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AbstractÐConnected and autonomous vehicles (CAVs) promise
next-gen transportation systems with enhanced safety, energy
efficiency, and sustainability. One typical control strategy for
CAVs is the so-called cooperative adaptive cruise control (CACC)
where vehicles drive in platoons and cooperate to achieve safe and
efficient transportation. In this study, we formulate CACC as a
multi-agent reinforcement learning (MARL) problem. Diverging
from existing MARL methods that use centralized training and
decentralized execution which require not only a centralized
communication mechanism but also dense inter-agent commu-
nication during training and online adaptation, we propose a
fully decentralized MARL framework for enhanced efficiency
and scalability. In addition, a quantization-based communication
scheme is proposed to reduce the communication overhead
without significantly degrading the control performance. This
is achieved by employing randomized rounding numbers to
quantize each piece of communicated information and only
communicating non-zero components after quantization. Exten-
sive experimentation in two distinct CACC settings reveals that
the proposed MARL framework consistently achieves superior
performance over several contemporary benchmarks in terms
of both communication efficiency and control efficacy. In the
appendix, we show that our proposed framework’s applicability
extends beyond CACC, showing promise for broader intelligent
transportation systems with intricate action and state spaces.

Index TermsÐCooperative adaptive cruise control, multi-
agent reinforcement learning, connected autonomous vehicles,
quantization-based efficient communication.

I. INTRODUCTION

C
Onnected and autonomous vehicles (CAVs) have recently

gained significant attention due to their promise to create

safe and sustainable future transportation systems [1]±[5]. One

pivotal technology of CAVs, known as cooperative adaptive

cruise control (CACC), has been recognized for its capabil-

ity to increase road efficiency, alleviate traffic congestion,

and reduce both energy consumption and exhaust emissions
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[6]±[8]. Specifically, by utilizing real-time vehicle-to-vehicle

(V2V) communication, the primary objective of CACC is

to adaptively coordinate a fleet of vehicles as a means to

minimize the car-following headway and speed variations

while preserving safety [9]±[11].

Yet, developing a robust CACC paradigm that tightly in-

tegrates computing, communication, and control technologies

presents a considerable challenge, especially in the presence

of limited onboard communication bandwidth and constrained

computing resources [12], [13]. Classical control theory and

optimization-based methodologies have been employed to

tackle the CACC problem [14]±[18]. Specifically, some re-

search targets the car-following model [14] and string stability

[19], [20], modeling CACC within the context of a two-vehicle

system. In contrast, other studies pose the CACC as optimal

control problems [15], [17], [21]. These approaches hinge on

precise system modeling [14], [19], [20] that are not generally

available. They also typically involve online optimization,

which requires significant computation resources to support

real-time engineering systems [22].

On the other hand, CAV platoon control has also been

conceptualized as a sequential decision-making problem and

addressed using data-driven strategies such as reinforcement

learning (RL) [22]±[28]. In particular, in [24], Soft Actor-

Critic (SAC) [29] is adopted to mitigate traffic oscillations and

enhance platoon stability. Furthermore, the deep deterministic

policy gradient (DDPG) algorithm [30] is employed in [26]

for CACC, taking into account both time-varying leading

vehicle velocity and communication delays via wireless V2V

communication technology. A policy-gradient RL approach is

developed in [31] to ensure a safe longitudinal distance to a

front vehicle. However, these approaches primarily focus on a

vehicle fleet of only 2 vehicles (i.e., leader-follower architec-

ture). To control multiple CAVs, centralized RL approaches

are commonly developed, which rely heavily on the high-

bandwidth capabilities of vehicle-to-cloud (V2C) or vehicle-

to-infrastructure (V2I) communication [32]. For instance, in

[22], a centralized RL controller is introduced for the CACC

problem in mixed-traffic scenarios via V2C communication.

While these centralized control strategies have demonstrated

promising results, they bear the burden of heavy communi-

cation overheads and are often plagued by a single point of

failure and the curse of dimensionality [33]. These factors

make them impractical for deployment in large-scale CACC

systems prevalently envisioned in the future landscape.

More recently, multi-agent reinforcement learning (MARL)

has emerged as a promising solution to address the CACC

control problem involving multiple CAVs, owing to its ca-
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pabilities of online adaptation and solving complex problems

[33]±[35]. For instance, a MARL framework with both local

and global reward designs is developed and evaluated in [34]

on two platoons of 3 and 5 CAVs, concluding that the local re-

ward design (i.e., independent MARL) outperforms the global

reward design. However, our experiments demonstrate that

while independent MARL achieves promising performance

in straightforward CACC scenarios, it falls short in more

complex situations (see Section V). In [36], the authors extend

CACC strategies with a novel MADDPG [37] algorithm that

addresses energy management challenges through a relevance

ratio to ensure cooperative agent behavior. In [33], a learnable

communication MARL protocol is developed to reduce infor-

mation loss across two CACC scenarios, and each agent (i.e.,

AV) learns a decentralized control policy based on local ob-

servations and messages from connected neighbors. Moreover,

blockchain is incorporated into the MARL (i.e., MADDPG)

framework to enhance the privacy of CACC. Despite these

advances, the aforementioned approaches uniformly adopt a

Centralized Training and Decentralized Execution (CTDE)

strategy, wherein agents use additional global information to

guide training in a centralized manner and make decisions

based on decentralized local policies [38], [39]. However,

in many real-world scenarios, such as CACC, deploying a

central controller (e.g., cloud facilities or roadside units) for

training or online adaptation can be prohibitively expensive

and complex. Moreover, the central controller needs to com-

municate with all local agents to exchange information, which

perpetually amplifies the communication overhead on the

single controller [38].

In this paper, we formulate CACC as a fully decentralized

MARL problem, in which the agents are connected via a

sparse communication network without the need for a cen-

tralized controller. To achieve this, we introduce a decen-

tralized MARL algorithm based on a novel policy gradient

update mechanism. Throughout the training process, each

agent takes an individual action based solely on locally

available information at each step. To stabilize training and

counteract the inherent non-stationarity in MARL [39], each

agent shares its estimate of the value function with its neigh-

bors on the network, collectively aiming to maximize the

average rewards of all agents across the network. Further-

more, a novel quantization-based communication scheme is

further proposed, which greatly improves the communication

efficiency in decentralized stochastic optimization without a

substantial compromise on optimization accuracy. The main

contributions and the technical advancements of this paper are

summarized as follows.

1) We formulate the CACC problem as a fully decentral-

ized MARL framework, which facilitates fast conver-

gence without relying on a centralized controller for

both training and execution. The developed codes are

available in our open-source repository1.

2) We introduce a novel effective and scalable MARL

algorithm, featuring a quantization-based communica-

tion protocol to significantly enhance communication

1https://github.com/DongChen06/MACACC

efficiency without major performance compromise. The

quantization process condenses complex parameters of

the critic network into discrete representations, facilitat-

ing efficient information exchange among agents.

3) We conduct comprehensive experiments on two CACC

scenarios, and the results show that the proposed ap-

proach consistently outperforms several state-of-the-art

MARL algorithms.

4) In the appendix, we show that our proposed framework’s

applicability extends beyond CACC, showing promise

for broader intelligent transportation systems character-

ized by intricate action and state spaces.

The remainder of this paper is organized as follows. Sec-

tion II provides a brief overview of RL and MARL concepts.

In Section III, the considered CACC problem is formulated.

The problem formulation and the proposed MARL framework

are introduced in Section IV whereas experiments, results, and

discussions are presented in Section V. Lastly, in Section VI,

we conclude the paper, summarize our contributions, and

suggest potential insights for future research.

II. BACKGROUND

In this section, we provide an overview of the preliminaries

of RL and several leading-edge MARL algorithms. These

MARL algorithms will later serve as benchmarks for com-

parison in Section V.

A. Preliminaries of Reinforcement Learning (RL)

RL, often mathematically formulated as a Markov decision

process (MDP), has shown great promise as a data-driven

method for learning adaptive control policies [33]. Recent

advancements in deep neural networks (DNNs) have further

amplified their learning capabilities for intricate tasks. Suc-

cessful examples of these algorithms include deep Q-network

(DQN) [40], deep deterministic policy gradient (DDPG) [30],

and advantage actor-critic (A2C [41]).

In an RL setting, at each time step t, the agent observes

the state st ∈ S ⊆ Rn from the environment, and performs

an action at ∈ A ⊆ Rm according a learned policy π(at|st).
Then the environment evolves to a new state st+1 according

to the transition dynamics p(·|st, at), and emits an immediate

reward rt = r(st, at, st+1) to the agent. The objective of an

RL agent is to learn an optimal policy π∗ : S → A that

maps from state to action, maximizing the accumulated reward

Rt =
∑T

k=0
γkrt+k, where rt+k is the reward at time step

t + k, and γ ∈ (0, 1] and T represent the discount factor

and episode length, respectively. The state-action function

is denoted as Qπ(st, at) = E(Rt|st, at), representing the

expected return starting from state st and taking an immediate

action at, then following policy π afterward. The optimal

Q-function Q∗(st, at) = maxπ Q
π(st, at) determines the

optimal greedy policy π∗(at|st). The state value function

V π(st) = E(Rt|st) represents the expected return if starting

from st and immediately following the policy π.

In Q-learning, the Q-function, denoted as Qθ, is usually

parameterized by a set of parameters θ, utilizing function ap-

proximators such as Q-tables [42], linear regression (LR) [43],

or DNNs [40]. The temporal difference (T Qθ− −Qθ)(st, at)
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is employed to update θ, where T and Qθ− represent the

dynamic programming (DP) operator and a frozen recent

model θ− [22], respectively. ϵ − greedy and experience re-

play are commonly applied in deep Q-learning to reduce

the estimation variance [43]. In contrast, the policy πθ is

typically directly approximated by a set of parameters θ
within the policy gradient method. The update of θ aims

to enhance the likelihood and the loss function, represented

as L(πθ) = Eτ∼πθ
[
∑T

t=0
∇θ log πθ(at|st)Rt]. Compared to

Q-learning, the policy gradient is robust to nonstationary

transitions within each trajectory, despite suffering from high

variance [44]. [44]. Actor-critic algorithms, such as A2C

[41], enhance the policy gradient method by introducing the

advantage function Aπ(st, at) = Qπθ (st, at)−Vw(st), thereby

reducing the variance of sample return. The parameters θ
are updated with the policy loss function, defined as L =

Eπθ
[
∑T

t=0
∇θ log πθ(at|st)At], while the value function is

updated as L = minw ED[(Rt+γVw−(st)−Vw(st))
2], where

D and w− represent the experience replay buffer accumulating

previous experiences and the parameters from prior iterations

used in a target network, respectively [45]. Nevertheless, RL

often encounters scalability issues in numerous real-world con-

trol problems involving multiple controllable agents, attributed

to non-stationarity and partial observability [33].

B. Multi-Agent Reinforcement Learning (MARL)

To tackle the challenges of scalability inherent in RL,

MARL has been proposed, in which each individual agent can

adapt and learn its specific policy based solely on its local ob-

servations [44]. Independent Q-learning (IQL) [46] represents

the most straightforward and widely utilized methodology in

this context. In IQL, each local Q-function is solely dependent

on the local action, i.e., Qi(s, a) ≈ Qi(s, ai). Similar to

IQL, an alternative actor-critic version of MARL known as

Independent Advantage Actor-Critic (IA2C) has been pro-

posed in [22]. While IQL and IA2C present fully scalable

solutions, they encounter difficulties in dealing with partial

observability and non-stationary MDP, primarily due to its

inherent assumption that all other agents’ behaviors form part

of the environmental dynamics, even though their policies are

continually updated during the training process [44].

To tackle the non-stationary and partial-observability issues

prevalent in MARL, in [38], the critic network is fully decen-

tralized but each agent takes global observations and actions

and then performs consensus updates. Although their approach

eliminates the need for a centralized controller during the

training phase, it still necessitates access to global information.

Several studies have focused on leveraging communication to

address the issue of partial observability. For instance, FPrint

[47] investigates the impact of direct communication among

agents, demonstrating that sharing low-dimensional policy

fingerprints can enhance performance. In DIAL [48], each

DQN agent generates the communication message together

with action-value estimation, then the message is encoded

and integrated with other input signals at the receiver’s end.

In contrast, CommNet [49] offers a more generalized com-

munication protocol, but it merely calculates the mean of

all messages rather than encoding them. NeurComm [33],

CAV Platoon leader

1

CAVCAV

𝜈 2

ℎ2…𝜈-1ℎ𝜈
V2V communication network

…

Figure 1: Framework of the CACC system.

[50] introduces a learnable communication protocol, where

communication messages are encoded and concatenated to

minimize information loss. However, these strategies generally

implement a centralized controller (i.e., information aggregator

or centralized critic networks) during the training and online

adaptation phases, and the communication messages are typi-

cally raw or encoded network parameters, which often impose

a burden on the communication channels due to the volume

of information being transmitted.

To tackle the aforementioned issues, in this paper, we

present a fully decentralized MARL algorithm for the CACC

problems, which not only offers satisfactory control perfor-

mance but also facilitates efficient communication through a

quantization-based communication protocol. Section V pro-

vides performance comparisons between the proposed algo-

rithm and the previously mentioned benchmarks, demonstrat-

ing the effectiveness and potential benefits of our approach.

III. COOPERATIVE ADAPTIVE CRUISE CONTROL (CACC)

In this section, we introduce the system model for vehicle

platooning along with the behavior model employed within

the platoon. Furthermore, we present two representative CACC

scenarios considered in this paper.

A. Vehicle Dynamics

As shown in Figure 1, we consider a platoon, comprising V
CAVs, driving along a straight road. For simplicity, we assume

that all vehicles in the system share identical characteristics

such as maximum allowed acceleration and deceleration. The

platooning system is guided by a platoon leader vehicle (PL,

1st vehicle), while the platoon member vehicles (PMs, i ∈
2, ...,V) travel behind the PL. Each PM i maintains a desired

inter-vehicle distance (IVD) hi and velocity vi relative to its

preceding vehicle i−1, based on its unique spacing policy [25].

The one-dimensional dynamics of vehicle i can be expressed

as follows:

ḣi = vi−1 − vi, (1a)

v̇i = ui, (1b)

where vi−1 and ui symbolize the velocity of its preceding

vehicle and the acceleration of vehicle i, respectively. As per

the design outlined in [22], the discretized vehicle dynamics,

given a sampling time ∆t, can be described by

hi,t+1 = hi,t +

∫ t+∆t

t

(vi−1,τ − vi,τ )dτ, (2a)

vi,t+1 = vi,t + ui,t∆t. (2b)
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In order to guarantee both comfort and safety, each vehicle

must follow the following constraints [22]:

hi,t ≥ hmin, (3a)

0 ≤ vi,t ≤ vmax, (3b)

umin ≤ ui,t ≤ umax, (3c)

where hmin = 1 m, vmax = 30 m/s, umin = −2.5 m/s2 < 0
and umax = 2.5 m/s2 > 0 represent the minimum safe head-

way, maximum speed, deceleration, and acceleration limits,

respectively.

B. Vehicle Behavior

The behaviors of vehicles in the platoon are simulated

using the optimal velocity model (OVM) [51]. The OVM has

been widely used in traffic flow modeling due to its ability

to capture real human driving behaviors [33]. The principal

equation of OVM for the ith vehicle is defined as follows:

ui,t = αi(v
◦(hi,t;h

s, hg)− vi,t) + βi(vi−1,t − vi,t), (4)

where αi and βi are the headway gain and relative velocity

gain, respectively. These parameters serve as representations

of human driver behavior, encapsulating the influence of both

spacing and relative speed in determining vehicle acceleration.

Here, hs = 5 m and hg = 35 m denote the stop headway and

full-speed headway, both of which are key to understanding

traffic dynamics at different vehicle densities. Furthermore, v◦

represents the headway-based velocity policy, which is defined

as:

v◦(h) ≜











0, if h < hs,
1

2
vmax(1− cos (π h−hs

hg−hs )), if hs ≤ h ≤ hg,

vmax, if h > hg.
(5)

This policy function serves as an optimal velocity strategy for

each vehicle based on the current headway to the preceding ve-

hicle. At small headways less than or equal to hs, the optimal

velocity is zero, highlighting the need for the ego vehicle to

stop for preventing potential collisions. For headways within

the range hs to hg , the optimal velocity gradually increases by

following a cosine curve until reaching the maximum velocity.

For large headways greater than or equal to hg , the optimal

velocity is capped at the vehicle’s maximum speed, ensuring

both safety and efficiency in the traffic flow. This strategy

significantly contributes to maintaining fluidity in vehicular

traffic under various density conditions. The OVM will be

used to simulate the behavior of vehicles where the RL will

train the driving hyper-parameters (αi, βi). See Section IV

for more details on the RL formulation. In this paper, our

primary focus is on validating the fully decentralized MARL

approach in the context of CACC. As for the exploration of

more complex vehicle dynamics [20], this will be a key area

of investigation in our future work.

C. Two CACC Scenarios

In this paper, following [33] two different CACC scenarios

are investigated: ªCatchupº and ªSlowdownº. Recall that the

objective of CACC is to adaptively control a fleet of CAVs in

order to reduce the car-following headway to a pre-specified

value (e.g., h∗ = 20 m) and achieve a target velocity (e.g.,

v∗ = 15 m/s), by leveraging real-time V2V communications.

For the ªCatchupº scenario, the platoon members (PMs)

(i = 2, ...,V) are initialized with states vi,0 = v∗t and

hi,0 = h∗
t , while the platoon leader (PL) is initialized with

states v1,0 = v∗t and h1,0 = a · h∗
t , where a is a random

variable uniformly distributed between 1.5 and 2.5. In contrast,

during the ªSlowdownº scenario, all vehicles (i = 1, ...,V)

have initial velocities vi,0 = b · v∗t and hi,0 = h∗
t , where b is

uniformly distributed between 1.5 and 2.5. Here, v∗t linearly

decreases to 15 m/s within the first 30 seconds and then

remains constant. The ªSlowdownº scenario poses a more

complex and challenging task than the ªCatchupº scenario due

to the necessity for all vehicles to coordinate their deceleration

rates and maintain safe inter-vehicle distances with higher

accuracy, thereby requiring more precise control strategies.

Examples of the headway and speed profiles of the CAVs in

these scenarios are illustrated in Figures 5 and 6.

IV. CACC AS MARL

In this section, we first formulate the considered CACC

problem as a partially observable Markov decision process

(POMDP). Subsequently, we present our fully decentralized

MARL algorithm, which represents our primary strategy for

addressing the challenges presented in the CACC problem.

Then, we introduce the quantization-based communication

protocol to enhance the efficiency of agent communication

in the MARL framework without major performance degrada-

tion.

A. MARL Formulation

In this paper, we model the CACC problem as a model-

free multi-agent network [33], where each agent (i.e., AV)

is capable of communicating with the vehicles ahead and

behind via V2V communication channels. We denote the

global state space and action space as S := ×i∈νSi and

A := ×i∈νAi, respectively. The intrinsic dynamics of the

system can be characterized by the state transition distribution

P: S × A × S → [0, 1]. We propose a fully decentralized

MARL framework where each agent i (equivalently, AV i) has

a partial view of the environment, specifically the surrounding

vehicles, which accurately reflects the practical scenario where

AVs are limited to sensing or communicating with neighboring

vehicles, thereby rendering the overall dynamical system as

a POMDP. This POMDP, MG , can be delineated by the

following tuple MG = ({Ai,Si,Ri}i⊆V+1, T ):

• Action space: In the considered CACC problem, the

action at ∈ Ai is straightforwardly related to the lon-

gitudinal control. However, due to the data-driven nature

of RL, formulating a safe and robust longitudinal control

strategy poses a significant challenge [22]. To address

this, we adopt OVM (see Section III-B, [51]) to carry

out the longitudinal vehicle control. The OVM control

behavior is affected by various hyperparameters: headway

gains α, relative velocity gain β, stop headway hs, and

full-speed headway hg . Usually, (α; β) represents the

driving behavior of a human driver. However, following
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[33], we leverage MARL to propose suitable values of

(α; β) for each OVM controller. These recommended

values are selected from a set of four different levels:

{(0, 0), (0.5, 0), (0, 0.5), (0.5, 0.5)}. Subsequently, the

longitudinal action can be computed using Eq. 4 and

Eq. 5.

• State space: The state space represents the description

of the environment. The state of agent i, Si, is de-

fined as [v, vdiff , vh, h, u], where v = (vi,t − vi,0)/vi,0
denotes the current normalized vehicle speed. vdiff =
clip((vi−1,t − vi,t)/5,−2, 2) represents clipped vehi-

cle speed difference with its leading vehicle. vh =
clip((v◦(h) − vi,t)/5,−2, 2), h = (hi,t + (vi−1,t −
vi,t)∆t − h∗)/h∗, and u = ui,t/umax are the headway-

based velocity defined in Eq. 5, normalized headway

distance, and acceleration, respectively.

• Reward function: The reward function ri,t is pivotal for

training the RL agents to exhibit the desired behaviors.

With our objective being the training of our agents to

achieve a predefined car-following headway h∗ = 20 m

and velocity v∗ = 15 m/s, the reward assigned to the ith
agent at each time step t is designed as follows:

ri,t = w1(hi,t − h∗)2 + w2(vi,t − v∗)2

+ w3u
2
i,t + w4(2hs − hi,t)

2
+,

(6)

where w1, w2, w3, and w4 are the weighting coefficients.

In this equation, the first two terms, (hi,t − h∗)2 and

(vi,t−v∗)2, penalize deviations from the desired headway

and velocity, encouraging the agent to achieve these

targets closely. The third term, u2
i,t, is included to min-

imize abrupt accelerations, thereby promoting smoother

and more comfortable rides for passengers. Lastly, the

term (2hs − hi,t)
2
+ functions as a safety constraint,

penalizing the agent heavily if the inter-vehicle distance

is less than twice the stop headway hs, which is critical

for preventing collisions and ensuring the safety of the

vehicle platoon. The ª+º operator represents that this

term contributes to the reward only when hi,t is less

than 2hs, similar to the Rectified Linear Unit (ReLU)

function. This comprehensive reward design serves to

balance performance, comfort, and safety considerations

in the CACC system. Upon a collision, if the inter-

vehicle distance hi,t ≤ 1 m, each agent is subjected to

a substantial penalty of 1000, resulting in immediately

terminating the training episode.

• Transition probabilities: The transition probability,

T (s′|s, a), characterizes the underlying dynamics of the

system. Given that our approach is a model-free MARL

framework, we do not assume any prior knowledge of

this transition probability while developing our MARL

algorithm.

B. Fully Decentralized MARL

In this paper, we formulate the CACC as a fully decen-

tralized MARL problem, where each agent (i.e., an AV)

independently decides its action based on its local observation

during both training and execution. Importantly, this structure

does not require a centralized controller, meaning that each

agent possesses its own individual policy networks. During

the learning phase, agents rely on locally received rewards to

train and update these networks. In this paper, we employ a

MARL framework in which each agent is equipped with its

actor-critic network [41], and the policy network for agent i
is updated with gradient ascend and the gradient is defined as:

∇θL(πθi) = Eπθi

[

T
∑

t=0

∇θ log πθi(ai,t|si,t)A
πθi

i,t

]

, (7)

where A
πθi

i,t = ri,t + γV πφi (si,t+1) − V πφi (si,t) is the

advantage function and V πφi (si,t) is the state value function,

which is updated following the loss function:

LV
πφi = min

φi

EDi

[

ri,t + γV πφi (si,t+1)− V πφi (si,t)
]2

. (8)

Despite each agent learning independently, the overall goal

of the cooperative MARL framework is to optimize the

average global reward rg,t = 1

V

∑V
i=1

ri,t. To address the

non-stationary, in [38], the update of the policy network is

executed independently by each agent, eliminating the need

for inferring other agents’ policies. However, when it comes

to updating the critic network, a collaborative approach is

adopted, in which each agent shares its estimate of the value

function xi with its neighboring agents within the network

through a ªmeanº operation, i.e., xk+1
i = 1

|Ni|

∑

j∈Ni
xk
j ,

where Ni is the neighboring set of agent i. This allows for the

joint evolution and continuous improvement of the system’s

overall performance. However, their approach is based on the

assumption that all agents are homogeneous, sharing the same

characteristics. While this simplifies the problem structure,

it does not adequately represent the intrinsic diversity of

individual agents, which is particularly relevant for the CACC

scenario where diverse strategies are needed based on vehicles’

positions, speeds, and proximities. To address this concern,

we propose a novel update strategy that fosters a balance

between individual learning and collaborative influence from

neighboring agents. Specifically, we assume that the agents

interact on an undirected graph, and the interaction can be

described by a weight matrix W . If agent i and agent j can

communicate and interact with each other, then the (i, j)-th
entry of W , i.e., wij , is positive (e.g., 1.0). Otherwise, wij is

zero. During the training, the update strategy is designed as

xk+1
i = xk

i + ϵ
∑

j∈Ni

ωij(x
k
j − xk

i )− λgki , (9)

where gki is the gradient that agent i obtains at iteration k
for optimization, ϵ is the scaling factor used to modulate the

impact or collaborative influence from neighboring agents, and

λ = 5.0×10−4 is the learning rate that adjusts the influence of

the gradient on the update process. This novel update strategy

fosters collaboration among the agents while preserving the

individual learning capabilities of each, thereby striking a

balance between global performance optimization and local-

ized adaptivity. An overview of our fully-decentralized MARL

framework is given in Figure 2.

Remark 1. The scaling factor ϵ plays an important role in

the update scheme. If ϵ is too large, the agent allocates more
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Figure 2: Overview of our fully-decentralized MARL ap-

proach.

influence from the neighboring agents. On the other hand, if

ϵ is too small, the agent will concentrate more on its own

updates. In this work, we use cross-validations and find that

ϵ = 1.0 × 10−3 and ϵ = 1.0 × 10−4 are the optimal choices

for ªCatchupº and ªSlowdownº scenarios, respectively.

The update strategy of the proposed fully decentralized

MARL for CACC (abbreviated as MACACC) is given in

Algorithm 1.

Algorithm 1: MACACC for CACC

1 Public parameters: W , ϵ, λ, x0
i for all i, the total

number of iterations k
2 for ith agent do

3 Determine the local gradient gki for the critic

network;

4 Send critic estimate to all neighboring agents

j ∈ Ni;

5 After receiving xk
j from all j ∈ Ni, update network

parameters as

xk+1
i = xk

i + ϵ
∑

j∈Ni

ωij(x
k
j − xk

i )− λgki

6 end

C. Quantization-based Communication Protocol

To enhance the communication efficiency among agents

in our MARL framework, we propose a strategy of trans-

mitting quantized parameters, rather than the raw parameters

of the critic network. This approach is especially important

for autonomous driving applications that are often subject to

limited communication bandwidth. By transmitting compact,

quantized parameters instead of raw data, we ensure optimal

use of available bandwidth, thereby fostering efficient and

effective communication among the vehicles in the network.

Quantization-based techniques have been studied in distributed

optimization and learning [52], [53], however, to the best

of our knowledge, this is the first work that incorporates a

quantization-based communication protocol into the MARL

framework for achieving communication-efficient CACC.

Let the parameters of the critic/value network be denoted as

x = [x1, x2, ..., xd]
T , with d representing the dimension of the

parameter vector. We then apply a quantization function Q(x)
to these parameters, yielding a quantized parameter vector

[q1, q2, ..., qd]
T . The quantization rule (also see Figure 3) is

defined as:

qi = r · sign(xi)bi. (10)

In (10), r is a non-negative real number no less than the

ℓ∞ norm of x, and sign(·) represents the sign function,

which returns the sign of any given real number. The factor

bi is a random variable following a designed distribution

determined by the magnitude of the corresponding parameter

xi. Let n be the resolution of the quantization, and then

bi is selected from the set {0, 1

n
, 2

n
, · · · , 1}, indicating that

qi ∈ {−r,−n−1

n
r, · · · , 0, · · · , n−1

n
r, r}. Let 0 ≤ m ≤ n − 1

be an integer such that |xi| belongs to the interval [m
n
r, m+1

n
r].

Then the probability distribution of bi is determined by

P (bi =
m+ 1

n
|x) =

n|xi| −mr

r
, (11a)

P (bi =
m

n
|x) = 1−

n|xi| −mr

r
, (11b)

P (bi =
l

n
|x) = 0, l = 0, · · · ,m− 1,m+ 2, · · · , n.(11c)

It can be concluded that if the magnitude of |xi| is closer to
m+1

n
r, then the higher the probability that bi will be m+1

n
, and

vice versa. We denote the quantization-based MACACC algo-

rithm as QMACACC (n). An extremely condensed version of

QMACACC is QMACACC (1), in which only three discrete

numbers {−r, 0, r} are used to represent each parameter, and

bi is defined as:

P (bi = 1|x) =
|xi|

r
, (12a)

P (bi = 0|x) = 1−
|xi|

r
. (12b)

Remark 2. The quantization resolution n is a crucial hy-

perparameter in the quantization scheme. When n is small,

the sparse quantization intervals could lead to excessive loss

of information, negatively impacting the performance of the

MARL framework. Conversely, when n is large, the compu-

tational and communication overheads could increase due to

the larger number of potential quantized values. Therefore,

choosing an appropriate value of n is crucial for balancing

communication efficiency and the performance of the MARL

framework. An empirical evaluation of different n values will

be conducted in Section V.

0
𝑚𝑟𝑛 (𝑚 + 1)𝑟𝑛… … 1

Pr 𝑏𝑖 = 𝑚𝑛 = 1 − 𝑛 𝑥𝑖 −𝑚𝑟𝑟 Pr 𝑏𝑖 = 𝑚 + 1𝑛 = 𝑛 𝑥𝑖 −𝑚𝑟𝑟
|𝑥𝑖|

𝑃𝑟 𝑏𝑖 = 𝑙𝑛 |𝑥 = 0, 𝑙 = 0,1,… ,𝑚 − 1,𝑚 + 2,… , 𝑛
Figure 3: Illustration of the quantization-based communication

protocol.

The update strategy of the proposed quantization-based

MARL (i.e., QMACACC (n)) for CACC is given in Algo-

rithm 2.
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Table I: Average execution performance comparison over trained MARL policies. The best values are in bold.

Scenario Name IA2C FPrint ConseNet NeurComm CommNet DIAL MACACC

Catch-up -241.38 -198.93 -94.67 -301.41 -397.55 -227.68 -50.44

Slow-down -2103.38 -1470.41 -1746.43 -1912.23 -2590.72 -1933.27 -492.30

Table II: Performance of MARL controllers in CACC environments: ªCatchupº (above) and ªSlowdownº (below). The best

values are in bold.

Temporal Average Metrics IA2C FPrint ConseNet NeurComm CommNet DIAL MACACC

avg vehicle headway [m] 19.43 20.02 20.28 21.77 22.38 21.86 19.91

avg vehicle velocity [m/s] 15.00 15.34 15.30 15.04 15.01 15.01 15.32

collision number 0 0 0 0 0 0 0

avg vehicle headway [m] - 15.16 9.23 11.45 4.90 9.71 20.44

avg vehicle velocity [m/s] - 13.10 8.08 10.32 4.18 8.91 16.61

collision number 50 14 29 22 38 26 0

Algorithm 2: QMACACC (n) for CACC

1 Public parameters: W , ϵ, λ, x0
i for all i, the total

number of iterations k
2 for ith agent do

3 Determine the local gradient gki for the critic

network;

4 Quantize critic estimate according to Eqs. 10 and

11 and send to all neighboring agents j ∈ Ni;

5 After receiving Q(xk
j ) from all j ∈ Ni, update

state as

xk+1
i = xk

i + ϵ
∑

j∈Ni

ωij(Q(xk
j )−Q(xk

i ))− λgki

6 end

V. EXPERIMENTAL RESULTS & DISCUSSIONS

In this section, we evaluate our MARL framework in two

CACC scenarios detailed in Section III-C. Firstly, we bench-

mark our approach against several state-of-the-art MARL

strategies. Then, we demonstrate the effectiveness of our

quantization-based communication protocol.

A. General Setups

To demonstrate the efficiency and robustness of the pro-

posed approach, we compare it with several state-of-the-

art MARL benchmark controllers discussed in Section II-B.

Specifically, IA2C performs independent learning, while Con-

seNet [38] takes the ªmean" operation during updating critic

networks, and FPrint [47] incorporates the neighbors’ policy

into the inputs. DIAL [48], CommNet [49] and NeurComm

[33], on the other hand, are implementations with learnable

communication protocols, incorporating more messages from

the neighbors, e.g., neighboring states or policy information,

relying on higher communication bandwidth. All algorithms

use the same DNN structures: one fully-connected layer for

input state encoding and one LSTM layer for message ex-

tracting. All hidden layers have 64 units. During the training,

the network is initialized with the state-of-the-art orthogonal

initializer [54]. We train each model over 1M steps, with

γ = 0.99, actor learning rate 5.0 × 10−4, and critic learning

rate 2.5 × 10−4. Also, each algorithm is trained three times

with different random seeds for generalization purposes. Each

training takes about 12 hours on a Ubuntu 18.04 server with

an AMD 9820X processor and 64 GB memory.

The hyperparameter w1, w2, w3, and w4 in the reward

function (6) are set to -1.0, -1.0, -0.1, and -5.0, respectively,

with a significant emphasis on penalizing situations where

the safety headway distance is insufficient. Considering a

simulated traffic environment over a period of T = 60 seconds,

we define ∆t = 0.1 seconds as the interaction period between

RL agents and the traffic environment, so that the environment

is simulated for ∆t seconds after each MDP step. In the

following experiments, we assume the platoon size to be

V = 8, implying that there are a total of 8 CAVs in the

platoon. The impact of different platoon sizes on our model’s

performance will be studied and presented in Section V-D.

B. Comparison with State-of-the-Art Benchmarks

Figure 4 shows the performance comparison in terms of the

learning curves between the proposed approach MACACC and

several state-of-the-art MARL benchmarks. As expected, the

proposed approach achieves the best performance, evidenced

by higher training rewards in both CACC scenarios. In the

more challenging ªSlowdownº environment, the proposed

approach shows its greater advantages of sample efficiency

as seen from the fastest convergence speed and best training

reward compared to other algorithms.

After training, we evaluate each algorithm 50 times with

different initial conditions. Table I shows the evaluation per-

formance comparison over the trained MARL policies. The

proposed method consistently outperforms the benchmarks in

all CACC scenarios in terms of the evaluation reward, which

reveals the overall evaluation metrics including vehicle head-

way, velocity, acceleration, and safety as described in Eq. 6.

Table II shows the key evaluation metrics in CACC. The best

headway and velocity averages are the closest ones to h∗ = 20
m, and v∗ = 15 m/s. Note the averages are only computed

from safe execution episodes, and we use another metric

ªcollision numberº to count the number of episodes where

a collision happens within the horizon. Ideally, ªcollision-

freeº is the top priority. It is clear that our approach achieves

promising performance in the ªCatchupº environment, and

the best performance in the harder ªSlowdownº environment.

All algorithms achieve relatively good performance in the
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Figure 4: Training curves comparison between the proposed MARL policy (MACACC) and 6 state-of-the-art MARL

benchmarks.
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Figure 5: Headway and velocity profiles in the ªCatchupº

environment of the first and last vehicles of the platoon,

controlled by the proposed approach (MACACC) and the top

baseline policy (ConseNet).
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Figure 6: Headway and velocity profiles in the ªSlowdownº

environment of the first and last vehicles of the platoon,

controlled by the proposed approach (MACACC) and the top

baseline policy (FPrint).

ªCatchupº environment with zero collision number. It is

surprising that IA2C achieves excellent average vehicle ve-

locity at v∗. However, it demonstrates high collision numbers

(i.e., 50) in the ªSlowdownº scenario due to non-stationary

issues since there is no communication between agents. FPrint

yields the best average vehicle headway in the ªCatchupº

environment, while it has 14 out of 50 collisions during the

testing. On the other hand, NeurComm and CommNet show

great average vehicle velocity in the ªCatchupº environment,

however, they failed to track the optimal headway, resulting in

average high headway of 21.77 m and 22.38 m, respectively.

It is noted that ConseNet achieves promising performance in

the ªCatchupº environment, with a zero collision rate, average

vehicle headway (20.28 m), and velocity (15.30 m/s) close to

the optimal values. However, it yields high collision numbers

(29 out of 50) in the ªSlowdownº scenario as it simply

encourages all agents to behave similarly via the ªaverageº

operations during training, which is especially impractical for

complex scenarios, such as ªSlowdownº, where agents need

to react differently to the speed and headway changes.

Figures 5 and 6 show the corresponding headway and veloc-

ity profiles for the selected controllers for the two CACC sce-

narios. In the ªCatchupº scenario, as expected, the MACACC

controller is able to achieve steady state v∗ and h∗ for the

first and last vehicles of the platoon, whereas the ConseNet

controller still faces difficulties in eliminating the perturbation

through the platoon. In a harder ªSlowdownº environment,

MACACC is still able to achieve optimal headway at about

60 seconds and reach the optimal velocity quickly. However,

FPrint fails the control task with a collision that happened at

about 35 seconds. This may be because simply incorporating

neighboring agents’ policies might not be sophisticated enough

to accurately model and adapt to the intricacies among agents.

C. Performance of the Quantization-based MACACC

In this subsection, we evaluate the effectiveness of the

proposed quantization-based communication protocol with dif-

ferent quantization resolutions. As shown in Figure 7, in the

less complex ªCatchupº scenario, minor quantization appears

to improve control performance. This could be attributed to

the fact that the quantization process introduces a level of ran-

domness during the training phase, thereby fostering improved

exploration by the agents, as discussed in [55]. Conversely,

in the more challenging ªSlowdownº scenario, the impact of

quantization results in a more significant performance degrada-

tion relative to the ªCatchupº scenario. Nonetheless, even with

extremely quantized communication, such as QMACACC (1),

our proposed approach continues to surpass the performance

of the robust baseline method, FPrint.
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Figure 7: Training curves comparison between the proposed MARL policy (MACACC) and Quantization-based MACACC

(QMACACC (n)).
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Figure 8: Transmitted message and execution performance comparison between the proposed MARL policy (MACACC (n = 0))

and Quantization-based MACACC (QMACACC (n = 1, 2, 4)).

Figure 8 presents the number of bits required for each

communicated parameter as well as the corresponding test

performance at varying quantization resolutions. For better

visualization, these values are normalized with corresponding

maximum values. Within the ªCatchupº scenario, QMACACC

(1) manages to achieve 98.63% of the control performance

achieved by the non-quantized version, i.e., QMACACC (0),

while only requiring 12.5% of the communicated bits. How-

ever, in the ªSlowdownº scenario, QMACACC (1) can only re-

alize 64.64% of the control performance of the non-quantized

version, i.e., QMACACC (0). This underscores a trade-off

between the benefits of enhanced communication efficiency

brought about by quantization and the associated diminution

in control performance.

D. Impact of Platoon Size

In this subsection, we explore how variations in platoon

sizes affect the performance of our model. The normalized

training curves comparison among MACACC, QMACACC

(1), and the top-performing baseline methods under different

platoon sizes (i.e., V ∈ 2, 8, 12) in the two CACC scenarios is

illustrated in Figure 9. Our current experimental design, which

encompasses scenarios with up to 12 AVs, has been carefully

chosen to reflect practical, real-world traffic scenarios. These

experiments are intended to simulate a range of traffic den-

sities, from sparse (i.e., 2 AVs) to moderately dense (i.e., 8

and 12 AVs) conditions, thereby providing a comprehensive

overview of the framework’s scalability and effectiveness

across different urban traffic situations. Given the anticipated

increase in CAVs within future urban environments, we plan

to extend our investigation into the framework’s scalability

aimed at scenarios with higher CAV densities in forthcoming

research efforts.

As the platoon size increases, the performance of all algo-

rithms decreases in both CACC scenarios. That is attributed

to the increased complexities and intricacies associated with

managing and coordinating a larger number of agents. As the

platoon size increases, the algorithms must deal with more so-

phisticated inter-agent dynamics, thereby extending the com-

putation time and potentially slowing down the convergence

toward an optimal policy. Furthermore, minor quantization

errors may accumulate over time or across a platoon, leading to

significant deviations from ideal behavior, a phenomenon that

becomes increasingly pronounced with larger platoon sizes.

Despite the varying platoon sizes, all the algorithms achieve

comparable performance in the ªCatchupº scenario. However,

in the more challenging ªSlowdownº environment, MACACC

(n = 0, 1) consistently outperforms the baseline method (i.e.,
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Figure 9: Normalized training curves comparison between MACACC, QMACACC (1), and the top baseline methods with

different platoon sizes in the CACC scenarios: ªCatchupº (above) and ªSlowdownº (below).

FPrint) under different platoon sizes, showing the impressive

scalability of our proposed approach.

E. Robustness to Unseen Scenarios

In this subsection, we assess MACACC’s performance

in new scenarios. Although the algorithms were trained as

outlined in Section III-C, they were evaluated in distinct

scenarios. In the ªCatchupº environment, the platoon leader

(PL) is initially set with states v1,0 = v∗t and h1,0 = a · h∗
t ,

for a ∈ [1.5, 2.5], and subsequently tested with a ∈ [2.5, 3.5].
In the ªSlowdownº scenario, every vehicle (i = 1, · · · ,V)

starts with velocities vi,0 = b · v∗t and hi,0 = h∗
t , where

b ∈ [1.5, 2.5], and is tested on b ∈ [0.5, 1.5]. Table III shows

the execution results in these unexplored scenarios. It is clear

that MACACC consistently surpasses baseline methods in both

settings. However, MACACC (1) shows slightly inferior per-

formance compared to MACACC, attributable to quantization.

Table III: Execution performance comparison on unseen sce-

narios.

Scenario Name ConseNet FPrint MACACC (1) MACACC

Catchup -569.12 -982.58 -173.32 -167.34

Slowdown -621.19 -560.22 -224.41 -153.22

Table IV provides a detailed evaluation of the performance

of MARL controllers, focusing on temporal average metrics

within scenarios not encountered during training. It is clearly

demonstrated that MACACC consistently outperforms the

baseline methods, achieving a remarkable zero collision rate in

both ªCatchupº and ªSlowdownº scenarios. This underscores

MACACC’s superior ability to manage complex traffic situa-

tions effectively. However, when examining MACACC (1), a

noticeable dip in performance is observed in the ªSlowdownº

scenario. This highlights a critical trade-off: while quantization

promotes communication efficiency among agents, it simulta-

neously can lead to a reduction in control performance. This

balance between the benefits of streamlined communication

and the potential impact on decision-making underscores the

nuanced challenges inherent in optimizing MARL systems for

complex systems.

Table IV: Performance of MARL controllers in terms of

temporal average metrics on unseen scenarios: ªCatchupº

(above) and ªSlowdownº (below).

Metrics ConseNet FPrint MACACC(1) MACACC

avg. headway [m] 14.82 12.51 20.8 20.5

avg velocity [m/s] 10.82 9.28 15.65 15.7

collision number 15 20 0 0

avg. headway [m] 17.92 16.34 18.99 20.54

avg velocity [m/s] 13.02 12.3 14.28 14.8

collision number 10 6 2 0

VI. CONCLUSION

Cooperative adaptive cruise control (CACC), has been rec-

ognized for its capability to increase road efficiency, alleviate

traffic congestion, and reduce both energy consumption and

exhaust emissions. In this paper, we have addressed the CACC

problem by formulating it as a fully decentralized MARL

problem. (1) This novel approach eliminated the need for

a centralized controller during both training and execution,

thereby enhancing the system’s scalability and robustness;

(2) an innovative quantization-based communication protocol
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was introduced to significantly enhance the communication

efficiency among the agents; (3) comprehensive experiments

were conducted showing that our approach outperformed

several state-of-the-art MARL algorithms. The results demon-

strated that our approach can provide superior control per-

formance and communication efficiency; (4) as detailed in

the appendix, our proposed framework’s applicability extends

beyond CACC, showing promise for broader intelligent trans-

portation systems characterized by intricate action and state

spaces. These findings underscore the potential of our fully

decentralized MARL and quantization-based communication

protocol as a robust and effective solution for real-world

MARL problems.

In this paper, we employed the optimal velocity model

(OVM) to emulate certain aspects of traffic flow behaviors due

to its simplicity and efficacy. However, it is worth noting that

OVM oversimplifies some intricate nature of human driving

behaviors, and its performance may degrade at high traffic

densities where interactions between vehicles become more

complex. As a result, future research endeavors will focus on

the integration of more comprehensive human driver models

and vehicle dynamics to improve simulation accuracy and

stability. Furthermore, to eliminate the need for a training

process, we plan to explore the best response dynamics

approach, as proposed in [56], where agents communicate

their actions using the QMACACC protocol. Also, the issue

of energy management within cooperative scenarios will be

investigated, drawing upon insights from recent studies such as

[36]. Additionally, drawing inspiration from the novel research

by [57] showing the robustness of the cooperative localization

system within a consensus framework and incorporating a

novel cyber attack detection algorithm, our future study aims

to explore the resilience of MARL in the face of potential

cyber-attacks and uncertainties.

APPENDIX

In the Appendix, we evaluate our proposed communication-

efficient MARL framework on a more complex traffic sce-

nario: adaptive traffic signal control (ATSC). The goal of

ATSC is to dynamically modify traffic signal phases to allevi-

ate traffic congestion, leveraging real-time traffic data [33]. We

adopt the ATSC scenario, a 5×5 synthetic traffic grid, using

standard microscopic traffic simulator SUMO [33], [58].

A. Experimental settings

Similar to previous studies [33], [44], the ATSC scenarios

within our framework are designed to replicate peak-hour

traffic conditions. A 5-second control interval is strategically

implemented to prevent too frequent changes in traffic light

signals, a decision that accommodates the delay associated

with RL control mechanisms and the anticipated reaction time

of drivers. As a result, each Markov Decision Process (MDP)

step corresponds to a real-time duration of 5 seconds, with

the total episode horizon extending to 720 steps to cover

a comprehensive simulation interval. To further ensure road

safety and provide adequate reaction time for drivers, a 2-

second yellow light phase is introduced before the transition to

red lights. For readers interested in a detailed understanding of

the ATSC settings, further insights can be found in the works

of [33], [44].

Fig. 10a illustrates the structured traffic grid, including

arterial streets with two lanes and a 20 m/s speed limit

alongside avenues that feature a single lane and an 11 m/s

speed limit. To model the intricacies of peak-hour traffic, we

employ four sets of dynamic traffic flows, capturing both

the loading and recovering phases. In the initial stage, we

introduce three primary flows, denoted as F1, originating

and terminating at pairs x10-x4, x11-x5, and x12-x6. Concur-

rently, three secondary flows, labeled f1, emerge with origin-

destination pairs x1-x7, x2-x8, and x3-x9. Following a 15-

minute interval, both F1 and f1 begin to wane, giving rise

to their respective counterflows, F2 and f2, as illustrated in

Fig. 10b. It is important to note that these flows merely

establish overarching demand; the specific trajectory of each

vehicle is determined through random generation. The grid

operates under uniform conditions, with all agents sharing an

identical set of possible actions, defined by five predetermined

signal phases [33], [44].
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(b) Traffic flows within the grid.

Figure 10: ATSC Scenario Illustrations: (a) Synthetic traffic

grid indicating major (solid arrows) and minor (dotted arrows)

flows; (b) Simulation of dynamic traffic flows over time within

the grid. Adapted from [33], [44].
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Figure 11: Training curves comparison between the proposed MARL variant (MACACC (n)) and 6 state-of-the-art MARL

benchmarks on adaptive traffic signal control (ATSC).

B. MDP settings

We conceptualize the ATSC problem as a model-free multi-

agent network, treating each intersection (totaling 25 inter-

sections) as a controllable agent. This collective dynamic

framework is structured as a Markov Decision Process (MDP),

denoted by MA = (A,S,R},T) [33], [44]:

• Action Space A: The choice of action at each intersec-

tion involves selecting a possible phase or a combination

of red and green signals for the traffic lights. For each

intersection, we consider 5 possible phases and the total

action space expands to 525.

• State Space S: The state st for each agent includes

local traffic conditions as [{waitt[p],wavet[p]}], where p
represents each incoming lane to intersection i. waitt[p]
captures the cumulative waiting time of the first vehicle

in lane p, and wavet[p]}] quantifies the total vehicle count

approaching each incoming lane within a 50m radius of

the intersection. The state space for each agent ranges

from 36 to 60 states, resulting in a total state space scope

between 3025 to 6025.

• Reward Function R: The reward function is designed

to facilitate the RL agents’ training and is defined as

follows:

rt = −
∑

(queuet+∆t
[p] + a · waitt+∆t

[p]). (13)

where a is a balancing coefficient, and queuet+∆t
[p] in-

dicates the queue length along each lane approaching the

intersection. It is noteworthy that the reward is calculated

post-decision, hence both queue and wait are evaluated

at the future time t+∆t.

• Transition Probability T: Given the model-free nature

of our approach, we proceed without preconceived as-

sumptions regarding the system’s dynamics.

C. Experimental results

Figure 11 shows training curves comparison between the

proposed MARL variant (MACACC (n)) and six state-of-the-

art MARL benchmarks on the ATSC problem. Note that we

focus only on the training reward as a metric to calculate

overall performance. A more comprehensive evaluation will

be addressed in future work. It is evident that MACACC

demonstrates the quickest convergence speed and obtains

the highest training reward compared to other state-of-the-

art MARL benchmarks, underscoring the effectiveness of the

MACACC framework in learning and optimizing traffic signal

control strategies more efficiently. Following closely, DIAL

also delivers commendable performance, securing the second-

highest training reward. Interestingly, FPrint and ConseNet,

known for their effectiveness in the CACC problem, exhibit

satisfactory performance in the ATSC context as well. In

contrast, CommNet and NeurComm struggle with the con-

trol tasks, showing low training rewards and underperform-

ing in comparison to the IA2C approach. This observation

suggests varying degrees of adaptability and effectiveness

among MARL solutions when applied to the complexities

of the ATSC problem. Figure 11 also shows that even with

extremely quantized communication, such as QMACACC (2),

our proposed approach consistently surpasses the performance

of the robust baseline methods, DIAL and FPrint. Nonetheless,

adopting an even more stringent quantization strategy, i.e.,

QMACACC (4), leads to a noticeable decline in performance.

This indicates that while quantization enhances communica-

tion efficiency, there is a critical threshold beyond which the

reduction in communication detail adversely affects the overall

system performance, underscoring the importance of balancing

communication efficiency and information sharing.
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