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Abstract

Stochastic gradients have been widely integrated
into Langevin-based methods to improve their
scalability and efficiency in solving large-scale
sampling problems. However, the proximal sam-
pler, which exhibits much faster convergence
than Langevin-based algorithms in the determin-
istic setting (Lee et al., 2021), has yet to be
explored in its stochastic variants. In this pa-
per, we study the Stochastic Proximal Samplers
(SPS) for sampling from non-log-concave dis-
tributions. We first establish a general frame-
work for implementing stochastic proximal sam-
plers and establish the convergence theory ac-
cordingly. We show that the convergence to the
target distribution can be guaranteed as long as
the second moment of the algorithm trajectory
is bounded and restricted Gaussian oracles can
be well approximated. We then provide two im-
plementable variants based on Stochastic gradi-
ent Langevin dynamics (SGLD) and Metropolis-
adjusted Langevin algorithm (MALA), giving rise
to SPS-SGLD and SPS-MALA. We further show
that SPS-SGLD and SPS-MALA can achieve e-
sampling error in total variation (TV) distance
within O(de2) and O(d'/?¢~2) gradient com-
plexities, which outperform the best-known result
by at least an O(d'/?) factor. This enhancement
in performance is corroborated by our empirical
studies on synthetic data with various dimensions,
demonstrating the efficiency of our proposed al-
gorithm.
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1. Introduction

Sampling from a target distribution p,. o exp(—f) is a
fundamental problem in many research fields such as statis-
tics (Neal, 1993), scientific computing (Robert et al., 1999),
and machine learning (Bishop & Nasrabadi, 2006). Here,
f: R% — Ris referred to as the negative log-density func-
tion or energy function of p,. To solve this problem, the
Langevin-based sampling algorithms, based on discretizing
the continuous-time Langevin dynamics, are the most pop-
ular choices, including Unadjusted Langevin Algorithm
(ULA) (Neal, 1992; Roberts & Tweedie, 1996), Under-
damped Langevin Dynamic (ULD) (Cheng et al., 2018; Ma
et al., 2021; Mou et al., 2021). These algorithms have been
extensively investigated both theoretically and empirically.
Notably, Langevin-based algorithms are usually biased, i.e.,
the stationary distribution of ULA and ULD (which are also
Markov processes), will be different from the target distri-
bution p,, and the error is governed by the discretization
step size. Thus, Metropolis-adjusted Langevin Algorithm
(MALA) (Roberts & Stramer, 2002; Xifara et al., 2014) was
designed to resolve this issue.

To achieve the unbiasedness for sampling, Proximal sampler,
similar to proximal point methods in convex optimization,
has been recently developed in Lee et al. (2021). In particu-
lar, the core idea of the proximal sampler is to first construct
a joint distribution

pe(@,y) cexp (= f(@) — |z —ylI” /(2n) (D)

whose x-marginal distribution is the same as p,.. Then, the
iterations follow from the two stages:

¢ From a given x, sample y|x ~ p.(y|z) = N (z, I).
» From a given y, sample x|y ~ p.(x|y) satisfying

p(zly) o< exp (— f(@) — @ —y[|* /(2n)).

It can be noted that the second stage can be easily imple-
mented even in the non-log-concave setting (i.e., f(x) is
nonconvex), since the target distribution, i.e., p.(x|y), is
strongly log-concave when 7 is properly small. Under this
condition, the proximal sampler achieves a linear conver-
gence rate for different criteria (Chen et al., 2022) when the
proximal oracle can be accessed.

Despite the impressive performance of proximal samplers
in the deterministic setting, where full access to the function
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f(x) and its gradient V f(x) is available, their behavior
remains largely unexplored in the stochastic setting. In this
context, we can only access a stochastic version of f and
V f(x) at each step. This is particularly relevant in scenarios
where the target distribution p, is formulated as the posterior
of a stochastic process based on multiple observations or
training data points. In such cases, the negative log-density
function takes the finite-sum form: f(z) = 1 3" | f;(x),
where n denotes the number of observations and f;(x) de-
notes the corresponding negative log-density function'. To
reduce the high per-step computational complexity for cal-
culating the full gradient, the mini-batch stochastic gradient
has become a standard choice. In the realm of Langevin-
based algorithms, extensive research has been conducted
on their stochastic counterparts. Various stochastic gra-
dient Langevin algorithms, including stochastic gradient
Langevin dynamics (SGLD) (Welling & Teh, 2011) and
stochastic gradient ULD (SG-ULD) (Cheng et al., 2018),
have been developed. Moreover, the convergence guaran-
tees of these algorithms have been well-established for both
log-concave and non-log-concave target distributions.

However, to the best of our knowledge, no prior attempts
have been made to study the stochastic gradient proximal
sampler, encompassing both algorithm design and theoreti-
cal analysis. Consequently, there exists a considerable gap
in understanding how the proximal sampler can be effec-
tively adapted to the stochastic setting and what convergence
rates can be achieved. This unexplored research question
impedes the broader application of the proximal sampler in
various tasks, hindering its full potential utilization.

In this paper, we aim to systematically answer this ques-
tion by providing a comprehensive study of the stochastic
gradient proximal sampler. First, we provide a framework
for implementing stochastic proximal samplers, the idea
is to replace the original joint target distributions with a
randomized one:

p(@,y[b) o exp (o (@) — |z —y|* /(2n)) .

where b is the stochastic mini-batch that is randomly sam-
pled in different iterations. The two-stage alternating sam-
pling process for p.(y|x, b) (a Gaussian-type distribution)
and x from p.(x|y,b) (sampling a log-concave distribu-
tion) will be performed accordingly. By applying different
numerical samplers for p.(x|y,b), we are able to design
various stochastic proximal samplers. Then, we develop
the theory to characterize the convergence of the stochastic
proximal samplers. The core of our analysis is to sharply
quantify the error propagation across multiple iterations. In
particular, the sampling error within one step stems from (1)
inexact target p. (x|y, b) caused by stochastic mini-batch;

'We consider the average for consistency with Raginsky et al.
(2017); Zou et al. (2021).

(2) inexact sampling for p.(x|y, b) caused by numerical
samplers. Then, by designing proper initialization when
sampling from p.(x|y, b), the error propagation can be
controlled by the second moment of particles’ underlying
distributions rather than requiring the stationary points of
f as previous analysis (Altschuler & Chewi, 2023). When
P« only satisfies LSI, its negative log-density f will even
be nonconvex, which means finding an e-approximate sta-
tionary points requires O(e~*) oracles with stochastic gra-
dient descent, which is unacceptable in sampling tasks. Be-
sides, by controlling the second moment bound, we provide
the gradient complexity expectation for the convergence,
which is stronger than a high probability convergence shown
in Altschuler & Chewi (2023). Based on our theory, we
can develop the convergence guarantees for a variety of
stochastic proximal samplers, when the target distribution is
log-smooth and satisfies Log-Sobolev Inequality (LSI). We
summarize the main contributions of this paper as follows:

* We propose a framework for implementing stochastic
proximal samplers. We then provide a general theory to
characterize the convergence of stochastic proximal sam-
plers for a general class of target distributions (that can be
non-log-concave). We show that with feasible choices of
the mini-batch size and learning rate, the stochastic proxi-
mal samplers provably converge to the target distributions
with a small total variation (TV) distance. Notably, com-
pared with Altschuler & Chewi (2023), our framework
is more practical since it does not require the stationary
point information of f and replaces the high probability
convergence results with expectation ones.

* Based on the developed framework, we consider two
implementations of stochastic proximal samplers using
SGLD and warm-started MALA for sampling p.(x|y, b),
giving rise to SPS-SGLD and SPS-MALA algorithms.
We prove that in order to achieve ¢ sampling error in
TV distance, the gradient complexities of SPS-SGLD
and SPS-MALA are O(de2) and O(d"/?¢2) respec-
tively. Compared with the state-of-the-art O(d*/3¢=2)
results achieved by CC-SGLD (Das et al., 2023), the de-
veloped stochastic proximal samplers are faster by at least
an O(d"/?) factor.

* We conduct experiments to compare SGLD with SPS-
SGLD, where the latter one is implemented by using
SGLD to sample p.(x|y, b) in the stochastic proximal
sampler framework. Empirical results show that SPS-
SGLD consistently achieves better sampling performance
than vanilla SGLD for various problem dimensions.

2. Related Work

This section primarily introduces related work by dividing
current gradient-based MCMCs into two categories. The
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first one is based on discretizing the continuous Langevin
dynamics. For the second type, including proximal samplers,
the SDE of particles varies a lot. Beyond the sampling
algorithms, we will also introduce the usage of the proximal
operator in optimization and how it relates to the sampling.

Stochastic Gradient Langevin-based Algorithms. To im-
plement Langevin-based MCMCs with stochastic gradient
oracles, the first work is stochastic gradient Langevin dy-
namic (SGLD) Welling & Teh (2011). Dalalyan & Karag-
ulyan (2019) further establishes the convergence guarantee
of SGLD in Wasserstein-2 distance for strongly log-concave
targets. Besides, Durmus et al. (2019) analyzes SGLD from
a composite optimization perspective and obtains the con-
vergence of the KL divergence. To adapt SGLD to a broader
class of target distributions beyond log-concavity, Ragin-
sky et al. (2017); Xu et al. (2018) extend the theoretical
analysis of SGLD to distributions satisfying dissipative con-
ditions and proves the convergence when using large mini-
batch size. This result has been further improved by Zou
et al. (2021), which establishes the convergence guarantee
of SGLD for sampling non-log-concave distributions for
arbitrary mini-batch size. More recently, Das et al. (2023)
develops non-asymptotic Center Limit Theorems to quan-
tify the approximate Gaussianity of the noise introduced
by the random batch-based stochastic approximations used
in SGLD and its variants, which leads to the best known
convergence rate, i.e., O(d"%e¢=2) and O(d*/3¢2), for dis-
tributions satisfying isoperimetric conditions.

Non-Langevin-based Algorithms. There are a number of
sampling algorithms are designed based on other Markov
processes beyond Langevin. To name a few, Hamiltonian
Markov Carlo (HMC) (Neal, 2010) is designed by simu-
lating the particles’ trajectory in the Hamiltonian’s system;
diffusion-based MCMCs (Huang et al., 2023; 2024) dis-
cretize the reverse process of an Ornstein—Uhlenbeck pro-
cess that initializes at p,; proximal samplers alternatively
sample the marginal distributions of a joint distribution.
Dong et al. (2022) focus on ODE-based sampling.

In theory, the convergence rate of HMC has been established
in Bou-Rabee et al. (2020); Mangoubi & Smith (2017);
Mangoubi & Vishnoi (2018); Lee et al. (2018); Chen &
Vempala (2022); Durmus et al. (2017); Chen et al. (2020);
which achieves smaller sampling error than ULA for sam-
pling both strongly log-concave and non-log-concave tar-
gets. Chen et al. (2014); Zou & Gu (2021) further develops
a class of stochastic gradient HMC methods and proves the
convergence rates in the strongly log-concave setting. The
convergence rates of diffusion-based MCMCs are studied
in (Huang et al., 2023; 2024), which are demonstrated to be
faster than ULA and can be applied to more general settings
(e.g., beyond isoperimetric). For the proximal sampler, Lee
et al. (2021); Chen et al. (2022) provide its linear conver-

gence rate for different criteria under strongly log-concave
or isoperimetric conditions when the exact proximal oracle
exists. Liang & Chen (2022); Altschuler & Chewi (2023);
Fan et al. (2023) further extend the convergence results to
some inexact proximal oracles.

Notably, existing theory for non- Langevin-based algorithms
are mostly developed in the deterministic setting, while the
algorithmic implementation and theoretical analysis in the
stochastic setting remain largely understudied, especially
when the target distribution is non-log-concave. Our paper
provides the first attempts to study the proximal sampler’s
theoretical and empirical behaviors with only stochastic
gradient oracles, which paves the way for exploring other
non-Langevin-based algorithms in the stochastic setting.

Applications of the Proximal Operator. Before apply-
ing the proximal operator to the sampling algorithms,
it is introduced in optimization by the proximal point
method (Lemarechal, 2009; 1978; Liang & Monteiro, 2021;
2023; Mifflin, 1982; Rockafellar, 1976; Wolfe, 2009). The
proximal point method for minimizing the objective func-
tion f is the iteration of the proximal mapping

prox, r(y) = arg min {f(@)+llz—yl*/(2n)}

with proper choice of 7. Using the correspondence f and
exp(—f) between optimization and sampling, the proximal
sampler can be viewed as a sampling counterpart of the
proximal point method in optimization (Rockafellar, 1976).

3. Proposed Framework

This section will first introduce the notations commonly
used in the following sections. Then, we will specify the
assumptions that the target distribution p, is required in our
algorithms and analysis. After that, the proposed framework
and some fundamental properties, such as the error propa-
gation control when sampling from an inexact conditional
density p/, (x|y), will be shown.

3.1. Notations and Assumptions

We suppose the target distribution, i.e., p, o< exp(—f) with
a finite sum negative log-density, which means

f(x) = %Zfl(:c) where Vi, fi: R? > R. (2
i=1

We use letters, e.g., © and x, to denote vectors and random
vectors in R¢ except for letters b and b, which denote sets
and randomized sets. The function f; denotes the energy
function deduced by mini-batch b, i.e.,

fo(x) ::ﬁZfi(:c) where bC {1,2,...n}, (3)

icb
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Results Algorithm Assumptions Metric Complexity
Raginsky et al. (2017) SGLD Dissipative, Component Smooth Wa O(poly(d)e™?)
Zou et al. (2021) SGLD Dissipative, Warm Start, Component Smooth TV O(d*e™2)
Das et al. (2023) AB-SGLD LS, Finite-Sum, Smooth TV O(d?/2e72)
Das et al. (2023) CC-SGLD LSI, 6® moment, Smooth TV O(d¥3e=2)
Theorem 4.1 SPS-SGLD LSI, Finite-Sum, Component Smooth TV O(de=? )

Theorem 4.2 SPS-MALA LSI, Finite-Sum, Component Smooth TV @) (dl /22 )

Table 1. Comparison with prior works for SGLD. d and € mean the dimension and error tolerance. Note that we do not list the assumptions
about the stochastic gradient since they vary greatly in different references, which will be discussed in our detailed theorems. The results
of our theorem based on [A3] and 02 = ©(1). Compared with the state-of-the-art result, the sampling methods with the stochastic
proximal sampler have a better convergence rate with an @(dl/ 3) factor at least.

and V fj, is the corresponding mini-batch gradient. The
notation | - | denotes the L; norm or the number of elements
when the inner notation is a vector or a set, respectively.
The Euclidean norm (vector) and its induced norm (matrix)
are denoted by || - ||. For distributions p and ¢, we use
TV (p,q) and KL (p”q) to denote their TV distance and
KL divergence, respectively.

Then, we show the assumptions required for p,:

[A1] (Component Smooth) For any i € {1,2,...,n}, the
gradient of f; is L-smooth, which means

IVfi(x) = Vi)l < Lz -y

[A2] (Log-Sobolev Inequality) The target distribution p,
satisfies the following inequality

2
Ey. [9°logg°] — E,.[g°]l0g E,.[g°] < —E,, [[Vyl|
with a constant «, for all smooth function g: RY — R
satisfying E,, [¢?] < oo.
[A3] (Bounded Variance) For any = € R?, the variance of
stochastic gradients is bounded, i.e.,

LS V@) - Vi@ < o
=1

The component smoothness of the finite sum loss, i.e., [A1],
is also required in Raginsky et al. (2017); Zou et al. (2021).
[A2] is a kind of isoperimetric condition (Vempala &
Wibisono, 2019) which is strictly weaker than the strongly
log-concave assumption and even the dissipative assump-
tion (Raginsky et al., 2017). Besides, it implies the target
distribution p, to have a finite second moment ) satisfy-
ing M = O(d), which is demonstrated in Appendix A.
[A3] recovers the standard uniformly bounded variance as-
sumption, i.e., o0 = (1), following from Nemirovski et al.
(2009); Ghadimi & Lan (2012; 2013), and sampling refer-
ences sometimes allow 0> = ©(d), e.g., Raginsky et al.
(2017); Dalalyan & Karagulyan (2019); Das et al. (2023).
Both of these cases will be considered in our analysis.

2

Algorithm 1 Stochastic Proximal Sampler

1: Input: The negative log density f of the target distribu-
tion, the initial particle xo drawn from py;

2: fork=0to K —1do

3:  Sample Xy 1/9 from pr 1/ (-[Xx)s

4:  Draw the mini-batch by, from {1,2,...,n};

5. Sample Xy 1 from pry1jry1/2,6([Xpy1/2,Pr);

6

7

: end for
: Return: Xy

3.2. Stochastic Proximal Sampler

The stochastic proximal sampler (SPS) framework is
shown in Alg. 1. With the common notations intro-
duced in Section 3.1, we will explain Py 1 /)% (-|xx) and
Prt1lk+1/2,5(-[Xk41/2, br), that are similar to standard
proximal samplers. Considering a joint target distribution

_ IIw—yII2) @)
2n

that is defined by the randomized mini-batch b and the
outer loop step size 7, then Alg. 1 samples from p/, (y|x)
and p/, (x|y) alternatively. Specifically, at iteration k, sup-
pose € = Ty, Y = Tpy1/2 and n = 1y, the conditional
probability density p, (€1 /2|Tk) is equivalent to

Prst (@ |2) o exp 2 — )
k+§\k 277k )

p«(x,y) oc exp ( — fo(x)

&)

which can be exactly implemented by Line 3 of Alg. 1
due to its Gaussianity. Besides, suppose = xp; and
Y = X412, the transition kernel p/, (€4 1|x;11/2) can be
reformulated as
’ 2
_ e/~ ) C©

Prsijier (|2, b) o exp (—fb(w') o

which is desired to be implemented with Line 5 of Alg. 1.
Rather than exactly sampling from a target distribution,
e.g., pk+1‘,€+%)b(m’|w, b), most samplers can only gener-
ate approximate samples that are close to the target ones
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in real practice. Therefore, we consider a Markov pro-
cess {Xy} whose underlying distribution is defined as py.
Given the same initialization py = pg, we denote the
two empirical transition kernels as Py, 1| = Py 1), and
Prt1jkt 1 ,5(-|, b) that satisfies

KL (ﬁk+1\k+%,b(’|w»b)Hpk+1|k+%,b('|wab)) < 0. (7)

Here we assume that the conditional distribution of X1
given X/ is close to the ideal conditional distribu-
tion Pji1|k+1/2,(¢'|x, b) with up to 5 approximation
error in KL divergence. In fact, as the distribution
Pr+1]k+1/2,5(Z|T, b) is strongly log-concave when 7y, is
properly chosen, the condition Eq. 7 can be achieved by
applying standard numerical samplers such as SGLD and
MALA with provable guarantees (detailed implementations
will be discussed in the next section).

Then, the following theorem characterizes the error propa-
gation across multiple steps and provides general results on
the sampling error achieved by Alg. 1.

Theorem 3.1. Suppose Assumption [A1]-[A3] hold, and
Alg. 1 satisfies:

 We have ny, < 5= forallk € {0,1,..., K —1}.

o The initial particle X is drawn from the standard Gaus-
sian distribution on R,

* Line 5 is implemented by some specific inner sampler,
achieving

KL (ﬁk+1|k+%,b('|ma b)||pk+1\k+%,b('|m7 b)) < Ok
forallk e {0,1,..., K — 1}

Then, we have

1 K-1 K-1
~ i
TV ) <ul = 0i
(pK7p )— 2 ' +o ' 2|b2|
=0 =0 (8)
—1
(1+L2)d .
+ T . H (1 +Oé*771) .
=0

Theorem 3.1 provides the general upper bound of the TV
distance between the underlying distribution of particles
returned by Alg. 1 and the target distribution p,. The first
term in Eq 8 represents the accumulated error of the inexact
sampling from py x4 1 (|, b), ie., Line 5 of Alg 1.
The second term represents the approximation error using
stochastic gradients, and the last term represents the error
from deterministic proximal samplers. To achieve an ¢-TV
distance to the target distribution p,., one may have to choose
a small error tolerance of inexact sampling, i.e., d; = €2,

to control the first term of Eq 8. Besides, it still requires a
large enough mini-batch size, i.e., |b;| = O(1/(c¢)?) and
the mixing time, i.e., Zfigl n; = ©(log(1/e)), to make the
last two terms of Eq 8 small, respectively.

Notably, the implementation of the proximal sampler
in Altschuler & Chewi (2023) also allows inexact sam-
pling from py 1441 (|2, b) in the second stage update,
and requires the underlying distribution of returned parti-
cles, i.e., Pry1jhy1 (|2, b) to satisfy Eq. 7 with a small
0. However, they only consider the deterministic setting,
ie,b={1,2,...,n}, and requires initializing Line 5 of
Alg. 1 with certain stationary points x, of f. Hence, directly
applying their analysis may require finding stationary points
in each iteration, as the function f; changes, which may
take substantially more time. This is because, when p, only
satisfies LSI, the function fp may not be convex. Finding
an e-approximate stationary point of a general non-convex
function requires O(¢~4) (Nesterov, 2013) for stochastic
gradient descent, which is unacceptable in sampling al-
gorithms. Therefore, the implementation of Altschuler &
Chewi (2023) still remains a concern without exact infor-
mation, or even only with inexact information, about the
stationary points of f.

In our analysis, combining proper Langevin-based MCMC
with a X5, /2 mean Gaussian-type initialization, the gra-
dient complexity for achieving Eq. 7 will only depend
on log || X412 ||? rather than stationary points ., which
will be explicitly shown in the next section. Considering
the expected gradient complexity, it requires to character-
ize Ep, ., ,,[10g |Ry41/2]%], which can be readily upper
bounded by 10g[E;, ., ,, [||Xk+1/2]|%]]. This implies that we
further need to control the second moment of the particles.
This is conducted in the following lemma.

Lemma 3.2. Suppose Assumption [A1]-[A3] hold, and the
second moment of the underlying distribution of Xy, is My,
then we have

My i1 < 24My, + 40, + 241702 /|b| 4+ 28 M + 24m,.d.

This bound may seem to be large as M}, exhibit an exponen-
tial increasing rate. However, we remark that only log(M},)
will appear in our calculation of the gradient complexity
rather than M}, itself. Then, let X be the number of total
steps, which can be chose to be O(L/a*), then My will
be controlled by exp(K) and so that log(M},) can be con-
trolled by K = O(L/a*), which will not heavily affect the
total gradient complexity.

4. Implementations of SPS

This section mainly focuses on the detailed implementation
of the SPS. Specifically, since the target py1 /2% of Line
3 of Alg. 1 is a Gaussian-type distribution shown as Eq. 5,



Faster Sampling via Stochastic Gradient Proximal Sampler

Algorithm 2 Inner Stochastic Gradient Langevin Dynamics:
InnerSGLD(xg, b, 7, §)

1: Input: The output particle o of Alg. 1 Line 3, the
selected mini-batch b, the step size of outer loop 7, the
required accuracy of the inner loop §;

Initialized the returned particle Z = 0;
Draw the initial particle zo from N (g, n - I)
fors=0to S —1do

Draw the mini-batch b, from b;

Update the particle

—1
z’s<—zs—|—\/27's~<1—7-s> 13
4n

where £ ~ N (0, 1);
7:  Update the particle

AN AN

Zoy1 < 2 — 7o (Vo (20) + 07" - (2 — 20)) ;

8: if s > S’ then
9: Update the returned particle:

zZ+z+7z. /(S-S +1);

10:  end if
11: end for
12: Return: z.

we can obtain the sample exactly. Then, the key step is
to numerically sample from the distribution py_ 1|+41/2,5
to ensure that the distribution of the approximate samples,
i.€., Pry1jk+1/2,0 satisfies Eq. 7. In particular, we will im-
plement this step, i.e., Line 5 of Alg. 1 using two inner
samplers: stochastic gradient Langevin dynamics (SGLD)
and warm-started Metropolis-adjusted Langevin Algorithm
(MALA), which give rise to two stochastic proximal sam-
pling algorithms. In what follows, we will introduce the im-
plementation details of these two algorithms and prove their
gradient complexities, i.e., the desired number of stochastic
gradient calculations to guarantee € sampling error.

4.1. SGLD Inner Sampler

We consider implementing Line 5 of Alg. 1 with SGLD
inner sampler shown in Alg. 2, and name it SPS-SGLD.
We point out that the particle update of Alg. 2 is slightly
different from the standard SGLD update. In particular, our
update is performed with two steps and returns a trajectory
average, computed using the last S — S’ iterations, rather
than a single particle. The first step of the update, i.e., Line
6 of Alg. 2 performs the diffusion via the Gaussian process,
and the second step, i.e., Line 7 of Alg. 2 updates the particle
via drift term V 10g P, 1|x41/2,5- With this implementation,
we show the gradient complexity for approaching the target

P+« in the following theorem.

Theorem 4.1. Suppose [A1]-[A3] hold. With proper param-
eter settings at the following levels

m=0(L"Y), K=0(k), o =06 1),
and b, = min {O(a; ‘0% ?),n},

where k = L/, for Alg. 1, if we choose Alg. 2 as the inner
sampler shown in Line 5 Alg. 1, set

a1 2 2v—1y 1 }
= d 2
T mm{@(/{ e(d+0o7) )736 ,
~ 1
" = mi @L”,—}
T mln{ ( T) 36/
S = C:)(L_lT_l),

s =7 when s€]0,5],
S=0(8+ (")), when sc[S +1,8—1],

/
Te =T

and inner minibatch sizes satisfy |bs| = 1, for all s €
{0,1,...5 — 1}, the distribution of returned particles px
in Alg. 1 satisfies TV (P, p«) < 3e. In this condition, the
expected gradient complexity will be ©(r>(d + 02)e2).

Due to the space limitation, we only show an informal result
in this section, and the formal version will be deferred to
Theorem C.4 in Appendix C.1. Theorem 4.1 provides an
O(de?) gradient complexity regardless of 02 = ©(d) or
0? = ©(1). When 02 = O(d), the state-of-the-art results
are O(d*/?e2) and O(d*/?¢~2) under stronger variance
assumptions (Das et al., 2023). Compared with those results
provided in Das et al. (2023), our SPS-SGLD is faster by
at least an O(d'/?) factor with strictly weaker assumptions.
When 02 = O(1), the gradient complexity provided in Das
et al. (2023) will become O(de?) which is the same as our
results.

Notably, in the proof of Theorem C.4, we demonstrate
that, with the Gaussian type initialization shown in Line
3 of Alg. 2, the relative Fisher information gap between
the underlying distribution of zy and the target distribu-
tion Pri1jk4+1/2,6 can be upper bounded with a factor
log(||zo|*+]|V f5(0)||?) which is independent of stationary
points of f and can be controlled by second moment with
Lemma 3.2 and variance of stochastic gradients from an
expectation perspective. This means the SPS-SGLD can be
easily implemented without initialization issues in previous
work, e.g., Altschuler & Chewi (2023).

4.2. Warm-started MALA Inner Sampler

We consider implementing Line 5 of Alg. 1 with warm-
started MALA inner sampler shown in Alg. 3, and name it
SPS-MALA where the functions g(z) and ¢ (2’; z, 7) are
defined as follows:

|z = zol|”
2n

)

g(z) = —logpkH‘kJr%’b(z\wo,b) = fo(z) +

o2, 1= =TI
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Algorithm 3 Inner Metropolis-adjusted Langevin algorithm:
InnerMALA(z, b, n, )

1: Input: The output particle o of Alg. 1 Line 3, the
selected mini-batch b, the step size of outer loop 7, the
required accuracy of the inner loop §;

2: Draw the initial sampler zy from InnerULD(xq, b, n)
by Alg. 4

3: fors=0to S —1do

4:  Draw z, from N(zs — 75 - Vg(2s), 27:1);
5:  Define the threshold p to be
b = min {1, exp (9(2s) + (225, 75)) } ;
exp (9(z}) + ¢(2s3 2, 7))
6:  Draw the sample p’ uniformly from [0, 1];
7: ifp’ < pthen
8: Update the particle zs41 < z,
9: else
10: Update the particle z;1 < 2z,
11:  endif
12: end for

13: Return: zg.

Inspired by Altschuler & Chewi (2023), SPS-MALA re-
quires InnerULD to provide warm starts, i.e., Line 2 of
Alg 3, where we defer the implementation of InnerULD
to Appendix A. Compared with general initialization, the
gradient complexity MALA can be improved from O(d)
to O(d"/?) with warm starts, and ULD can provide warm
starts within O(d'/2) gradient complexity. It means In-
nerMALA will be faster than InnerSGLD by an O(d'/?)
factor to achieve the KL convergence, i.e., Eq. 7. Hence,
SPS-MALA can be expected to improve the dimensional
dependence of SPS-SGLD. With this implementation, i.e.,
Alg. 3, the TV distance convergence of Alg. 1 can be pre-
sented in the following:

Theorem 4.2. Suppose [A1]-[A3] hold. With proper param-
eter settings at the following levels

me=06(L""), K=06(k), o =0(r"'ée),

and b, = min {(:)(a;1026_2),n} ,

where k = L/, for Alg. 1, if we choose Alg. 3 as the inner
sampler shown in Line 5 of Alg. 1, set

y=O(LY?), T=0(L 2 ?),

for Alg. 4, and

T=06(L'd"'?), and S=6(d"?

for Alg. 3, then the underlying distribution of returned
particles pr in Alg. 1 satisfies TV (Pr,pe) < 3e. In

this condition, the expected gradient complexity will be
(C] (ﬁ3d1/202e_2).

and S = 6(d"/?).

Due to the space limitation, we only show an informal result
in this section, and the formal version will be deferred to
Theorem C.8 in Appendix C.2. Theorem 4.2 provides gra-
dient complexities of O(d'/?€?) and O(d?/%¢?) for cases
when 02 = ©(1) and 02 = O(d), respectively. When
02 = (1), the state-of-the-art result is O(de~2) under the
lin-growth assumption (Das et al., 2023). Compared with
the result provided in Das et al. (2023), our SPS-MALA
is faster by an O(d"'/?) factor with strictly weaker assump-
tions. However, the efficiency of SPS-MALA will be greatly
affected by the variance, i.e., 02 in [A3], through the mini-
batch size of Alg 1. Even when 02 = ©(d), the complexity
of SPS-MALA will become O(d*/2€?), which is the same
as AB-SGLD shown in Table. 1 with weaker assumptions.

Besides, it should be noted that Altschuler & Chewi (2023)
and Fan et al. (2023) provide high probability convergence
of the TV distance with an O(n«d'/?) gradient complexity,
while requiring the stationary points of f. Compared with
this result, we have an additional O(x) factor besides re-
placing the number of training data 7 to the O (o ' o%¢2)
batch size. This factor comes from our proof techniques
of removing the dependency of stationary points for SPS
framework by upper bounding second moments during the

entire Alg. 1, which is demonstrated in Section 4.1.

5. Experiments

In this section, we will first provide our experimental set-
tings. Then, for a fair comparison with SGLD, we imple-
ment the proximal sampler with SPS-SGLD and show their
sampling performance with different dimensions. More
experimental results are deferred to Appendix F.

Experimental Settings. Here, we consider the compo-
nent e~ fi shares a similar definition in Zou et al. (2019),
ie., e fil®) — e~ lle=b—pil®/2 4 e*l\w*bﬂul\r"/?’ where
the number of input data n = 100, the dimension d &€
{10, 20, 30, 40, 50}, the bias vector b = (3,3,...,3)-, and
the data input \/d/10 - p; ~ N(@,Ixq) with @ =
(2,2,...,2). Here, we require the input data to shrink with
the growth of d, which keeps the distances between different
modes for each e~ /¢, Since Zou et al. (2019) had proven the
function f; is dissipative, which implies the LSI property of
e~ i and e~ 7, we omit the discussion about the property of
fi in this section.

For the common hyper-parameter settings of SGLD and
SPS-SGLD, we fix the number of stochastic gradient ora-
cles as 12000 and the mini-batch size for each iteration as 1.
We enumerate the step size of SGLD and the inner step size
of SPS-SGLD from 0.2 to 1.4. Besides, the inner loops’ iter-
ations and the outer loops’ step sizes are grid-searched with
[20, 40, 80] and [1.0,4.0,10.0]. Besides, we use the formu-

lation TV (Prc, p«) == ﬁ Zle TV (Pk i, D«,i) to estimate
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Figure 1. The background of all graphs is the projection of the negative log density on a 2d plane, and nodes are the projection of particles
returned by different algorithms on the same plane. The first two rows show the distribution of particles’ projection after different
iterations of SGLD and SPS-SGLD with their optimal step sizes when d = 10.
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Figure 2. The graph in the left column shows the TV distance
estimation, i.e., TV (px, p«) when SGLD and SPS-SGLD chose
their optimal hyper-parameters under different dimensions. The
graph in the right column denotes the TV distance estimation when
SGLD and SPS-SGLD chose different step sizes and d = 10.

total variation distances between the target distribution and
the underlying distribution of returned particles, where px ;
and p, ; are the marginal distributions of the ¢-th coordinate.
For 1d distributions, their densities can be approximated by
the histogram of particles.

Experimental Results. We first show the optimal TV dis-
tance to the target distribution p, obtained by SGLD and
SPS-SGLD under different dimensions in the left column
of Fig. 2. Since we consider different problems when using
different dimensions, the sampling error does not necessar-
ily increase when d increases. It can be clearly observed
that the optimal TV distance of SPS-SGLD is at least 0.5
smaller than that of SGLD in all our dimension settings,
which means SPS-SGLD presents a significantly better per-
formance in this synthetic task. Specifically, we investigate
the changes in the TV distance with the growth of step sizes
for both SPS-SGLD and SGLD, and show the results in the

right column Fig. 2. Although the absolute values of these
two algorithms vary a lot, their changing trends are very
similar. When the step size is small, both SPS-SGLD and
SGLD describe the local landscape of a single mode well.
With the growth of step sizes, they can gradually cover all
modes, whereas SPS-SGLD achieves a lower TV distance
since it can cover modes and keep the local landscape well
with a smaller step size. Besides, we provide show distri-
butions of particles’ projections under different stochastic
gradient oracles when d = 10 and the optimal step sizes are
chosen in Fig. 1. According to the contour of the projected
negative log density of p., we note that SPS-SGLD can
cover all modes with a more accurate variance estimation
compared with SGLD. It demonstrates that SPS-SGLD gen-
erates more reasonable samples with different stochastic
gradient oracles from another perspective.

6. Conclusion

This paper is the first study about adapting stochastic gra-
dient oracles to unbiased samplers to draw samples from
unnormalized non-log-concave target distributions, i.e.,
p. o< e~f. Specifically, we provide a framework named
stochastic proximal samplers (SPS) to remove the unreal-
istic requirement about stationary points of f in previous
implementations (Altschuler & Chewi, 2023). Furthermore,
compared with biased samplers SGLD and its variants, two
implementations of the SPS framework can converge to the
target distribution p, with a lower gradient complexity with
an O(d"/3) factor at least, and this improvement is validated
by our experiments conducted on synthetic data.
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A. Additional Notations and Assumptions in Appendix

For the convenience of analysis, we define three Markov processes, i.e., {Xy }, {X) } and {Xy, }, as follows. For the process
{x1}, we suppose its initialization x is drawn from the standard Gaussian of R?. There are two transition kernels in this
process. The first provides the conditional probability of x; 1,2 when xy, is given and can be presented as the same as Eq 5,

ie.,
(@'|z) |z’ — x|
L | ) X ex — .
P41k p 2

The second transition kernel denotes the conditional probability of xj 1 when x> and a stochastic mini-batch b is
given and can be presented as the same as Eq 6, i.e.,

2
:Bl — X
pk+1\k+%,b(w/|$7b) X exp <_fb($/) _ |277k> _

For the process {Xy}, we suppose the initialization X shares the same distribution as xg, and the transition kernel is defined
as

Peadle = Prrtpe a0d Drpqppy s o(@|2,0) = prpyjeg s p (e, {1,2,... N}). ©)

For the third process {Xy}, it presents the actual Markov process obtained by implementing Alg 1. That is to say, the
initialization X shares the same distribution as x¢. The transition kernel satisfies py, I and

KL (ﬁk+1\k+%,b('|$vb)Hpk-&-1|k+%,b('|w7b)) < O,

It should be noted that the transition kernel pj,_ |, +%,b(-|:13, b) does not have a explicit form. Instead, it depends on the
sampling process at Line 5 of Alg 1. Although no explicit form is required, it still should be a good approximation of
Prt1)k +%’b(m’ |z, b). At last, to simplify the notation, we denote = as the density function of the Gaussian distribution

N(0,0%1).

Assumption [A2] implies a bounded second moment:

Lemma A.1. Assume that density p, satisfies assumption [A2] that for any smooth function g(x) satisfying E,_[g?] < oco:

2
E,. [9°10gg”] — Ey.[9°]10g Ey. [9"] < —E,, |[Vg]®.
Then density p, has the following variance bound:

Eonp- [z — E[2]]%] < 2d/a”.

Proof. Consider a target distribution p* that follows [A2] and for the simplicity of notation denote a constant C' = 1/(2a*).
We then follow the Herbst argument and take the test function in [A2] to be g(x) = ¢'/(*)/2, for an arbitrary ¢ > 0 and a
function f so that |V f(x)|| < 1. We obtain from the substitution that
E,. [tf(w)etf(w)} —E,, [etf(m)] logE,, [etf(m)] < CE,, 2etf () HVf(a:)||2] < CE,. [thtf(w)} .
Denote F(t) = E,,, [e!/(®)]. We rewrite the above inequality as a differential inequality:
tF'(t) < F(t)log F(t) + Ct*F(t),

or equivalently:

d /1
— | = < .
: (t logF(t)> C

Taking ¢ — 0, we know that the initial condition is } log F'(t) — E,,_[f(«)]. Therefore, along the entire trajectory
1
Slog F(t) < B, [f(2)] + C -t

12
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Algorithm 4 Inner underdamped Langevin algorithm: InnerULD(xq, b, 7, )

1: Input: The output particle o of Alg. 1 Line 3, the selected mini-batch b, the step size of outer loop 7, the required
accuracy of the inner loop 6;
Initialize the particle with zy < x( and the velocity v is sampled from N(0, I);
fors=0to S —1do
Draw sample (zg11,Vs11) from the following Gaussian distribution N (¢’ (zs, vs), 2) .
end for
Return: zg.

AN AR o

Plugging in the definition of F'(¢), that is

By, [¢4®)] < exp (1E,. [f(2)] + C - 7).

By Markov’s inequality, we obtain that for  ~ p* and for any ¢ > 0:
P (f(@) — ELf(@)] > \) < exp(CF2 — M),

Optimizing over ¢ gives

2
P (@)~ Elf@)] > ) < o (-5 )

Taking f(x) = (x, 0), for any ||@|| = 1, gives the standard subGaussian tail bound:
2

Pllie - Efa],6)1 > ) < 250 (5 ) V16l = 1.

which means that random vector & ~ p* is v/2C-subGaussian. This also implies that x ~ p* is vV2C' - d-norm-subGaussian,
leading to the following moment bound:

(Ellle —E[=]|IP])'” < v/2pC - d.

x — E[z]||?] <4C - d = 2d/a*. O

We read off the second moment bound from the above inequality: Eg.p+ [

Implementation of InnerULD: Specifically, The closed form of the update of ULD shown in Line 4 of Alg. 4 satisfies
g : R x R? — R? x R? defined as

g (z,0) = (z+7 " (1-a)v =y~ (r =7 (1 —a)) Vg(2),av =771 (1 - a)Vy(2)) ,

where a := exp(—y7), and

Y= %(T_%(l_a)+%(1_a2))'1d %(%—a—kaz)-Id
2(z—a+d’) I (1—a?) I,

Such an iteration corresponds to the discretization of the following SDE

dZt :tht7
dvy = — Vg(zs; g, b,n)dt — yvidt + \/2vd By,

where B; is a standard d-dimensional Brownian motion. This update is introduced in several references, including Cheng
et al. (2018); Altschuler & Chewi (2023).

13
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B. Lemmas for SPS Framework

Lemma B.1 (variant of data-processing inequality). Consider four random variables, x,z,X, z, whose underlying distribu-
tions are denoted as Py, Dz, 4x, Q. SUppose p, . and q,, , denotes the densities of joint distributions of (x,z) and (X, Z),
which we write in terms of the conditionals and marginals as

pz,z(mv z) = pxlz($|z) pa(z) = pz\x(zh:) - pz()
Qo2 (T, 2) = qu|2(%]2) - ¢:2(2) = @210 (2|T) - @z ().
then we have
KL (px,quz,z) =KL (pZqu) + ]EZNPZ [KL (pz\z(|z)|‘qﬂz(|z)>]
=KL (p2|¢2) + Exwp, [KL (P20 (%) 210 (-1%))]

where the latter equation implies
KL (pz]|¢z) < KL (po,||ds,2) -

Proof. According to the formulation of KL divergence, we have

KL (pw,zHQa:,z) :/px,z(wvz) log md(wvz)

:/px7z(:c,z) <1ng$(ac) + log W) d(z, z)

QI(:E) q,z|ac(z‘w)

p"c(m) pz\x(z|m)
= [ p..(x, 2)log d(zx, z +/p m/pzmzwlogidzdm
[ et s a2 4 @) [otele o T 2
=KL (p£||Qx) + ]Exwpz [KL (pz\a:(|x)||QZ\w(|x)>] > KL (pJLHQ:E) )
where the last inequality follows from the fact

With a similar technique, it can be obtained that

KL (prc,qu.r,z) :/pm,z(mvz) 1ng:E7Z7

_ / Po.: (@, 2) (log )

:/p_%z(:c,z) log pz(z)d(a;,z) +/pz(z)/pl.‘z(a:|z)log pzlzgﬂz)dzdw

qz(z) Qm\z $|Z)
=KL (szQZ) + ]Ezwpz [KL (pw\z(|z)||ﬁw|z(|z))} .

Hence, the proof is completed. O

+ log pI|Z(:c|z)> d(z, 2)
QI\Z(:L'|Z

Lemma B.2 (strong log-concavity and smoothness of inner target functions). Using the notations presented in Section A,
foranyk € {0,1,...,K — 1}, x € R% and b C {1,2,...,n}, suppose n, < 1/L, then the target distributions of inner
loops, i.e., ppi1kt1/2,(-|T, b), satisfy

(=L +ng ") I 2 =V3 logpyipyrjop(@a,b) 2 (L+ngt) - I

Proof. Forany k € {0,1,..., K —1},z € R4, and b C {1,2,...,n}, we have

_ z — x|
st 1.p('|2,b) = C(b,ny, )" - exp <_fb<w/) - H277k”> ’

which implies
-VZ, 108 Prt1kt1/2,0 (2|2, b) = V2 fu(x') + 77;;1 1.

14



Faster Sampling via Stochastic Gradient Proximal Sampler

Since we have [A1], it has
(L4 ) - I 2V fo(@) + - I < (L) - T

Hence, the proof is completed. O
Lemma B.3. Using the notations presented in Section A, for any k € {0,1,..., K — 1}, x € R and b C {1,2,...,n},
suppose it has n < 1/L, then we have

- 1 2
KL (B 0 (1 0) [P oC10,0)) < 5oy By, [IVS ) = VA0

Proof. We abbreviate pj, i 1|5+1/2,6(-|®, b) and Py 1|k+1/2,5(-|Z, b) as p and p for convenience. According to the definition
of p,i.e., Eq 6, and p, i.e., Eq 9, we have

(&) = Ofb.n,2)™ -exp (—mw') . ”“}jf')

~ _ xr —x 2
a') = C(n.x) ™ -exp (‘f(w’) - ”Qn”> |
According to Lemma B.2, we have
—V?logp(a') = (~L+n") I,

which means the density function p is strongly log-concave when 1 < 1/L. According to Lemma E.2, the density function
p satisfies LSI with a constant (77_1 — L). Then, with the definition of LSI, we have

(x) ’2 1
p(x’) 2(n~' = 1L)

Hence, the proof is completed. O

2
I

KL (p][») B V() = T folx')

Eyrnp

HVlog

1
P —
"2t -1)

Lemma B.4. Using the notations presented in Section A and considering Alg 1, if n; < 1/(2L) foralli € {0,1,..., K —1},
then we have

TV(ﬁKapK) <o

where | - | denotes the sample size in each mini-batch loss.

Proof. According to Pinsker’s inequality, we have

1
TV (pk, px) < §KL (Pr|lpK).

Let pry1,k+1/2,6 and Ppi1 k4172, denote the density of joint distribution of (Xg+1,Xk41/2, bx) and (Xg11,Xp41/2, by)
respectively, which we write in term of the conditionals and marginals as

pk-ﬁ-l,k-&-%,b(w/ava) :pk+1|k+%7b(wl|mvb) 'Pk+%,b(wvb) = pk+%7b|k+1(wa b|wl) 'pk:+1(f”/)
ﬁk+1,k+%,b(m/amab) :ﬁk+1|k+%,b(m,|wvb) Dy 1,5(T,0) = Pyt s (2, bla') - Pry1(x’).
In this condition, we have
KL (ﬁk+1’|pk+1) < KL (ﬁk+1,k+%,b||pk+1,k+%,b>
=KL (ﬁk+%,b||pk+%,b> R GRS [KL (ﬁk+1|k+§,b('|5<a B)||pk+1\k+%,b('|i76))}
=KL (ﬁm% HPH%) + EiNﬁH% [KL (ﬁb|k+%('|)~()Hpb|k+%("i))}
+ E(fc,f))wﬁk_*_%ﬁ [KL <I5k+1\k+%,b('\5<a b)||Pr1jes1.6 (1% b)” )

15
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which follows from Lemma B.1. Respectively, for the first and the second equation, we plug
X = Xg41, Z = (ik+%,‘t~)k), X = Xp4+1 and z == (kar%,bk)

and

X=Xy, 1, Z = by, X = Xpq1 and z == by,
to Lemma B.1. Here, we should note the choice of by, is introduced as an auxiliary random variable, which is independent
with the update of X, for all k € {0,1,..., K — 1}. Then, by requiring
Pops 1 (12) = pypg2 (l2) =pp Vo €R? and m;, < 1/(2L). (10)

we have

KL (pt1||pe+1) < KL (ﬁm% HPH%) + E(i,B)NﬁH%,b {KL (ﬁk+1|k+%,b('|ia B)|‘pk+1\k+§,b('|5€75))}
_ 1 2
<KL (PH% HPH%) + 2 -1 .E(i,ﬁ)wﬁk+%7h |:]Ex’~ﬁk+1lk+é7h('5c,]5) [Vf(x") = V(D } (11)

1, (I%.b) IVf(x')— Vfg(x’)HZ]

2

< KL (ﬁm% Hpm%) + M ']E(Sc,B)N;ﬁk+%wb {E

s
R

where the second inequality follows from Lemma B.3 and the last inequality follows from the choice of step size satisfies 7y.

Then, we consider the upper bound for the second term of RHS of Eq 11 and have

’ N2
Bt Bt g 1 IV50) = VI "

~ Lz 2 Lz
= [ Beiriral@ 28) - IV (@) - Vfy(a) d', 2.,
The density fy 1 141 (@, T, b) of the joint distribution satisfies

ﬁk+1,k+%,b(fcla x,b) :ﬁk+1|k+%,b(m,|mv b) - Py 1 (T, b)
=Prr1fk+ 1 (Z'2) - Py 1 () - By 1 (bl) (13)
:ﬁk+1|k+%(aj/|$) 'ﬁk+g($) “pu(b),
where the second equation establishes since the choice of by, will not affect the update of %, shown in Eq 9. Besides, the

last inequality follows from Eq 10 and the fact that the choice of by, is independent with the choice of x;, shown in Line 4 of
Alg 1. Combining Eq 12 and Eq 13, we have

/ N2
]E(fc,f))~;5k+%,b |:]Ex’~;5k+1k+%’b(~|5c,13) V(") =V fa(x)]

= 3 @ m®) [94@) - Vi) e (14)
bC1,2,...,n
0.2
- / P (@), (VS (@) = ¥ fo (@)} da’ < s

where the last inequality follows from [A3] and Lemma E.1. Hence, Eq 11 satisfies

KL (ﬁk-&-l”pk-ﬁ-l) <KL (ﬁk.:,-% Hpk+§) +0%- |Z7];| (15)
Then, consider the first stage of the update, we have
KL (B [Pay ) <KL (elpr) + Exope [KL (i g C1R) 2y 6 (190) | = KL (B lp) (16)

16
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where the first inequality follows from Lemma B.1 by setting

»
Il
>
=
-
N
I
>
T
b

= Xpy1 and z = xy,

and the second equation establishes since {x}} and X, share the same update in the first stage shown in Eq 5 and Eq 9.

Combining Eq 15 and Eq 16, we have

KL (pg11[|prs1) < KL (5r[|px) +Jz.|%7
which implies
K-1 "
K@l <o 3
i=0 !
with the telescoping sum. Hence, the proof is completed. -

Lemma B.5. Using the notations presented in Section A, we have

where & denotes the error tolerance of approximate conditional densities shown in Eq 7.

Proof. According to Pinsker’s inequality, we have

1
TV (Prt1, Prr1) < \/2KL (Pr+1||prs1)-

Let pry1,k+1/2,6 and Ppy1 k4172, denote the density of joint distribution of (Xg+1,Xk41/2, bx) and (Xg11,Xp41/2, f)k)
respectively, which we write in term of the conditionals and marginals as

pk—&-l,k—&-%,b(wlva b) Zpk+1|k+§,b(-’f/\93’ b) 'pk+%vb(93a b) = pk+%,b\k+1<w> b|w/) 'Pk+1(33/)

ﬁk+1,k+%,b($/7l’,b) :ﬁk+1|k+%,b($l‘va) Dy p(Tb) = ﬁkJr%,b\KJrl(mab‘m/) D1 (x').
In this condition, we have

KL (ﬁ’fﬂHpkH) <KL (ﬁk+l,k+%,b”pk+1,k+%,b>

=KL (ﬁk-&-%,b”pk-',-%,b) + E(,‘c7]§)~pk+%)b [KL (ﬁk+1|k+%,b('|§(a b) ‘pkﬁ-l\k—&-%,b('mvb))}
=KL (ﬁk+§ HPH%) +Bxnp, g [KL (ﬁb|k+§('|ﬁ) ’pb|k+%("ﬁ))}

+Ebyon, s, KU (Pretir 30015 D) [Prsajieg o(15.5) )|

where the first and the second equations are established by plugging
X = Rpp1, 2= (f(k+%,f)k), X =xpy1and Z == (kar%,bk)

and
x:ik+%, z = by, X=X 1 and z == by,

to Lemma B.1, respectively. Then, by requiring
Py 1 C|2) = Py (|2) =pp Vo € RY, a7

17
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we have
KL (prs1||prs) < KL (ﬁk+%\\pk+%) +E s by, {KL (ﬁk+1lk+%’b(.|§c,b)
;.

<KL (ﬁk-&-%“pk-&-%) + 0k

where the last inequality follows from Eq 7. Besides, considering the first stage of the update, we have

KL (ﬁm%HPH%) <KL (pr||pr) + Exmpy [KL (ﬁk+%\k("ﬁ)Hpk-i-%\k("ﬁ))} = KL (px||px) , (19)

where the first inequality follows from Lemma B.1 by setting

‘Pk+1\k+%,b('|f<7 B))}
(18)

X=Xpy1, =R, X=X 1 and Z := X,

and the second equation establishes since x; and Xj, share the same update in the first stage shown in Eq 5 and Eq 7.
Combining Eq 18 and Eq 19, we have

KL (Pry1||prs1) < KL (P ||pr) + O,
which implies
K—1

=0

with the telescoping sum. Hence, the proof is completed. O

Lemma B.6. Suppose Assumption [A1]-[A3] hold, and Alg. 1 satisfy:

o The step sizes have n; < 1/(2L) foralli € {0,1,..., K — 1}.
* The initial particle X is drawn from the standard Gaussian distribution on R,

* The transition kernel at Line 5 of Alg. 1, i.e., ﬁk+1‘k+%’b(-|:]}7 b), satisfies Eq 7 and 6, = 0.
Then, we have

TV (ﬁK7p*) S o

Proof. When 0y, = 0, the Markov process {Xy, } shares the same underlying distribution as the Markov process {x} . We
consider to upper bound the total variation distance between px and p, which satisfies

TV (pr,p«) < TV (px,Dr) + TV (P, ps) - (20)

According to Lemma B.4, by requiring ; < 1/(2L) forall i € {0, 1,..., K — 1}, we have

TV (pk,pr) <o 21

Besides, for TV (pk, p«) in Eq 20, we have

—

TV (P, p«) < §KL (x ||p+)

K- K— (22)
1+L2
\/iKL Pollps) - 1;[ Lt aum) ™ </ H 1+ )™

where the first inequality follows from Pinsker’s inequality, the second follows from Lemma E.3, and the last inequality
follows from Lemma E.4 when we set pg as the standard Gaussian in R?. Finally, plugging Eq 21 and Eq 22 to Eq 20, the
proof is completed. O

18
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Proof of Theorem 3.1. Using the notations presented in Section A, we consider to upper bound the total variation distance
between px 1 and p, which satisfies

According to Lemma B.5, we have
(23)

Besides, we have

(24)

with Lemma B.6. Here, we should note the gradient complexity of Alg 1 will be dominated by Line 5, i.e., the inner sampler
which requires GC(|by|, Ji,) at the k-th iteration. Therefore, the total gradient complexity will be

K-1
o <Z GC(|bl, 5z‘)>
i=0

and the proof is completed. O

C. Theorems for Different Implementations
C.1. Stochastic Gradient Langevin Dynamics Inner Samplers

Lemma C.1. Using the notations presented in Alg 2, asume [A1]-[A3], for any T, € (0, 316] we have

27, - KL (q;||l’k+1|k+§,b('|$07b)) <1 - 477> Wz (anpkH\m b( |0, b))

472 2 n 67’82d
|bs| n

= W3 (ds41, i1y 3 (|0, b)) +

where qs, q. and q. denotes underlying distribution of zs, z', and the ideal output particles.

Proof. This proof only considers the KL divergence behavior for the k-th inner sampling subproblem, i.e., Line 5 of Alg 1.
The target distribution of the inner loop, i.e., Pyt 1|k+1/2,5(:|T0, b) Will be abbreviated as

2
- - z—x
¢.(2) = C; 1 exp(—g(2)) = C; - exp <fb<z> - ”2n> .
Since InnerSGLD sample mini-batch b, from b for all s € {1,2,...,5}, we define

LS oy - Lzl

i€bg 77

gbs = |

Combining Lemma B.2 and the choice of the step size, i.e., n < 1/2L, we have
2~ T 2 V?g(2) = Vq.(2) = (3/2n) - 1
Suppose the underlying distribution of z, and z/, are ¢, and ¢/, respectively. Besides, the KL divergence between ¢, and g, is
sz
L (¢s]|q) = /qs(z) log . EZ; dz = /qs(z) log ¢s(z)dz Jr/qs(Z) (g(2) +1log Cy) dz

H(gs) E(qs)

Then we consider the dynamics of entropy H and energy £ functionals with the iteration presented as

1
z;—zs+\/2719-(1—29) ¢ where &~ N(0,1),
n

Zsy1 = Z; — TsVgb, (Z;) .

19
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Energy functional dynamics We start with the following inequality

2
W3 (0541, 6:) < E(a) 2y, [Ezs+1~q;+us<-|z;> 1Zs11 —2]°| ,

where . denotes the optimal coupling between the densities ¢, and g¢., and ¢/, +1|S( |z) denotes the density function for

Zs+1 when z., = z/. According to the change of variables, the inner expectation on the RHS satisfies

— 2P = > pu(by) - |12, — 7.V, (21) — 2|

b:Cb
= ||z, — 2||* — 27, (Vg(zL), 2, — 2) + 72Ep, | Vab, (1)

Ts 2 2
< (1—277) Nl — 2|2 = 27, - (9(2)) — 9(2)) + 72w, [ Vgw. ()2

E

Zs41~q!

where the last inequality follows from the strong convexity of g, i.e.,

1
9(=) — (=) = (Vg(z),z —2) + - ll= = PAl

Taking the expectation for both sides of Eq 25, we have

Bz z)~v: [E e 1Zs 1 — 2| ] (1 — ) W3 (d,, qi) — 275 - (E(dh) — E(qu))

<+1\ 277
+ 72 Bay ), {]Eb S(Z’s)Hz] :

Then, we start to upper bound the last term of Eq 26, and have

Eiut sert (B, V90, (Z)17] = Eput sy [Eb, V01, (2L) = Vg, () + Vg, (2)]]

< 2B (st pry [Ev, V9, (22) v9b<>||]+2E<zg,zM [Es. Vb, (2) — Vg(z) + Vg(2)]*]

3 2
=% <2n) E(gy ey 12 = 21" + 4B gy gy, [Br

For the first term, with the definition of v/, we have

2
]E(z_g,z)fv’y; HZ/S - ZH = WQQ(Q;7Q*)

For the second one, suppose we sample b uniformly from b sharing the same sampler number for all s € {1, 2, ...

i.e., biy,. Then, for any z € R4, we have
2 o?
s, | Vg, (2) = Vo(2)I* = B, [ V. (2) = V()] < -
which follows from Lemma E.1. It then implies
2

g
B [Eb. [V, (2) ~ Vo(a)]*] < 7

For the last term, we have
9 3d
Eova. [IV9@)I°] < 5

which follows from Lemma E.6. In these conditions, Eq 27 can be represented as

402  6d

bin n '

9
Bt B, [Vow, (2)I°] < 50 WE(dloa) +

20

(2) - vg(z)|\2] + AR, . [va(z)ﬂ .

(25)

(26)

27)
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Plugging this inequality into Eq 26, we have

972 47202 672d
W257*< T S'WQIa*_2s'g/_g* 2 57
Hawena) < (1= 24 22 ) W3 dha) — 2n - (6lal) — £la)) + T+ 00
which is equivalent to
972 47202 672d
2r, - (£(¢)) — E(q.)) < o W2(d q.) — W2(gsrn, qe) + — =2
e (606~ £ < (1= 25+ 72 ) WHGha) = W aerna0) + T 4 O
By requiring
97—52<£ < T i
n T 4n T30
we have 2 2 2
Ts Atio 677d
2, (606~ £00) < (1= 1) - WE(hae) — Whaun ) + o0 4 O 28
Entropy functional bound According to Lemma E.7, we have
A\t
2. <(1 -2 ) ()~ H(0.)) < Wilanr0) ~ WE (g,
which is equivalent to
25' D) - x)) < 1-— sy4x) — 1-— s Gx 2
7o - (H(ds) — Mg ))_( 4n> W5 (g5, q) < 477) W3 (45, q)- (29)
Therefore, combining Eq 28 and Eq 29, we have
4720%  672d
27 KL (qfla.) < (1= 22 ) - WE(ae 0) = WE(gorr,0.) + + (30)
47] bin n
Hence, the proof is completed. O

Corollary C.2. Using the notations presented in Alg 2, asume [A1]-[A3]. Define:

5 /202 -t 2W3(q1,p 1(|@o, b
TS'_T<mm{16 (Znn+3d> ’36}7 S > log o k+1?+27b(| - ))'4777’17

where by, denotes the uniformed minibatch size of sampled in Line 5 of Alg 2. Then, the underlying distribution of particles
at S-th iteration, i.e., qs, satisfies W3 (qs, D11jk+ 1 (|20, b)) < 6.

Proof. Similar to Lemma C.1, the target distribution of the inner loop, i.e., p1|k+1/2,5(-|%0, b) will be abbreviated as

0.(2) = ;- exp(—g(2)) = €7 exp( folz) - H2n>

and we define the minibatch loss as follows

LS oy 2l

g, (2) = by]
i€bg 77

Then, using Lemma C.1 and since the KL divergence is non-negative, for all s € {0,2,...,5 — 1}, we have

47252 672d
W2 S 9 Uk 1_7 W Sy Uk = =
z(q+1q)< 477> 5 (qs: q+) + byl =

21
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Following from a direct induction, we have

i 7, S 4r20? 6724\ o T
W3 (as, q.) < [H <14n>] sz(qO,q*HZ( I{)*I + ) I1 <14:7>
’ j=it1

s=0 =0 N

In this condition, we choose uniformed step and mini-batch sizes, i.e., 7 = T,
s 2 S—1 i
T 40°  6d T
4 bin nJ i 4n
1 3D
\° 2 2021
<(l=g-) W ) 3d) - 87.
_< 477) Q(rzo,q)+<bin + ) T

bs| = bin, and have

Using that for all w € Ry, 1 — u < exp(—u), then it has

S
T 9 75 9 )
[ W < —— | W < —,
<1 477> 2 (Q17Q*) = exp < 477) 2 (QO»(]*) =5 (32)

Without loss of generality, the iteration number of inner loop will be large, which implies the last inequality of Eq 32 will
establish by requiring
2W22(Chapk+1|k+%,b('|x0a b))

7S5 > log 5 - 4n.
In the following, we choose the value of 75 to be the lower bound. Besides, we require the last term of Eq 31 to satisfy
20%n ) 1) 202y -t
287 < = < —- . 33
(bin +3d> 87’_2 = 7'_16 <bin + 3d (33)
Combining Eq 32 and Eq 33, the proof is completed. O

Lemma C.3. Using the notations presented in Alg 2, asume [A1]-[A3]. Define

2W22(q17pk+1|k+%,b('|$0a b))
0

S’ > log ™! and S e Ny,

Sorall s € 0,5, the step sizes and sample sizes satisfy

9 —1
|bs| = bin  and Te::TSmin{5-<20n+3d> ,1}

16 bin

in Alg 2. Besides, for s € [S" + 1, S), the step sizes and sampler sizes are

§ (20° 34\ 1
bs :b/ d s = /< i — - — , — .
|bs| =0, and T_mm{2 (b{n—i—n) 36}

In this condition, if the total iteration number S satisfies

S>8+(r)7' and SeN,,

then the underlying distribution Gg of output particles satisfies KL (qs Hpk+1|k+%,b(' |0, b)) <.

Proof. We first introduce 0 < S” < S satisfying S’ € N, and denote the underlying distribution of output particles as

S ’
_ Zi:S’+1 q;

Is="g_g where 7€ N
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and ¢} denotes the underlying distribution of z in Alg 2. Similar to Lemma C.1, the target distribution of the inner loop, i.e.,

Pr+1[k+1/2,6(-|T0, b) Will be abbreviated as g, (-). Then, we set all step and sample sizes between S’-th to S-th iteration are
uniformed 7/ and b{,,. In this condition, we have

s
1
KL (7s]le-) < o= > KL(gille.)
S-S
1=S"+1
1 T 5.
< - . _ 2(qar _ 2 oW2(as _ W2
SS9 l(l 477> W5 (gs/+1,qx) i:;—24n W5 (qi,q+) — W5 (gs+1, q+) )
N2 2 "2
S8 4(7'/) o +6(T) d
bin n

W3 (qsrs1,qx) = 2702 n 37'd
ws—s) o Ty

where the first inequality follows from Lemma E.5 and the second inequality follows from Lemma C.1. According to
Corollary C.2, in Alg 2, if we set

§ (20 o W3 (q1, g
TSZTSmiH{ <0n+3d> ’36}’ S'Zlogiwﬂgl’q)AnT*l.

16\ by,

for all s € [0,5"], then we have W (gs/+1, ¢+) < 4. In this condition, by requiring

§ (20% 3d\"
(S —S5")>1, and T’§§~ (ZZI+W> ,
the first and the second term of Eq 34 will satisfies

WQQ(QS’+13 (I*)
27/(S — S")

)
< -, and
2

Hence, the proof is completed. O

Theorem C.4 (Formal version of Theorem 4.1). Suppose [A1]-[A3] hold. With the following parameter settings

Nk =

K= 5 =
2L’ o 8 dae? k L

2 2
bozmin{ 7 o (1+L)d,n},

dov, €2 & 4o, €2

dov, €2

1 L (1+ L2)d 2¢2a, (1 (1+L2)d>1
A+ L7)d N 1oe LEL)

for Alg 1, if we choose Alg 2 as the inner sampler shown in Line 5 Alg 1, set

i€ 9 (1+12)d\ " 1
= mi . Ld) - log ~—— = ¢ —
T mln{ G ((a + 3Ld) - log . ) 36 (7

) ane? 9 (1+12)d\ " 1
T/:mll’l{ AL . ((0' +3Ld)10g4a€2> ,% s

*

V£o(0)|* + L+ L ||| (1+L%d) 4

§'(wo, b) ( 8 ( Lo, €2 +loglog 4o, €2 Lt
_ IV £6(0)|* + L + L ||zo|” (1+L*d) 4 n-1
S(w07 b) - <10g ( LO[*GQ + IOg 1Og 4Oé*€2 LT + (T ) )

Ts =T when s € [O,S/("B()vb)]
7 =7 when s¢€ [Sl(wo, b) +1,5(zo, b) — 1]
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and 1 inner minibatch size, i.e., by, = 1, then the underlying distribution of returned particles py in Alg 1 satisfies
TV (P +1,p«) < 3e. In this condition, the expected gradient complexity will be

30L2 (M +o2+d+1+ \|Vf(0)||2)

€2

34L3(0? + 3d)
a3e?

(14 L*)d

4o, €2

-log(24L?) - log?

-log

)

which can be abbreviated as O(k*¢ =2 - (d + o2)).
Proof. For the detailed implementation of Alg 1 with Alg 2, we consider the following settings.

e Forall k € {0,1,..., K — 1}, the mini-batch by, in Alg 1 Line 2 has a uniformed norm which is denoted as |by| = b,.

* Forall k € {0,1,...,K — 1}, the conditional probability densities pj1jx-+1/2,5(:|Xk+1/2,bx) in Alg 1 Line 4
formulated as Eq 6 share the same L-2 regularized coefficients, i.e., 77,;1.

e Forall k € {0,1,..., K — 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 2.

Errors control of outer loops. With these conditions, we have

(1+ L2)d

PR )

TV (ﬁKap*) <

which follows from Theorem 3.1. For achieving TV (px41,ps) < O(e), we start with choosing the step size 7 and the
iteration number K in Alg 1. By requiring

1 _ (14 L*»d 2L (1+L?)d
— d K> (o) 'log—F == . log—— 35
n< 5y an > (aun)” " - log Joe? P R (35)
we have )
1+ L4)d
(14 an)® > exp(anK) > (4—’_72) =  exp(—a.Kn) <e,
QU €

where the first inequality follows from 1 + u > exp(u/2) when u < 1. The last equation of Eq 35 establishes when 7 is
chosen as its upper bound. Besides by requiring

. Kno? . o? 1+ L?)d
b, > min {27762,71} = rnm{oé*62 -log ( 4a*62) 771} ) (36)

we have o4/ K1 /(2b,) < €. The last equation of Eq 36 requires the choice of 77 and K in Eq 35 to be their upper and lower
bound respectively. For simplicity, we consider inner samplers for all iterations share the same error tolerance, i.e., 0, =
forall k € {1,2,..., K}. By requiring,

2 2 2 -1
5<2i:601*. 10g(1+L)d 37)
4ovy €2

we have 4/ % Zfi_ol §; < €. The last inequality of Eq 37 holds when K is chosen as its lower bound in Eq 35.

Errors control of inner loops. Then, we start to consider the hyper-parameter settings of the inner loop and the total
gradient complexity. According to Theorem 3.1, we require the underlying distribution of output particles of the inner loop,
i.e., Pryajr+2,5([@o, b), satisfies

X a, (1+L2d\ "
KL (pk:+1\k+%7b("m0ab)Hpk+1\k+%,b("mO>b)) <6< 7 <1Og Ta.e > (38)
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forall zg € R and b C {1,2,...,n}. Then, to achieve Eq 38, Lemma C.3 will decompose the total inner iterations of
Alg2,ie., s € [0, S(xo, b)] into two stages.

For the first stage, we consider

5 (207 ! e (1+L%d\ " 1
Ji=7<min{ — - d) o= =min{ 2" (02 +3Ld) log %) 3
7 T—mm{w < bin +3) 36 (M) 16 <(0 +3Ld) -log ) E

for s € [0, S (xo, b)] where

2L - W3(90: Prs1jir- 1,50, b))

Q€2

and S'(xo,b) € N,. (40)

1+ L%)d 2
+1Og]0g(+)>_

4o, €2 LT

S/($0, b) > (10g
It should be noted that the last equation of Eq 39 only establishes when § and 7 are chosen as their upper bounds, and
bin = 1.

For the second stage, we consider

s (202 3a\' 1 e ) (1+L%d\ " 1
s ::T/<mln{2.<b{n +77> 736}:m1n{4L.<(0 +3Ld)10g40£*€2> 7% . (41)

for s € [S'(xo,b) + 1, S(xo, b) — 1] where
S((L’o, b) ZS/(CE(), b) + (T/)_l
B ( o8 2L - W3 (g0, Py s1jk+ 3,6 (%0, b))

+ log log

0Ly €2 4o, €2 Lo, e? o8 4o, €2 42)

(1+L2)d> 8202+ 96Ld | (1+L*)d

4Lo? +12L2%d (1+L?)d
+ -log .
Q€2 4o, €2

It should be noted that the last equation of Eq 42 only establishes when § and 7 are chosen as their upper bounds, and
bl = 1.

Since the choice of S(z, b) depend on the upper bound of W3 (@1, Pry1jkr 1 o (-0, b)), we start to bound it. Line 3 of

1

Alg 2 has presented that qq is a Gaussian-type distribution with ~!-strong convexity, then we have qq also satisfies 5~ 1-LSI

due to Lemma E.2, which implies

Wg(Q07pk+1|k+%,b("m07b)) < 2npKL <QO||pk+1|k+%,b('|m0ab)) < n°FI (QO”pk+1|k+%,b("m07b)> :

Noted that the relative Fisher information satisfies

q0(2)
pk+1|k+%,b(z|m0a b)

- / 10(2) IV f5(2) — V15(0) + Vf(0) — V£(0) + VF(0)]* dz

< 3L°Eymg,[ll2lI°] + 3V f5(0) — VF(0)[” + 3]V £(0)]*
= 3L7(n + ||lmo||*) + 3|V f5(0) = VF(0)|* + 3(|V f(0)]*

where the first inequality follows from [A1] with respect to fp, and the last equation follows from the explicit form of the
mean and variance of Gaussian-type go. Taking the expectation for both sides, we have

By [WE (00, Prsajir %0, B))| < 302 - (L2 + LB, [Ix0]”] + Bn [IV£5(0) = V£(0)12] + IV £(0)]%)

Ey ||V £5(0) — VF£(0)]? 2
2}+1 b [IV£6(0) = V£ )||]+||Vf(0)||

Vlog dz

F1 (q0||pk+1\k+%,b('|w0ab)) = /qO(Z)

oL " L2 L2

2(V£(0)|* + L + 202
2072

< B, [IIxoll?] + (222)71 - (21O + L +20%/[b|) < B, [[xo]?] +
43)
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where the second inequality follows from the choice of 7, the third inequality follows from Lemma E.1, and the last
inequality establishes since |b| > 1. To solve this problem, we start with upper bounding the second moment, i.e., M}, of py
for any k € [1, K. For calculation convenience, we suppose L > 1, § < 1 without loss of generality and set

6 6d

6 2
Cp = 406 + ;’ +<172+4>M+77§2+602+(24L2+4)M+12Ld.

In this condition, following from Lemma 3.2, we have
6 60 6 6d
Myy1 < — - My + 40y + —— + (2 —|—4> M + — =24L*Mj, + Cp,
i brl — \ng Mk
which implies
My < (2412)" M 4 Cp - (142422 + o+ (2422) 1) < (242)" - (M + _Om
- " o - 2412 — 1 (44)
< (2412)% - (M +2 4 60> + (24L* + 4)M + 12Ld) .
Additionally, Lemma 3.2 also demonstrates that
My y < My, +md < (24%)" - (M +2d + 60% + (24L2 + 4)M + 12Ld)

forall k € [0, K — 1]. Plugging Eq 44 into Eq 43, we have

Exo,b [Wg(q07pk+1|k+%7b(‘|X()7 b))}

)yt (M O+ 2|V + L+ 202)

)t s0L2. (M+02 +d+1+ IIVf(O)HQ) :

which implies
Exy o [108(2L - WE (a0, Picssjis o 10,1)))| < log (E 2L WE(ao0, b1y y o120, b)) )

<log[(2422) - (M + 0> +d+ 1+ |V7(O))]
= K -log(24L?) + log (30L2 : (M +o?+d+1+ HVf(O)||2)) (43)

L 14 L?)d
Silogu

= 5 - log(24L?) + log (30L2 : (M tolrd+1+ HVf(O)||2)> :

where the first inequality follows from Jensen’s inequality and the last inequality follows from the parameters’ choice shown
in Eq 35. By choosing S (g, b) to its lower bound and taking the expectation for both sides of Eq 42, we have

320° +96Ld (1 +L*)d 1+ L*)d N 4Lo® +12L°d (1+L*d

Ex ;b)) < -logl 1
o.b [S(@o, b)] < Lose? 4oy €2 08208 4oy €2 Q€2 08 4o, €2
+3202+96Ld o LA o | 2L - W3 (a1, P it 4 (|0, b))
La.€e? o8 4o, €2 o8 Q€2
<3202+96Ld.10 (1+L2)d.10 o (14 L*d 4L02+12L2d_10 (14 L*)d
- La.€e? & 4o, €2 8108 4o, €2 Q€2 & 4o €2
202 + 961 1+ L2)d 30L* (M +a®+d+1+(|VFO)*) L 1+ L2)d
820° +96Ld | (1+17)d (| ( IVIOIF) | L, (0+L%) log(2412)
Lo.€? 4o, €2 Q€2 Qs 4o, €2
<4L02+12L2d o (1+L*)d  320%+96Ld o (1+L*)d
- Q€2 & 4o, €2 La,.€e? & 4o, €2
30L% (M + o2 +d+1+4||Vf(0)|?
. L log ( ! [V £(0)[?) Nog(24L2)
Qs Q4 €
2(g2 2 30L2 (M + 0% +d+ 1+ || VFf(0)]?
3L (a2+3Ld) og(241%) - 1og (L L ( IV£(0)]| )7

doe? 08

a2e? Q€2
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for all xg ~ py11/2. Hence, the total gradient complexity will be
K - Ex, b [S(x0,b)] = O(I{ge_z . Irlau<~{(72,Ld})7

and the proof is completed. O

C.2. Warm-started MALA Inner Samplers

We define the Reilyi divergence between two distributions as

R(plle) = flllog/ ({;Eg)r -q(x)dz,

since it will be widely used in the following section. Then, we provide a detailed theoretical analysis.

Lemma C.5. Suppose [A1] holds and Alg 4 is implemented with following hyper-parameters’ settings:

- 57]1/2 _ /dL/2p1/2 , ,
=Bl 7=6 (i) md 5=6 (o (leal? + GITAO) ).
the underlying distribution qgs of the output particle i.e., zg will satisfy

Rr(gsllg<) < 627

where R, denotes Renyi divergence with order 7.

Proof. We suppose the InnerULD is implemented as Alg 4. We denote the underlying distribution of (zs, v;) as ¢, and
its marginal distribution w.r.t. z, is denoted as ¢gs. Since, we only consider Alg 4 rather than its outer loops, the target
distribution of Alg 4 can be abbreviated as

_ |l

5 ), where g(z) 3:*logpk+1|k+§,b(z|moab)-

0.(2) o exp(—g(2)),  dl(zv) ox exp <g<z>

Combining Lemma B.2 and the choice of the step size, i.e., n < 1/2L, we have
(2n) -T2 V?g(z) = Vq.(2) 2 (3/2n) - L.

By data-processing inequality, we have
Ri(asllas) < Re(gsllds)-

By the weak triangle inequality of Renyi divergence, i.e., Lemma 7 in (Vempala & Wibisono, 2019), we have

r—1/2 5 5
Ro(aslil) < "2 R () + Rorr (@ 02)
It can be noted that r;jf will be bounded by 2 when ¢ > 3/2 and ¢, denotes the underlying distribution of output particles

if we initialize g{, with ¢}. Then, by combining Lemma E.9, Lemma E.10 and Lemma E.11, we conclude that

R (q5)lq,) < 62

if ULD is run with friction parameter v, step size 7, and iteration complexity /V that satisfy:

S/t NG o T/
v =3/n, TSW, and S 2> log (d77+||:c0—z*|| ) 525 ) -

T

By recalling that " = N7, solving for these choices of parameters, and omitting logarithmic factors, we conclude that it
suffices to run ULD with the following choices of parameters:

- Snt/2 _ [ dM/2p1/2
v =3/n, T:®<d1/n2rl/2>’ and Sz@((slogﬂwo—z*ﬂz) (46)
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where z, is the minimizer of g. Besides, the minimizer of g satisfies
Vg(z:) =Vie(z) 40 (2o —20) =0 & o =nVfp(z:) + 24,
which implies
ol = IV fo(z:) + 2|l = Izl = 0l Vfo(2)ll & ol + nllV fo(z)] = |-
In this condition, it has
2l < lloll + 7l[V fo(2+) = Vf6(0) + Vfo(0)[| < llzoll + Lul|z. | + 0l V fo(0) |
where the second inequality follows from [A1]. Since, we require Ly < 1/2, then the previous inequality is equivalent to
2] < 2|20l + 21|V f6(0)]].

Plugging this results into Eq 46, the hyper-parameter choice of Alg 4 can be concluded as

~ /2 _ [ dM2p1/2 ) )
=Bl =6 (g ). et 5=6 (T tog (el + GITHO)).

O

Lemma C.6 (Variant of Theorem 1 of (Wu et al., 2022)). Using the notations presented in Alg 3, suppose [A1] holds and
Alg 3 is implemented when

2 2
T=0 (nd—l/z log72 (maX{d, X((?Jl(]*)})) , and S=0 <d1/2 1Og3 (X(%(;%))) .

Then, underlying distribution qg of the output particle i.e., zg will satisfy

TV (gs,q+) < 0.

Proof. We suppose the InnerMALA is implemented as Alg 3. We denote the underlying distribution of (zs, v;) as ¢/, and
its marginal distribution w.r.t. z, is denoted as gs. Since, we only consider Alg 3 rather than its outer loops, the target
distribution of Alg 3 can be abbreviated as

_ ol

5 ), where g(2) ::_Ingk-i-llk-i-%,b(z'wOab)-

0u(2) x exp(—g(2)),  d,(zv) o< exp (—g<z>

Theorem 1 of (Wu et al., 2022) upper bound the total variation distance between the underlying distribution of output
particles and the target distribution as

H, S®,
TV (gs.q:) < Hs + — eXP ( 3 )

where H, is defined as
H, == sup {|qo(4) — ¢:(A)| : ¢ (A) < s}

and @, denotes the s-conductance. The final step size and gradient complexity will depend on the warm-start A defining as
H, < Ms. Since, we use x? distance to define the warm-start in our analysis. We have additionally the following inequality.

90(A) — q.(A)] = \/1,4 <qu 1> dg.| < \//1,4d7r~/<

dq.
which means H; < 1/$x2(qol|¢«)- In this condition, we have

2 * S(I)s
TV (gs,q+) < vV sx2(qollg«) + % - exp <—)

2

2
1) Ao < VE AR @]e),

dqo
dg.
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By requiring
52 2 8x? X
8227 and Szilog <)((q(2)||‘p)>7
Ax*(qollp+) @, o
we can achieve TV (gg, p«) < €. Besides, we can obtain the M by
2 2
M > Ho oy > /X (qollg-) _ 2x (((];O”q*)' (47)
s s

Since the target distribution g, is (1/2n)-strongly convex and (3/2n)-smooth when y < 1/(2L) due to Lemma B.2, plugging
the choice of M shown in Eq 47 into Theorem 1 of (Wu et al., 2022), we know the step size should be

2
s (nd—l/z log 2 (max {d, 2(nle. }))

and the gradient complexity will be
2
X (QO qx
S=0 (dl/Q log® (52| ))> .

Hence, the proof is completed. O
Corollary C.7. Suppose [A1] holds, we implement Alg 4 with

1/2

=Bl =617, md 5=6 (@ (lal? + (IVAHOI?)
and implement Alg 3 with
— (nd*/? log ™2 (max {d,é’l})) . and S=0 (d1/2 log® (1/5)) .

The underlying distribution qg of the output particle of Alg 3 will have

KL (gs]|¢.) < 6,
and the total gradient complexity will be

6 (Ibla"/2 (1og (1o |12 + (1]IV fo(0)[))%) + 10 (1/)) )

Proof. Using the notations in Alg 3, by Lemma C.5, Alg 4 can outputs a distribution gq satisfying

Rs(qollgs) <log2,

which implies
X*(qollg+) < exp (Ra(gollg)) — 1 < exp (Ra(gollgx)) — 1 < 1.

It should be noted that the second inequality follows from the monotonicity of Reriyi divergence. In this condition, the
gradient complexity of Alg 4 should be

bl x 8" =0 (|bld"/2 log (lzoll* + (1Y f5(0))?))
where S’ denotes the iteration number of Alg 4, i.e., Line 2 of Alg 3. With the warm start in X2 divergence, we invoke

Lemma C.6 and achieve
TV (gs, q.) < 6%/5.

with the following gradient complexity
b x S =0 (|b|oll/2 log® (1/5)) .
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Then, we start upper bound the KL divergence between ¢s and g, and have

KL (4s]la.) <*(aslla) = | (‘25((;) - 1)2q*(z)dz < \/ /
qs(2)

< TV(‘]S)Q*)'(/ q(z)

<VTV (as,4:) - (exp (2Rs(0llg)) + 1) <6,

qs(2)

e 0.(2)

s(
7+(2)

3
— 1‘ g« (2)dz

:(z)dz - /

3
0 1> TV (@) (o CRa@la) 5 1)

where the second inequality follows from Cauchy—Schwarz inequality, the second equation follows from the definition of
Renyi divergence, and the last inequality follows from data-processing inequality. Therefore, to ensure the convergence of
KL divergence, i.e.,

KL (gsja) < 0.
the total complexity of this warm start MALA will be
6 (Ibld"/2 (10g (Ilzoll* + (1I1V f5(0))*) + log™(1/5)) )
Hence, the proof is completed. O

Theorem C.8. Suppose [A1]-[A3] hold. With the following parameter settings

1 L (1+L?)d 22, (1+L%)d\ "
= — K = — -1 _— = . 1 _—
M= 57 o e Ok i3 og

2 2
o (1+L)d7n}’

dov €2

b, = min { To.c2 -log To.c

for Alg 1, if we choose Alg 3 as the inner sampler shown in Line 5 of Alg 1, set

T A 1 5 IV f6(0)|?
Y= 6.[/7 T = @ (\/m> s and S = 6 <d1/2 log (”33()'2 + T .

_ 1 L L (1+L?)d
=0 <2L\/& log (max {d7 . log 1o ,
L 1+L?
and S=0 (d1/2 log® < log (1+ )d>) .

200, €2 doe?

for Alg 4, and

Jfor Alg 3, then the underlying distribution of returned particles py in Alg 1 satisfies TV (PK+1,P+) < 3€. In this condition,
the expected gradient complexity will be © (n3d1/202672).

Proof. We provide this proof with a similar proof roadmap shown in Theorem C.4. Specifically, we show the detailed
implementation of Alg 1 with Alg 2 in the following.

e Forall k € {0,1,..., K — 1}, the mini-batch by, in Alg 1 Line 2 has a uniformed norm which is denoted as |by| = b,.

s Forallk € {0,1,..., K—1}, the conditional probability densities pj.y1x+1/2,6(-|Xk+1/2bx) in Alg 1 Line 4 formulated
as Eq 6 share the same L-2 regularized coefficients, i.e., n .

e Forall k € {0,1,..., K — 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 3.

By requiring

(1+L%)d £.log (1+L?)d

d K> 2a.n)t1
an > (20.7) 08 4o, €2 Qs 4o, €2
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we have
(1+ L2)d
4oy

(1+L?)d
4o,

. [ Kno? [ o? (1+L?)d
bo > min {262,71} = mln{4a*€2 -log lo.c? ST

we have o/ Kn/(2b,) < e. Additionally, by requiring,

K

(14 aum) 7 < cexp(—a.Kn) <e.

Besides by requiring

6 <

22 2¢%a, (1+L%)d\
— = | log ——— .
K L

4o, €2

With these conditions, we have

Kn (1+L2?)d
2b, 4o,

TV (p, ps) < (1) <3¢

which follows from Theorem 3.1.

Errors control of inner loops. To determine the hyper-parameter settings of Alg 4 and Alg 3, we can plug the choice of
outer loops step size 1 and inner loops error tolerance 4, i.e.,

1 220, (1+L2d\ "
n=357 and 0= T <log Tdad

into Corollary C.7. In this condition, for Alg 4, we set

A 1 x IV £(0)|?
y=V6L, T=06 (@) , and S=86 (d1/2 log (||a:0|2 +—57 )

B 1 _9 L (1+ L*)d
T=0 <2L\/ﬁ log <max {d, .2 log o ,
2
and S=0 (dl/Qlog3 < L lo 1+ L )d>> .

20v,.€2 & 4ove?

For Alg 3, we set

Then, the underlying distribution gg of the output particle of Alg 3 will satisfy

20, (1+L2d\ '
KL(‘]SHQ*)S i .(10g4a*e2> =9,

and the total gradient complexity will be
6 (bod’2 (10g (Ilzo 12 + (1]IV f5(0))?) +log* (1/9)) ) .

Since log(1/d) will only provide additional log terms which will be omitted in ©, we only consider the following inequality,
ie.,

Exy [bod"/og (2oll* + (1IV f5(0)[)2)] < bod/210g (E [Ixol*] +°E [I¥£6(0)*])

< byd"?1og (E [[xo|*] + 207 [VF(O)]° + 20°E [V o (0) = V£(0)]) )

o2d/? (1+L*)d 21, IV | o
< -1 -1 E _— L —
= dae? 8 4oy, €2 08 {HXOH } + 27,2 + 212

(48)
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the first inequality follows from Jensen’s inequality, the second follows from triangle inequality, and the last follows
from [A3]. Here, we should note that the underlying distribution of random variable xg is p;41/2. Hence, the second
moment bound, i.e., My 1 /2 of pj1 /o forany k € [0, K — 1] is required.

To solve this problem, we start with upper bounding the second moment, i.e., M}, of py for any k € [1, K]. For calculation
convenience, we suppose L > 1, § < 1 without loss of generality and set

602 (6 6d ) )
o= A0S+ 5=+ 5 +4) M+ — <2+ 60% + (24L° + 4)M + 12Ld.
0 0 "

In this condition, following from Lemma 3.2, we have

6 602 (6 6d
M1 < — - My + 4mibp + o + (2+4>M+ — UL My, + Cy,
Mg |bk‘ Mg Nk

which implies

My < (2412)" M+ Cp - (142422 + .+ (2422)71) < (2422)" (M + 242’;_1)
< (2412)" - (M +2 + 60> + (24L* + 4)M + 12Ld) .
Additionally, Lemma 3.2 also demonstrates that
Myys < My +d < (242%)" - (M + 2d + 60 + (24L2 + 4)M + 12Ld)
for all k € [0, K — 1]. Plugging the following inequality, i.e.,

Ld‘?0% (14 L?)d

log = —>~log 24L%log (M + 2d + 60% + (24L* + 4)M + 12Ld)
QO €

o2d1/2 )
JlogE [ } <
404*62 0og ”XOH = 40[262

into the RHS of Eq 48 and omitting trivial log terms, we know the gradient complexity for each & will be © (k2d/20%e~2).
After multiplying the total iteration number of Alg 1, i.e., K, the final gradient complexity will be 6 (n3 dv/ 2026’2). Hence,
the proof is completed.

D. Lemmas for Errors from Initialization of Inner Samplers

Proof of Lemma 3.2. We first suppose the second moment of py, is upper bounded and satisfies E, [||x]|?] < my.
According to Alg 1 Line 3, we have the closed form of the random variable X 1/ is

)2k+% =X, +/Ne§, where &~ N(0,I).

Noted that ¢ is independent with X, hence, we have

2
My, =E {ka+ } —E {||§<ku2] e d < My + g - de (49)

Then, considering the second moment of xj_1, we have

E ([ *] = [ prs (@) ol da

[ [ X beaerralalnb) n®) | ol de 50)
be{1,2,...,n}

. (pbw) s ( [ prissataly.v)- ||w|2dw) dy)

be{1,2,...,n}
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Then, we focus on the innermost integration, suppose 4y (-,-) as the optimal coupling between Py ;11 ,(-|y) and
pk+1|k+%’b(~|y). Then, we have

~ 2
[ Prsriralely) lol*dz =2 [ pyciy ofaly) |l do
(51

A (A L2 2 A A (A . 2 0 .
< [s@) (12 - 2[2l?) d@.a) < [ 3y(@.2) & - al*d@,2) = W3 (e s o Pesatis 1)
Since Phyilkt1b is strongly log-concave, i.e.,
—Vifpkﬂ\m%,b(w'mb) =V2fo(x')+n T = (~L+n;") I = (2m) " I,

the distribution py, 5, 1 also satisfies (21;,) ! log-Sobolev inequality due to Lemma E.2. By Talagrand’s inequality, we
have

W3 (ﬁk+1\k+%,bapk+1\k+%,b) < 4ni KL (ﬁk+1|k+%,b”pk+1\k+%,b) < A 0. (52)
Plugging Eq 51 and Eq 52 into Eq 50, we have
. 2 . 2
E [||Xk+1H } < Z (Pb(b) : /Pk+%(y)' (477k5k + 2/pk+1\k+%,b(m|y) (||| dw) dy) . (53)
be{l,2,...,n}

To upper bound the innermost integration, we suppose the optimal coupling between p. and pj 1, 1 bly) is 1y (-, 0).
Then it has

[ sz alaly) lal*de 2 [ p.(@) |2l do

(54)
2 2
< [wiaa) (1) - 2lel?) d@'.2) < [ ry(@'2) o’ - 2l d(e’'2) = W o pisaies 1.
Since pj, 1, i satisfies LSI with constant (27;)~!. By Talagrand’s inequality and LSI, we have
Wg(p*vpk+1|k+%,b) < 4T]kKL< % pk+1|k+%,b>
@ | :
P« 2 r—y
< 4n? /p*(:c) - ||V log da = 4n /p*(ac) . HVfb(a:) — V) + H dx
i Prr1jktd.0(2ly, b) g ( Mk
< 120 - Up*(w) IV fo(@) = V(@)]* dw +m§2/p*(ﬂf) ||| da + ;> IIyllz} :
Combining this inequality with Eq 54, we have
/pk+1|k+%,b(m|y) l|* d < 1203 /p*(iv) IV fo(@) = V f(@)[|* dz + 12M +12 ||y ||* + 2M1.
Plugging this inequality into Eq 53, we have
5 2 2 N 2
Bk ] < amdet S 21t em(d) [ By (o) ( [ p@) Vi) - V(@) dw) dy
bC{1,2,...,n} (55)
P S 2emb) [ )l dy.
bC{1,2,....,n}
According to [A3], suppose we sample b uniformly from {1,2,...,n}, then for any € R? we have
L o
By |51 22 (V@) = Vin@)| | =pm . > E[(Vie (@) = V(@) (Vo (@) - V()
i=1 i=1 j=1
b 2

1 o

=7 ZE IV i, (@) = V£ (@) ] = B
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Plugging this equation into the second term of RHS of Eq 53, we have

X [ ( [ p-@ 9 fula) - Vf<w>||2dw) dy

= / Py () / P(@)Es [V fo(@) - V()] dedy =

0.2

[b]

Besides, for the last term of RHS of Eq 53, we have

> mlb) [ ey o)yl dy = My .

bC{1,2,....,n}

With these conditions, Eq 55 can be reformulated as

N 2 2477]%0’2
My, =E [||xk+1|\ } S A = M 2,
56
24nto? (50)

< 24 - My, + 4np.0p + b]

+ 280M + 241,d.

where the last inequality follows from Eq 49. Hence, the proof is completed. O

Remark D.1. According to Lemma 3.2, when L < 1/5, We plug the following hyper-parameters settings, i.e.,

1 Ld 602
e = 7> 6k S 77 and ‘bkl Z %7

into Eq 56, then we have

M1 < My, +5(d+M) = Mg <M+K-5d+M)<6K(d+ M),

which is the second moment bound along the update of Alg 1.

E. Auxiliary Lemmas

Lemma E.1. Suppose a function f can be decomposed as a finite sum, i.e., f(x) =1/n > | fi(x) where [A3] is satisfied.
If we uniformly sample a minibatch b from {1,2, ..., n} which constructs a minibatch loss shown in Eq 3, then for any
x € R, we have

2 o’
B |9 fole) = V()] <
Proof. For minibatch variance, we have
2
1 1
Eb ||l > (V@) = Vi) “HEE D (Viile) = V(@) (V () — V(x))
i€b i€b j€b
— LB | IVA@ - Vi@l | - &
b |2 [b]
Hence, the proof is completed. O

Lemma E.2 (Variant of Lemma 10 in (Cheng & Bartlett, 2018)). Suppose — log p.. is m-strongly convex function, for any
distribution with density function p, we have

(@) |*
‘Vlog P H dx.

1
KL (o) < 51 [ pla) |Vios 220

34



Faster Sampling via Stochastic Gradient Proximal Sampler

By choosing p(x) = g*(x)p.(x)/E,, [g>(x)] for the test function g: R* — R and E,,, [g*(x)] < oo, we have

2
Ey. [9°1og %] — E,. [¢°] 10gE,. [¢°] < —E,. [IV4l’] .

which implies p, satisfies m-log-Sobolev inequality.

Lemma E.3 (Theorem 3 in (Chen et al., 2022)). Assume that p, x exp(— f.) satisfies [A2]. For any n > 0, and any initial
distribution p; the k-th iterate py, of the proximal sampler with step size n;, satisfies

KL (pr+1||p+) < KL (pr|ps) - (1 + awme) 2,
which means it has

k
KL (prs1|p+) < KL (pol[ps) - [T (1 + cumi)™
=1

Lemma E.4. Suppose p. x exp(— f.) defined on R? satisfies a.-log-Sobolev inequality where f. satisfies [A1], pq is the
standard Gaussian distribution defined on Re then we have

(14 L?*)d

KL (poy e

p*) <

Proof. According to the definition of LSI, we have

2

L@mmu>s2;*/}nm»\ng§jj§ do= 5 [ ni@)|-o+ V1. (2) 2o
2
<o [ m@) (Il + 2)a?) do = L)

where the second inequality follows from the L-smoothness of f. and the last equation establishes since E,, [||z||?] = d is
for the standard Gaussian distribution pg in R?. O]

Lemma E.5 (Convexity of KL divergence). Suppose {q;}ic{1,2.....n} and p are probability densities defined on R? and
{wi}icq1,2,... n} are real numbers satisfying

Vie{L2...n} w1 and Yw =1l
i=1

It has

n

KL (ZE wiqz'Hp) Z L (alp) -

Proof. We first consider the case when n = 2, which means it is only required to prove
KL (Aq1 + (1 = Ngz|lp) < AKL (q1]|p) + (1 — AKL (q2]|p) (57)

for any A € [0, 1]. In this condition, we have
KL ()\fh +(1— A)Q2Hp) :/()\fh(fc) + (1 = Ngz2(z)) log(Agi(x) + (1 — N)ga(z))dx
(58)
- [Oai@) + (1= V(@) logp(e)da.

Since p(u) = ulog u satisfies convexity, i.e.,
Vip(u)=u"'>0 VYu>0,
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which implies
Aqi(z) + (1 = A)gz() log (A1 () + (1 = A)ga(z)) < Agi(x)log g1(z) + (1 — A)g2 () log ga (),
then RHS of Eq 58 satisfies
RHS < / Aq1(x) log g1 (x)dx — /)\ql (z)log p(x)dx
+ [0 Na@)log @iz~ [(1 - Nax(@) g pa)de = KL (a]lp) + (1~ VKL (a]).
Then, for n > 2 case, we suppose X )
KL <Z wiqz-Hp> <> wiKL (gip) . (59)

i=1 i=1

Then, by setting
_ oy wg Y wig

q = - n—1 )
1-— W, Zi:l W;

then we have

KL (Z wiqup> =KL ((1 — w,)G + wngn||p) < (1 — w,)KL (q||p) + wn KL (¢4 |p)
i=1

n—1 n
<(L—wn) Y 7KL (qi[|p) + wiKL (qu]|p) = >~ wiKL (qi]|p)
i—1 n 1=1

where the first inequality follows from Eq 57 and the last inequality follows from Eq 59. Hence, the proof is completed. [
Lemma E.6 (Lemma 11 in (Vempala & Wibisono, 2019)). Suppose the density function satisfies p o exp(— f) where f is
L-smooth, i.e., [Al]. Then, it has

Exep [IVF()]?] < L.

Lemma E.7 (Lemma 5 in (Durmus et al., 2019)). Suppose the underlying distributions of random variables x and x ++/27&
are p and p' respectively, where € ~ N (0, I). If p, p.P2(R%) and E,,_ [log p.] < oo, then it has

27 - (Bxp [0g 0/ (%)] = Excop., [l0g ps(x)]) < W3 (p,ps) — W3 (D', ps).

Definition E.8 (Definition of Orlicz—Wasserstein metric). The Orlicz—Wasserstein metric between distributions p and ¢ is

Wy (p,q) = : Ix =yl

i
(x,y)~I'(p,q

Il = inf{»o:E [w <";'> < 1}}

Lemma E.9 (Theorem 4.4 in (Altschuler & Chewi, 2023)). Suppose q.  exp(—g) where g is u-strongly-convex and
L-smooth. Let P denote the Markov transition kernel for underdamped Langevin dynamics (ULD) when run with friction
paramter y = \/2L and step size T < 1/(kV/L). Then, for any target accuracy 0 < € < +/log2/(i — 1), any Reriyi
divergence order i > 1 and any two initial distributions q)), ¢ € P(R?%),

where

Ri(PY gy PYq)) < €,
if the number of ULD iteration is
VL <2W¢(qo, q*)>

> 1
N3z Ut log L1/2¢273

where qq is the marginal distribution of g\ w.r.t. the first d dimensions and Wy, is defined as Definition E.8.
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Lemma E.10 (Remark 4.2 in (Altschuler & Chewi, 2023)). Suppose q. « exp(—g) where g is u-strongly-convex and
L-smooth. We run underdamped Langevin dynamics (ULD) when with friction paramter v = \/2L, step size T < 1/(kV/'L)
and initialize the distribution with
Q(l) = 0z ®N(0aI)a
then it has
Wy (g0, ¢+) S Vd/p+[|e — .||
where x, denotes the minimizer of g.

Lemma E.11 (Lemma 4.8 in (Altschuler & Chewi, 2023)). Suppose q.(z) x exp(—g(z)) where g is p-strongly-convex and
L-smooth. Let ¢.(z,v) o< exp(—g(z) — ||v||?/2). Let P denote the Markov transition kernel for underdamped Langevin
dynamics (ULD) when run with friction paramter v =< /L and step size

TS LA (Tlog N) 12,
where N is the total number of iterations and T' = N is the total elapsed time. Then,

Ri(PVo,ll4,) < L¥/2ariT.

F. Additional Experiments

Due to space limitations, we defer some experimental details in Section 5 to this part.

In our experiments, we fix the number of stochastic gradient usage at 12000. As the primary goal of our experiments is
to verify our theory, we set the inner batch size, i.e., by = 1. Additionally, to be more comparable with SGLD, we set
S’ =S — 1. Under these conditions, we primarily focus on tuning three other hyper-parameters. Among them, the inner
step size 7 is chosen from the set {0.2,0.4,0.6,0.8,1.0, 1.2, 1.4}, which somewhat corresponds to the step size in SGLD.
The inner iteration S is chosen from {20, 40, 80}, which also determines ' = 12000/S. The outer step size 7 is a special
hyper-parameter in SPS-SGLD, which corresponds to the coefficient of quadratic regularizer in RGO. As our theory requires
it to be larger than 7 in our theory, we choose it from {1.0,4.0, 10.0} in our experiments. The optimal hyper-parameters
obtained through grid search are presented in Table 2.

Dimensions | ; _ 19 g=20 d=30 d=40 d=50
Hyper-Params
Inner step size T 0.4 0.4 0.4 0.4 0.4
Inner iteration number S 40 20 20 80 80
Outer step size 1 4.0 4.0 10.0 10.0 10.0

Table 2. Hyper-parameter settings for different dimension tasks based on the grid search.

For the choice of these hyper-parameters, the inner step size somewhat corresponds to the step size in SGLD and can be
set in the same order of magnitude. The outer step size 7 is a special hyper-parameter in SPS-SGLD, it requires to be
larger than 7 in our theory and experiments. Furthermore, our theory indicates that the inner iteration number, i.e., .S, is in
the same order of magnitude as 7/7. This principle of the hyper-parameter choice can be roughly verified by the optimal
hyper-parameter settings shown in Table 2. Moreover, we conduct a grid search for b under our experimental settings. It is

. Dimensions | ;16 4—20 d=30 d=40 d=50
Inner batch size
by =1 0.105 0.063 0.064 0.060 0.055
bs =5 0.143 0.078 0.081 0.074 0.082
bs =10 0.138 0.092 0.086 0.122 0.110
b, =20 0.175 0.107 0.090 0.142 0.117

Table 3. The marginal accuracy results under different b, settings.

worth noting that since we fix the gradient usage, increasing the inner batch size will cause the iteration number to decrease
sharply. Consequently, the overall performance in our experiments is worse than that observed with the b, = 1 setting.
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Although we only provide gradient complexity in our theory, both SGLD and SPS-SGLD are first-order samplers, with the
primary computational cost stemming from the number of gradient calculations referred to as gradient complexity in our
paper. Consequently, we can assert that SGLD and SPS-SGLD have nearly the same computational cost when the number
of gradient calls is fixed, which is set at 12k in our experiments. To substantiate this claim, we present the wall clock time

under 12k gradient calls (normalizing SPS-SGLD wall clock time to 1) in the table below.

Dimensions
Algorithms d=10 d=20 d=30 d=40 d=50
SPS-SGLD 1 1 1 1 T
SGLD 0.971 0.968 0.981 0.970 0.969

Table 4. The wall clock time comparison between SPS-SGLD and SGLD.

Moreover, we add some other baselines, e.g., such as AB-SGLD and CC-SGLD proposed by Das et al. (2023). We
selected these variants because they achieved the best theoretical results, apart from our own. With target distributions set
as shown in Section 5, the total variation distance performance for different algorithms is presented below. The results

Dimensions
Algorithms d=10 d=20 d=30 d=40 d=250
SPS-SGLD 0.105 0.063 0.064 0.060 0.055
CC-SGLD 0.143 0.125 0.105 0.121 0.114
AB-SGLD 0.154 0.129 0.121 0.120 0.119
vanila-SGLD 0.176 0.144 0.122 0.131 0.134

Table 5. The marginal accuracy results comparison among SPS-SGLD and other SGLD variants.

demonstrate that SPS-SGLD significantly outperforms CC-SGLD and AB-SGLD. Furthermore, such SGLD variants can
also be incorporated as inner samplers within our framework, potentially enhancing the performance of SPS-type methods
even further. Additionally, we would be happy to modify the name to distinguish it from SGLD variants, such as CC-SGLD

and AB-SGLD.
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