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Abstract

To sample from a general target distribution p, o e~f* beyond the isoperimetric condition,
Huang et al. (2023) proposed to perform sampling through reverse diffusion, giving rise to Diffusion-
based Monte Carlo (DMC). Specifically, DMC follows the reverse SDE of a diffusion process
that transforms the target distribution to the standard Gaussian, utilizing a non-parametric score
estimation. However, the original DMC algorithm encountered high gradient complexity', resulting
in an exponential dependency on the error tolerance e of the obtained samples. In this paper, we
demonstrate that the high complexity of the original DMC algorithm originates from its redundant
design of score estimation, and proposed a more efficient DMC algorithm, called RS-DMC, based on
a novel recursive score estimation method. In particular, we first divide the entire diffusion process
into multiple segments and then formulate the score estimation step (at any time step) as a series of
interconnected mean estimation and sampling subproblems accordingly, which are correlated in a
recursive manner. Importantly, we show that with a proper design of the segment decomposition,
all sampling subproblems will only need to tackle a strongly log-concave distribution, which can
be very efficient to solve using the standard sampler (e.g., Langevin Monte Carlo) with a provably
rapid convergence rate. As a result, we prove that the gradient complexity of RS-DMC exhibits
merely a quasi-polynomial dependency on e. This finding is highly unexpected as it substantially
enhances the prevailing belief of the necessity for exponential gradient complexity in all prior works
such as Huang et al. (2023). Under commonly used dissipative conditions, our algorithm is provably
much faster than the popular Langevin-based algorithms. Our algorithm design and theoretical
framework illuminate a novel direction for addressing sampling problems, which could be of broader
applicability in the community.

Keywords: Diffusion-based Monte Carlo, Quasi-polynomial complexity

1. We denote gradient complexity as the required number of gradient calculations to achieve at most € sampling error.
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1. Introduction

Sampling problems, i.e., generating samples from a given target distribution p, o exp(— fx), have
received increasing attention in recent years. A popular approach for solving this problem is to
apply gradient-based Markov chain Monte Carlo (MCMC) methods, such as Unadjusted Langevin
Algorithms (ULA) (Neal, 1992; Roberts and Tweedie, 1996), Underdamped Langevin Dynamics
(ULD) (Cheng et al., 2018; Ma et al., 2021; Mou et al., 2021), and Metropolis-Adjusted Langevin
Algorithm (MALA) (Roberts and Stramer, 2002; Xifara et al., 2014). In particular, these algorithms
can be seen as the discretization of the continuous Langevin dynamics (LD) and its variants (Ma
et al., 2015), which will converge to a unique stationary distribution that follows p, o exp(—fx),
under regularity conditions on the energy function f,(x) (Roberts and Tweedie, 1996).

The convergence rate of the Langevin-based algorithms heavily depends on the isoperimetric-like
properties of the target distribution p,: guaranteeing the convergence in polynomial time requires p
to be, e.g., log-concave, satisfying log-Sobolev or Poincaré inequalities or their generalizations with
well-behaving coefficients. Unfortunately, for general non-log-concave distributions, the convergence
rate typically depends exponentially on the problem dimension (Raginsky et al., 2017; Holzmiiller
and Bach, 2023) (i.e., ~ exp(d)), or even the convergence to p, cannot be guaranteed altogether
(one instead only guarantee to converge to some local stationarity (Balasubramanian et al., 2022)).
This implies that the Langevin-based algorithms may not be the ideal candidate for solving such hard
sampling problems. To this end, we are interested in addressing the following question:

Can we develop a new sampling algorithm that enjoys a non-exponential convergence
rate for sampling general non-log-concave distributions?

To address this problem, we draw inspiration from recent studies—including Montanari (2023);
Huang et al. (2023)—that attempt to design samplers based on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Vargas et al., 2023). We refer to this class of samplers as the diffusion-based
Monte Carlo (DMC) methods. In particular, the algorithm developed in Huang et al. (2023) is
based on the reverse process of the Ornstein-Uhlenbeck (OU) process, which starts from the target
distribution p, and converges to a standard Gaussian distribution. The mathematical formula of the
OU process and its reverse process are given as follows (Anderson, 1982; Song et al., 2020):

dXt = —Xtdt + \/idBt, X ~~ po(l’) = DPx, (OU PI'OCCSS)
dx;” = [x{” +2Vlogpr_(x{")]dt + v2dB,, x§ ~ pr(z) ~ N(0,I), (Reverse Process)

where B, denotes the Brownian term, p;(x) denotes the underlying distribution of the particle at
time ¢ along the OU process, T denotes the end time of the OU process, and V log p;(x) denotes
the score function of the distribution p;(x). In fact, the exponentially slow convergence rate of
the Langevin-based algorithms stems from the rather long mixing time of Langevin dynamics to
its stationary distribution, while in contrast, the OU process exhibits a much shorter mixing time.
Therefore, principally, if the reverse process of the OU process can be perfectly recovered, one can
avoid suffering from the issue of slow mixing of Langevin dynamics, and develop more efficient
sampling algorithms accordingly.

Then, the key to recovering (Reverse Process) is to obtain a good estimation for the score
Vlogp:(x) for all ¢ € [0,7]. Huang et al. (2023) proposed a score estimation method called
reverse diffusion sampling (RDS) based on an inner-loop ULA. However, it still suffers from the
exponential dependency with respect to the target sampling error, which requires exp (O(l / e))
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gradient complexity to achieve the e sampling error in KL divergence. The reason behind this is that
RDS involves many hard subproblems that need to sample non-log-concave distributions with bad
isoperimetric properties, which incurs huge gradient complexities in the desired Langevin algorithms.
In this work, we argue that the hard subproblems in Huang et al. (2023) are redundant or even
unnecessary, and propose a more efficient diffusion-based Monte Carlo method, called recursive score
DMC (RS-DMC), that only requires quasi-polynomial gradient complexity to sampling general
non-log-concave distributions. At the core of RS-DMC is a novel non-parametric method for score
estimation, which involves a series of interconnected mean estimation and sampling subproblems
that are correlated in a recursive manner. In particular, we first divide the entire forward process into
several segments starting from 0, 5, . .., (K —1)S, and estimate the scores {V log prs () }x=0,.. k-1
recursively. Given the segments, the score within each segment V log prs+-(x) will be further
estimated according to the reference score V log prs(x), where 7 € [0, S] can be arbitrarily chosen.
Importantly, given proper configuration of the segment length (i.e., S), we can show that all sampling
subproblems in the developed score estimation method are much easier, as long as the target
distribution p, is log-smooth and has bounded second moment. Then, all intermediate target
distributions are guaranteed to be strongly log-concave, which can be sampled very efficiently
via standard ULA. Accordingly, based on the samples generated via ULA, the mean estimation
subproblems can be then resolved very efficiently under some mild assumptions on the tail of the
posterior distribution (e.g., moment bounds). We summarize the main contributions as follows:

* We propose a new Diffusion Monte Carlo algorithm, called RS-DMC, for sampling general non-
log-concave distributions. At the core is a novel and efficient recursive score estimation algorithm.
In particular, based on a properly designed recursive structure, we show that the hard non-log-
concave sampling problem can be divided into a series of benign sampling subproblems that can
be solved very efficiently via standard ULA.

* We establish the convergence guarantee of the proposed RS-DMC algorithm under very mild
assumptions, which only require the target distribution to be log-smooth and to have a bounded
second moment. In contrast, to obtain provable convergence (to the target distribution), the
Langevin-based methods typically require additional isoperimetric conditions (e.g., Log-Sobolev
inequality, Poincaré inequality, etc). This justifies that our algorithm can be applied to a broader
class of distributions with rigorous theoretical convergence guarantees.

* We prove that the gradient complexity of our algorithm is exp [O(log?’ (d/e) )] to achieve e sampling
error in KL divergence, which only has a quasi-polynomial dependency on the target error € and
dimension d. In contrast, under even stronger conditions in our work, the gradient complexity in
prior works either need exponential dependency in € (i.e., exp (O (1/ e))) (Huang et al., 2023) or
exponential dependency in d, (i.e., exp ((’)(d))) (Raginsky et al., 2017; Xu et al., 2018)? (which
requires the additional dissipative condition). This demonstrate the efficiency of our algorithm.

2. Preliminaries

In this section, we will first introduce the notations and problem settings that are commonly used in
the following sections. We will then present some fundamental properties, such as the closed form of

2. We omit the d-dependency in Huang et al. (2023) and e-dependency in Raginsky et al. (2017); Xu et al. (2018) for the
ease of presentation.
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the transition kernel and the expectation form of score functions along the OU process. Finally, we
will specify the assumptions that the target distribution is required in our algorithms and analysis.

Notations. We use the lowercase bold symbol x to denote the random vector, and the lowercase
italicized bold symbol x means a fixed vector. We use || - || to denote the standard Euclidean distance.
We say a,, = poly(n) if a, < O(n®) for some constant ¢ and pow (a, b) = a’.

The segmented OU process. We define N, ;, = [a, b] N N, for brevity. Suppose the length of each
segment is S € R, and we divide the entire forward process with length 7" into K € N, segments
satisfying K = T'/S. In this condition, we can reformulate the previous SDE as

Xk0 ~ P00 = P« When k =0, else X0 = xp-1,9 k€ Norg_1

(D
dxy s = —xp,dt + V2dBy k€ Nog_1,t€]0,9],

where xy, + denotes the random variable of the OU process at time (kS + t) with underlying density
Pkt Besides, we define the following conditional density, i.e., p(x )|k (x|x’), which presents the
probability of obtaining xj, ; = « when x;s » = «’. The diagram of SDE (1) is presented in Fig 1.

The reverse segmented OU process. According to (Reverse Process), the reverse process of the
segmented SDE (1) can be presented as

Xpo ~ PE-1,s Whenk = K — 1, elsexj o =xj5 15 k€ Nox 1
dxj, =[x, +2Vlogpys—¢(xf;)] dt +V2dB; k€ Nog-1,t € [0, 5]

where particles satisfy x;, = xj, 5+ with underlying density p;, = pi s for any & € Ny x_1 and
t €[0,5]. To approximz{tely solve the SDE with numerical n{ethods, we first split each segment
into R intervals {[(r — 1)1, rn|},=1,... r, where 7 is the interval length and R = S/7. Then we can
replace the score function V log py s—t as vj . and for ¢ € [rn, (r + 1)7], we freeze the value of this
coefficient in the SDE at time (k, 7). Then starting from the standard Gaussian distribution, we
consider the following new SDE:

Xjo ~ Poo =N(0,I) whenk = K — 1, elsexj g =Xj,15 k€ Nox 1

(2)
dxi, = [xgt +2VE <x;@ " M)] dt + v2dB; ke Nox_1,t €0, 9]

where p, denotes the stationary distribution of the forward process. Similar to the segmented OU
process, we define the following conditional density, i.e., p;ﬂ o (x|z"), which presents the probability

of obtaining x;, = = when x;_,, = . The diagram of SDE (2) is presented in Fig 1.

Basic properties of the OU process. Previously, we have demonstrated that SDE (1) is an
alternative presentation of the OU process. Therefore, the properties in the OU process can be
directly introduced for this segmented version. First, the transition kernel in the k-th segment satisfies

— [l — e~z
2(1— e %)

Prgpo(x]ao) = (27 (1 — 6_2’5))_d/2 - exp [ ] , V0<t<S8S.

Plugging the transition kernel into Tweedie’s formula, the score function can be reformulated as the
following lemma whose proof is deferred in Appendix E.
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Figure 1: The illustration of SDE (1) and (2) with the definitions in Section 2. The top of the figure describes
the underlying distribution of the segmented OU process, SDE (1), and the bottom presents the
corresponding distribution in the reverse segmented OU process, SDE (2). For the intermediate
part, the upper half describes the gradients of the log densities along the forward SDE (1), while
the lower half describes approximated scores used to update particles in the reverse SDE (2).

Lemma 1 (Lemma 1 of Huang et al. (2023)) Forany k € Ny g_1 and t € [0, S], the score func-
tion can be written as

_ o (8-1)
T (& o))
v]ogpk,S—t(m) = EXONQk,S—t("m) [_(162(50)]

where the conditional density function qj, s—¢(-|) is defined as

o _e—(s_non?)

Qk,Sft(xolic) X €xXp (10822%,0(330) ~ 9 (1 — 672(3%))

Therefore, to approximate the score V log p,s—ry(®) with an estimator v; (x), we can draw
samples from g, g, (:|) and calculate their empirical mean.

Assumptions. To guarantee the convergence in KL divergence, the Langevin-based methods require
the target distribution to satisfy certain isoperimetric properties such as Log-Sobolev inequality (LSI)
and Poincaré inequality (PI) or even strong log-concavity (Vempala and Wibisono, 2019; Cheng
and Bartlett, 2018; Dwivedi et al., 2018; Ma et al., 2019; Zou et al., 2019, 2021; Dong et al., 2022)
(the formal definitions of these conditions are deferred to Appendix A). Some other works consider
milder assumptions such as modified LSI (Erdogdu and Hosseinzadeh, 2021) and weak Poincaré
inequality (Mousavi-Hosseini et al., 2023), but they are only the analytical continuation of LSI and
PI, which still exhibit a huge gap with the general non-log-concave distributions. Huang et al. (2023)
requires the target distribution p. to have a heavier tail than that of the Gaussian distribution.
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Remarkably, our algorithm does not require any isoperimetric condition or condition on the
tail properties of p, to establish the convergence guarantee. We only require the following mild
conditions on the target distribution.

[A1] Forany k € Ng 1 and ¢ € [0, S], the score V log py, + is L-Lipschitz.

2
7] < o0

[A2] The target distribution has a bounded second moment, i.e., M = E,, [

Assumption [A1] corresponds to the L-smoothness condition of the log density f, in traditional ULA
analysis, which has been widely made in prior works (Chen et al., 2023b,c; Huang et al., 2023). It is
often used to ensure that numerical discretization is feasible. We emphasize that Assumption [A1]
may be relaxed only to assume the target distribution is smooth rather than the entire OU process
(based on Lemmas 12 and 14 in Chen et al. (2023a)) or even only the second moment bounded
and identity data covariance matrix (in the counterpart of Benton et al. (2023)). We do not include
this additional relaxation in this paper to make our analysis clearer. Assumption [A2] is one of the
weakest assumptions being adopted for the analysis of posterior sampling.

3. Proposed Methods

In this section, we introduce a new approach called Recursive Score Estimation (RSE) and describe
the proposed Recursive Score Diffusion-based Monte Carlo (RS-DMC) method. We start by dis-
cussing the motivations and intuitions behind the use of recursion. Next, we provide implementation
details for the RSE process and emphasize the importance of selecting an appropriate segment length.
Finally, we present the RS-DMC method based on the RSE approach.

3.1. Difficulties of the vanilla DMC

We consider the reverse segmented OU process, i.e., SDE 2 and begin with the original version
of DMC in Huang et al. (2023), which can be seen as a special case of the reverse segmented OU
process with a large segment length S = 7" and a small number of segments K = 1. According to
the reverse SDE 2, for the r-th iteration within one single segment, we need to estimate V log pg s+
to update the particles. Specifically, by Lemma 1, we have

— e (5—rn)
T e o
\% logpovsfrn(x) = EXO“‘QO,S*'M}('lm) !_ (1 _ 6—2(3—7“7]))]

for any « € R, where the conditional distribution is

e (S=rm) g |2
(o)) o exp ( logpoo(ao) — =~ il 3)
40,5—rn\T0 p € P0,0{T0 5 (1 — 6_2(5_”7)) .
Since the analytic form Vlogpgo = —V f. exists, we can use the ULA to draw samples from

go,5—rn(+|) and calculate the empirical mean to estimate V log p 5y ().

However, sampling from ¢o s, (-|@) is not trivial. When 7 is small, sampling go 5—r;(-|)
via ULA is almost as difficult as sampling po o(xo) via ULA (see (3)), since the additive quadratic
term, whose coefficient is e ~2(5=7) /2(1 — ¢=2(5=")) will be nearly negligible in this case. This is
because that S = T is large and then e =25~ /2(1 — ¢=2(S=") ~ exp(—2T') becomes extremely
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Figure 2: The illustration of recursive score estimation (RSE). The upper half presents RSE locally,
which shows how to utilize the former score, V log py, (') to update particles by ULA in
the sampling subproblem formulated by the latter score, V log p s—¢(x). The lower half
presents RSE globally, which is a series of interconnected mean estimation and sampling
subproblems accordingly.

small when 7 = O(T). Specifically, in Huang et al. (2023), when e¢=2(5=™) < 2I/(1 + 2L),
the LSI parameter of o g, (&) can be as worse as exp ( — O(1/€)). Then applying ULA for
sampling this distribution needs a dramatically high gradient complexity that is exponential in 1/e.

3.2. Intuition of the recursion

Therefore, the key to avoiding sampling such a hard distribution is to restrict the segment length. By
2L+1)

Lemma 1, it can be straightforwardly verified that if the segment length satisfies S < % log ( 57
) ) 25 25
=V, 108 G5-m(@o|) = =V, log pro(@o) + =55 - T = ST I @

where the last inequality follows from Assumption [A1]. This implies that g, 5, (xo|) is strongly
log-concave for all » < | S/n|, which can be efficiently sampled via the standard ULA. However,
ULA requires to calculate the score function Vg, log qi, sy (o|), which further needs to calcu-
late V log py o(x) according to Lemma 1. Different from the vanilla DMC where the formula of
V log po,o(x) is known, the score V log pj, o(x) in (4) is an unknown quantity, which also requires
to be estimated. In fact, based on our definition, we can rewrite py, o(x) as pr—1 s(x) (see Figure 1),
then applying Lemma 1, we can again decompose the problem of estimating V log p,_1 () into
the subproblems of sampling ;1 g(-|«) and the estimation of V log p;,_1 o(), which is naturally
organized in a recursive manner. Therefore, by recursively adopting this subproblem decomposition,
we summarize the recursive process for approximating V log py, s—,, () as follows and illustrate the
diagram in Figure 2:

* Step 1: We approximate the score V log pi. s, () by a mean estimation with samples generated
by running ULA over the intermediate target distribution gy, g (-|).

* Step 2: When running ULA for g 5—¢(-|@), we estimate the score V log py o = Vlog pr_1,s.
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* Step 3: We jump to Step 1 to approximate the score V log p;—1 s(x) via drawing samples from
gk—1,5(-|x), and continue the recursion.

3.3. Recursive Score Estimation and Reverse Diffusion Sampling

Recursive Score Estimation. We have already explained the rough intuition behind introducing
recursion. By conducting the recursion, we need to solve a series of sampling and mean estimation
subproblems. Then, it is demanding to control the error propagation between these subproblems in
order to finally ensure small sampling errors. In particular, this amounts to the adaptive adjustment
of the sample numbers for mean estimation and iteration numbers for ULA in solving sampling
subproblems. Specifically, if we require score estimation vl:m: R? — R to satisfy

|V log pr,s—rp () — V]:M](CC)HQ <e VxeR? 3)

with a high probability, then the sample number in Step 1 and the number of calls of Step 2 (the
iteration number of ULA) in Fig 2 will be two functions with respected to the target error €, denoted
as ny(€) and my - (€) respectively. Furthermore, when Step 2 is introduced to update ULA, we rely
on an approximation of V log py, ¢ instead of the exact score. To ensure (5) is met, the error resulting
from estimating V log py, o should be typically smaller than e. We express this requirement as:

2
||Vlogpk70(a:) - VEO(ZB)H < lgr(e), Vx € RY
where [}, . (€) is a function of e that satisfies [, ,.(¢) < e. Under this condition, we provide Alg 1, i.e.,
RSE, to calculate the score function for the r-th iteration at the k-th segment, i.e., V log Pk,S—m(SC)-

Note that the initial distribution ¢(, and the step size 7, in Line 4 and 9 should be chosen carefully to
guarantee the convergence of inner ULA, i.e.,

— e (S=rmg||?
qé(fl)l) x exp (_ Hw € x H ) and 7. =0 (62(S—r77) (1 _ 6—2(5—7“77))2 . d_le) .

2(1 — e=2(5—m)

Quasi-polynomial Complexity. We consider the ideal case for interpreting the complexity of
our score estimation method. In particular, since the benign error propagation, i.e., [ ,(€) = e, is
almost proven in Lemma 20, we suppose the number of calls to the recursive function, RSE(k —
1,0,2’, Ik - (€)), is uniformly bounded by my, - (€) - ng, - (€) for all feasible (k, r) pairs when the RSE
algorithm is executed with input (k, r, x, €). Then, recall that we will conduct the recursion in at
most K rounds. The total gradient complexity for estimating one score will be

O(K) (T/5)

[0 () - 11 (1) = g (€) - ()] O/

This formula highlights the importance of selecting a sufficiently large segment with length .S to
reduce the number of recursive function calls and improve gradient complexity. In our analysis, we
set S = % log (%) which is “just” small enough to ensure that all intermediate target distributions
in the sampling subproblems are strongly log-concave. Due to the choice of 7" is O(log(d/€)) in
general cases and my, ,(-) and ny, »(+) are typically polynomial w.r.t. the target sampling error € and

dimension d ( Theorem 5 in Appendix B), we expect a quasi-polynomial gradient complexity.
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Alg

orithm 1 Recursive Score Estimation (approximate V log py s—y,(x)): RSE(k, 7, x, €)

Inp

1 ifk
2

ut :The segment number k& € Ng g1, the iteration number r € Ng g_1, variable « requiring

the score function, error tolerance e.
= —1 then
return —V f,(x)

3 Initial the returned vector v’ + 0

4 fori =1rt0ny,(e) do
5 Draw x{, from an initial distribution ¢,
6 for j = 0t0my,(e,¢) — 1 do
7 'U;- +— RSE (k — I,O,a:;-,lk,r(e)> /+ Recursive score estimation Vlogpr_1,s(x}) */
8 ifrZ20then t' < S —rn else ' + S ;
/+ The gap of time since the last call =/
9 Update the particle
—t —2t' 1
et —e
— J
x;+1 = iU; + T <U§ + 1 o2 > +V27 - &
~V IOng,S—rn(mg‘m)
where £ is sampled from N (0, I ;)
10 end
11 Update the score estimation of v’ ~ V log py sy () with empirical mean as
—t'
v =+ 1 r—e mmk,r(f)
' N, (€) 1—e 2
12 end

Return:v’ /+ As the approximation of Vlogpks () */

Algorithm 2 Recursive Score Diffusion-based Monte Carlo (RS-DMC)

Input :Initial particle xE g sampled from p.,, Terminal time 7', Step size 7, required convergence

for

=)

7 end

accuracy €.

k=K —1downto0do

Initialize the particle as w,‘;o — :I)E_L g
forr =0f0 R —1do

Approximate the score, i.e., V1og py s—ry () ,,) by v’ < RSE(k, r, @} ., . 1(€))
ez, + (" — 1) v’ + § where ¢ is sampled from N/ (0, (e — 1) I)

-
L (r+1)n

end

o«
Return: xhg

Diffusion-based Monte Carlo with Recursive Score Estimation.
apply the DDPM (Ho et al., 2020) based method to perform the sampling, giving rise to the Recursive

Based on Alg 1, we can directly
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Score Diffusion-based Monte Carlo (RS-DMC) method. We summarize the algorithm in Alg 2 (the
detailed setup of my, , (), g (+), Ik () are provided in Theorem 5 in Appendix B).

4. Analysis of RS-DMC

In this section, we will establish the convergence guarantee for RS-DMC and reveal how the gradient
complexity depends on the problem dimension and the target sampling error. We will also compare
the gradient complexity of RS-DMC with other sampling methods to justify its strength. Additionally,
we will provide a proof roadmap that briefly summarizes the critical theoretical techniques.

4.1. Theoretical Results

The following theorem states that RS-DMC can provably converge to the target distribution in
KL-divergence with quasi-polynomial gradient complexity.

Theorem 2 (Gradient complexity of RS-DMC, informal) Under Assumptions [Al1]-[A2], let p(‘fs
be the distribution of the samples generated by RS-DMC, then there exists a collection of appropriate
hyperparameters ny, ., my, ., Tr, 1, Iy » and | such that with probability at least 1 — ¢, it holds that

KL (p*||p(‘: s) = O(€). Besides, the gradient complexity of RS-DMC is

exp [(’) (L3 -log® ((Ld + M)/e) - max {log log Z2, 1} )], (6)
where Z denotes the maximum norm of particles which appears in Alg 2.

We defer the detailed configurations of ny, ., mg -, 7,1, Iy », [ and relative constants in the formal
version of this theorem, i.e., Theorem 5 Appendix B and Table 2 in Appendix A, respectively. From
this theorem, we note the gradient complexity will be exponentially dependent on the smoothness
L. Actually, such an exponential dependence may be inevitable under Assumption [A1] and [A2].
Considering the sampling problem with the target distribution exp(—/3U ), when the temperature (3
increases to O(d/€) level (e.g., the smoothness is also O(d/e)), the sampling problem can be very
close to an optimization problem. Then, if the gradient complexity of RS-DMC does not have an
exponential dependency on the smoothness, it can be used to solve the optimization problem with
potentially quasi-polynomial gradient calculations. This contradicts the Q((LR2 /¢)%?) lower bound
results proved in Ma et al. (2019). In the following, we compare our theoretical results with those of
other previous work.

Comparison with ULA. The gradient complexity of ULA has been well studied for sampling
the non-log-concave distribution. However, in order to prove the convergence in KL divergence or
TV distance, they typically require additional isoperimetric conditions, such as Log-Soboleve and
Poincaré inequality (see Definitions 3 and 4). In particular, when p, satisfies LSI with parameter «,
Vempala and Wibisono (2019) proved the O (de_loz_z) in KL convergence. However, for general
non-log-concave distributions, « is not dimension-free. For instance, under the Dissipative condition
(Hale, 2010), a can be as worse as exp(—O(d)) (Raginsky et al., 2017), leading to a exp(O(d))
gradient complexity results (Xu et al., 2018).

When the isoperimetric condition is absent, Balasubramanian et al. (2022) proved the convergence
of ULA based on the Fisher information measure, i.e., FI (p|p.) = E,[||Vlog(p/p.)||*], they
showed that ULA can generate the samples that satisfy FI (p||p.) < € for some small error tolerance

10



RECURSIVE DIFFUSION-BASED MONTE CARLO

e. However, it may be unclear what can be entailed by such a guarantee FI (p||p.) < e. It has
demonstrated that, in some cases, even if the Fisher information FI (p||p.) is very small, the total
variation distance/KL divergence remains bounded away from zero (Balasubramanian et al. (2022)).
This suggests that the convergence guarantee in Fisher information might be weaker than that in KL
divergence (i.e., our convergence guarantee).

Comparison with DMC. Then we make a detailed comparison with DMC in (Huang et al., 2023),
which is the most similar algorithm compared to ours. Firstly, we would like to strengthen again that
our convergence results are obtained on a milder assumption, while Huang et al. (2023) additionally
requires the target distribution to have a heavier tail. Besides, as discussed in the introduction section,
DMC has a much worse gradient complexity since it performs all score estimation straightforwardly,
while RS-DMC is based on a recursive structure. Consequently, DMC involves many hard sampling
subproblems that take exponential time to solve, while RS-DMC only involves strongly log-concave
subsampling problems that can be efficiently solved within polynomial time. As a result, the gradient
complexity of RDS is proved to be poly(d) - poly(1/e) - exp (O(1/¢)), which is significantly worse
than the quasi-polynomial gradient complexity of RS-DMC.

4.2. Proof Sketch

In this section, we aim to highlight the technical innovations by presenting the roadmap of our
analysis. Due to space constraints, we have included the technical details in the Appendix.

Firstly, by requiring Novikov’s conditions, we can establish an upper bound on the KL divergence
gap between the target distribution p, and the underlying distribution of output particles, i.e., pf{ g
by Girsanov’s Theorem which demonstrates

K—1R-1
2
KL (p*Hp(<)_,S> <KL (pK*LS”pI?fl,O) +2 Z Z /0 Ex,‘;,,,,,, [HVIngk,sfm(X;;m) - V;c_,rn(xl:rn)H :| dt
Term 1 k=0 r=0
Term 3
K—1R—1 ,
+2) ) /0 Bty V108 Phs—(erm) (Kitrn) = V108 D5 (i) || i
k=0 r=0

Term 2

Although Novikov’s condition may not be met in general, we employ techniques in Chen et al.
(2023a) and sidestep this issue by utilizing a differential inequality argument as shown in Lemma 27.

Upper bound Term 1. Intuitively, Term 1 appears since we utilize the standard Gaussian to
initialize the reverse OU process (SDE (2)) rather than px 1 s which can hardly be sampled from
directly in practice. Therefore, the first term can be bounded using exponential mixing of the forward
(Ornstein-Uhlenbeck) process towards the standard Gaussian in Lemma 9, i.e.,

KL (pr-1,5[Pk-1,0) <KL (pellpic—1,0) exp(~KS) < (Ld + M) exp(-KS),
where pic | o = N(0,I) as shown SDE (2).
Upper bound Term 2. Term 2 corresponds to the discretization error, which has been successfully
addressed in previous work Chen et al. (2023b,a). By utilizing the unique structure of the Ornstein-
Uhlenbeck process, they managed to limit both the time and space discretization errors, which

decrease as 17 becomes smaller. To ensure the completeness of our proof, we have included it in
Lemma 13, utilizing the segmented notation.

11
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Upper bound Term 3. Term 3 represents the accuracy of the score estimation. In diffusion models,
due to the parameterization of the target density, this term is trained by a neural network and assumed
to be less than € to ensure the convergence of the reverse process. However, in RS-DMC, the score
estimation is obtained using a non-parametric approach, i.e., Alg 1. To this end, we can provide
rigorous high probability bound for this term under Alg 1, which is stated in Lemma 23. Roughly
speaking, for Alg 1 with input each (k,r, x, €), suppose the score estimation of V log py, o is given as
v};l’o satisfying the following event

N [Viogpro(@) = viii @) < li(e)
x' €Sy, (,€)

where Sy, . (x, €) denotes the set of particles appear in Alg 1 except for the recursion. In this condition,
Lemma 20 provides the upper bound of score estimation error as:

— 2 2¢~2(5—) 1 RN / ’
Hvk,m(m) = Vlogpk:,s—m(a:)H < (1 ~ 672(57”7))2 . H — e ; X; + EXW%,SH-T}("“’) [X]
Term 3.1
2¢—2(5—n)
T ey H ~ By o, (o) [X]+ Brng sy i) [X]
Terﬁlr3.2

where ¢ s—m(|2) is the underlying distribution of output particles, i.e., x e (ln() in Alg 1.
Considering that the distribution g s, is strongly log-concave (given in Eq. 4) and we can get
a lower bound on the strongly log-concave constant (see Lemma 15). Therefore, q}c’ S—rn also
satisfies the log-Sobolev inequality due to Lemma 32, which can imply the variance upper bound
(see Lemma 35). Then, in our proof, we directly make use of the Sobolev inequality to derive the
high-probability bound (or concentration results) for estimating the mean of q;a S—m(' |&) in Term
3.1 with Lemma 20 by selecting sufficiently large n, - (¢). Besides, Term 3.2 can be upper bounded
by KL(qj, gy (12)|lgk,5—rn(-|x)), which can be well controlled by conducting the ULA with a
sufficiently large iteration number my, ,(€). Therefore, by conducting the following decomposition

P[ HVIngkvs—m(m;m) - Vﬁm(mﬁm)ﬂz < E]

>-op] () [¥losmiate) —vimu@l <1sta)]

x' €Sy (x,€)

We only need to use this proof process recursively with a proper choice of § (9 as a function of ¢) to
get the bound:

P[ ||V 108 Dhs—rn (@) = Vi (@i < € 21—,

which implies Term 3 < O( ¢) with a probability at least 1 —e. Due to the large amount of computation,
we defer the details of the recursive proof procedure and the choice of § to the Appendix E.3.

5. Empirical Results

We consider the target distribution defined on R? to be a mixture of Gaussian distributions with 6
modes. Meanwhile, we draw 1, 000 particles from the target distribution, presented as blue nodes

12
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N=0 N =25 N =50 N =100 N =200
N=0 N =100 N =190 N =195 N =200
N=0 N =100 N =190 N =195 N =200

Figure 3: Illustration of the returned particles for ULA, RS-DMC-v1 and RS-DMC-v2 shown with
orange particles and the blue ones sampled from the ground truth. The first row is returned
by ULA, the second is RS-DMC-v1 and the last is from RS-DMC-v2. N = grad num.

shown in Fig. 3. We fix the random seed and initialize particles with the standard Gaussian. Then,
update particles with the following three settings:

ULA. We choose ULA Neal (1992); Roberts and Tweedie (1996) as the sampler, setting the step
size and the iteration number as 2 - 10~ and 200 respectively.

RS-DMC-vl. We choose RS-DMC as the sampler, setting the outer step size and the inner step
size as n = 0.05 and 7, = 0.01, respectively. For inner loops, the # of samples and iterations, i.e.,
ny, and my, ., are 1. For outer loops, the # of iterations is 200, and we divide the entire process into
two segments, i.e., K = 2, and each segment contains 100 iterations, i.e., R = 100.

RS-DMC-v2. We choose the same hyper-parameter settings as that in RS-DMC-v1, but replace the
mean estimation by the ULA’s update for the last 10 iterations since when p;~ is closed to p., i.e.,

lim Vlogp;~(2) = Vlogpo(z) + O (T' 1)) = =V fu(z),

which follows from Lemma 10 and means —V f,(x) can approximate the score.

Experimental results. To compare the behaviors of the three methods, we illustrate the particles
when the algorithms return for different gradient complexity in Fig 3. We note that (1) ULA will
quickly fall into some specific modes, and most steps are used to improve the mean estimation of
each mode. However, the number of particles belonging to each mode is unbalanced and almost
determined at the very beginning of the entire process. This is because the drift force of different
modes at the origin varies greatly. (2) RS-DMC-v1 quickly covers the different modes and converges

13
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to their means. Besides, the number of particles belonging to each mode is much more balanced than
that in ULA. However, since we only choose nj, , = my,, = 1, and the score V log py, +(x) does not
be approximated accurately, the convergence to specific modes will be relatively slow, which causes
the variance of RS-DMC-v1 larger than the target distribution. (3) RS-DMC-v2 takes the advantage
of RS-DMC-v1 and estimate the the score V log py, (), when py, ;(x) approaches p,, with — f,(x)
directly rather than a inner-loop mean estimation. From another perspective, RS-DMC-v2 covers the
different modes by RS-DMC-v1 and achieves local convergence by ULA. Hence, it has a balanced
particle distribution for each mode and shares a variance almost identical to the ground truth.

6. Conclusion

In this paper, we propose a novel non-parametric score estimation algorithm, i.e., RSE, presented in
Alg 1 and derive its corresponding reverse diffusion sampling algorithm, i.e., RS-DMC, and outlined
in Alg 2. By introducing the segment length S to balance the challenges of score estimation and
recursive calls, RS-DMC exhibits several advantages over Langevin-based MCMC, e.g., ULA, ULD,
and MALA. It can achieve KL convergence beyond isoperimetric target distributions with a quasi-
polynomial gradient complexity, i.e., exp [O(L3 -log®(d/e) - max {log log Z2, 1})] . Additionally,
the theoretical result also demonstrates the efficiency of RS-DMC in challenging sampling tasks. To
the best of our knowledge, this is the first work that eliminates the exponential dependence with only
smoothness and the second moment bounded assumptions.
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Appendix A. Notations

Symbols Description
Vg2 The density function of the centered Gaussian distribution, i.e., N’ (O, oI )
Dx» P0,0 The target density function (initial distribution of the forward process)

{xXkt b heng x s tefo,s) The forward process, i.e., SDE I

Dkt The density function of Xy, ¢, 1.€., Xj ¢ ~ Pkt
DPoo The density function of the stationary distribution of the forward process

{%} b keng k1 ,tefo,s)  The practical reverse process following from SDE 2 with initial distribution pe.

H : — — —
Dy The density function of Xp o 1.8, Xpy ~ Dy

)

Table 1: The list of notations defined in Section 2, where N, 5 is denoted as the set of natural numbers
froma € Ny toany b € N

In this section, we summarize the notations defined in Section 2 in Table 1 for easy reference
and cross-checking. Additionally, another important notation is the score estimation, denoted as
v,‘;m, which is used to approximate V log py, 5. When r = 0, V;;o is expected to approximate
V log pi,s which is not explicitly defined in SDE 1. However, sine x;, 5 = Xj41,0 in Eq 1, the
underlying distributions, i.e., px s and py1 o, are equal, and v o can be considered as the score
estimation of V log py.11 9. For V log pg o, which can be calculated exactly as V f., we define

v o(®) = Viegpoo(x) = =V fu(x) 7

as a complement.

Isoperimetric conditions and assumptions. According to the classical theory of Markov chains
and diffusion processes, some conditions can lead to fast convergence over time without being as
strict as log concavity. Isoperimetric inequalities, such as the log-Sobolev inequality (LSI) or the
Poincaré inequality (PI), are examples of these conditions defined as follows.

Definition 3 (Logarithmic Sobolev inequality) A distribution with density function p satisfies the
log-Sobolev inequality with a constant 1. > 0 if for all smooth function g: R — R with E, (9] < oo,

E, [g2 log gz} —-E, [gQ} log E, [92} < 2071Ep [HVgHQ} .

Constant symbol Value ‘ Constant symbol Value
Cy 2712 Cma log (2M - 3% -5L) + M - 3L
Ch 20.5%.Ct Cm 2°.3%.5% . CrunC; 10
Cun log (2¢2¢m) + log (2max {log Z, 5 }) Cu 70/5% +10/8
Cus 2Cu1/8 S 1/2log((2L + 1)/2L)

Table 2: Constant List independent with € and d.
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By supposing g = 1 + €¢g with ¢ — 0, a weaker isoperimetric inequality, i.e., PI can be defined Menz
and Schlichting (2014).

Definition 4 (Poincaré inequality) A distribution with density function p satisfies the Poincaré
inequality with a constant 11 > 0 if for all smooth function §: R — R,

Var(g) < o', [|Val?].

We also provide a list of constants used in our following proof in Table 2 to prevent confusion.

Appendix B. Proof of Theorem 2
Theorem 5 The formal version of Theorem 2 In Alg 2, suppose we set
S =1/2-log(1+1/2L), K =2log|[(Ld+ M)/e]-S™,
n=Cy(M+d)~'e, R=S/n,
l(e) = 10¢, I, (€) = €/960,
ngr(e) = Cy - (d+ M)e ? - max{d, —2log 6},
My, (6,2) = Cp - (d+ M)>e¢3 - max{log || z|?, 1},

7, =270.372. 28 (1 — 6_2(5_”7))2 ~d e
where § satisfies
5 —oow (2 210 LAEMY o CySe o (LA MY o (Ld+ M
—pow S Tglee T POWA L@+ ) 8 ; P e )

Ld+ M 2 Ld+ M

and the initial underlying distribution g, of the Alg I with input (k,r, x, €) satisfies

|l — e~ S-ra||”
q[/)(m,) X exp <_ 2(1 _ 672(377“7))) ;

we have }
P [KL (jo,slIns) = O(e)] = 1-e.

In this condition, the gradient complexity will be
exp [O (L? -log® (Ld + M) /e) - max {loglog Z*,1})]
where Z is the maximal norm of particles appeared in Alg 2.

Proof [Proof of Theorem 5] According to Lemma 27, suppose X, ; = X, s—; Whose SDE can be
presented as

Xpo ~ PE-1,s Whenk = K — 1, elsexj o =%, 15 k€ Nox 1
dxf, = [x5, + 2V log pr.s—¢(x5,)] dt + V2d B, ke Nor-1,t€[0,5]
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due to Chen et al. (2023b). Then, we have KL (p*Hpa_S) — KL (ﬁo,sH pgs> which satisfies

KL (po,sllpg.s) <KL (px-1.0lpk_1.0)

Term 1
K—-1R—-1

n
. . 2
+ Z/o ERpottrn &) [||V10gpk,5—(t+m) (Rkttrn) = Viern i) | }dt.
k=0 r=0
(3)
Upper bound Term 1. Term 1 can be upper-bounded as
Term 1 = KL (pr—1,5/pk_10) < (Ld+ M) - exp (=K S/2)
with Lemma 9 when pg_m is chosen as the standard Gaussian. Therefore, we choose
1, 2L+1 Ld+M (1. 2L+1\! Ld+ M
S=-1 K=2log— - [ =1 d KS>2log—
2 % oL & (2Og2L)’an =T
which make the inequality Term 1 < ¢ establish.
For the remaining term of RHS of Eq 8, it can be decomposed as follows:
K-1R-1 .y )
Z Z / E(&k,t-&-rnvf‘k,rn) [“Vlogpkﬁ_(t‘i‘rn) (&’ﬁtﬂ“n) - V;C_J’f](f(kﬂ“n)H } dt
k=0 r=0 0
K-1R-1 ., )
<2 Z Z / E |:HVIngkJ,S—(t+7‘77) ()A(k,t—krn) - Vlogpk,S—rn(}A(k’,rn)H :| di
k=0 r=0 0 9)
Term 2
K-1R-1 ., )
+ 2 Z Z / E(f{k,t«krnvf{k,r'ﬂ) [“VIOg‘pka—rn(f{kﬂ'n) - vkt’l‘?’](*kﬂ'ﬂ)” i| dt
k=0 r=0"0
Term 3

Upper bound Term 2. This term is mainly from the discretization error in the reverse process.
Therefore, its analysis is highly related to Chen et al. (2023b,a). To ensure the completeness of our

proof, we have included it in our analysis, utilizing the segmented notation presented in Section A.
Specifically, we have

K-1R-1

K . ) 2
Term2<4) ) / E [V 108 Pk 5 (t1m) Rbstrn) = V108 Dk 57 Rt |
k=0 =0 "0
= Pk,S (Xkrn) ||
+4ZZ/ E HVIog S=(ttrn) Tk ‘ dt
k=0 r—0 70 pk,Sfrn(Xk,rn)
K—-1R-1 n D (}A{ ) 2
<4 / E [L2||>z,€,t+m—>zk,m||2} +E HVIog k.S Xk ‘ dt
—~ =)o Ph,S—(t+rn) Xkrn)

where the last inequality follows from Assumption [A1]. Combining this result with Lemma 13,
when the stepsize, i.e., n of the reverse process is 7 = Cn(M + d)_le, then it has Term 2 < e.
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Upper bound Term 3. Due to the randomness of Vl:m’ we consider a high probability bound,
which is formulated as

2
Pl [IViogpks-rm(et) = Vi (im)Il” <10e) 21—, (10)
k€Ng k1
r€No,rR—1

which means we choose () = 10e. Lemma 23 demonstrate that under the following settings, i.e.,
Lir(€) = €/960,
ngr(€) = Cyp - (d+ M)e % - max{d, —2log 6},
myr(e,2) = Cp, - (d+ M)*e¢3 - max{log||z|? 1},
where ¢ satisfies
5 —pow <2, 2 10g Ld+M> - pow (W log~? <M> - pow ((LCHM> 7
S € 4(d+ M) € €
Ld—:M _Cu,3> ,%logLaH—M +1> ’
Eq 10 can be achieved with a gradient complexity:
exp [O (L? -log® (Ld + M)/e) - max {loglog Z*,1})]

where Z is the maximal norm of particles appeared in Alg 2. All constants can be found in Table 2.
In this condition, we have

T Ld+M -
Term 3 <4-—-(n-10¢) < 40elog; = O(e).
n €

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL (jo,s]|p.5) = OCe).
The proof is completed. n

Corollary 6 Suppose we set all parameters except for § to be the same as that in Theorem 5, and

define
(-2 L) (G50 g (B2 e (14100)
S € 4(d+ M) € €
— uglong%M —Cu73) ,%long%M + 1) ,
we have

P [KL (5o,slIns) = O(e)] =1 -4
In this condition, the gradient complexity will be

Ld+ M\ Ld+M 1
O <L3 - max { (log d+> ,log Ld+ M . log} 'max{loglogZ2, 1})]
€ €

exp 5

where Z is the maximal norm of particles appeared in Alg 2.
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Proof In this corollary, we follow the same proof roadmap as that shown in Theorem 5. Combining
Eq 8 and Eq 9, we have

KL (po,slpg.s) <KL (px-1.0lpk_1.0)

K . . 2
<2 / E MvIngk,Sf(tJrrn)(Xk,tJrrn) — V108 P, 5—rn (Xie,rn) || } dt
k=0 r=0 70 (11)
Term 2
K-1R-1 .y )
+ 2 /0 E(’A‘k,tJrTnv’A‘kmn) |:Hv logpkvsf"’n(f(kﬂ“rl) - V;C_”"n(f(k"”ﬂ)u :| dt
k=0 r=0

Term 3

It should be noted that the techniques for upper-bounding Term 1 and Term 2 are the same as that
in Theorem 5.

Upper bound Term 3. Due to the randomness of v;:m, we consider a high probability bound,
which is formulated as

Pl () V108 pks—rm(Xim) = Viog (i) | < 10| >1 -, (12)

k‘ENo,Kfl
re€Ng r—1

which means we choose I(¢) = 10e. Lemma 24 demonstrate that under the following settings, i.e.,
Lir(€) = €/960,
ngr(€) = Cyp - (d+ M)e ? - max{d, —2log 6},
myr(e,2) = Cp, - (d+ M)>e3 - max{log||z|? 1},

where ¢ satisfies

5o (9 21og LA MY CpSed L (Ld+ MY ([ Ld+ M
=pow (2.~ glog = ) - pow | gy log ™ { | pow { | —— ]

Ld+ M 2 Ld+ M
- u,210g6_Cu,3) ’Sloge+1)’

Eq 12 can be achieved with a gradient complexity:
Ld+M\® Ld+M 1
O <L3 - max { (log +> ,log Lt log 5/} - max {loglog A 1})]
€

exp —
€

where Z is the maximal norm of particles appeared in Alg 2. All constants can be found in Table 2.

In this condition, we have

T Ld+ M ~
Term 3 <4-—-(n-10¢) < 406log; = O(e).
n €

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL (po,s/lpss) = O(e)-
The proof is completed. n
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Appendix C. Lemmas for Bounding Initialization Error

Lemma 7 (Lemma 11 in Vempala and Wibisono (2019)) Suppose p  exp(—f) and f: R? —
R is L-gradient Lipschitz continuous function. Then, we have

Exp [IV/(0I] < Ld
Lemma 8 Under the notation in Section A, suppose p x exp(—f) satisfies Assumption [Al]
and [A2], then we have
L(pler) < Ld+M

Proof From the analytic form of the standard Gaussian, we have V?log o1 = I. Combining this
fact with Lemma 28, we have
p(x)

1
Lol <5 [ pla) |[Vies 22
< [ @) V(@) de+ [ p(a) lol*de < L+ 1.

2
dx

‘Vlog

where the last inequality follows from Lemma 7 and Assumption [A2]. Hence, the proof is completed.
|

Lemma 9 (Variant of Theorem 4 in Vempala and Wibisono (2019)) Under the notation in Sec-
tion A, suppose P 1 is chosen as the standard Gaussian distribution. Then, we have

KL (pr—1,5||psc) < (Ld+ M) - exp (—K S/2).

Proof Suppose another random variable z; := X|/5| +—|¢/5].5 Where X ; is shown in SDE 1, we
have

dz; = —z,dt + \@dBu Zo = X0,0,

where the underlying distribution of x¢ o satisfies ppo = p« o exp(—fx). If we denote z; ~ pgz) ,

then Fokker-Planck equation of the previous SDE will be

(2)
(2) () — (2) (=) (5) — (2) pi(2)
o (z) = V- (07 (2)2) + A, <z>—v-< (=)Viog (_WHQ)).

It implies that the stationary distribution is standard Gaussian, i.e., p(()? o exp(—1/2 - ||z||*). Then,
we consider the KL convergence of (z;):>0, and have

(2)1, (2)
dKL (pt Hpoo) _ d/p( )( 1o g z)dz /3t ( )(z)dz
dt dt ) (2) (Z)(z)
o (2) a (2) 2 )
/v ptz) 1 t (Z) logpz(f (z)dZ:—/p§Z)(Z) VIngt )(Z) dz.
P8 (=) P8 () P8 ()
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Combining the fact V(- log pé?) = I and Lemma 28, we have

@ (|17

z P z z

KL (7 12) <2 [ 570 |[Vio 252
pso (%)
Plugging this inequality into Eq 13, we have
aKL (p?[p) ) [I°
__[.® P (2) <1 (2)1,,(2)
= [ Viog 5 2 de < gL (6715)

Integrating implies the desired bound,i.e.,
KL (p{?Ip)) <exp(~t/2) - KL (p§7[p)) < (Ld + M) - exp (~1/2)

where the last inequality follows from Lemma 8. It implies KL divergence between the underlying
distribution of X1 5 and p is

KL (px-1,5

[Psc) = KL (pﬁ?é!lpé?) < (Ld+ M) -exp (—KS/2)

Hence, the proof is completed. |

Appendix D. Lemmas for Bounding Discretization Error.

Lemma 10 (Lemma C.11 in Lee et al. (2022)) Suppose that p(x) < e~/ ®) is a probability den-
sity function on RY, where f(x) is L-smooth, and let @2 (x) be the density function of N'(0, 0%1,).
Then for L < ﬁ, it has

p(x)

H“"g 0+ 902) (@)

< 6Lod"/? + 2Lo? |V f(z)] .

Lemma 11 (Lemma 9 in Chen et al. (2023b)) Under the notation in Section A, suppose that As-
sumption [Al] and [A2] hold. For any k € Ng i1 and t € [0, S], we have

1. Moment bound, i.e.,
E |xeel| < dv M.

2. Score function bound, i.e.,

E [V Tog prs(0x0)|12] < L.

Lemma 12 (Variant of Lemma 10 in Chen et al. (2023b)) Under the notation in Section A,Suppose
that Assumption [A2] holds. Forany k € {0,1,..., K — 1} and 0 < s <t < S, we have

E |x60 = Xpsl?] < 2(M +d)- (£ = 5)> +4d - (¢ 5)
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Proof According to the forward process, we have

2
+4 HBt - BS||2

2

t
/ —XkyrdT + \/§ (Bt — Bs) < E

t 2
(/ rlar)

QM +d)-(t—s)*+4d- (t—s),

t
2’/ Xkﬂad?“
S

+4d-(t—s)gz/:E[ka,rﬂ dr - (t—s)+4d- (t —s)

E [ka,t — Xk,s||2} =E

<2E

where the third inequality follows from Holder’s inequality and the last one follows from Lemma 11.
Hence, the proof is completed. |

Lemma 13 (Errors from the discretization) Under the notation in Section A, if the step size of

the outer loops satisfies
n<Cy (d + M )71

then, forany k € {0,1,..., K — 1}, r € {0,1,...,R— 1} and t € [0, 7], we have

< 2
E [L2 Hiht—&-rn - fck,m”ﬂ +E Hng pkﬁim(x%m) ’ < 4de.
Pk, S—(t+rn) (Xk,rn)
Proof We consider the following formulation with any ¢ € [0, 7],
Term2 = B Hv tog PeserXten) |\ g (2 s sl a4
Pk, s—(t+rn) (Xkﬂ”n)

Term 2.1

Upper bound Term 2.1.  To establish the connection between py, sy and pg g (¢4ry)» due to the
transition kernel of the forward process (OU process), we have

pk,S—rn(:B) = /pk,S(rnth) (y) ’ ]P)[ (k S — 7”77)|y7 (7“77 + t

:/p’fﬂ—(mm(y)'(% (1=e))7 e [—H‘E—z 2'?H ]dy (15)

d

_ d —||lx— =z
- / e Prs—(rmen(€'2) - (2m (1= 7)) 7% - exp [2(9 T Jl)] "
where the last equation follows from setting z := e'y. We define

/ . td ¢
pk7s_(r77+t)(z) =€ pk,S—(T’n-ﬁ-t)(e Z)
which is also a density function. Therefore, for each element Xy, ., = x, we have
2

2 /
—(r T . T Ph.5—(rypst) ()
HVlogpk’S(nH)() <2 v1ogpk~9<—7v+'f>() 2|7 10g Pes=tnn(®)
pk,Sfm(m) —(rn+t) (:B) pk,Sfm(m)
2
r D5 (rnt) (T)
9|V 1og pk:S n+t) (:c) +2|Vlog - k.S (n+t)
kS (m+t)(5'3) Pl s—(rn+t) * P1- e—”)(m)
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where the last inequality follows from Eq 15. For the first term, we have

Pk, S—(rn+t (z)
Vlog — S22 — 11 Tog pr, g (i) (@) — € - V10g pr.s— (e (€')|
pk S—(rn+t) (CC)
HV]ngk S— 7‘77+t)( ) - etv logpk,S 7"77+t H (16)

' ||V 1og pr.s— () (T) — V108 Dr 5 (i) (€T |
= (et —1) - [|Viogpr,s—(ryin (@) + € - (" = 1)L |||
To upper bound the latter term, we expect to employ Lemma 10. However, it requires a specific

condition which denotes the smoothness of —V log p), S—(rn+1) should be upper bounded with the
variance of ¢(;_-2¢) as

rn+t

1
2 /
=708 s v < gy

< 11
1 < min YTAD)

Since the smoothness of —V 1og py s (1. 1.€., Assumption [A1], implies —V Ing;c,sf(qut) is

which can be achieved by setting

e2! L-smooth. Besides, there are

11 1 1
t<n< <1 14+ — d #L< —— .
= mm{4L 2}— Og( +2L) an = 91— e %)

Therefore, we have

HV 108 Pl 5 vy () — V log (pk,Sf(rrHt) * w(l—em) (w)H
<6e*L\/1 — e2td"/? + 2e3L(1 — e 2) HV]ogp;g S—(m+t)(€t$)H

§662tL V 1 - eith1/2 + 2L * et( HVlogpk S— 7’7]+t H (17)
+ 2L - et(th -1) }|Vlogpk7s_(m+t)(e x) — Vlogpy S—(m+t)( )H
<6e”L/1 —e~2d"? + 2L - e'(e* — 1) |V log pr.s— () (@) |

+2I7. et(e% — 1)(et — 1) |l=|,

where the first inequality follows from Lemma 10, the last inequality follows from Assumption [A1].
Due to the range, i.e., n < 1/2, we have the following inequalities

3
<M <144n<3, 1-e2<2t<2y and et§6"§1+§~n.

In this condition, Eq 16 can be reformulated as

2
PhS—(rm+) (%) <2 [(e" = 1) | V10g b sy (@)[* + €2 (¢! = 2L ]

Prs—(rmtt) (®

Vlog

<50 ||V 108 pr.s— (i) (@)||” + 14027 )%,
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and Eq 17 implies

2
V108 55y (2) = F108 (Bhs vy * D12 ) (@)
<3. [6264%2(1 — e 2)d 4+ 4022 (e — 1)2 ||V log pr.s— ey (@) + 4L (€2 — 1)2(e! — 1) ||:c||2}
2
<3. [23 B L2d + 25 3122 ||V 1og prs—(ran (@)]|” + 3% - 24 L ||a:H2]
2
<2% - 3°LPnd + 29 - 3°L°n* |V log prs— iy () ||” + 3%+ L7 || ]?,

where the last inequality follows from nL < 1/4. Hence, suppose L > 1 without loss of generality,
we have

2 2

p;c,S—(rn—l—t) (}A(kﬂ“ﬂ)
DPE,S—rn (}A(k,rn)

Pk, S—(rn+t) (fck,rn)
7

Term2.1 <2 |E +E |||V]og

‘Vlog

pk,S—(rn—i—t) (kkﬂ“??
. 2 .
< 208312 + 25 BPLAPE (|| 10g i s sy (R |[F] + 22 3 L2 [[R4, 7]
< 2412 + 2B LK || V10g D s i) Rins)[[P] + 22 L9PE [t = Rl
+ 210 L% [[[Rp, 2]
Therefore, we have
. . 2
Term 2 <2 L%nd + 2'°L%)°E [Hthﬂﬂ + 2B 2R [HV log pi 5 (rn+4) (Xk,rn+t) H ]
+ (28022 +1) L°R [H&k,mﬂ _ &km]ﬂ
§214L277d + 210L27]2(M + d) + 213L3772d + 210L2 (2(M + d)772 + 4d77)

where the last inequality follows from Lemma 11 and Lemma 12. To diminish the discretization
error, we require the step size of backward sampling, i.e., 1 satisfies
n <2 M2 1,
- n < 2765 . [ 7157470505
n < 2761‘/70.5 (d + M)—0.5 60.5
n <2 BL72d7 e

21412nd < €

210 L2n%(d+ M) < ¢

913 L3772d <e

219 L2 (2(M + d)n* + 4dn) < e

Specifically, if we choose
n<2ML2(d+ M) e=Cp(d+ M) e,

we have
Pk,S—rn ()A(k,rn)
Pk, S—(t+rn) (fck,m)

E |2 %% 4rg — Rirgll’] +E

2
=

and the proof is completed. |

HV]og
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Appendix E. Lemmas for Bounding Score Estimation Error

Lemma 14 (Recursive Form of Score Functions) Under the notation in Section A, for any k €
No k-1 andt € [0, 5], the score function can be written as

e (S8=t)y
£ e X
Va 10g pr,s—t() = Exrngy s_(|) [_(1_6—2(3—@)]

where the conditional density function qy, s—+(-|x) is defined as

] \\w—e‘“w’\f)

/ /
Qr,5—t(Z'|T) o< exp <V log po(z') 2(1—e 260

Proof When the OU process, i.e., SDE 1, is selected as the forward path, for any & € Ny g and
t € [0, 5], the transition kernel has a closed form, i.e.,

— [l — e~tao||”
2(1— e %)

pran(le) = (2r (1= ) exp [ ] vo<i<s
In this condition, we have
prs-i(@) = [ pralen) - prs-p(alzn)dan

s 0)) 2 g [l = e ol
- [ oten (1 ) g | e Sl

Plugging this formulation into the following equation

Vi s—
Valogprs—i(x) = TPhS-F) t(w),
pk,S—t(x)

we have

o= |

—d/2
V Jrapro(ao) - (27 (1 — e7257D)) - exp [ o(1—e265-1) ] o

Valogpr s—i(z) = oGy

—d/2
fRd pk,O(mO) . (27‘1’ (]_ _ 6*2(5715))) /2 exp |: 2(1_672(57”) :| dxg
Ne—e—(S—t) g, 2 _—(5—1)
Jea o) -exp () (e e ) dag
Nz—e— (5=t g0 |2
Jra Pro(xo) - exp < !(16_2(5—'5)0)H > dzo

x — e (5%,
“Exogisto) |~ (1 20y

(18)
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where the density function g7_¢(-|x) is defined as
=0y
Pro(To) - exp 2(1—205-0)

e
fRd pk,o(wo) - €Xp 2(1—e2(5-0) dxg

Qk,S—t(m0|m) =

z — e 5Dy
oCexp <_fk,0(m0) - H2 = 6_2(5_?)‘)‘ ) ;

where py, o o< exp(— fk,0). Hence, the proof is completed. |

Lemma 15 (Strong log-concavity and L-smoothness of the auxiliary targets) Under the nota-
tion in Section A, for any k € No g_1, 7 € Nop_1 and x© € R?, we define the auxiliary target
distribution as

_ o= (S=mn
Gk, 5—ry (@) o exp (V log pr.o(a') — H;(l - ez(S:ﬁH) ) '

We define
e—2(S—rn)

1 e—2(S—rn)
21— e-2(5—m)

3
Ly = and L, ::5-

1 —e—2(S—rn)’
Then, we have
prd = ~-V? log dr,S— rn(m,‘w) =< LI

when the segment length S satisfies S = 1 5 log (QL'H )

Proof We begin with the formulation of V2log qk,5—t» 1.€.,

2 / 2 ' e 25—
—V<log qr,5—rp(x'|x) = =V = log pio(x’) + m[ (19)
By supposing S = 1 5 log (QLH) we have
6—2(5—7’7]) e—28
>
1—e 25— = 1—¢2

Plugging this inequality into Eq 19, we have

5 = 2L > 2{|V*logpy ||

) , 6—2(5—7“7]) 2(5—rn)
-V pk’()(l')-f-m HV logpko H—f-m T

3 e_Z(S_Tn)
< Z. .
T2 1—e25-m)
Besides, it has

I=1L1,1.

) , e—2(S—rn) , e—2(S=rn)
—Vpk,o(ﬂf)Jrl_e_g(S_,,n)‘I—(_Hv log pro (@ H+e—2(5—m)>l
1 e~ 2(S—rn)
=2 o emsm
Hence, the proof is completed. n

- I =p,I.
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E.1. Score Estimation Error from Empirical Mean

Lemma 16 With a little abuse of notation, for each i € Ny, in Alg I, we denote the underlying
distribution of output particles as x; ~ qj. 5y and suppose it satisfies LSI with the constant ..

Then, for any © € R? we have

I

by requiring the sample number ny, , to satisfy

Nk,r

ZX +]EX/quS Tn(lw)[ ]
=1

Nk.r

max {d, 210g (5}

Ngr 2
pir€
Proof For any x € R?, we set
MK, r Nk r
v =E, 1o IX] and o' =E_ _, g ) x, —E X! .
qk,S—rn( ‘IIS) [ ] {X{L}i:kirf\"qk,sk;rn("m) Zz; 1 Zz; 1
We begin with the following probability
i 1 & ’ o’ 2
ST X + By M > ( +¢€
Py maln o || e Zl <t pt) X o
L (20)
M|k, r
/ / / /
/ X: — g, b || > o + ng e
{x i kg k<Sk N 1) I Zz; ! ki o ]

To lower bound this probability, we expect to utilize Lemma 33 which requires the following two
conditions:

* The distribution of Z | x; satisfies LSI, and its LSI constant can be obtained.

» The formulation HZ ST xL =y rb’H > o' + ny € can be presented as F' > E[F] + bias
where F'is a 1-Lipschitz functlon.

For the first condition, by employing Lemma 29, we have that the LSI constant of

Nk, r

ZX NQk’S 7‘17( |m)*QkS 7'77( | ) "*qgc,Sfrn('kB)
=1 nk
is u./ny . For the second condition, we set the function F (z) = ||z — ny,b'| : R? — Ris
1-Lipschitz because
|F(z) — F(y)| )l = llyll
[ F |1, = sup = su =1.

wry Tyl ey (@ -yl
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Besides, we have

&) ()

where the second equation follows from the definition of ¢’. Therefore, with Lemma 33, we have

n;w.

§ / /
XZ - n]w»b
=1

and E

Nk,r

E / /
XZ - ?’ijrb

n (kr)
k,
{x T gy g () [ P 2

Nl 12
> o' + ng € gexp< H) 21)

Then, we consider the range of ¢’ and have

/
o =ng, -

By g0

(22)

Nk,r
ng.d
i o (3 ) = e

n
kr i1

the first inequality follows from Holder’s inequality and the last follows from Lemma 35. Combining
Eq 21 and Eq 22, it has

Nk r 2 2
, d wle?ny,
N ’(n — X + Eyroy e X > +¢€ <ex < ASSLLS N
{x b~ () || N r ; B X 2 ok =P 2
By requiring
d ! /2
= <? and - EETRT g, (23)
My Mk e
we have
Nk, r
/ /
F ” o S B ]| < 26]
i=1
Nk, r
/ /
=1-P ZX +Exrqusr(|m)[ ] >2 | >1-96
g i=1 !
Noted that Eq. 23 implies the sample number 7y, ,- should satisfy
d 2log 61
Nk 2 W and  ng, > 46,2
Hence, the proof is completed. n
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E.2. Score Estimation Error from Mean Gap

Lemma 17 For any given (k,r,x) in Alg 1, suppose the distribution qi, s (-|x) satisfies
prd =X =V2log g5y (-|2) < Lo 1,
and x; ~ q;(-|x) corresponds to Line 9 of Alg 1. If 0 < 7, < pr/ (8L2), we have
KL (g} 1 (1)l g (1)) < e 7KL (g} gn,5mn(-|) + 28122
when the score estimation satisfies ||V log pro — v'|| < Lyv/2d7,.

Proof Suppose the loop in Line 6 of Alg 1 aims to draw a sample from the target distribution
Qk,5—rn(-|x) satisfying

2(1 — e=2(S—mm)

Hw—e‘s’"")w’\f)

Q,5—rn(®'|2) o exp(—gpr(x')) = exp <_fk:,0(37,) -

The score function of the target, i.e., Vg (), satisfies

_e_(s_rn)w + 6_2(S_T77)w/
1— 6—2(5'—7"77)

Vg (x') =V frolx') +

At the j-th iteration corresponding to Line 9 in Alg 1. The previous score is approximated by

_6—(5—7“77)33 + 6_2(S_T77) a;/

TpoIN ]
Vg (') = v'(«') + [ o—35=rn)

where v'(+) is used to approximate V log py o(-) by calling Alg 1 recursively. Suppose x; = 2o, the
j-th iteration is equivalent to the following SDE

dZt = —Vg’(zo)dt + \/idBt,

we denote the underlying distribution of z; as ¢;. Similarly, we set go; as the joint distribution of
(20, 2¢), and have

qot(20, 2¢) = qo(20) - qrj0(2t|20)-
According to the Fokker-Planck equation, we have

Aeqro(2tlz0) = V - (qry0(2tl20) - V' (20)) + Agyo(2t]20)

In this condition, we have

) = [ PN g ahazg
:/ [V - (@1)0(2t]20) - V' (20)) + Agyjo(2t]20)] - go(20)dzo

_v. <qt(zt) / th(zg\zt)Vg’(zo)dz()) + Agu(z).
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For abbreviation, we suppose

Q*() = Qk,Sfrn("w) and 9% = Gkr-

With these notations, the dynamic of the KL divergence between ¢; and g is

KL (qrlla.) = / Drae(z0) log L7 4.z,
qx (zt)

:/V- [Qt(zt) (/ qoj¢ (20| 2¢) Vg (z0)dzo + Vloth(Zt)>] -log Zi:)) dz

=— /Qt(zt) (HVIog Ziiz)) ‘2 + </QO|t(Z0Zt)V£//(Z0)dZ0 + Vlog g.(z), Vlog ;JiEZ; >> dz

= [tz |78 22 Faze - [ antzo, 20 (920 920, Fhog 22 Yz 20
< - % /Qt(zt) ‘Vlog (CI]:((Z)) ‘2 dz; + /QOt(zm 2) || Vg (20) — Vau(z2)||* d(z0, 2t)
<=2 [tz |[7108 222" 42 [ e, 20 [ 0) ~ Tz Pz 2

+o / d0r (20, ) Vs (20) — Vgu(20)] d(0, 20).
(24)

Upper bound the first term in Eq 24. The target distribution ¢, satisfies p,-strong convexity, i.e.,
prd = =V?10g qr. 5y (@'|2) = =V log(g. (")),
It means g, satisfies LSI with the constant u, due to Lemma 28. Hence, we have

34

Qt(zt) 2< "KL
< - (qellgs) - (25)

q+(2t)
Upper bound the second term in Eq 24. We assume that there is a uniform upper bound ¢,
satisfying

Vlog

Vg (2) = Vgu(2)|| <eg = / doi (20, z¢) || V' (20) — Vg (20)||* d(20,20) < 2. (26)

Upper bound the third term in Eq 24. Due to the monotonicity of e ! /(1 — e~*), we have

—2(S—rn) —2n
oL < —& ¢

< <p1
Sl _e2m) 1 ez

where we suppose 77 < 1/2 without loss of the generality to establish the last inequality. Hence, the
target distribution g, satisfies
2 2 2 672(377‘77)
—Velogq. = —V~log ka,S—Tn("x) =-V 1ngk,0 + m

6_2(S_T77)

= HV2 logphoH I+ T

- - T -— —1
sy L= LI 2 (Lt DT
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where the last inequality follows from Assumption [A1]. This result implies the smoothness of ¢,
and we have

/ qor(20, ) [ Va(20) — Vau(z0)|I% A0, 22)
2
<L} / Qot(20, 1) |1z — 2ol d(20, z¢) = L7 - Eq, [H_th'(zo) + Va2 }

—12. (2td + 1By, ||V (20) — Vga(20) + Vaa(20) HQ) @7

<2r?. (td + %) + 1Ry, IIVg*(zo)||2>

2 2 2,2 3 1,2 8L;4”t2
<2L2dt + 2L%e2t? + 4L3dt* + ——KL (qoll¢s) ,
7]

T
where the last inequality follows from Lemma 36.
Hence, Combining Eq 24, Eq 25, Eq 26, Eq 27 with t < 7. < 1/(2L,) and eg < 2L2dr,, we
have
16 LAt2

r

3p

OKL (llg:) < = =KL (qrllg-) + 2¢5 +

KL (qol|g«) + 4L7dt + 4L%e;t> + 8L} dt*

3pir 2 16L, 77 2 4,3 3,2
< - =KL (allg.) +4L%dry + — KL (qollg.) + 4L dr, + 8Lydr + 8Ljdr
T
3 16 LAt2
< = 5 KL (alla) + =KL (aollae) + 14L7dr.

T

Multiplying both sides by exp( 3’”;’"t ), then the previous inequality can be written as

r

d 3pr 3pr 16 LA72
@ (e UKL (QtHQ*)) <5 <MTKL (q0llgs) + 14L$dn> .

Integrating from ¢ = 0 to ¢t = 7,,, we have

SprTr 2 SprTr 16L47—2
KL (alg.) ~ KL (qolan) <5 (¢ —1)-( o TKL(qouq*>+14L3dn)
T T

16LA72
<97, . (MTKL (qollq+) + 14L§drr)

T

where the last inequality establishes due to the fact e < 1 4+ 2c when 0 < ¢ < % ety < LIt
means we have

KL (gt||g«) < s Tl <1

32L473
+ W) KL (qollqs) + e~ 5" - 28L2dr2.

T

By requiring 0 < 7, < p1,,/(8L2), we have

1+ % <1+ porTr < e™7"  and 673‘1‘% <1.
o
Hence, there is
KL (qlla) < e 7KL (qollqs) + 28L7dry, (28)
and the proof is completed. |
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Lemma 18 [n Alg 1, suppose the input is (k,r,x,€) and k > 0, if we choose the initial distribution

of the inner loop to be
™ = — 6_(5_”7):3/”2
q[)(zC ) xXexp | — 2(1 _ e_Q(S_rn)) )

then suppose qy, s—ry(-|x) satisfies LSI with the constant - and L, smoothness. Their KL divergence
can be upper-bounded as

LM de’ Me™S
108 KL (440 s-r12)) < log 4 1og | £037 0

r

Proof According to Lemma 14, the density gy s, (-|) can be presented as

uw—e-w-mm'uz)

Qk,S—Tn(w/’:B) X exp <_fk70(m/) - 2(1 _ 6—2(5’—7“77))

where fj, o(x") = V1og pio(2'). Since it satisfies LSI with the constant, .i.e, s, due to Definition 3,
we have

KL (q0() gk (-|2)) < 2;

<ut ( [ 6@ |9 5k0(@) = Voo da’ + [ dh(a) IV (O] dw’) .

) /q(’)(az’) Hka,o(a:’)szw'
(29)

For the first term, we have
/%(ml) IV fro(®') = V fi0(0)]|” da’
<L%. /q{)(w') Ha:’HQdas’ =12 Eq, [|Ix||°] = L2 - [Var(x’) + HEX"H
where the first inequality follows from [A1]. The high-dimensional Gaussian distribution, i.e., g,

satisfies
B, [¥]

where the last inequality follows from Lemma 35, hence we have

= ||z|| and Var(x') <d- (ez(s_m) - 1) ,

/qg(m’) |V fro(z’) — ka,o(o)uzda:’ < L2257 (d 4 ||z |?). (30)

Then we consider to bound the second term of Eq 29. According to the definition of V f, o, with
the transition kernel of the OU process, we have

Vpr,o(x')
-V ') =Vlo )= """~
fro(z) g Pko(x) Pro(@)

—||z—e=* S xq 2 _—kS
Jra Ps(x0) - exp (M) ' (‘(f:ww?))) dao

~[lz—e*Sao”
Jra P+(20) - exp (e ) @0
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Therefore, we have

fRd p«(o) - exp <_2?1ik:2i%)2> : (f_jfﬁ%dmo :
fRd P« (o) - exp (M) dxg
[ on(e) - exp (<l )
Jra Pi(@0) - exp <2€(i}€:_|2:2%||)2> dw0>2

—kS —2kS 2 -
e —e = [lzo|
Sil ——rs - M - (/Rd ps«(xo) - exp <2 i 872k5) dxg
31

where the first inequality follows from Holders’ inequality, the second inequality follows from [A2].
With, the following range:

IV f10(0)1* =

e~ kS 9
§1_€7_2k5 : /p*(:co)  [lol|” do -

€—2ks - eka - efS
1— e—2lcS - 1= e—2kS - 1= 6—25

we plug Eq 30 and Eq 31 into Eq 29 and obtain

log KL (a6()lab.s - (|2)) <log [+ (L2 25D (@ + ]2

-1
ek —e k5 || ||?
+71 i M (/Rd p*(aso) - exp (2 (1 — 6—2kS) dxg

Without loss of generality, we suppose both RHS of Eq 30 and Eq 31 are larger than 1. Then, we
have

log KL (q0()l|gk,5—-ry (1))

_L% 2(S—rn) e ks 2 —e 29 HmO”2
< log e M g - (d+ [[z]%)]| —log de*(wo%exp 2(1—e2h5) dao
'L%M eS ) ef2kS 9
Slog_ 2 {25 (d+ = )} +2(1_e—2k5‘)'/de*(w0) [zol|” dazo
[L2M ed 5 Me=S 5 L2M de® Me=*
< log 2 m(dJerH )} erﬁlogﬂmﬂ +10g{ 2 . 1_6_25} +1—e—25'
Hence, the proof is completed. |

Corollary 19 For any given (k,r) in Alg 1 and x € R, suppose the distribution Qk,5—rn(-|x)

satisfies
I < —V?%log Qk,S—r(-|x) 2 L1,

and x; ~ ¢;(-|z). If 0 < 7 < p,/(8L3), we have
N 32L2dr,

s

KL (Q;HQ*) < exp (—pr7rj) - KL (Q6||Q*)

when the score estimation satisfies |V log pro — v'|| . < Ly/2dT,.
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Proof Due to the range 0 < 7. < u1,-/8L2, we have p,-7,- < 1/8. In this condition, we have

7
1 —exp (_NrTr) > é Mo Ty

Plugging this into the following inequality obtained by the recursion of Eq. 28, we have

| 28 L2dr?
KL (gjlla) <exp(=punnd) - KL (aollae) + 7 — =

32L2dr,
fr

<exp (—p,7j) - KL (Q6Hq*) +

In this condition, if we require the KL divergence to satisfy KL <q§ ||Q*) < ¢, a sufficient condition
is that

€ 32L%2dr €
exp (—pr7rj) - KL (g0]lg«) < = and — <,
2 Loy 2
which is equivalent to
L€ . 1 2KL (gplg+)
< d > -1 .
= 64L%d an )= Hr Ty o8 €

According to the upper bound of KL (gj|/¢«) shown in Lemma 18, we require

oL ||| 1 2L2M  de® N Me™5
+ |10, (0} . .
)= [y T & e & pz o 1—e28 1—e 25

E.3. Core Lemmas

Lemma 20 InAlg I, forany k € Ng 1, 7 € No.p—1 and x € RY, we have

P [vac_,m(w) — Vlog pr.s—r(@)|* < 106:| >1-6

by requiring the segment length S, the sample number ny, , and the step size of inner loops 7, and
the iteration number of inner loops my, , satisfy

1. 2L+1 4
= = > . _
S 5 log 57 0 e Z (1 = -2 max {d, —2log ¢},
2 2
Fr (1 _ g=2(S-rn) 64L;d _ dlz||
= 64L3d (-e Je and mys > p2(1 — e=2(5-mm)e (1 — e~ 25—m)e O |

where Cy, 1 = log (2M -32. 5L) + M -3L. In this condition that choosing the T, to its upper bound,
we required the score estimation in the inner loop satisfies

(S m) .5
HVIOng,O( _Vko H <
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Proof With a little abuse of notation, for each loop i € Ny 4, , in Line 4 of Alg 1, we denote the
underlying distribution of output particles as x; ~ ¢, S_m(~|as) forany k € No x—1,7 € Ny gp—1
and « € R? in this lemma. According to Line 11 in Alg 1, we have

Vi (@) — Vog prs—rm ()|

1 L z—e Sy . o — o—S—mmyr 1|7
Z _m - X/NQk,S—rn('|w) _m

Mk 2
e—?(S—’rn) 1 Nr.k 2
- (1- e—Q(S—m))2 ' nrk ZX + Exingn s (o) %] (32)
2
2¢—2(S—rn) 1 Nk
T (1 e25-rm)? A g 4 Zx + Byl o (o) [X]
26—2(5—’”7) )

(1= e25-mm)? [ttt BT+ B i) ]

In the following, we respectively upper bound the concentration error and the mean gap between
). 5y (|2) and g sy (+|x) corresponding to the former and the latter term in Eq 32.

Upper bound the concentration error. The choice of S, i.e., S = 3log (25F1), Lemma 15
demonstrate that suppose

e—2(S—rn)
—2(S—rn)

6—2(5—7‘77)

and L = m

N
—_
l\')\c.o

Hr =

Then, we have
/’L’I‘I = _v2 IOg Qk,Sfrn(:El‘w) =< L,I.

According to Alg 1, we utilize ULA as the inner loop (Line 4 — Line 9) to sample from g 5y (+|T).
By requiring the step size, i.e., 7, to satisfy 7,, < 1/L,, with Lemma 32, we know that the underlying
distribution of output particles of the inner loops satisfies, i.e., qja S—m('|w) satisfies LSI with a
constant y. satisfying

MT —2(S rn)

ey z 41— e 25—y’
In this condition, we employ Lemma 16, by requiring
4
€(1 — e—2(5—rm)

Moy > -max {d, —2logd}

2
1 e*(S*TTI)
>— . (P = -max {d, —2logd}.

h
and obtain
[ 2
2672(577“7]) 1 Nr k
’ <
’ (1 — 6*2(5*7‘77))2 nrk ZX + Ex ), 5y ([2) [ } < 2e
i A _ ,—2(S—rn)\ 0.5
_ / / (1 e )6
=F H Ny o in t Ex,Nqé,sﬂn('\m) [X] = o—(S—rm) ] >1-9.
L A |
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Upper bound the mean gap. According to Lemma 15 and Lemma 28, we know g, 5—ry ('] )

satisfies LSI with constant
e—Q(S—rn)

> .
Hr = 50 = e25=-m)

By introducing the optimal coupling between gk, s—y(-|) and g, 5., (-|), we have

H_Equfc,s_,,,,(.\w) [X,} +EX’~Qk,s—rn(’|m) [X/} H2
(33)

2
§W22 (Q;Q,S—rn('kn)vQk7S—rn('|m)) < L KL (QI;,Sfrn('|m)||QI<:,S—T77("$)) >
r

where the last inequality follows from Talagrand inequality Vempala and Wibisono (2019). Hence,
the mean gap can be upper-bounded as

2672(577‘77) 2
(1 — 6*2(5'*1”77))2 . H_EX/NQ;C,Sfm(.‘w) [X,] +EXINQI€’S—T"('|$) [X/] H
92¢—2(5—n) 92
= _ee_g(s_m))g KLt ()5 f)

8
ngL (q/,c,S—T‘r]('|w)||q]€,S—r77('|m)) .

To provide e-level upper bound, we expect the required accuracy of KL convergence of inner loops
to satisfy

KL (G 5y (1)1 ghe,5—ry (-|2)) < (1= €727,
According to Corollary 19, to achieve such accuracy, we require the step size and the iteration number
of inner loops to satisfy

T < 64lgzd (1= e 257M)e  and
- 64L2d | ||| l 202M  de® Me™*
m —- - |lo : .
b= (1 — e=2(5=mm)e & (1 —e2(5—m))¢ pz o 1—e 28 1—e 25

To simplify notation, we suppose L > 1 without loss of generality, and we the following equations:

L _, s 1, 2L+1 oL + 1
= e = €X — 10 =
PR AT REY) oL

(1—e2)7 = (20 +1),

which implies

dl|z||*
(1 — 6*2(5*”7))

d||z||? L? 2L +1 2L
> LT, . . .
> log (1= e25—rm)e +log | 2M 2 5T 2L+1) | +M-(2L+1) L1

d||z||? | 2L2M e N Me™%
(1 _ 672(577“7]))6 ’u2 1 — e 25 1—e25°

log +log (2M - 3% -5L) + M - 3L
€

= log

r
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Therefore, we only require my, , satisfies

1 64L2d d||z||?
(1

> — .
mk,r B Ky ur(l - 6_2(S_T77))6 — 6_2(S_r77))6

+ Cm,l

where C,,, 1 = log (2M -32. 5L) + M - 3L. For simplicity, we choose 7, as its upper bound and
lower bound, respectively. In this condition, we still require

—(S—rn) 0.5 25—
[Vogpeo vl < et < 1\ By o,

8 ~4 2
where the first inequality follows from the range of 1., and the last inequality is satisfied when we
choose 7, to its upper bound. Hence, the proof is completed. |

Lemma 21 (Errors from fine-grained score estimation) Under the notation in Section A, sup-
pose the step size satisfy n = Cy(d + M )~ Le, we have

P [HVIogpk,S_m(x) — v,:,,n(:/v)H2 < 10¢,Vx € Rd]

J

> ny,r(10€)-my, . (10€,2)

210)- (min 2 [V iogprate!) —vimaa(e]* < g

where Sy, . (x, 10€) denotes the set of particles appear in Alg 1 when the input is (k,r,z,10¢). For
any (k,r) € Ng g1 x No r—1 by requiring

(d+ M) - max{d,—2logd}
(10¢)2

(d+ M) - max{log z]%, 1}
(10¢€)3

ngr(10€) = Cp, - where C,, =2%.52. C’n_l,

my,(10€, ) = Cp, -

where C,, =2°.3%2.53. Cm71051'5.

Proof According to Line 9 of Alg 1, for any = € R, the score estimation v,jm is constructed by
estimating the mean in RHS of the following expectation using ny, samples (i.e., calculating the
empirical mean):

_ —(S—rn)!

£ e X

Ve logpkvsfrﬁ(x) :EX/NQk,S—rn('|m) [_ (1 _ 62(37"7]))] (34)
: n e —e G|

where i 5—ry(2'|x) ccexp | log pgo(x’) — 21— |- (35)

Then in order to guarantee an accurate estimation for V log py, g—ry (), i.e., denoted by v,:,n(cc),
with Lemma 20, we require

1. Get a precise estimation for Vlogpy o(«’), in order to guarantee that the estimation for
V log qx,s—ry(2'|) is accurate. In particular, we require

e—(S—Tn) 05

HVIOng,O(wg,j) - Vl:l,o(w;‘,j)H < 3
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2. Based on the V log gx,s—ry(2'|x), we run ULA with appropriate step size 7, and iteration
number my, , satisfying

64L2d og ZEL (@0 () l19k,5—rn (|)) (0

7 (1 = e (1 — e=205-m)c

to generate samples &’ whose underlying distribution g}, Sim(-|m) is sufficiently close to
Qk,sf’f‘n(m/‘w)9 le’

KL (g, 5 (1211, 5y (-|2)) < (1 =257,

3. Generate a sufficient number of samples satisfying

4
Nk.r >

2 1 = e 25=mm) -max {d, —2logd} . 37)

such that the empirical estimation of the expectation in (34) is accurate, i.e.,

P [[1V10g P51 () — Vi (@)]|” < 10€]

1 Nk, r T — e—(S—rn)w; .
— - o S < > 4
P |||V 10g pr,5—rn () e ; (= o2 <10e| >1-90
Due to the fact rn > 0, the first condition can be achieved by requiring
9 (05 27, 05 =505 6—(S—Tn)60.5
\VA! LY —vio " <\[-< = < ,
H ngk,()(:rl,j) vk—l,O(wl,])H — 3 8 — 2L+ 1 8 8 — 8

where the second inequality is established by supposing L > 1 without loss of generality, and the
last equation follows from the choice of S.

To investigate the setting of hyper-parameters, i.e., the number of samples for empirical mean
estimation ny, , and the number of iterations for ULA my, .. We first reformulate them as two
functions, i.e.,

(d+ M) - max{d, —2logd}
(10€)?

(d+ M)3 - max{log || z||?, 1}
(10¢)3

nk’r(loé) = Cn .

where C,, =2°0.5%. C’,;l,

My (10€, ) = Gy, - where C,, =2%-3%.53. Cm710n—1-5_

since this presentation helps to explain the connection between them and the input of Alg 1. Different
from the results shown in Lemma 20, ny, ,-(-) and my, (-, -) is independent with k£ and r. However,
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these choices will still make Eq 36 and Eq 37 establish, because

16 (d+M 16
Nk (10e) =— - @+, max {d, —2logd} > — - max {d, —2logd}
’ € Che €n
>716 d,—2logd} > 16 d,—2logé
S T—— -max {d, —2log §} > (1~ e—2G—m) -max {d, —2log 0}
d+M)>* Cy L2 (d\'’
my,» (10, &) =576 - ( +€3 r. 07%51 -max{log ||z|% 1} > 64 - /Té : (677) - Cyp.1 - max{log [|z||, 1}
L2 d. d L? d d||z|?
>64 - — - —log — - Cy1 - max{log )% 1} > 64 - — <log Il + C’m,1>
pZ en Cen P2 en €1
L; d d|z|*
>64 - — - 1 Cm
=2 e (Og (L —e2m)
64L2d d||z||? Lc
Y G P N TR ) P

with the proper choice of step size, i.e., n = Cy(d + M )~le. With these settings, Lemma 20
demonstrates that

P [HVlogpk’S,m(a:) - V,‘;m(w)||2 < 10¢, Ve € Rd‘
N [Viogprole) = viiio@)|* < oo | = 1-4.
x’ €Sy (2,10€)

where Sy, ,(x, 10€) denotes the set of particles appear in Alg 1 when the input is (k, r, , 10¢) except
for the recursion. It satisfies [Sy, . (x, 10€)| = ny »(10€) - my, »(10€, ). Furthermore, we have

P |:HVIngk’S*”7(w) - V;c_,'r‘n(w)HQ S 106:|

> P |[Viogprs—rm(@) ~vi,@| <10 () [Viogpro(@) - visio(@)] < o
x’ €Sy, (2,10€¢)
: { N tompcofe’) —vimsofe)* < 96]
x’ €Sy, (x,10€)
x’ €Sy, (2,10¢)
(38)

Considering that for each :1:; e the score estimation, i.e., V,?_l 0(:1:2 j) is independent, hence, we have

d ﬂ [V 1og pro(=') — Vkil,o(ﬂlcl)H2 = %
' €Sy, (2,10¢)
= II  ?lIViosprole) ~vitsol@l” < o] (39)

' €Sy, (x,10¢)

v
IN

‘ ) , 9 € |Sk,r(w7€)|
( min IP[HVlngk,O(in)_Vl:1,0($)" %D

@' €Sy, (2 ,€)
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Therefore, combining Eq 38 and Eq 39, we have

P [HVlogpkvg_m(m) - v,<€_77n,7(:n)}|2 < 106]

) 2 c ng, »(10€)-my, (10€,x)

: <

>1-6)- (min P [|VIogpale) - vito(@) < o] ,
and the proof is completed. |

Corollary 22 (Errors from coarse-grained score estimation) Under the notation in Section A,
suppose the step size satisfy 1 = C1(d + M)~ e, we have

P U’VlogpkH,o(a:) — v,io(m)“2 < 10e,Va € ]Rd}

2<i
— 96

)

n,0(10€)-my o0 (10€,x) (40)
>(1—4)- ( min )P [HVIOng,O(CCI) - Vl?—l,o(wl)H D

mIGSky()(m,E

where Sy, o(x, 10€) denotes the set of particles appear in Alg 1 when the input is (k, 0, x, 10¢). For
any k € Ny g _1 by requiring

(d+ M) - max{d, —2logd}
(10¢)2

(d+ M)3 - max{log ||z, 1}
(10¢)3

ng0(10€) = Cy, - where C, =20.5%. C’n_l,

mp,0(10€, ) = Cy, -

where C,, =2°.32.5%. Cm71C'n_1‘5.

Besides, for any x € R%, we have

P [Hmogpovo(f”/) —vS @) < %’vw, < Rd} =1
by requiring v_1 o(x') = =V f.(z'), which corresponds to Line 2 in Alg 1.

Proof When k£ > 0, plugging » = 0 into Lemma 21, we can obtain the result except inequality
Eq 40. Instead, we have

P [HVlogp,ﬁS(m) —vio(@)|® < 10¢,vz € Rd]

€

nk’o(l()e)mk,o(lOe,m) (41)
i) |

ﬂh&( min P [||Viogpio(a’) - vir 0@ <

' €Sk (e

Since the forward process, i.e., SDE 1, satisfies X, § = X41,0, we have

B —d/2 |l — e~ E+DSy |2
N LN O () e =

which means V log py, s = V log pr11,0. Therefore, Eq 40 is established.
When k = 0, due to the definition of v_1 ¢ in Eq 7, we know Eq 41 is established. Hence, the
proof is completed. n
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Lemma 23 (Errors from score estimation) Under the notation in Section A, suppose the step size
satisfy n = Cy(d + M)~ 'e, we have

2
P ﬂ 1V 108 Dk, =1 (T 1) — Vipn (®h )| < 10e| > 1—€
k€N 1
'I’EN())R,1

with Alg 1 by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

Ld+ M\?
o) <L3 . <log d—i_) -maX{loglogZ2al}>] )
€

where Z is the maximal norm of particles that appear in Alg 2.

exp

Proof We begin with lower bounding the following probability with (4, j) € No x—1 x Ny p—1 and
(1,7) # (0,0),

P U}Vlogphs_rn(a:;m) - v,;n(mzm)w < 106] .

In the following part of this Lemma, we set n = C,,(d + M)~'e and denote § as a tiny positive
constant waiting for determining. With Lemma 21, we have

P [V 102 k5 (@) = Vi (@i)||” < 10€]

2<106

ng,r(10€)-my (106,25 ,.,)) 42)
= st '

>(1-19)- < min P [HVIOng,O(w/) - VI:LO(w,)H

:c'ESkJ,(wEm,lOe)

Then, if & > 1, for each item of the latter term, supposing 10¢’ = ¢/96, Lemma 22 shows

2 € )
P {||Vlogpk7o(ac’) — Vi o@)]" < %] =P {||Vlogpk7o(ac’) — Vi @) < 106/}
9 ¢ ng,0(10€")-my . (10€’ ,x")
>(1—-9) - i P 1 _ AN " <&
200 (gm0 P I H08cr00) —vimaofe) | < g5 )

. - 2 ¢ nk,0(€/96)-mi,0(e/96,2")
= — . 1 — <
(1 5) (w”ESk_Iil;I(lm’,e/QG) F |:HVIngk_1,0(CC ) Vk_Q’O(x )H 96 - 960:|>
Only particles that appear in the iteration will appear in powers of Eq 42. To simplify the notation,
we set Z as the upper bound of the norm of particles appear in Alg 2,
(d+ M)3 - max{2log Z,1}
(10¢)3

m;w(l()e, SC) < m;w(loe) =C,,

and ., (€) == ng(€) - my - (€).

Plugging this inequality into Eq 42, we have

P [V 108 Py (@) = Vi @iy ||” < 10¢]

10¢ ] > ug,r(10€)-ug, 0(g5)

U € ?
>(1 - §)Huer(109). (P [Hvlogp“,o@") ~vira0@)” < e
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Using Lemma 22 recursively, we will have
2
P |:HV1ngk7S_7-n(ﬂ?§7.n) - V;;T'T)(m;;’l'n)H S 106:|
>(1 _ 5)1+uk7r(1Oe)+uk)T(106)-uk7o(%)«F...Jrukm(lOe)-Hf:k ui,o(%gi%ﬁiﬂ)

~ 2 10e

—(1— 5)1+uk,,‘(1oe)+uw(1oe).um(%)+...+um(1oe).1‘[f:k ulo(%ol{%“)

, p wp,r(10€)-TT;_,, uqo(%oi%i“)
V' e R

(43)

2
10e 10e
>1—6- (1 + ukj(l()e) + uk)r(loe) “UK,0 (960) +...+ uk7r(106) . gui,o (W))

where the third inequality follows from the case k¥ = 0 in Lemma 22 and the last inequality follows
from union bound.

Then, we start to upper bound the coefficient of §. According to Lemma 21 and Lemma 22, it can
be noted that the function uy, ,-(-) is independent with k£ and r. It is actually because we provide a union
bound for the sample number 7y, and the iteration number my, » when (k,r) € No g1 X Ng p_1.
Therefore, the explicit form of the uniformed w is defined as

u(10€) = C,,Chp, - (d 4+ m3)* - max{d,log(1/6%)} - max{2log Z, 1} -(10e) >

independent with e

Then, we have

10e 10e ;
) = 1 . 5 ) = 1 X 52.
u <960> u(10¢e) - 960° and wu (960’) u(10€) - 960

Combining this result with Eq 43, we obtain

2
10e 10e
1t (100 + 0,100) o (oo )+ -+ 0,100 [ o (e )
i=k

< (k+1) - u(10¢) - iu <96(]51(26H1)> = (k+1) - u(10¢) - 11 (u(l()e) : 960k_i+1)

= (k4 1) -960%°F*=1) . 44(106)F < K - 96022 K —DE=2) 4 (10¢) K1,
Considering that K = 2/S - log[(Ld + M) /], to bound RHS of the previous inequality, we have
log <9602'5(K’1)(K’2) : u(loe)K*) = 2.5(K — 1)(K — 2)1og(960) + (K — 1) log(u(10¢))

2. Ld+M\* 2  Ld+M 1
< 2.5-10g(960) - <S log d+> + g log d% . <log Cp,Cp, +4log(d+ M) + log d + log <2 log 5)

1 1
+ log (2 max {log Z, 2}) + log(lof‘r’) + 5log ) .
€

To make the result more clear, we set

1
Cy = log(C,Chy) + log 2 + log (2 max {log Z, 2}) — 5log 10
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which is independent with d, € and §. Then, it has

log (9602.5(K—1)(K—2) . u(lOe)K_l)

70 Ld+M\?> 2 Li+M 1 1
S§ <log+> +§log%. {Cu,1+510g(d+M)+log10g5+510g6} )

which means

9602.5(K71)(K72) . u(loe)Kfl

70 Ld+M\* 2  Ld+M 1 1
< exp [ (log:) + glog%' (Cug + 5log(d + M) + loglog — +510g€>]

52 5
Ld+ M 70 10 Ld+M 2 1 2Cu1
< —_ — 4+ — | log——— + — loglog = :
—pow< c ’<(52+ S) 8 tglelest g
(44
where the last inequality suppose L > 1 as the previous settings. To simplify notation, we set
70 10 2C,
Cu2 = 52 + < and Cy3 = TUI
Plugging this result into Eq 43, we have
2
P [HVIOng,S%n(mEn) - V’?m(wl:m)u = 106]
Ld+ M Ld+M 2 1 (43)
>1—-0-K: pow <+,C'u7210g+ + Eloglogg + Cu73> .
€

With these conditions, we can lower bound score estimation errors along Alg 2. That is

2
Pl [[Viogpes (@) = Vi (@i, < 106
k€Ng k1
r€No,r—1

- H P [HVIogphS,m(w;m) - Vl(f_,m(xzm)HQ S 106}

kGNO’K,1
r€No r—1

where the first inequality establishes because the random variables, v,im, are independent for each
(k, ) pair. By introducing Eq 45, we have

H P [HVlogpk,s_m(me) - Vl:m(w?,m>||2 < 106}

k€No, k-1
r€Ng, R—1
Ld+ M Ld+M 2 1 Kh
>(1-6-K- Chuol 2 oglog = + C,,
- < pow ( e R o8 € * S o808 0 - 3)) (46)
Ld+ M Ld+ M 2 1
21—(5-K2R~pow( + ,Cu)210g++510g10g5+0u73>
€
Ad+ M Ld+ M\? Ld+ M Ld+M 2 1
=1-4- (d+ M) log + - pow i ,Cu.2log i + —loglog = + Cy 3
SCpe ’ S 1) ’
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where the first inequality follows from Eq 45 and the second inequality follows from the union
bound, and the last inequality follows from the combination of the choice of the step size, i.e.,
n = C1(d + M)~ e and the definition of K and R, i.e.,

It means when ¢ is small enough, we can control the recursive error with a high probability, i.e.,

2
H P [HVIOng,S—m(mEn) - v,‘;m(m;m)ﬂ < 106:| >1—e 47)
k€Ng k1
r€Ng r—1

Compared with Eq 46, Eq 47 can be achieved by requiring

4(d+ M) (longnLM)Q.pOW(LdJrM Ld+ M

Ld+M 2 1
w2 | <e,
SCe » Cu2 log )—6

+ C’u73> -dpow (e’ 3 log log 5

defined as C'p

which can be obtained by requiring

Cpi(~logd)F 1= 8 < o (~logh)dls i < S
B
L 2 LdeM o1 (48)
S8 T RS =80
We suppose 6 = ¢/Cp - a—2/8108((Ld+M)/€) and the last inequality of Eq 48 becomes
2 Ld+ M C 2 Ld+ M 2 Ld+ M
LHS = —log; -log log—B + —log;'loga < —log;‘loga = RHS,
S € € S € S €
which is hold if we require
a > max 20p (Ld+ M 0 1
- € M € ) *
Because in this condition, we have
C 2 Ld+ M 2 3
Iog—B—kglog;-loga < log%—k(loga)2 < €a+ Ea =a when a>1,
€ €

where the first inequality follows from the monotonicity of function log(-). Therefore, we have

C 2 Ld+ M
log logTB—l—glog%-loga <loga

and Eq 48 establishes. Without loss of generality, we suppose 3Cg /e dominates the lower bound of
a. Hence, the choice of ¢ can be determined.
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After determining the choice of 9, the only problem left is the gradient complexity of Alg 2. The
number of gradients calculated in Alg 2 is equal to the number of calls for v_1 o. According to Eq 43,
we can easily note that the number of calls of v_1 g is

! 10¢ ! 10¢
'U/kﬂ»(].oe) . H’LLZ"O <960kl+1) = U(]_OG) H u <960kl+1>
i=k i=k

for each (k, r) pair. We can upper bound RHS of the previous equation as

2
106 H U (96(:'k0€l+1> = 'LL(].OE) . H (U(].Oé) . 960kf’i+1)

i=k
:9602'5’“(’“ 1> -u(10€)F < 960K —DE=2) .4 (106) K1,

Combining this result with the total number of (k, r) pair, i.e., T'/n, the total gradient complexity
can be relaxed as

L gg02akte-1) . u(10€)F < K2R - 960>° K ~1D(E=2) 4 (10¢) K1

<

4(d+ M) (lOng+M)2 pOW(Ld+M c 10ng+M
. 2O o log 2T M

2 1
Z Joglog = + C,
SCre gl st ’3>

S o

Ld+]\/[

<-=Cp- aSlOg

€
0

(49)
where the first inequality follows from the fact 7'/n = K R, the second inequality follows from the
combination of the choice of the step size, i.e., n = C1(d + M )*16 and the definition of K and R,

i.e.,

T 2 Co S S(d+ M)
K == 1 = — = —
S5 R Ul Cie

and the last inequality follows from 48. Choosmg a as its lower bound, i.e., 2C'p /¢, RHS of Eq 49

satisfies
2 1pg LdEM 4 1og Ldt
Cr - aSlOg LatM Cp - <QCB> 5 log == < <2C'B> 5 log
€ €
8(d+ M) Ld+M\? 4 Ld+M
<pw|—F>-(log——— | ,=log———
€ €

SC,é? 5

Ld+ M 4C,» Ld+M\? 4C, Ld+ M
-pow | ——, S’ log + = | log ————
€ € €

o((v22)

If we consider the effect of the norm of particles and the dependency of smoothness L since we have

M

(50)

= exp

S = 1log (1 + 1) =0O(L™"), when L>1,

2 2L
ACys 70 10 ACy3  8C,,
5 =@t e O —gt = =0 (L (max{loglog 2% 1})).
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Combining this result with Eq 50, the proof is completed. |

Lemma 24 Under the notation in Section A, suppose the step size satisfy n = Cp(d + M Y~ le, we
have

2
P ﬂ |V 108 pre,s—rn (T 1) = Viepn (®h )|~ < 10e| > 1 =0
k€Ng 1
r€No,r—1

with Alg 1 by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

Ld+M\°® . Ld+M 1
exp ((9 (max { <log d:) ,logd% . log&/} ~max{loglog Z2, 1})) ,

where Z is the maximal norm of particles appeared in Alg 2.

Proof In this lemma, we follow the same proof roadmap as that shown in Lemma 23. According to
Eq 46, we have

[T B[IViophs—r(@ipm) Vi@ < 10

keNo k-1
r€No, r—1
4d+ M Ld+ M\ Ld+ M Ld+M 2 1
>1-46- (d+ M) log + - pow + , Cu2log + + < loglog — + Cy.3
SChe ’ S 1) ’

where the parameter J satisfies Lemma 21 under certain conditions. It means we can control the
recursive error with a high probability, i.e.,

2
II » [HVlogpkﬁ_m(a:,‘;m) — Vi (@i < 106} >1-4. (51)
k€Ng k1
r€No,r—1

when ¢ satisfies

Ad+ M Ld+ M\? Ld+ M Ld+ M Ld+ M 2 1
(d+ M) log a+ - pow at ; Cu,2log a + Cu,3 | -0pow at , g loglog < | < 4"
SCne € € ’ € ’ € S 1)

defined as C'

We can reformulate the above inequality as follows.

!/
Cpd(—logd)sloe8 ™™ < § & (—logd)sls ™ < 0
Cpgé (52)
= z1 M log1 1<1 &
g og c og ogé < log CB<5'

—2/Slog((Ld+M)

By requiring § = 6'/Cp - a /€), the last inequality of the above can be written as

2 Ld+ M

LHS:§log 2 Ld+ M 2 Ld+ M

C
log |log =54z log loga| < g log

1 =RH
5 5 oga = RHS,

50



RECURSIVE DIFFUSION-BASED MONTE CARLO

when the choice of a satisfies

205 (Ld+ M\?**
a>max{ 2. + 1. (53)
o’ €
Since we have
C 2 Ld+ M 2 3
log—B—l——log;-loga Slogg—l—(loga)2 < 22129 _ 4 when a >1,
o’ S € 2 5 5

where the first inequality follows from the monotonicity of function log(+). Then, it has

C 2 Ld+ M
log log—B + —log; -loga| <loga
o S €
and Eq 52 establishes.
To achieve the accurate score estimation with a high probability shown in Eq 51, the total gradient

complexity will be
Ld+M

Z . 9602A5k(k—1) . ’LL(lOG)k <Cp- a%log =
n

shown in Eq 49. Plugging the choice of a (Eq 53) into the above inequality, we have

20p 2, Ld+M\  (Ld+M 4 Ld+M
5 g8 , Pow gz log ——

Ld+M

Cg- % los =% < Cp -max {pow <

—, =1 —1
5/aSOg 752 og

Term Comp.1 Term Comp.2

(203 4 Ld+M> (Ld+M 4 Ld+M>
< max { pow ,Cp -pow | ———

It can be easily noted that Term Comp.2 will be dominated by Term Comp.1. Then, we provide the
upper bound of Comp.1 as

4 L M
log (Comp.1) =3 log d+ M (log2Cp + log(1/48"))

4 Ld+ M 8 d+ M Ld+ M
=—log + - | log + log + + 2loglog i
S SC,y, €

M
Ld: . (CU’Q log + Cu3> + log(l/(?’))

Ld+M\® Ld+M 1
=0 (LS-max{(log d+ ) ,log d+ .logé,}> ,
€ €

which utilizes similar techniques shown in Lemma 23 and means

Ld+ M\?® Ld+ M 1
Cpadlon ™ _ (o (Lg‘max{<logd—|_) Jog LAt M .10g5,}>> ,
€ €

Hence, the proof is completed. n

+ log

Ld+ M
€
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Appendix F. Auxiliary Lemmas
F.1. The chain rule of KL divergence

Lemma 25 (Lemma 6 in Chen et al. (2023a)) Consider the following two It processes,

dxt :fl(xt7t)dt+g(t)dBt7 X0 = a,
dYt :fQ(yt7t)dt+g(t)dBt7 Yo = a,

where f1, f2: R? = Rand g: R — R are continuous functions and may depend on a. We assume
the uniqueness and regularity conditions:

* The two SDEs have unique solutions.
* X,y admit densities pg, ¢ € C*(RY) fort > 0.

Define the relative Fisher information between p, and q; by

FI(pt|lq) = /pt(w) ’Vlog pt(w)Hde.

a ()
Then for any t > 0, the evolution of KL (p¢||q¢) is given by
0 2(¢ .
ZKL (o) =~ i)+ [ (100,0) — fao ), T 10g 220

Lemma 25 is applied to show the KL convergence between the underlying distribution of the
SDEs that have the same diffusion term and a bounded difference between their drift terms.

Lemma 26 (Lemma 7 in Chen et al. (2023a)) Under the notation in Section A, for k € Ng 1
and r € No r_1, consider the reverse SDE starting from xzm =a

dRpy = [Kit +2VIogprs—¢(Rpe)] dt +V2dB:, xi,, =a (54)
and its discrete approximation
dxj, =[xt +2vi,, (Xi,,)]| dt+V2dB:, x{,, =a (55)

for time t € [kn, (k + 1)n]. Let Py, 4,y be the density of Xy, given Xy, ., and pk<—t|7“n be the density of
X;t given sz . Then, we have

e Forany a € RY, the two processes satisfy the uniqueness and regularity condition stated in
Lemma 25, which means SDE 54 and SDE 55 have unique solutions and py, 4,y (- ]a),pkftlm(- la) €

C%(RY) fort € (rn, (r + 1)n].

e Fora.e., a € R we have

lim KL (ﬁk,t|rn('|a’)||pk,t|rn('|a)) = 0.

t—rny
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Lemma 27 (Variant of Proposition 8 in Chen et al. (2023a)) Under the notation in Section A and
Algorithm 2, we have

KL (po,s|lpfs) <KL (13 .

“10)
+ Z Z/ xk,tJrrn’f(k,rn) |:HVIngkvsf(t+'m7) (}A(k7t+r77) B V]:TU(}A{vaW)H2i| dt

=0 r=0

Proof Under the notation in Section A, for k € No k1 and r € No g1, let py, 4, be the density

of X3, ; given Xy, ., and p;, trn be the density of xkt given xk . According to Lemma 26 and
Lemma 25, for any x_ -y = @, we have

d .
aKL (pk,t\rn('|a’> Hp;c_,th“n(. ‘a’)>

= <F1 (P (10) 1551 (10) ) + 2B, o

Pr.tlrn(X]@)
<V log pr,5—¢(x) — VEM](G,), V log ’j_tn(’>]

Py (X10)
< Exp eyl [V 108 1,5-1(%) = Viey (@[]

Due to Lemma 26, for any a € R%, we have

tim KL (pyg (1) [ (1)) = 0,

t—rn

which implies

t
KL (ﬁk,t|rn('|a')||pl<;t|rn("a)) = /7:77Ex~ﬁﬂm('|a) [HVIngk,S—T( Vk rn H }

Integrating both sides of the equation, we have

t

B i (KL (B9 )| < [ B

s [HVIogpk,s_T(ka,T) - Vﬁm(ﬁk,m)HQ} dr

According to the chain rule of KL divergence Chen et al. (2023a), we have

KL (ﬁk,(r-ﬁ-l)n”pZ(r-i—l)n)
S KL (ﬁkﬂ‘ﬁ”p(];'rn) + E)A(k,rn"/ﬁk,rn |:KL (ﬁk,(r+1)77|7“7](.‘§(k‘,7‘77)”p;(:(r+1)77|rn(.‘5(k,7'77)>:|

R K . . 2
<KL (pk,rn”pktrn) +A E(ﬁk’prm,fck,m) |:HVIngk,Sf(t+rn) (Xk,t—l-?"n) - vl?,rn(xk,rn)H } dt

Summing over r € {0,1,..., R — 1}, it has

R-1 .
KL (ﬁk,R?]”p]:Rn) S KL (pk,OHp(k:O)_}—Z /0 E(ﬁk,bl»rnv*k,rn) |:HVIngk7S_(t+T77) (&kvt"rrﬂ) - V]:Tn()/\(kﬂ‘n)HQ} dt
r=0
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Similarly, by considering all segments, we have

KL (po.slpos) <KL (1.0
K-1R-1

n
+ Z ZOA E(f{k,tJrrn,fik,m) MVIngI@Sf(tJrrn) (ik‘,t—l—rn) _ vl:Tn(ik,rn)Hﬂ dt.
k=0 r=

p}?—m)

Lemma 28 (Variant of Lemma 10 in Cheng and Bartlett (2018)) Suppose — log p.. is m-strongly
convex function, for any distribution with density function p, we have

p(x)
p«(x)

By choosing p(z) = g*(x)p.(x)/E,, [g°(x)] for the test function g: R? — R and E,,, [¢*(x)] <
00, we have

KL (pllp.) < 27171/])(:13) szm.

‘Vlog

2
Ey. [97 108 %] — Ey. [¢°] 10gE,. [¢°] < —E,. [|IVgl’] .

which implies p. satisfies m-log-Sobolev inequality.

Lemma 29 (Corollary 3.1 in Chafai (2004)) If v, U satisfy LSI with constants «, & > 0, respectively,
then v x v satisfies LSI with constant (é + é)_l.

Lemma 30 (Lemma 16 in Vempala and Wibisono (2019)) Suppose a probability distribution p
satisfies LSI with constant 1 > 0. Let a map T : R — RY, be a differentiable L-Lipschitz map. Then,
p = Typ satisfies LSI with constant v/ L?

Lemma 31 (Lemma 17 in Vempala and Wibisono (2019)) Suppose a probability distribution p
satisfies LSI with a constant p. For any t > 0, the probability distribution p; = p x N (0, tI) satisfies
LSI with the constant (u=' 4 t)~ .

Lemma 32 (Theorem 8 in Vempala and Wibisono (2019)) Suppose p  exp(—f) is u strongly
log concave and L-smooth. If we conduct ULA with the step size satisfying n < 1/L, then, for any
iteration number, the underlying distribution of the output particle satisfies LSI with a constant larger
than p/2.

Proof Suppose we run ULA from xg ~ pg to X ~ pi where the LSI constant of py, is denoted as
tx. When the step size of ULA satisfies 0 < n < 1/L, due to the strong convexity of p, the map
x — x —nV f(x)is (1 — nu)-Lipschitz. Combining the LSI property of p; and Lemma 30, the
distribution of xj, — nV f(xy) satisfies LSI with a constant y /(1 — nu)2. Then, by Lemma 31,
Xpt+1 = X — NV f(xx) + V20N (0, I) ~ ppy1 satisfies pi41-LSI with

_ 2
1 < (1 —np)
HE+1 23

+ 2.
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For any k, if there is p, > u/2, with the setting of 7, i.e., 7 < 1/L < 1/u, then

)2
LN 1))
Pk 1 /2
It means for any k&’ > k, we have uy > 11/2. By requiring the LSI constant of initial distribution,
i.e., po to satisfy pg > u/2, we have the underlying distribution of the output particle satisfies LSI
with a constant larger than p/2. Hence, the proof is completed. |

2
+277=;—277(1—W)§—

Lemma 33 [fv satisfies a log-Sobolev inequality with log-Sobolev constant p then every 1-Lipschitz
function f is integrable with respect to v and satisfies the concentration inequality

v{f>E,[f ]+t}<exp( “;2>.

Proof According to Lemma 34, it suffices to prove that for any 1-Lipschitz function f with
expectation E, [f] = 0,
E [ekf} < N/,

To prove this, it suffices, by a routine truncation and smoothing argument, to prove it for bounded,
smooth, compactly supported functions f such that |V f|| < 1. Assume that f is such a function.
Then for every A > 0 the log-Sobolev inequality implies

2 2
Ent, (eAf) < -E, [HV(:)‘HQH } ,
L
which is written as
E, [)\fekf} —E, [e’\f} logE [ }
With the notation ¢(A) = E [e*/] and ¢)(X) = log ¢()), the above inequality can be reformulated as
22
7

IV 12|
)\2
<e(N)log () + 57wV,
where the last step follows from the fact ||V f|| < 1. Dividing both sides by A2 ()\) gives

(s L

< *E V117 ]

AP'(A) <p(A)log p(A) +

10g(<§(x\) og(p(N))

Denoting that the limiting value ) Ia=0= limy_,q+ ! =% = E,[f] = 0, we have

log(p(N) _ /A (10g(@(t)))’dt <A
A 0 t - 2”7
which implies that

A2 A2
s <3 = e <en (5

Then the proof can be completed by a trivial argument of Lemma 34. |
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Lemma 34 Let x be a real random variable. If there exist constants C; A < oo such that E [e)‘x] <
CeN for all A > 0 then

2
P{x>t}<Cexp< iA)

Proof According to the non-decreasing property of exponential function e*®

E [e*¥]

(&

, we have
P{xzt}:P{eAXZGM}S SC’exp(AA2—)\t),

The first inequality follows from Markov inequality, and the second follows from the given conditions.
By minimizing the RHS, i.e., choosing A = ¢/(2A), the proof is completed. [ |

Lemma 35 Suppose q is a distribution which satisfies LSI with constant p, then its variance satisfies

e < @
/q(w)llfv Byl d < &

Proof It is known that LSI implies Poincaré inequality with the same constant, i.e., j+, which means
if for all smooth function g: R% — R,

1
vary (902)) <y [[ V900l

In this condition, we suppose b = [E,[x], and have the following equation

/ 4(@) |z — By [x]]? dz = / o(@) |z - b|2dz

_/zd:q(:c L~ by) dx—Z/ (@, e5) — (b, e))? da
_Z/ (x,e;) —Eq[(x,e;)] dw-Zvarq gi(x

where g;(x) is defined as g;(x) = (x, e;) and e; is a one-hot vector ( the i-th element of e; is 1
others are 0). Combining this equation and Poincaré inequality, for each i, we have
1 1
vary (9i()) < By [leil*] = .

Hence, the proof is completed. |

Lemma 36 (Lemma 12 in Vempala and Wibisono (2019)) Suppose p x exp(—f) satisfies Tala-
grand’s inequality with constant u and is L-smooth. For any p/,

By [IV/&)I1?] < 7KL (¢'lp) + 2Ld.
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