with Navier-Stokes equation with two fidelities. The full setting means same domain coverage of Dtrain
K and D

test
K .

Task (OOD) DMF NARGP MFHNP D-MFD SF-NP MFRNP

Heat 2 0.168±1.36e-4 0.313±1.30e-4 0.033±1.37e-2 0.213±1.65e-3 0.312±1.14e-04 0.005±1.33e-4

Heat 3 0.163±6.04e-4 0.309±5.00e-4 0.143±5.88e-3 0.141±4.94e-3 0.310±7.03e-05 0.004±3.82e-4

Heat 5 0.187±8.60e-4 0.308±1.05e-4 0.15±2.72e-3 0.145±2.87e-3 0.308±5.25e-05 0.012±1.05e-2

Poisson 2 0.183±6.85e-4 0.749±1.47e-5 0.103±2.03e-2 0.214±4.28e-2 0.749±1.79e-03 0.017±2.72e-3

Poisson 3 0.186±8.06e-4 0.744±8.24e-5 0.189±1.14e-2 0.2±1e-2 0.745±7.62e-04 0.018±1.27e-3

Poisson 5 0.16±4.47e-4 0.743±3.07e-4 0.399±1.07e-2 0.375±8.56e-3 0.744±1.85e-03 0.013±2.76e-4

Table 2. Performance (nRMSE) comparison of 6 different models applied to the Heat and Poisson simulators with two, three, five fidelities.

The OOD setting here indicates Dtest
K is OOD w.r.t the training domain at fidelity K.

through the application of the incompressible Navier-Stokes

equations and the Boussinesq approximation (Holl et al.,

2020; Chorin, 1968). Initiated with the introduction of an

incompressible static smoke cloud of radius 5 at the lower

center of the grid, a persistent inflow force is subsequently

applied at the center of the cloud. The input parameters

encompass two variables governing the magnitude of the

inflow force along the x and y directions. The output is the

initial component of the velocity field following a temporal

evolution of 30 steps with the inflow force. The simulation

generates low-fidelity ground-truth with 32× 32 mesh, and

high-fidelity with 64× 64 mesh.

Climate Modeling: Earth Surface Temperature. In this

task, we take one step further from previous works in Sec-

tion 4 with multi-fidelity surrogate modeling to directly

learn the mapping from climate drivers (Watson-Parris et al.,

2022) to the observation-calibrated ERA5-reanalysis data

(Hersbach et al., 2020), together with 13 low-resolution com-

putational climate model predictions from the ScenarioMIP

project(O’Neill et al., 2016) at global scale. We provide

details about the computational models used in Appendix

A.1. We group these climate data into 9 fidelities based

on their original resolutions. The fidelity dimensions are:

144 × 192, 160 × 320, 192 × 288, 180 × 288, 120 × 180,

143× 144, 80× 96, 192× 384 and 721× 1440 at the high-

est fidelity level, representing air temperature at 2 meters

above the earth surface. The climate drivers as inputs here

consists of 12 variables representing the total emission of

greenhouse gases (CO2, CH4) and aerosol gases (BC, SO2)

from year 1850 to 2015. Each of the aerosol gas is split

into 5 signals via principal component analysis (Wold et al.,

1987; Watson-Parris et al., 2022). For years after 2015, we

test 4 hypothetical global gas emission scenarios: ssp126,

ssp245, ssp370, ssp585. Larger numbers correspond to

more total gas emissions, leading to more severe climate

change. Ssp126 represents the condition in which future gas

emissions are well controlled and gradually decrease. This

scenario makes the gas emission data as input to have similar

domain coverage as of training data. Whereas in the other

three scenarios, future gas emissions would keep increasing,

introducing out-of-distribution inputs at the highest fidelity.

5.2. Experiment Setup

We implement MFRNP with PyTorch (Paszke et al., 2019)

and compare the average nRMSE in three random runs with

following baselines. Details are provided in Appendix A.3.

• SF-NP. The naive single-fidelity neural process trained

on the highest fidelity data, as the lower performance

bound for multi-fidelity modeling.

• DMF(Li et al., 2021) performs multi-fidelity learning

based on a multi neural network (NN) structure. Each

NN corresponds to one fidelity and the NN on the next

fidelity adapts the latent output from the NN at current
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Figure 2. Perfect model test performance for climate modeling task. Measured in latitude-weighted nRMSE. MFRNP outperforms other

models in 3 out of the 4 scenarios and maintains consistent performance across all the scenarios from year 2015 ∼ 2100.

fidelity to propagate information.

• NARGP(Perdikaris et al., 2017) utilizes multi-fidelity

Gaussian Processes by sequentially train Gaussian Pro-

cesses from low to high fidelity levels under the as-

sumption of a nested input domain.

• MFHNP(Wu et al., 2022) learns distribution over func-

tions at each fidelity level with a latent variable. They

designed a hierarchical structure of the latent variables

from low to high fidelity levels to pass information.

• D-MFD(Wu et al., 2023) tackles the error propagation

problem in MFHNP and the inter-fidelity NN overfit-

ting problem in DMF by introducing local and global

latent representations at each fidelity.

PDEs Setup. For PDE tasks, we consider two data com-

position scenarios.

• In-distribution (Full) Scenario. In this setting, the

training set Dtrain and testing set Dtest at each fidelity

level have the same coverage on dataset domain D.

• Out-of-distribution (OOD) Scenario. This scenario

simulates real-world conditions where the highest fi-

delity data has limited domain coverage. We evaluate

model trained using Dtrain ¢ D at the highest fidelity

level, and test the model performance on Dtest consists

of data covering the rest of D s.t. Dtrain ∩ Dtest = ∅
and Dtrain ∪ Dtest = D.

We construct the OOD scenario with Heat and Poisson’s

equations. We did not include Fluid data because the low

fidelity mesh is not detailed enough to capture the differ-

ences between Dtrain and Dtest. Under the OOD setting,

information covering the input domain of Dtest is missing

in all the fidelities, making it impossible for models to ex-

trapolate with lower fidelity information. For Heat equation,

we test the OOD scenario of the thermal diffusivity coeffi-

cient by limiting the corresponding input parameter to cover

80% of original domain. We uniformly sample X in the

constrained domain and obtain corresponding Y with nu-

merical solver as Dtrain. Dtest is constructed with the rest

20% of original domain. Similarly, for Poisson’s equation,

we construct Dtrain and Dtest with the 80/20 coverage

split on 3 boundary conditions. Details are demonstrated in

Appendix A.2.

Climate Modeling Setup. In this task, we also compare

MFRNP with recent works in the climate science community

of downscaling global climate projections. We include deep

kernel GPs from NNGPR (Harris et al., 2023) and Gaussian

CNN from DeepSED (Baño-Medina et al., 2022). Since no

previous work simultaneously downscales while modeling

the mapping between climate drivers and scenarios, to en-

sure fair comparison under the same task, we set up a naive

extension for these methods. We first fit 13 linear surrogate

7
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Figure 3. Absolute residual plot (°C) between ground truth and model predictions on ERA5-reanalysis data at year 2020, with global

resolution of 721× 1440. The first row presents global view, second row focuses on smaller geographic regions. The third row shows the

latitude weighted nRMSE to measure prediction accuracy from year 2015 to 2021. MFRNP outperforms other models staring from 2017.

models with the climate drivers as input X , and the com-

putational climate model predictions as target Y . Then we

train the models in NNGPR and DeepSED to downscale the

averaged predictions from linear surrogates given X .

We use 13 ”perfect model” tests (Knutti et al., 2017) as

the performance metric. In each test, one climate model is

held out as the ground truth and we only use its historical

data (1950 ∼ 2015) for training at the highest fidelity. The

remaining 12 climate models are grouped at lower fidelity

levels based on their resolutions. We compare the average

latitude weighted nRMSE across 13 tests. Thus, we are able

to empirically measure the performance with physics based

future projections. We then include the ERA5-reanalysis

data as the highest fidelity level to measure the performance

on a refined resolution. We use year 1950 ∼ 2014 as the

highest fidelity training data and 2015 ∼ 2021 for testing.

5.3. Results

PDEs Performance. We test the performance of MFRNP

and baselines across 7 tasks under the full setting and 6
tasks under the OOD setting. Table 1 shows the full setting

performance and Table 2 shows the OOD setup performance.

Among all the tasks and settings, our model consistently

outperforms baselines by an average of ∼ 90% in nRMSE.

The results indicate that MFRNP is more efficient in utilizing

information across fidelities to generate good predictions.

Unlike other baselines for which the performance generally

gets worse as the number of fidelities increase, the perfor-

mance of MFRNP in the 5 fidelity tasks is even better than

the corresponding 2 fidelity tasks in 3 out of 4 five-fidelity

experiments. This indicates MFRNP gathers lower fidelity

information efficiently enough to outrun the increasing task

complexity in modeling Heat and Poisson’s equations.

Climate Modeling Performance. As shown in Figure 2,

for the perfect model test, MFRNP performs consistently

across all emission scenarios and outperforms other base-

lines in 3 out of the 4 scenarios. The perfect model test

empirically shows the capability of MFRNP to efficiently

aggregate information from lower fidelities and its versatil-

ity for OOD scenarios. Although CNN and Gaussian CNN

perform relatively well, they have very limited scalability

and cannot scale to the global ERA5-reanalysis dataset. We

also had memory issues running NARGP and DMF with

9 fidelities for this task. Among the baseline models that

scale to the ERA5-reanalysis dataset (MFHNP, D-MFD and

NNGPR), the performance of MFRNP is significantly better.

For the ERA5-reanalysis data, MFRNP also outperforms

other baseline models, as shown in Figure 3. Our model

keeps a consistent performance from year 2015 ∼ 2021,

while the performance of other baseline models worsens for

further future predictions. MFRNP makes a cleaner residual

plot compared to the other models. Although we can only

evaluate performance up to year 2021 due to observation

limitations, we have empirically shown the long term pre-

diction consistency of MFRNP from the perfect model test

and we expect it to further outperform other baselines for

years after 2021 with the ERA5-reanalysis data.

MFRNP has shown superior performance across various gas

emission scenarios from year 2015 to 2100 via the perfect

8
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model test. Together with the accurate reanalysis predic-

tions, we have demonstrated that MFRNP is not only capable

of fully exploiting lower fidelity information for reliable

predictions, but also able to provide great scalability with

consistent performance for real-world tasks.

5.4. Ablation Study

Latent Aggregation with Residual. We evaluate the im-

pact of including decoders in the information sharing step.

The same experiment settings are maintained for consistency

in the comparison. We create a variant of MFRNP, namely

MFRNP-H, for which the surrogate models for fidelity lev-

els below the highest are implemented with a hierarchical

structure that shares information via the latent space (Wu

et al., 2022). We use the surrogate output at fidelity K−1 as

the aggregated information and model the residual between

this aggregation and the highest fidelity ground truth.

Task (Full) MFRNP-H MFRNP

Heat 3 0.013±4.46e-4 0.0039±2.94e-4

Heat 5 0.013±2.76e-4 0.0045±2.94e-4

Poisson 3 0.138±6.1e-3 0.0073±5.25e-4

Poisson 5 0.184±1.77e-2 0.0046±1.2e-4

Table 3. Performance (nRMSE) comparison of MFRNP-H and

MFRNP applied to the Heat and Poisson simulators with three,

five fidelities under Full setup.

Task (OOD) MFRNP-H MFRNP

Heat 3 0.047±2.72e-4 0.004±3.82e-4

Heat 5 0.055±1.87e-4 0.012±1.05e-2

Poisson 3 0.128±1.3e-2 0.018±1.27e-3

Poisson 5 0.151±7.9e-3 0.013±2.76e-4

Table 4. Performance (nRMSE) comparison of MFRNP-H and

MFRNP applied to the Heat and Poisson simulators with three,

five fidelities under OOD setup.

Our results in Table 3 and Table 4 show that MFRNP sig-

nificantly outperforms MFRNP-H. This indicates includ-

ing decoders in the information aggregation step promotes

cross-fidelity information sharing and yields better learning

capabilities for both Full and OOD setup.

Weighted Averaging. We explore the impact of non-

uniform averaging in this study on Heat and Poisson dataset

with 5 fidelities under Full setting. We tested MFRNP with

uniform averaging for simplicity and to avoid introducing

additional hyperparameters. Intuitively, higher fidelity lev-

els should be assigned higher weights since they provide

more detailed predictions. We set the weighted average

scheme to correlate with fidelity level as following:

Aggregation =0.1× Ŷk=1 + 0.2× Ŷk=2

+ 0.3× Ŷk=3 + 0.4× Ŷk=4

(8)

Task Uniform Averaging Weighted Averaging

Heat5 0.0045±2.94e-4 0.0042±1.19e-3
Poisson5 0.0046±1.2e-4 0.0103±2.02e-3

Table 5. Comparison of Uniform Averaging and Weighted Averag-

ing on Heat5 and Poisson5 tasks, measured with nRMSE.

As shown in Table 5, for Heat5, using increasing weights

grants 6.67% performance improvement. However, for Pois-

son5, using increasing weights doubles the nRMSE. Fine

tuning the fidelity weights could potentially bring perfor-

mance improvements, but it would require dataset-specific

weight adjustments.

6. Discussion & Conclusion

In this paper, we present Multi-fidelity Residual Neural Pro-

cesses (MFRNP), a novel Neural Process-based multi-fidelity

surrogate model. MFRNP utilizes a residual modeling frame-

work, which allows MFRNP to leverage the rich input space

coverage from lower fidelities while preserving accuracy

from the highest fidelity data. Our tailored Residual-ELBO

loss promotes learning across fidelities and simultaneously

optimizes the lower fidelity decoders for accurate informa-

tion sharing. Experimental results on partial differential

equations and climate modeling demonstrate that MFRNP

outperforming state-of-the-art methods by more than 90%,

highlighting scalability, efficiency in information fusion,

and versatility of MFRNP for real-world surrogate modeling.

The limitation of MFRNP mainly lies in encoder and decoder

complexity. Due to ancestral samplings step, the inference

time is doubled. Although this additional time penalty is

small compared with the actual simulators, it is a poten-

tial concern for computationally expensive encoders and

decoders, such as neural ODEs. Moreover, uniform aver-

aging may cause loss of detailed information from lower

fidelities. For future work, we plan to address this limitation

and incorporate physics-informed structure to better model

expensive physics simulations.
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A. Appendix

A.1. Climate Modeling Task Dataset

We list the 13 computational climate models used here, together with the literatures. They are all included in the ScenarioMIP

project (O’Neill et al., 2016). ACCESS-CM2(Bi et al., 2020); BCC-CSM2-MR(Wu et al., 2021); CMCC-CM2-SR5(Cherchi

et al., 2019); GFDL-ESM4(Dunne et al., 2020); INM-CM5-0(Volodin, 2022); IPSL-CM6A-LR(Boucher et al., 2020); KACE-

1-0-G(Byun et al., 2019); MCM-UA-1-0(Stouffer, 2019); MRI-ESM2-0(Yukimoto et al., 2019); CESM2(Danabasoglu et al.,

2020); MPI-ESM(Gutjahr et al., 2019); NorESM2(Seland et al., 2020); UKESM1(Sellar et al., 2019).

A.2. OOD Dataset Construction

Generally, we follow the experiment setup as the full scenario. The following describes the difference in building the highest

fidelity dataset DK . For Heat equation, we uniformly sample Xtrain in the training scope: ((0,0.8),(-1,0),(0.01,0.1)) and

use numerical solver to generate the corresponding Ytrain. We then uniformly sample Xtest in the testing scope ((0.8,

1),(-1,0),(0.01,0.1)) and use numerical solver to generate Ytest.

For the Poisson’s equation, we uniformly sample Xtrain in the training scope: ((0.1, 0.74),(0.1, 0.74),(0.1, 0.74),(0.1,

0.9),(0.1, 0.9)) and use numerical solver to generate the corresponding Ytrain. We then uniformly sample Xtest in the

testing scope ((0.74, 0.9),(0.74, 0.9),(0.74, 0.9),(0.1, 0.9),(0.1, 0.9)) and use numerical solver to generate Ytest.

A.3. Experimental Setup

Metrics. We use latitude weighted nRMSE as shown in Equation 9 to measure model performance in the climate modeling

task. For PDE tasks, we use nRMSE as shown in Equation 10.

W nRMSE =

√

√

√

√

∑N

i=1

(

cos(lati)
∑N

j=1
cos(latj)

N

)

∗
(

(yi−ŷi)2

N

)

std({y1:N})
(9)

nRMSE =

√

∑N

i=1

(

(yi−ŷi)2

N

)

std({y1:N})
(10)

PDE task Training Configurations. For training, we use Adam optimizer (Kingma & Ba, 2014) with base learning rate

of 1e− 3. We use 10% of training data set as validation set. For Heat and Poisson’s equation, we run our model with latent

dimension and encoder/decoder dimension of 32, and run our model with maximum epoch of 50000 and patience 10000.

We use learning rate decay of 0.85 and stepsize 10000. We set the highest fidelity weight to 2 and lower fidelities to 1 in

loss calculation to focus more on optimizing toward the highest fidelity. For Poisson5, using lower fidelity weight of 0.25
further improves performance. For context-target split, we randomly select 20% ∼ 25% of training data as our context

set, the rest as our target set for each fidelity. For fluid simulation, we follow the same setup but use latent dimension and

encoder/decoder dimension of 128. We set patience to 5000 with learning rate decay of 0.01. We normalize the data before

training and measure nRMSE on the de-normalized space. For the baseline models, we follow the same setup as above. All

models are trained on NVIDIA A100 GPU with 80GB memory.

Climate Modeling Training Configurations. We follow the similar setup as above, but set the highest fidelity weight to

5, latent and hidden dimensions to 512 to incorporate more fidelities and data at higher dimensions. We do not normalize the

data before training. For the climate methods introduced from climate science community (NNGPR, CNN, CNN Gaussian),

we use their original model setup. The linear surrogates for low-resolution climate simulators are built with 4 layers with

ReLU activation. Dimensions are 12, + (lat∗lon)
128 ,, + (lat∗lon)

32 ,, + (lat∗lon)
4 ,. Here, (lat, lon) refers to the climate simulator

data dimensions. These models are run until convergence.
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