
Published as a conference paper at ICLR 2024

EFFICIENT INTEGRATORS

FOR DIFFUSION GENERATIVE MODELS

Kushagra Pandey ∗

Department of Computer Science
University of California, Irvine
pandeyk1@uci.edu

Maja Rudolph
Bosch Center for Artificial Intelligence
Maja.Rudolph@us.bosch.com

Stephan Mandt
Department of Computer Science
University of California, Irvine
mandt@uci.edu

ABSTRACT

Diffusion models suffer from slow sample generation at inference time. Therefore,
developing a principled framework for fast deterministic/stochastic sampling for a
broader class of diffusion models is a promising direction. We propose two com-
plementary frameworks for accelerating sample generation in pre-trained models:
Conjugate Integrators and Splitting Integrators. Conjugate integrators general-
ize DDIM, mapping the reverse diffusion dynamics to a more amenable space
for sampling. In contrast, splitting-based integrators, commonly used in molec-
ular dynamics, reduce the numerical simulation error by cleverly alternating be-
tween numerical updates involving different partitions of the drift (and diffusion)
components. After extensively studying these methods empirically and theoreti-
cally, we present a hybrid method that leads to the best-reported performance for
diffusion models in augmented spaces. Applied to Phase Space Langevin Dif-
fusion [Pandey & Mandt, 2023] on CIFAR-10, our deterministic and stochastic
samplers achieve FID scores of 2.11 and 2.36 in only 100 network function eval-
uations (NFE) as compared to 2.57 and 2.63 for the best-performing baselines,
respectively. Our code and model checkpoints will be made publicly available at
https://github.com/mandt-lab/PSLD.

1 INTRODUCTION

Score-based Generative models (or Diffusion models) (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020) have demonstrated impressive performance on various
tasks, such as image and video synthesis (Dhariwal & Nichol, 2021; Ho et al., 2022a; Rombach
et al., 2022; Ramesh et al., 2022; Saharia et al., 2022a; Yang et al., 2022; Ho et al., 2022b; Harvey
et al., 2022), image super-resolution (Saharia et al., 2022b), and audio and speech synthesis (Chen
et al., 2021; Lam et al., 2021).

However, high-quality sample generation in standard diffusion models requires hundreds to thou-
sands of expensive score function evaluations. While there have been recent advances in improving
the sampling efficiency (Song et al., 2021; Lu et al., 2022; Zhang & Chen, 2023), most of these ef-
forts have been focused towards a specific family of models that perform diffusion in the data space
(Song et al., 2020; Karras et al., 2022). Interestingly, recent work (Dockhorn et al., 2022b; Pandey
& Mandt, 2023; Singhal et al., 2023) indicates that performing diffusion in a joint space, where
the data space is augmented with auxiliary variables, can improve sample quality and likelihood
over data-space-only diffusion models. However, with a few exceptions focusing on specific score
parameterizations (Zhang et al., 2022), improving the sampling efficiency for augmented diffusion
models is still underexplored but a promising avenue for further improvements.

∗Work partially done during an internship at Bosch Center for Artificial Intelligence

1

Published as a conference paper at ICLR 2024

NFE (FID@50k ↓)

Method Description Diffusion 50 100

D
et

er
m

in
is

ti
c

(Ours) CSPS-D Conjugate Splitting-based PSLD Sampler (CSPS) PSLD 3.21 2.11

(Ours) CSPS-D (+Pre.) CSPS-D + Score Network preconditioning PSLD 2.65 2.24

DDIM (Song et al., 2021) Denoising Diffusion Implicit Model DDPM 4.67 4.16

DEIS (Zhang & Chen, 2023) Exponential Integrator with polynomial extrapolation VP 2.59 2.57

DPM-Solver-3 (Lu et al., 2022) Exponential Integrator (order=3) VP 2.59 2.59

PNDM (Liu et al., 2022) Solver for differential equations on manifolds DDPM 3.68 3.53

EDM* (Karras et al., 2022) Heun’s method applied to re-scaled diffusion ODE VP 3.08 3.06

gDDIM* (Zhang et al., 2022) Generalized form of DDIM (q = 2) CLD 3.31 -

A-DDIM (Bao et al., 2022) Analytic variance estimation in reverse diffusion DDPM 4.04 3.55

S
to

ch
as

ti
c

(Ours) SPS-S Splitting-based PSLD Sampler (SDE) PSLD 2.76 2.36

(Ours) SPS-S (+Pre.) SPS-D + Score Network Preconditioning PSLD 2.74 2.47

SA-Solver (Xue et al., 2023) Stochastic Adams Solver applied to reverse SDEs VE 2.92 2.63

SEEDS-2 (Gonzalez et al., 2023) Exponential Integrators for SDEs (order=2) DDPM 11.10 3.19

EDM (Karras et al., 2022) Custom stochastic sampler with churn VP 3.19 2.71

A-DDPM (Bao et al., 2022) Analytic variance estimation in reverse diffusion DDPM 5.50 4.45

SSCS (Dockhorn et al., 2022b) Symmetric Splitting CLD Sampler PSLD 18.83 4.83

EM (Kloeden & Platen, 1992) Euler Maruyama SDE sampler PSLD 30.81 7.83

Table 1: Our proposed samplers perform comparably or outperform prior methods for CIFAR-10.
Diffusion: (VP,VE) (Song et al., 2020), CLD (Dockhorn et al., 2022b), DDPM (Ho et al., 2020),
PSLD (Pandey & Mandt, 2023). To ensure fair comparison, methods indicated with * were evaluated
without incorporating additional training tricks. (Extended Results: Fig. 5)

Problem Statement: Efficient Sampling during Inference. Our goal is to develop efficient de-
terministic and stochastic integration schemes that are applicable to sampling from a broader class
of diffusion models (for instance, where the data space is augmented with auxiliary variables) and
achieve high-fidelity samples, even when the NFE budget is greatly reduced, e.g., from 1000 to 100
or even 50. We evaluate the effectiveness of the proposed samplers in the context of the Phase Space
Langevin Diffusion (PSLD) (PSLD) (Pandey & Mandt, 2023) due to its strong empirical perfor-
mance. However, the presented techniques also apply to other diffusion models, some of which are
special cases of PSLD (e.g. Dockhorn et al. (2022b)). We make the following contributions,

• Conjugate Deterministic Integrators. These numerical integrators leverage invertible
transformations to map the reverse process’ deterministic dynamics to a space more suit-
able for fast sampling. We show that several existing deterministic sampling frameworks
like DDIM (Song et al., 2021) and exponential integrators (Lu et al., 2022; Zhang & Chen,
2023; Zhang et al., 2022) are special cases of our framework, allowing us to generalize
these methods to generic diffusion models in a principled manner. Moreover, we analyze
the proposed framework from the lens of stability analysis and provide a theoretical justifi-
cation for its effectiveness.

• Reduced Splitting Integrators. Taking inspiration from molecular dynamics (Leimkuhler,
2015), we present Splitting Integrators for efficient sampling in diffusion models. However,
we show that their naive application can be sub-optimal for sampling efficiency. Therefore,
based on local error analysis for numerical solvers (Hairer et al., 1993), we present several
improvements to our naive schemes to achieve improved sample efficiency. We denote the
resulting samplers as Reduced Splitting Integrators.

• Conjugate Splitting Integrators. We combine conjugate integrators with reduced splitting
integrators for improved sampling efficiency and denote the resulting samplers as Con-
jugate Splitting Integrators. Our proposed samplers significantly improve sampling effi-
ciency in PSLD. For instance, our best deterministic sampler achieves FID scores of 2.65
and 2.11, while our best stochastic sampler achieves FID scores of 2.74 and 2.36 in 50 and
100 NFEs, respectively, for CIFAR-10 (Krizhevsky, 2009) (See Table 1 for comparisons).

2 BACKGROUND

As follows, we provide relevant background on diffusion models and their augmented versions.
Diffusion models assume that a continuous-time forward process (usually with an affine drift).

dzt = Ftzt dt+Gt dwt, t ∈ [0, T], (1)

2

Published as a conference paper at ICLR 2024

with a standard Wiener process wt, time-dependent matrix F : [0, T] → R
d×d, and diffusion coef-

ficient G : [0, T] → R
d×d, converts data z0 ∈ R

d into noise. A reverse SDE specifies how data is
generated from noise (Anderson, 1982; Song et al., 2020),

dzt =
[
Ftzt −GtG

⊤
t ∇xt

log pt(zt)
]
dt+Gtdw̄t, (2)

which involves the score ∇zt
log pt(zt) of the marginal distribution over zt at time t. Alternatively,

data can be generated from the Probability-Flow ODE (Song et al., 2020),

dzt =

[

Ftzt −
1

2
GtG

⊤
t ∇zt

log pt(zt)

]

dt. (3)

The score is intractable to compute and is approximated using a parametric estimator sθ(zt, t),
trained using denoising score matching (Vincent, 2011; Song & Ermon, 2019; Song et al., 2020).
Once the score has been learned, generating new data samples involves sampling noise from the
stationary distribution of Eqn. 1 (typically an isotropic Gaussian) and numerically integrating Eqn. 2,
resulting in a stochastic sampler, or Eqn. 3 resulting in a deterministic sampler. While most work
on efficient sample generation in diffusion models has focused on a limited class of non-augmented
diffusion models (Song et al., 2020; Karras et al., 2022), our work is also applicable to a broader
class of diffusion models. These two classes of diffusion models are presented next.

Non-Augmented Diffusions. Many existing diffusion models are formulated purely in data space,
i.e., zt = xt ∈ R

d. One popular example is the Variance Preserving (VP)-SDE (Song et al.,
2020) with Ft = − 1

2βtId,Gt =
√
βtId. Recently, Karras et al. (2022) instead propose a re-scaled

process, with Ft = 0d,Gt =
√
2σ̇tσtId ,which allows for faster sampling during generation. Here

βt, σt ∈ R define the noise schedule in their respective diffusion processes.

Augmented Diffusions. For augmented diffusions, the data (or position) space, xt, is coupled
with auxiliary (a.k.a momentum) variables, mt, and diffusion is performed in the joint space. For
instance, Pandey & Mandt (2023) propose PSLD, where zt = [xt,mt]

T ∈ R
2d. Moreover,

Ft =

(
β

2

(

−Γ M−1

−1 −ν

)

⊗ Id
)

, Gt =

((√
Γβ 0
0

√
Mνβ

)

⊗ Id
)

, (4)

where {β,Γ, ν,M−1} ∈ R are the SDE hyperparameters. Augmented diffusions have been shown
to exhibit better sample quality with a faster generation process (Dockhorn et al., 2022b; Pandey
& Mandt, 2023), and better likelihood estimation (Singhal et al., 2023) over their non-augmented
counterparts. In this work, we focus on sample quality and, therefore, study the efficient samplers
we develop in the PSLD setting.

3 DESIGNING EFFICIENT SAMPLERS FOR GENERATIVE DIFFUSIONS

We present two complementary frameworks for efficient diffusion sampling. We start by discussing
Conjugate Integrators, a generic framework that maps reverse diffusion dynamics into a more suit-
able space for efficient deterministic sampling. Next, we discuss Splitting Integrators, which alter-
nate between numerical updates for separate components to simulate the reverse diffusion dynamics.
Lastly, we unify the benefits of both frameworks and discuss Conjugate Splitting Integrators, which
enable the generation of high-quality samples, even with a low NFE budget.

3.1 CONJUGATE INTEGRATORS FOR EFFICIENT DETERMINISTIC SAMPLING

Given a dynamical system (e.g., the ODE in Eqn. 3), the primary intuition behind conjugate integra-
tors is to use invertible transformations to project the current state at time t into another space which
is more amenable for numerical integration. The transformation is chosen such that integration can
be performed with a relatively larger step size and therefore reaches a solution faster. The result-
ing dynamics in the projected space can then be inverted to obtain the final solution in the original
space. We first define conjugate integrators before deriving a mapping that allows us to use them in
diffusion model sampling.

Definition 3.1 (Conjugate Integrators). Given an ODE: dzt = f(zt, t) dt, let Gh : zt → zt+h de-
note a numerical integrator map for this ODE with step-size h > 0. Furthermore, given a continuous-
invertible mapping ϕ : [0, T] × R

d → R
d such that ẑt = ϕt(zt), let Hh : ẑt → ẑt+h denote a

3

Published as a conference paper at ICLR 2024

3a also suggests that naive splitting schemes exhibit poor sample quality at low NFE budgets. This
suggests the need for a deeper insight into the error analysis for the naive schemes.

Therefore, based on local error analysis for ODEs, we propose the following improvements to our
naive samplers.

• We reuse the score function evaluation between the first consecutive position and the momentum
updates in both the NSE and the NVV samplers.

• Next, for NVV, we use the score function evaluation sθ(xt+h,mt+h/2, T − (t + h)) in the last
update step instead.

Consequently, we denote the resulting samplers as Reduced Symplectic Euler (RSE) and Reduced
Velocity Verlet (RVV), respectively (see Appendix C.2.2 for exact numerical updates). Though
both the naive and the reduced schemes have the same convergence order (see Appendix C.2.5),
the reduced schemes significantly improve PSLD sampling efficiency over their naive counterparts
(Fig. 3b). This is because our proposed adjustments serve two benefits: Firstly, the number of
NFEs per update step is reduced by one, enabling smaller step sizes for the same sampling budget.
This reduces numerical error during sampling. Secondly, our proposed adjustments lead to the
cancellation of certain error terms, which is especially helpful for large step sizes during sampling
(see Appendix C.2.4 for a theoretical analysis).

Stochastic Splitting Integrators. Analogously, we can also apply splitting integrators to the PSLD
Reverse SDE. Based on initial experimental results, we use the following splitting scheme.
(
dx̄t

dm̄t

)

=
β

2

(

2Γx̄t −M−1
m̄t + 2Γsxθ (z̄t, t)
0

)

dt

︸ ︷︷ ︸

A

+O +
β

2

(
0

x̄t + 2νm̄t + 2Mνsmθ (z̄t, t)

)

dt

︸ ︷︷ ︸

B

.

where O =

(
−βΓ

2 x̄tdt+
√
βΓdw̄t

−βν
2 m̄tdt+

√
Mνβdw̄t

)

represents the Ornstein-Uhlenbeck process in the joint

space. Among several possible composition schemes, we found the schemes OBA, BAO, and OBAB

to work particularly well. We discuss L[OBA]
h = LA

h ◦ LB
h ◦ LO

h , which we denote as Naive OBA
(NOBA), in more details here and defer all discussion related to other schemes to Appendix C.3.
Analogous to the deterministic setting, we propose several adjustments over the naive scheme.

• We reuse the score function evaluation between the position and the momentum updates, which
leads to improved sampling efficiency over the naive scheme (Fig. 3c).

• Next, similar to Karras et al. (2022), we introduce a parameter λs in the position space update for
LO to control the amount of noise injected in the position space. However, adding a similar pa-
rameter in the momentum space led to unstable behavior and, therefore, restricted this adjustment
to the position space.

With these adjustments, we denote the resulting sampler as Reduced OBA (ROBA) (see Appendix
C.3.3 for full numerical updates). Empirically, the ROBA sampler with a tuned λs outperforms other
baselines by a significant margin (see Fig. 3c).

Discussion. In this section, we presented Splitting Integrators for constructing efficient deterministic
and stochastic samplers for diffusion models. We construct splitting integrators with alternating
updates in the position and momentum variables, leading to higher-order integrators. However, a
naive application of splitting integrators can be sub-optimal. Consequently, we propose principled
adjustments for naive splitting samplers, which lead to significant improvements. However, a more
principled theoretical investigation in the role of λs remains an interesting direction for future work.

3.3 COMBINING SPLITTING AND CONJUGATE INTEGRATORS

In the context of Splitting Integrators, so far, we have used Euler for numerically solving each
splitting component. However, in principle, each splitting component can also be solved using
more efficient numerical schemes like Conjugate Integrators discussed in Section 3.1. We refer
to the latter as Conjugate Splitting Integrators. For subsequent discussions, we combine the λ-
DDIM-II conjugate integrator proposed in Section 3.1 and the reduced splitting samplers discussed

7

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

KP acknowledges support from the Bosch Center for Artificial Intelligence and the HPI Research
Center in Machine Learning and Data Science at UC Irvine. SM acknowledges support from the
National Science Foundation (NSF) under an NSF CAREER Award, award numbers 2003237 and
2007719, by the Department of Energy under grant DE-SC0022331, the IARPA WRIVA program,
and by gifts from Qualcomm and Disney.

REFERENCES

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and
their Applications, 12(3):313–326, 1982. ISSN 0304-4149. doi: https://doi.org/10.
1016/0304-4149(82)90051-5. URL https://www.sciencedirect.com/science/

article/pii/0304414982900515.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the opti-
mal reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=0xiJLKH-ufZ.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=NsMLjcFaO8O.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/

torchdiffeq.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
Advances in Neural Information Processing Systems, 35:30150–30166, 2022a.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. In International Conference on Learning Representations, 2022b.
URL https://openreview.net/forum?id=CzceR82CYc.

J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of Compu-
tational and Applied Mathematics, 6(1):19–26, 1980. ISSN 0377-0427. doi: https://doi.org/
10.1016/0771-050X(80)90013-3. URL https://www.sciencedirect.com/science/

article/pii/0771050X80900133.

Martin Gonzalez, Nelson Fernandez, Thuy Tran, Elies Gherbi, Hatem Hajri, and Nader Masmoudi.
Seeds: Exponential sde solvers for fast high-quality sampling from diffusion models, 2023.

E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I (2nd Revised.
Ed.): Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg, 1993. ISBN 0387566708.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. Advances in Neural Information Processing Systems, 35:
27953–27965, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

10

Published as a conference paper at ICLR 2024

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23
(47):1–33, 2022a.

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. In ICLR Workshop on Deep Generative Models for Highly Struc-
tured Data, 2022b. URL https://openreview.net/forum?id=BBelR2NdDZ5.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021a.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Ioannis Mitliagkas, and Remi Tachet des
Combes. Adversarial score matching and improved sampling for image generation. In Interna-
tional Conference on Learning Representations, 2021b. URL https://openreview.net/

forum?id=eLfqMl3z3lq.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer Berlin Heidelberg, 1992. doi: 10.1007/978-3-662-12616-5. URL https://doi.

org/10.1007/978-3-662-12616-5.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Max WY Lam, Jun Wang, Dan Su, and Dong Yu. Bddm: Bilateral denoising diffusion models for
fast and high-quality speech synthesis. In International Conference on Learning Representations,
2021.

B. Leimkuhler. Molecular dynamics : with deterministic and stochastic numerical methods / Ben
Leimkuhler, Charles Matthews. Interdisciplinary applied mathematics, 39. Springer, Cham, 2015.
ISBN 3319163744.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=PlKWVd2yBkY.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen Zhydenko, Jonathan Kyl, and Elvis Yu-
Jing Lin. High-fidelity performance metrics for generative models in pytorch, 2020. URL
https://github.com/toshas/torch-fidelity. Version: 0.3.0, DOI: 10.5281/zen-
odo.4957738.

Kushagra Pandey and Stephan Mandt. Generative diffusions in augmented spaces: A complete
recipe, 2023.

11

Published as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/

2204.06125.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. volume 35, pp. 36479–36494,
2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022b.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=TIdIXIpzhoI.

Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. Where to diffuse, how to diffuse, and
how to get back: Automated learning for multivariate diffusions. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=osei3IzUia.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/

forum?id=St1giarCHLP.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American Math-
ematical Society, 10(4):545–551, 1959. doi: 10.1090/s0002-9939-1959-0108732-6. URL
https://doi.org/10.1090/s0002-9939-1959-0108732-6.

Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical properties of lennard-
jones molecules. Phys. Rev., 159:98–103, Jul 1967. doi: 10.1103/PhysRev.159.98. URL https:

//link.aps.org/doi/10.1103/PhysRev.159.98.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011. doi: 10.1162/NECO a 00142.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

12

Published as a conference paper at ICLR 2024

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sam-
ple from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

Suttisak Wizadwongsa and Supasorn Suwajanakorn. Accelerating guided diffusion sampling with
splitting numerical methods. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=F0KTk2plQzO.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models, 2023.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation, 2022. URL https://arxiv.org/abs/2203.09481.

Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150(5):262–
268, 1990. ISSN 0375-9601. doi: https://doi.org/10.1016/0375-9601(90)90092-3. URL https:

//www.sciencedirect.com/science/article/pii/0375960190900923.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=Loek7hfb46P.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022.

Richard Zhang. Making convolutional networks shift-invariant again. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7324–7334. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/zhang19a.html.

13

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Background 2

3 Designing efficient Samplers for Generative Diffusions 3

3.1 Conjugate Integrators for efficient deterministic Sampling 3

3.2 Splitting Integrators for Fast ODE and SDE Sampling 6

3.3 Combining Splitting and Conjugate Integrators 7

4 Additional Experimental Results 8

5 Discussion 9

A Related Work 15

B Conjugate Integrators for Faster ODE Sampling 15

B.1 Proof of Theorem 1 . 15

B.2 Proof of Proposition 1: Connection with DDIM 16

B.3 Proof of Proposition 2: Connections with DPM-Solver 17

B.4 Proof of Proposition 2: Connections with DEIS 18

B.5 Proof of Theorem 2 . 20

B.6 Conjugate Integrators in the Wild . 22

C Splitting Integrators for Fast ODE/SDE Sampling 23

C.1 Introduction to Splitting Integrators . 23

C.2 Deterministic Splitting Integrators . 23

C.2.1 Naive Splitting Samplers . 24

C.2.2 Reduced Splitting Samplers . 24

C.2.3 Local Error Analysis for Deterministic Splitting Integrators 25

C.2.4 Error Analysis: Naive Velocity Verlet (NVV) 26

C.2.5 Error Analysis: Reduced Velocity Verlet (RVV) 30

C.3 Stochastic Splitting Integrators . 33

C.3.1 Naive Splitting Samplers . 34

C.3.2 Effects of controlling stochasticity . 34

C.3.3 Reduced Splitting Schemes . 34

D Conjugate Splitting Integrators 35

D.1 Deterministic Conjugate Splitting Samplers . 35

D.2 Stochastic Conjugate Splitting Samplers . 37

14

Published as a conference paper at ICLR 2024

E Implementation Details 38

E.1 Datasets and Preprocessing . 38

E.2 Pre-trained Models . 38

E.3 Score Network Preconditioning . 38

E.4 Evaluation . 38

F Extended Results 40

F.1 Extended Results for Section 3.1: Conjugate Integrators 40

F.2 Extended Results for Section 3.2: Splitting Integrators 40

F.3 Extended Results for Section 3.3: Conjugate Splitting Integrators 41

F.4 Extended Results: Impact of Preconditioning . 41

F.5 Extended Results for Section 4: State-of-the-art Results 42

A RELATED WORK

In addition to the recent work based on exponential integrators (Zhang & Chen, 2023; Lu et al.,
2022; Zhang et al., 2022; Song et al., 2021), PNDM (Liu et al., 2022) re-casts the sampling pro-
cess in DDPM (Ho et al., 2020) as numerically solving differential equations on manifolds. Ad-
ditionally, Karras et al. (2022) highlight and optimize several design choices in diffusion model
training (including score network preconditioning, improved network architectures, and improved
data augmentation) and sampling (including improved time-discretization schedules), which leads
to significant improvements in sample quality during inference. While this is not our primary focus,
exploring these choices in the context of other diffusions like PSLD (Pandey & Mandt, 2023) could
be an interesting direction for future work. Other works for faster sampling have also focused on
using adaptive solvers (Jolicoeur-Martineau et al., 2021a), optimal variance during sampling (Bao
et al., 2022), and optimizing timestep schedules (Watson et al., 2021). Though prior works have fo-
cused mostly on speeding up deterministic sampling, there have also been some recent advances in
speeding up stochastic sampling in diffusion models (Karras et al., 2022; Xue et al., 2023; Gonzalez
et al., 2023).

Splitting integrators are extensively used in the design of symplectic integrators in molecular dy-
namics (Leimkuhler, 2015; Yoshida, 1990; Verlet, 1967; Trotter, 1959). However, their application
for efficient sampling in diffusion models is only explored by a few works (Dockhorn et al., 2022b;
Wizadwongsa & Suwajanakorn, 2023). In this work, in the context of PSLD, we show the structure
in the diffusion model ODE/SDE can be used to design efficient splitting-based samplers. However,
as shown in this work, a naive application of splitting integrators can be sub-optimal for sample
quality, and careful analysis might be required to design splitting integrators for diffusion models.

Lastly, another line of research for fast diffusion model sampling involves additional training (Song
et al., 2023; Dockhorn et al., 2022a; Salimans & Ho, 2022; Meng et al., 2023; Luhman & Luhman,
2021). In contrast, our proposed framework does not require additional training during inference.

B CONJUGATE INTEGRATORS FOR FASTER ODE SAMPLING

B.1 PROOF OF THEOREM 1

We restate the full theorem for completeness.

Theorem. Let zt evolve according to the probability-flow ODE in Eqn. 3 with the score function
parameterization given in Eqn. 5. For any mapping B : [0, T] × R

d → R
d and At, Φt given by

Eqn. 6, the probability flow ODE in the projected space ẑt = Atzt is given by

dẑt = AtBtA
−1
t ẑtdt+ dΦtϵθ

(
Cin(t)A

−1
t ẑt, Cnoise(t)

)
(9)

15

Published as a conference paper at ICLR 2024

The forward process for a diffusion with affine drift can be specified as:

dzt = Ftzt dt+Gt dwt. (10)

Consequently, the probability flow ODE corresponding to the process in Eqn. 10 is given by:

dzt =

[

Ftzt −
1

2
GtG

⊤
t sθ(zt, t)

]

dt. (11)

Furthermore, the score network is parameterized as follows:

sθ(zt, t) = Cskip(t)zt +Cout(t)ϵθ(Cin(t)zt, Cnoise(t)) (12)

Substituting the score network parameterization in Eqn. 11, we have the following form of the
probability flow ODE:

dzt
dt

= Ftzt −
1

2
GtG

⊤
t

[

Cskip(t)zt +Cout(t)ϵθ(Cin(t)zt, Cnoise(t))
]

(13)

=

[

Ft −
1

2
GtG

⊤
t Cskip(t)

]

zt −
1

2
GtG

⊤
t Cout(t)ϵθ(Cin(t)zt, Cnoise(t)) (14)

Given an affine transformation which projects the state zt to ẑt,

ẑt = Atzt (15)

Therefore, by the Chain Rule of calculus,

dẑt
dt

=
dAt

dt
zt +At

dzt
dt

(16)

Substituting the ODE in Eqn. 14 in Eqn. 16,

dẑt
dt

=
dAt

dt
zt +At

[(

Ft −
1

2
GtG

⊤
t Cskip(t)

)

zt −
1

2
GtG

⊤
t Cout(t)ϵθ(Cin(t)zt, Cnoise(t))

]

(17)

=

[
dAt

dt
+At

(

Ft −
1

2
GtG

⊤
t Cskip(t)

)]

zt −
1

2
AtGtG

⊤
t Cout(t)ϵθ(Cin(t)zt, Cnoise(t))

(18)

=

[
dAt

dt
+At

(

Ft −
1

2
GtG

⊤
t Cskip(t)

)]

A−1
t ẑt −

1

2
AtGtG

⊤
t Cout(t)ϵθ(Cin(t)A

−1
t ẑt, Cnoise(t))

(19)

We further define the matrix coefficientsBt and Φt such that,

dAt

dt
+At

(

Ft −
1

2
GtG

⊤
t Cskip(t)

)

= AtBt (20)

dΦt

dt
= −1

2
AtGtG

⊤
t Cout(t) (21)

which yields the required diffusion ODE in the projected space:

dẑt
dt

= AtBtA
−1
t ẑt +

dΦt

dt
ϵθ
(
Cin(t)A

−1
t ẑt, Cnoise(t)

)
(22)

B.2 PROOF OF PROPOSITION 1: CONNECTION WITH DDIM

Proposition. For the VP-SDE (Song et al., 2020), for the choice of Bt = 0, the transformed ODE
in Eqn. 7 corresponds to the DDIM ODE proposed in Song et al. (2021)

16

Published as a conference paper at ICLR 2024

Proof. The forward process for the VP-SDE (Song et al., 2020) is given by:

dzt = −1

2
βtztdt+

√

βtdwt (23)

where βt determines the noise schedule. This implies Ft = − 1
2βtId and Gt =

√
βtId. Further-

more, the score network in the VP-SDE is often parameterized as sθ(zt, t) = −ϵθ(zt, t)/σt where
σ2
t is the variance of the perturbation kernel p(zt|z0). It follows that for VP-SDE,

Cskip(t) = 0, Cout(t) = − 1

σt
, Cin(t) = Id, Cnoise(t) = t. (24)

SettingBt = 0, we can determine the coefficientsAt and Φt as follows:

dAt

dt
+At

(

Ft −
1

2
GtG

⊤
t Cskip(t)

)

= AtBt ⇒ dAt

dt
− 1

2
βtAt = 0 (25)

At = exp

(
1

2

∫ t

0

βsds

)

Id (26)

Similarly,

dΦt

dt
= −1

2
AtGtG

⊤
t Cout(t) =

1

2
exp

(
1

2

∫ t

0

βsds

)
βt

σt
Id (27)

Since the variance of the perturbation kernel p(xt|x0) is given by σ2
t =

[

1− exp
(

−
∫ t

0
βsds

)]

,

we can reformulate the above ODE as:

dΦt

dt
=

βt

2σt

√

1− σ2
t

Id (28)

Consequently, the ODE in the transformed space can be specified as:

dẑt
dt

= AtBtA
−1
t ẑt +

dΦt

dt
ϵθ
(
Cin(t)A

−1
t ẑt, Cnoise(t)

)
(29)

=
βt

2σt

√

1− σ2
t

ϵθ

(√

1− σ2
t ẑt, t

)

(30)

Defining γt = σt/
√

1− σ2
t , it can be shown that, dγt =

βt

2σt

√
1−σ2

t

dt. Therefore, reformulating the

ODE in Eqn. 30 in terms of γt,

dẑt
dγt

= ϵθ

(

ẑt
√

1 + γ2
t

, t

)

(31)

which is the DDIM ODE proposed in Song et al. (2021). Therefore for the VP-SDE and the choice
ofBt = 0, the proposed conjugate integrator is equivalent to the DDIM integrator.

B.3 PROOF OF PROPOSITION 2: CONNECTIONS WITH DPM-SOLVER

Proposition. For the diffusion model formulation considered in Lu et al. (2022), the exponential
integrator proposed in DPM-Solver (Lu et al., 2022) is a numerical integrator for the transformed
ODE in Eqn. 8 (See Appendix B.3 for a proof)

Proof. For simplicity, we restrict the parameterization of the score estimator to sθ(zt, t) = −L−⊤
t ,

where Lt is the Cholesky decomposition of the variance Σt of the perturbation kernel. This implies,

Cskip(t) = 0, Cout(t) = −L−⊤
t , Cin(t) = Id, Cnoise(t) = t. (32)

Furthermore, for the choice ofBt = 0, the transformed ODE simplifies to,

dẑt = dΦtϵθ
(
A−1

t ẑt, t
)

(33)

dẑt =
1

2
AtGtG

⊤
t L

−⊤
t ϵθ(A

−1
t ẑt, t) (34)

17

Published as a conference paper at ICLR 2024

It follows that for any two timepoints t and s, we have,

ẑt = ẑs +
1

2

∫ t

s

AτGτG
⊤
τ L

−⊤
τ ϵθ(A

−1
τ ẑτ , τ)dτ (35)

Atzt = Aszs +
1

2

∫ t

s

AτGτG
⊤
τ L

−⊤
τ ϵθ(A

−1
τ ẑτ , τ)dτ (36)

zt = A
−1
t Aszs +

A−1
t

2

∫ t

s

AτGτG
⊤
τ L

−⊤
τ ϵθ(A

−1
τ ẑτ , τ)dτ (37)

Moreover, sinceBt = 0, we have,

dAt

dt
+At

(

Ft −
1

2
GtG

⊤
t Cskip(t)

)

= AtBt (38)

dAt

dt
+AtFt = 0 ⇒ Ft = −A−1

t

dAt

dt
(39)

Next, we consider diffusions of the form,

dzt = f(t)ztdt+ g(t)dwt (40)

where,

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (41)

Here α(t) and σ(t) are differentiable functions defining the diffusion process’s noise schedule.

Moreover, for this process, the score is usually parameterized as sθ(zt, t) = − ϵθ(zt,t)
σt

, implying

L−⊤
t in our parameterization corresponds to σ−1

t . Moreover, comparing the drift scaling factors in
Eqns. 39 and 41, it follows that αt = 1/at where At = atId. Therefore, the integrator in Eqn. 37
can be re-written as,

zt =
αt

αs
zs +

αt

2

∫ t

s

aτ
g2τ
σt
ϵθ(zτ , τ)dτ (42)

Lastly, defining λt = log αt

σt
, it can be shown that g2t = −2σ2

t
dλt

dt . Substituting this result for g2t in

Eqn. 42, we get the following integrator,

zt =
αt

αs
zs − αt

∫ t

s

dλτ

dτ

στ

ατ
ϵθ(zτ , τ)dτ (43)

Applying change of variables in Eqn. 43 from τ to λ, we get the exponential integrator in DPM-
Solver (Lu et al., 2022) as follows:

zt =
αt

αs
zs − αt

∫ λt

λs

e−λϵ̂θ(ẑλ, λ)dλ (44)

which concludes our proof.

B.4 PROOF OF PROPOSITION 2: CONNECTIONS WITH DEIS

Proposition. More generally, for any diffusion model as specified in Eqn. 1, the conjugate integrator
update in Eqn. 8 is equivalent to applying the exponential integrator proposed in Zhang & Chen
(2023) in the original space zt. Moreover, using polynomial extrapolation in Zhang & Chen (2023)
corresponds to using the explicit Adams-Bashforth solver for the transformed ODE in Eqn. 7.

Proof. For simplicity, we restrict the parameterization of the score estimator to sθ(zt, t) = −L−⊤
t ,

where Lt is the Cholesky decomposition of the variance Σt of the perturbation kernel. This implies,

Cskip(t) = 0, Cout(t) = −L−⊤
t , Cin(t) = Id, Cnoise(t) = t. (45)

Furthermore, for the choice ofBt = 0, the simplified transformed ODE can be specified as:

dẑt = dΦtϵθ
(
A−1

t ẑt, t
)
, (46)

18

Published as a conference paper at ICLR 2024

Subsequently, the update rule for the proposed conjugate integrator reduces to the following form:

ẑt−h = ẑt + (Φt−h −Φt)ϵθ
(
A−1

t ẑt, t
)

(47)

where,
dAt

dt
+AtFt = 0 (48)

Φt =
1

2

∫ t

0

AsGsG
⊤
s L

−⊤
s ds (49)

Transforming the update rule in Eqn. 47 back to the original space,

ẑt−h = ẑt + (Φt−h −Φt)ϵθ
(
A−1

t ẑt, t
)

(50)

At−hzt−h = Atzt + (Φt−h −Φt)ϵθ
(
A−1

t ẑt, t
)

(51)

Pre-multiplying withA−1
t−h both sides and substituting the value of Φt from Eqn. 49

zt−h = A−1
t−hAtzt +A

−1
t−h(Φt−h −Φt)ϵθ

(
A−1

t ẑt, t
)

(52)

= A−1
t−hAtzt +

1

2
A−1

t−h

(
∫ t−h

0

AsGsG
⊤
s L

−⊤
s ds−

∫ t

0

AsGsG
⊤
s L

−⊤
s ds

)

ϵθ
(
A−1

t ẑt, t
)

(53)

zt−h = A−1
t−hAtzt +

1

2
A−1

t−h

(
∫ t−h

t

AsGsG
⊤
s L

−⊤
s ds

)

ϵθ
(
A−1

t ẑt, t
)

(54)

= A−1
t−hAtzt +

1

2

(
∫ t−h

t

A−1
t−hAsGsG

⊤
s L

−⊤
s ds

)

ϵθ
(
A−1

t ẑt, t
)

(55)

Defining ψ(t, s) = A−1
t As, we can rewrite the update rule in Eqn. 55 as follows:

zt−h = ψ(t− h, t)zt +
1

2

(
∫ t−h

t

ψ(t− h, s)GsG
⊤
s L

−⊤
s ds

)

ϵθ
(
A−1

t ẑt, t
)

(56)

The update rule in Eqn. 56 is the same as the exponential integrator proposed in Zhang & Chen
(2023); Zhang et al. (2022). Furthermore, Zhang & Chen (2023) proposes using polynomial extrap-
olation to speed up the diffusion process further. We next show that using polynomial extrapolation
is equivalent to applying the explicit Adams-Bashforth method to the transformed ODE in Eqn. 46.

Explicit Adams-Bashforth applied to the transformed ODE: Given the transformed ODE in Eqn.
46, it follows that,

ẑti = ẑtj +

∫ ti

tj

dΦsϵθ
(
A−1

s ẑs, s
)

(57)

As done in the explicit Adams-Bashforth method, we can approximate the integrand ϵθ
(
A−1

s ẑs, s
)

by a polynomial Pr(s) with degree r. As an illustration, for r = 1, we have P1(s) = c0+c1(s−tj),
where the coefficients c0 and c1 are specified as,

c0 = ϵθ

(

A−1
tj ẑtj , tj

)

, c1 =
1

tj−1 − tj

[

ϵθ

(

A−1
tj−1

ẑtj−1
, tj−1

)

− ϵθ
(

A−1
tj ẑtj , tj

)]

(58)

Therefore we have the polynomial approximation P1(s) for ϵθ
(
A−1

s ẑs, s
)

as,

P1(s) = ϵθ

(

A−1
tj ẑtj , tj

)

+
s− tj

tj−1 − tj

[

ϵθ

(

A−1
tj−1

ẑtj−1
, tj−1

)

− ϵθ
(

A−1
tj ẑtj , tj

)]

(59)

=

(
s− tj−1

tj − tj−1

)

ϵθ

(

A−1
tj ẑtj , tj

)

+

(
s− tj

tj−1 − tj

)

ϵθ

(

A−1
tj−1

ẑtj−1
, tj−1

)

(60)

19

Published as a conference paper at ICLR 2024

In the general case, the polynomial Pr(s) can be compactly represented as,

Pr(s) =

r∑

k=0

Ck(s)ϵθ

(

A−1
tj−k

ẑtj−k
, tj−k

)

, Ck(s) =

r∏

l ̸=k

[
s− tj−l

tj−k − tj−l

]

(61)

Therefore, replacing the integrand ϵθ
(
A−1

s ẑs, s
)

by its polynomial approximation Pr(s), we have:

ẑti = ẑtj +

∫ ti

tj

dΦsPr(s) (62)

ẑti = ẑtj +

∫ ti

tj

dΦs

r∑

k=0

Ck(s)ϵθ

(

A−1
tj−k

ẑtj−k
, tj−k

)

(63)

ẑti = ẑtj +

r∑

k=0

[
∫ ti

tj

dΦsCk(s)

]

ϵθ

(

A−1
tj−k

ẑtj−k
, tj−k

)

(64)

ẑti = ẑtj +
r∑

k=0

[
∫ ti

tj

1

2
AsGsG

⊤
s L

−⊤
s Ck(s)ds

]

ϵθ

(

A−1
tj−k

ẑtj−k
, tj−k

)

(65)

Atizti = Atjztj +

r∑

k=0

[
∫ ti

tj

1

2
AsGsG

⊤
s L

−⊤
s Ck(s)ds

]

ϵθ
(
ztj−k

, tj−k

)
(66)

zti = A
−1
ti Atjztj +

r∑

k=0

[
∫ ti

tj

1

2
A−1

ti AsGsG
⊤
s L

−⊤
s Ck(s)ds

]

ϵθ
(
ztj−k

, tj−k

)
(67)

zti = ψ(ti, tj)ztj +

r∑

k=0

[
∫ ti

tj

1

2
ψ(ti, s)GsG

⊤
s L

−⊤
s Ck(s)ds

]

ϵθ
(
ztj−k

, tj−k

)
(68)

which is the required exponential integrator with polynomial extrapolation proposed in Zhang &
Chen (2023). Therefore, applying Adams-Bashforth in the transformed ODE in Eqn. 46 corresponds
to polynomial extrapolation in Zhang & Chen (2023).

B.5 PROOF OF THEOREM 2

We restate the full statement of Theorem 2 here (with regularity conditions) as follows.

Theorem. Let Ft and Gt be the flow maps induced by the transformed ODE

dẑt
dt

= AtBtA
−1
t ẑt +

dΦt

dt
ϵθ
(
Cin(t)A

−1
t ẑt, Cnoise(t)

)
(69)

and by the conjugate integrator defined as

ẑt−h = ẑt − hAtBtA
−1
t ẑt + (Φt−h −Φt)ϵθ

(
Cin(t)A

−1
t ẑt, Cnoise(t)

)
(70)

respectively. We define two points, ẑ(t) and ẑt, sampled from F and G respectively at time t such
that ∥ẑ(t) − ẑt∥ < δ for some δ > 0. Furthermore, let UΛU−1 denote the eigendecomposition

of the matrix 1
2GtG

T
t Cout(t)

∂ϵθ(Cinzt,t)
∂zt

. The conjugate integrator defined in Eqn. 70 is stable if

|1 + hλ̃| ≤ 1, where λ̃ denotes the eigenvalues of the matrix Λ̂ = Λ−U−1BtU .

Proof. We denote the conjugate integrator numerical update defined in Eqn. 70 by Gh. Therefore,
for this integrator to be stable, we need to show that,

∥Gh(ẑ(t))− Gh(ẑt)∥ ≤ ∆, ∆ > 0 (71)

i.e., two nearby solution trajectories should not diverge under the application of the numerical update
in each step. Next, we compute Gh(ẑ(t)) as follows:

Gh(ẑ(t)) = ẑ(t)− hAtBtA
−1
t ẑ(t) + (Φt−h −Φt)ϵθ

(
Cin(t)A

−1
t ẑ(t), Cnoise(t)

)
(72)

= ẑ(t)− hAtBtA
−1
t ẑ(t)− h

dΦt

dt
ϵθ
(
Cin(t)A

−1
t ẑ(t), Cnoise(t)

)
+O(h2) (73)

20

Published as a conference paper at ICLR 2024

where we have used the first-order taylor series approximation of Φt−h in the above equation. Sub-

stituting dΦt

dt = − 1
2AtGtG

⊤
t Cout(t) in the above equation and ignoring the higher order terms

O(h2), we get,

Gh(ẑ(t)) = ẑ(t)− hAtBtA
−1
t ẑ(t) +

h

2
AtGtG

⊤
t Cout(t)ϵθ

(
Cin(t)A

−1
t ẑ(t), Cnoise(t)

)
(74)

= ẑ(t)− hAtBtA
−1
t ẑ(t) +

h

2
AtGtG

⊤
t Cout(t)ϵθ (Cin(t)z(t), Cnoise(t)) (75)

Similarly, Gh(ẑt) can be computed as follows:

Gh(ẑt) = ẑt − hAtBtA
−1
t ẑt +

h

2
AtGtG

⊤
t Cout(t)ϵθ (Cin(t)zt, Cnoise(t)) (76)

Therefore,

Gh(ẑ(t))− Gh(ẑt) = [ẑ(t)− ẑt]− hAtBtA
−1
t [ẑ(t)− ẑt] + (77)

h

2
AtGtG

⊤
t Cout(t)

[

ϵθ (Cin(t)z(t), Cnoise(t))− ϵθ (Cin(t)zt, Cnoise(t))
]

(78)

Approximating the term ϵθ (Cin(t)z(t), Cnoise(t)) using a first-order taylor series approximation
around the point ϵθ (Cin(t)zt, Cnoise(t)) as,

ϵθ (Cin(t)z(t), Cnoise(t)) = ϵθ (Cin(t)zt, Cnoise(t)) +∇zt
ϵθ (Cin(t)zt, Cnoise(t)) [z(t)− zt] (79)

= ϵθ (Cin(t)zt, Cnoise(t)) +∇zt
ϵθ (Cin(t)zt, Cnoise(t))A

−1
t [ẑ(t)− ẑt]

(80)

Substituting the first order approximation of ϵθ (Cin(t)z(t), Cnoise(t)) in Eqn. 78,

Gh(ẑ(t))− Gh(ẑt) =
[

I + hRt

][

ẑ(t)− ẑt

]

(81)

where we have defined,

Rt =
[1

2
AtGtG

⊤
t Cout(t)∇zt

ϵθ (Cin(t)zt, Cnoise(t))A
−1
t −AtBtA

−1
t

]

(82)

Therefore,

∥Gh(ẑ(t))− Gh(ẑt)∥ = ∥(I + hRt)(ẑ(t)− ẑt)∥ (83)

≤ ∥I + hRt∥ ∥ẑ(t)− ẑt)∥ (84)

Since ∥ẑ(t)− ẑt)∥ < δ, we need the growth factor ∥I + hRt∥ to be bounded, which implies,

ρ(I + hRt) ≤ 1 (85)

where ρ denotes the spectral radius of a diagonalizable matrix. Furthermore, let,

1

2
GtG

⊤
t Cout(t)∇zt

ϵθ (Cin(t)zt, Cnoise(t)) = UΛU−1 (86)

Therefore, we can simplifyRt as,

Rt =
[1

2
AtGtG

⊤
t Cout(t)∇zt

ϵθ (Cin(t)zt, Cnoise(t))A
−1
t −AtBtA

−1
t

]

(87)

= At

[1

2
GtG

⊤
t Cout(t)∇zt

ϵθ (Cin(t)zt, Cnoise(t))−Bt

]

A−1
t (88)

= At

[

UΛU−1 −Bt

]

A−1
t (89)

= (AtU)
[

Λ−U−1BtU
]

︸ ︷︷ ︸

=V Λ̃V −1

(AtU)−1 (90)

= (AtUV)Λ̃(AtUV)−1 (91)

Substituting this simplified expression forRt in Eqn. 85, it follows that,

|1 + hλ̃| ≤ 1 (92)

where λ̃ is an eigenvalue of the matrix Λ−U−1BtU which concludes the proof.

As a special case, for Bt = λId, we have Rt = (AtU)
[

Λ − λI
]

(AtU)−1. In this case the

condition for stability reduces to |1 + h(λ̂− λ)| ≤ 1 which concludes the proof for Corollary 1

21

Published as a conference paper at ICLR 2024

Algorithm 1 Conjugate Integrators (defined in Eqn. 8)

Input: Trajectory length T, Network function ϵθ(Cinzt, t), number of sampling steps N , a monotonically

decreasing timestep discretization {ti}Ni=0 spanning the interval (ϵ, T) and choice of Bt.
Output: zϵ = (xϵ, mϵ)

Compute {Ati}Ni=0 and {Φti}Ni=0 as in Eqn. 6 ▷ Pre-compute coefficients
zt0 ∼ p(zT) ▷ Draw initial samples from the generative prior
ẑt0 = At0zt0 ▷ Transform
for n = 0 to N − 1 do

h = (tn+1 − tn) ▷ Time step differential
dΦt = (Φtn+1 −Φtn) ▷ Phi differential

ẑtn+1 ← ẑtn + hAtnBtnA
−1
tn

ẑtn + dΦtϵθ(Cin(tn)A
−1
tn

ẑtn ,Cnoise(tn)) ▷ Update
end for
ztN = A

−1
tN

ẑtN ▷ Project to original space

B.6 CONJUGATE INTEGRATORS IN THE WILD

Here, we highlight some practical considerations when implementing Conjugate Integrators. We
present a high-level algorithmic implementation for the conjugate integrator defined in Eqn. 8 in
Algorithm 1. Next, we discuss several practical aspects, including the invertibility of the transfor-
mationAt and computing the coefficientsAt and Φt as specified in Eqn. 6.

Invertibility of the transformation At: Since we need to transform back the diffusion ODE dy-
namics from the projected space ẑt to the original space zt, ensuring the invertibility of the transfor-
mationAt is a crucial requirement of conjugate integrators. However, since the expression forAt is
composed of an integral over multiple terms in the matrix exponential, it is non-trivial to guarantee
matrix inversion since the matrices Bt and Cskip are user-specified. An alternate choice could be to
update the mapping At to At + δI where δ > 0 is a small constant to ensure non-zero eigenvalues
at any time t, thus ensuring invertibility. In this work, we set δ = 0 for all experiments since we do
not encounter any such instabilities during sampling.

Computing the CoefficientsAt and Φt: The coefficientsAt and Φt are defined as:

At = exp

(∫ t

0

Bs − Fs +
1

2
GsG

⊤
s Cskip(s)ds

)

, Φt = −
∫ t

0

1

2
AsGsG

⊤
s Cout(s)ds (93)

where exp(.) denotes the matrix exponential. For the score parameterization in PSLD (Eqn. 273),
these coefficients can be simplified as,

At = exp

(∫ t

0

(Bs − Fs) ds

)

, Φt =

∫ t

0

1

2
AsGsG

⊤
s L

−⊤
s ds (94)

For λ-DDIM, the matrix Bt is time-independent. Similarly, for PSLD, the matrix Ft is also time-
independent. Therefore, the coefficientAt further simplifies to,

At = exp ((B − F) t) (95)

The above matrix exponential can be computed using standard scientific libraries like PyTorch
(Paszke et al., 2019) or SciPy (Virtanen et al., 2020). Consequently, the coefficient Φt reduces
to the following form,

Φt =

∫ t

0

1

2
exp ((B − F) s)GsG

⊤
s L

−⊤
s ds (96)

Therefore, at any time t, we estimate the coefficient Φt using numerical integration. For a given
timestep schedule {ti} during sampling, we precompute the coefficient Φt, which can be shared
between all generated samples. For numerical integration, we use the odeint method from the
torchdiffeq package (Chen, 2018) with parameters atol=1e-5, rtol=1e-5 and the RK45

solver (Dormand & Prince, 1980). We set Φ0 = 0 as an initial condition. This is because, for the
VP-SDE, Φt corresponds to the noise-to-signal ratio at time t. Since we recover the data at time
t = 0, the noise-to-signal ratio drops to zero. We extend this intuition to multivariate diffusions like
PSLD and find this initial condition to work well in practice.

22

Published as a conference paper at ICLR 2024

Time Required for Computing coefficients Φt: Given a set of sampling timepoints {ti}, since
Φti is shared between all samples, we only need to compute {Φti} once at the start of sampling.
Empirically, for our largest budget of NFE=100 in this work, numerical integration for computing
coefficients Φt takes around 20 seconds on our setup, which is very cheap when amortized over a
large number of generated samples.

C SPLITTING INTEGRATORS FOR FAST ODE/SDE SAMPLING

C.1 INTRODUCTION TO SPLITTING INTEGRATORS

Here we provide a brief introduction to splitting integrators. For a detailed account of splitting
integrators for designing symplectic numerical methods, we refer interested readers to Leimkuh-
ler (2015). As discussed in the main text, the main idea behind splitting integrators is to split the
vector field of an ODE or the drift and the diffusion components of an SDE into independent sub-
components, which are then solved independently using a numerical scheme (or analytically). The
solutions to independent sub-components are then composed in a specific order to obtain the final
solution. Thus, three key steps in designing a splitting integrator are split, solve, and compose. We
illustrate these steps with an example of a deterministic dynamical system. However, the concept is
generic and can be applied to systems with stochastic dynamics as well.

Consider a dynamical system specified by the following ODE:
(
dxt

dmt

)

=

(
f(xt,mt)
g(xt,mt)

)

dt (97)

We start by choosing a scheme to split the vector field for the ODE in Eqn. 97. While different types
of splitting schemes can be possible, we choose the following scheme for this example,

(
dxt

dmt

)

=

(
f(xt,mt)

0

)

dt

︸ ︷︷ ︸

A

+

(
0

g(xt,mt)

)

dt

︸ ︷︷ ︸

B

(98)

where we denote the individual components by A and B. Next, we solve each of these components
independently, i.e., we compute solutions for the following ODEs independently.

(
dxt

dmt

)

=

(
f(xt,mt)

0

)

dt,

(
dxt

dmt

)

=

(
0

g(xt,mt)

)

dt (99)

While any numerical scheme can be used to approximate the solution for the splitting components,
we use Euler throughout this work. Therefore, applying an Euler approximation, with a step size h,
to each of these splitting components yields the solutions LA

h and LB
h , as follows,

LA
h =

{
xt+h = xt + hf(xt,mt)

mt+h = mt
, LB

h =

{
xt+h = xt

mt+h = mt + hg(xt,mt)
(100)

In the final step, we compose the solutions to the independent components in a specific order. For

instance, for the composition scheme AB, the final solution L[AB]
h = LB

h ◦ LA
h . Therefore,

L[AB]
h =

{
xt+h = xt + hf(xt,mt)

mt+h = mt + hg(xt+h,mt)
(101)

is the required solution. It is worth noting that the final solution depends on the chosen composition
scheme, and often it is not clear beforehand which composition scheme might work best.

C.2 DETERMINISTIC SPLITTING INTEGRATORS

We split the Probability Flow ODE for PSLD using the following splitting scheme
(
dx̄t

dm̄t

)

=
β

2

(

Γx̄t −M−1
m̄t + Γsxθ (z̄t, T − t)

0

)

dt

︸ ︷︷ ︸

A

+
β

2

(
0

x̄t + νm̄t +Mνsmθ (z̄t, T − t)

)

dt

︸ ︷︷ ︸

B

(102)

23

Published as a conference paper at ICLR 2024

where x̄t = xT−t, m̄t = mT−t, s
x
θ

and sm
θ

denote the score components in the data and momentum
space, respectively. In this work, we approximate the numerical update for each split using a simple
Euler-based update. Formally, we denote the Euler approximation for the splits A and B by LA and
LB , respectively. The corresponding numerical updates for LA and LB can be specified as:

LA :

{

x̄t+h = x̄t +
hβ
2

[

Γx̄t −M−1
m̄t + Γsxθ (x̄t, m̄t, T − t)

]

m̄t+h = m̄t

(103)

LB :

{
x̄t+h = x̄t

m̄t+h = m̄t +
hβ
2

[

x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)
] (104)

Next, we summarize the exact update equations for all deterministic splitting samplers proposed in
this work.

C.2.1 NAIVE SPLITTING SAMPLERS

We propose the following naive splitting samplers:

Naive Symplectic Euler (NSE): In this scheme, for a given step size h, the solutions to the splitting

pieces LA
h and LB

h are composed as L[BA]
h = LA

h ◦ LB
h . Consequently, one numerical update step

for this integrator can be defined as,

m̄t+h = m̄t +
hβ

2
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (105)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h + Γsxθ (x̄t, m̄t+h, T − t)
]

(106)

Therefore, one update step for the NVV sampler requires two NFEs.

Naive Velocity Verlet (NVV): In this scheme, for a given step size h, the solutions to the splitting

pieces LA
h and LB

h are composed as L[BAB]
h = LB

h/2 ◦ LA
h ◦ LB

h/2. Consequently, one numerical

update step for this integrator can be defined as

m̄t+h/2 = m̄t +
hβ

4
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (107)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h/2 + Γsxθ (x̄t, m̄t+h/2, T − t)
]

(108)

m̄t+h = m̄t+h/2 +
hβ

4

[
x̄t+h + νm̄t+h/2 +Mνsmθ (x̄t+h, m̄t+h/2, T − t)

]
(109)

Therefore, one update step for the NVV sampler requires three NFEs.

C.2.2 REDUCED SPLITTING SAMPLERS

Analogous to the NSE and NVV samplers, we propose the Reduced Symplectic Euler (RSE) and
the Reduced Velocity Verlet (RVV) samplers, respectively.

Reduced Symplectic Euler (RSE): The numerical updates for this scheme are as follows (the terms
in red denote the changes from the NSE scheme),

m̄t+h = m̄t +
hβ

2
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (110)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h + Γsxθ (x̄t, m̄t, T − t)
]

(111)

It is worth noting that the RSE sampler requires only one NFE per update step since a single score
evaluation is re-used in both the momentum and the position updates.

24

Published as a conference paper at ICLR 2024

Reduced Velocity Verlet (RVV): The numerical updates for this scheme are as follows (the terms
in blue denote the changes from the NVV scheme),

m̄t+h/2 = m̄t +
hβ

4
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (112)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h/2 + Γsxθ (x̄t, m̄t, T − t)
]

(113)

m̄t+h = m̄t+h/2 +
hβ

4

[
x̄t+h + νm̄t+h/2 +Mνsmθ (x̄t+h, m̄t+h/2, T − (t+ h))

]
(114)

In contrast to the NVV sampler, the RVV sampler requires two NFEs per update step. It is worth
noting that the reduced schemes require fewer NFEs per update step than their naive counterparts.
This implies that for the same compute budget, the reduced schemes use smaller step sizes as com-
pared to the naive schemes. This is one of the reasons for the empirical effectiveness of the reduced
schemes as compared to their naive counterparts. Next, we discuss the effectiveness of the reduced
samplers from the lens of local error analysis.

C.2.3 LOCAL ERROR ANALYSIS FOR DETERMINISTIC SPLITTING INTEGRATORS

We now analyze the naive and reduced splitting samplers proposed in this work from the lens of
local error analysis for ODE solvers. The probability flow ODE for PSLD is defined as,

(
dx̄t

dm̄t

)

=
β

2

(

Γx̄t −M−1
m̄t + Γsxθ (z̄t, T − t)

x̄t + νm̄t +Mνsmθ (z̄t, T − t)

)

dt, t ∈ [0, T] (115)

We denote the proposed numerical schemes by Gh and the underlying ground-truth flow map for the
probability flow ODE as Fh where h > 0 is the step-size for numerical integration. Formally, we
analyze the growth of ēt+h = eT−(t+h) = ∥z̄(t+h)− z̄t+h∥ where z̄t+h = zT−(t+h) = Gh(z̄t) and

z̄(t+ h) = zT−(t+h)Fh(z̄(t)) are the approximated and ground-truth solutions at time T − (t+ h).
Furthermore,

ēt+h = ∥Fh(z̄(t))− Gh(z̄t)∥ (116)

= ∥Fh(z̄(t))− Gh(z̄(t)) + Gh(z̄(t))− Gh(z̄t)∥ (117)

≤ ∥Fh(z̄(t))− Gh(z̄(t))∥+ ∥Gh(z̄(t))− Gh(z̄t)∥ (118)

The first term on the right-hand side of the above error bound is referred to as the local truncation
error. Intuitively, it gives an estimate of how much error is introduced by our numerical scheme
given the ground truth solution till the previous time step t. The second term in the error bound is
referred to as the stability of the numerical scheme. Intuitively, it gives an estimate of how much
divergence is introduced by our numerical scheme given two nearby solution trajectories such that
∥z(t)−zt∥ < δ. Here, we only deal with the local truncation error in the position and the momentum
space. To this end, we first compute the term Fh(z(t)) using the Taylor-series expansion.

Computation of Fh(z(t)): Using the Taylor-series expansion in the position space, we have,

x̄(t+ h) = x̄(t) + h
dx̄(t)

dt
+

h2

2

d2x̄(t)

dt2
+O(h3) (119)

m̄(t+ h) = m̄(t) + h
dm̄(t)

dt
+

h2

2

d2m̄(t)

dt2
+O(h3) (120)

Substituting the values of
dx̄(t)
dt and

dm̄(t)
dt from the PSLD Prob. Flow ODE, it follows that,

Fh(x̄(t)) = x̄(t) +
hβ

2

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (z̄(t), T − t)

]

+ (121)

h2β

4

d

dt

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (z̄(t), T − t)

]

+O(h3) (122)

Fh(m̄(t)) = m̄(t) +
hβ

2

[

x̄(t) + νm̄(t) +Mνsmθ (z̄(t), T − t)
]

+ (123)

h2β

4

d

dt

[

x̄(t) + νm̄(t) +Mνsmθ (z̄(t), T − t)
]

+O(h3) (124)

Next, we analyze the local error for the Naive and Reduced Velocity Verlet samplers while high-
lighting the justification for the difference in the update rules between the naive and the reduced
schemes.

25

Published as a conference paper at ICLR 2024

C.2.4 ERROR ANALYSIS: NAIVE VELOCITY VERLET (NVV)

The NVV sampler has the following update rules:

m̄t+h/2 = m̄t +
hβ

4
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (125)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h/2 + Γsxθ (x̄t, m̄t+h/2, T − t)
]

(126)

m̄t+h = m̄t+h/2 +
hβ

4

[
x̄t+h + νm̄t+h/2 +Mνsmθ (x̄t+h, m̄t+h/2, T − t)

]
(127)

We first compute the local truncation error for the NVV sampler in both the position and the mo-
mentum space.

NVV local truncation error in the position space: From the update equations,

x̄(t+ h) = x̄(t) +
hβ

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)
]

(128)

= x̄(t) +
hβ

2

[

Γx̄(t)−M−1

(

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

)

(129)

+ Γsxθ (x̄(t), m̄(t+ h/2), T − t)
]

(130)

Gh(x̄(t)) = x̄(t) +
hβ

2

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)

]

− (131)

h2β2M−1

8

[

x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)
]

(132)

Gh(x̄(t)) = x̄(t) +
hβ

2

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)

]

− h2βM−1

4

dm̄(t)

dt
(133)

Therefore, the local truncation error in the position space is given by,

Fh(x̄(t))− Gh(x̄(t)) =
hβΓ

2

[

sxθ (x̄(t), m̄(t), T − t)− sxθ (x̄(t), m̄(t+ h/2), T − t)
]

+ (134)

h2βΓ

4

d

dt

[

x̄(t) + sxθ (x̄(t), m̄(t), T − t)
]

(135)

We can approximate the term sxθ (x̄(t), m̄(t + h/2), T − t) using the Taylor-series expansion as
follows,

sxθ (x̄(t), m̄(t+ h/2), T − t) = sxθ (x̄(t), m̄(t), T − t) +
∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)
(136)

[

m̄(t+ h/2)− m̄(t))
]

+O(h2) (137)

= sxθ (x̄(t), m̄(t), T − t) +
∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)
(138)

[hβ

4
(x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t))

]

+O(h2)

(139)

sxθ (x̄(t), m̄(t), T − t)− sxθ (x̄(t),m̄(t+ h/2), T − t) = −h

2

∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+O(h2)

(140)

26

Published as a conference paper at ICLR 2024

Substituting the above approximation (while ignoring the higher-order terms O(h2)) in Eqn. 135,

Fh(x̄(t))− Gh(x̄(t)) = −h2βΓ

4

[∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt

]

+ (141)

h2βΓ

4

d

dt

[

x̄(t) + sxθ (x̄(t), m̄(t), T − t)
]

(142)

=
h2βΓ

4

[d

dt

(

x̄(t) + sxθ (x̄(t), m̄(t), T − t)
)

− ∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt

]

(143)

=
h2βΓ

4

[dx̄(t)

dt
+
(dsxθ (x̄(t), m̄(t), T − t)

dt
− ∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt

)]

(144)

From the Chain rule, we have the following result,

dsxθ (x̄(t), m̄(t), T − t)

dt
=

∂sxθ (x̄(t), m̄(t), T − t)

∂t
+

∂sxθ (x̄(t), m̄(t), T − t)

∂x̄t

dx̄t

dt
+ (145)

∂sxθ (x̄(t), m̄(t), T − t)

∂m̄t

dm̄t

dt
(146)

Substituting the above result in Eqn. 144,

Fh(x̄(t))−Gh(x̄(t)) =
h2βΓ

4

[dx̄(t)

dt
+
(∂sxθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+
∂sxθ (x̄(t), m̄(t), T − t)

∂t

)]

(147)
The above equation implies that,

∥Fh(x̄(t))− Gh(x̄(t))∥ ≤ CβΓh2

4
(148)

Since we choose β = 8 throughout this work, β/4 = 2 can be absorbed in the constant C. Therefore,
the local truncation error for the Naive Velocity Verlet (NVV) is of the order of O(Γh2). Since Γ
is usually small in PSLD (Pandey & Mandt, 2023) (for instance, 0.01 for CIFAR-10 and 0.005
for CelebA-64), its magnitude is comparable or less than h (particularly in the low NFE regime).
Therefore, the effective local truncation order for the NVV scheme is of the order of O(h3).

Next, we analyze the local truncation error for NVV in the momentum space.

NVV local truncation error in the momentum space: From the update equations,

m̄(t+ h) = m̄(t+ h/2) +
hβ

4
[x̄(t+ h) + νm̄(t+ h/2) +Mνsmθ (x̄(t+ h), m̄(t+ h/2), T − t)]

(149)

m̄(t+ h) = m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

hβ

4
[x̄(t+ h)] + (150)

hβν

4
[m̄(t+ h/2)] +

hβMν

4
smθ (x̄(t+ h), m̄(t+ h/2), T − t) (151)

m̄(t+ h) = m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (152)

hβ

4

[

x̄(t) +
hβ

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)
]]

+

(153)

hβν

4

[

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

]

+ (154)

hβMν

4
smθ (x̄(t+ h), m̄(t+ h/2), T − t) (155)

27

Published as a conference paper at ICLR 2024

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (156)

h2β

4

[β

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)
]]

+ (157)

h2βν

8

[β

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

]

︸ ︷︷ ︸

=
dm̄(t)

dt

+ (158)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − t)− smθ (x̄(t), m̄(t), T − t)
]

(159)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (160)

h2β

4

[β

2

(

Γx̄(t)−M−1
(

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

)

(161)

+ Γsxθ (x̄(t), m̄(t+ h/2), T − t)
)]

+
h2βν

8

dm̄(t)

dt
+ (162)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − t)− smθ (x̄(t), m̄(t), T − t)
]

(163)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (164)

h2β

4

[β

2

(

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t), T − t)

)

︸ ︷︷ ︸

=
dx̄t
dt

]

+ (165)

h2β2Γ

8

[

sxθ (x̄(t), m̄(t+ h/2), T − t)− sxθ (x̄(t), m̄(t), T − t)
]

+
h2βν

8

dm̄(t)

dt
+

(166)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − t)− smθ (x̄(t), m̄(t), T − t)
]

+O(h3)

(167)

Approximating smθ (x̄(t+ h), m̄(t+ h/2), T − t) around smθ (x̄(t), m̄(t), T − t) using a first-order
Taylor series,

smθ (x̄(t+ h),m̄(t+ h/2), T − t) ≈ smθ (x̄(t), m̄(t), T − t) +
∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)
(168)

[

x̄(t+ h)− x̄(t)
]

+
∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

[

m̄(t+ h/2)− m̄(t)
]

(169)

smθ (x̄(t+ h),m̄(t+ h/2), T − t) = smθ (x̄(t), m̄(t), T − t) +
∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)
(170)

[hβ

2

(

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)

)]

+ (171)

h

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
(172)

smθ (x̄(t+ h),m̄(t+ h/2), T − t) = smθ (x̄(t), m̄(t), T − t) + h
∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

(173)

h

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+

hβΓ

2

[

sxθ (x̄(t), m̄(t+ h/2), T − t)− (174)

sxθ (x̄(t), m̄(t), T − t)
]

(175)

28

Published as a conference paper at ICLR 2024

Substituting the above results in Eqn. 167, we get the following result,

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt

]

+ (176)

h2βν

8

dm̄(t)

dt
+

h2βMν

4

[∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

1

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt

]

(177)

+
h2β2Γ(1 +Mν)

8

[

sxθ (x̄(t), m̄(t+ h/2), T − t)− sxθ (x̄(t), m̄(t), T − t)
]

+O(h3)

(178)

Using the multivariate Taylor-series expansion, we approximate sxθ (x̄(t), m̄(t+h/2), T −t) around
sxθ (x̄(t), m̄(t), T − t) using a first-order approximation as follows,

sxθ (x̄(t), m̄(t+h/2), T−t) ≈ sxθ (x̄(t), m̄(t), T−t)+
∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)

[

m̄(t+h/2)−m̄(t)
]

(179)

sxθ (x̄(t), m̄(t+ h/2), T − t) ≈ sxθ (x̄(t), m̄(t), T − t) +
∂sxθ (x̄(t), m̄(t), T − t)

∂m̄(t)
(180)

[hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

]

(181)

Substituting the above result in Eqn. 178 and ignoring the higher order terms in O(h3), we get,

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt

]

+ (182)

h2βν

8

dm̄(t)

dt
+

h2βMν

4

[∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

1

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt

]

(183)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt
+ ν

dm̄t

dt
+Mν

(184)
(∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+

∂smθ (x̄(t), m̄(t), T − t)

∂t
︸ ︷︷ ︸

= d
dt

sm
θ
(x̄(t),m̄(t),T−t)

)

(185)

− ν

2

dm̄(t)

dt
− Mν

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)
−Mν

∂smθ (x̄(t), m̄(t), T − t)

∂t

]

(186)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt
+ ν

dm̄t

dt
+Mν

(187)

dsmθ (x̄(t), m̄(t), T − t)

dt

]

− h2βν

8

[dm̄(t)

dt
+M

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)
+ (188)

2M
∂smθ (x̄(t), m̄(t), T − t)

∂t

]

(189)

We can now use the above result to analyze the local truncation error in the momentum space as
follows,

Fh(m̄(t))−Gh(m̄(t)) =
h2βν

8

[dm̄(t)

dt
+M

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)
+2M

∂smθ (x̄(t), m̄(t), T − t)

∂t

]

(190)

29

Published as a conference paper at ICLR 2024

The above equation implies that,

∥Fh(m̄(t))− Gh(m̄(t))∥ ≤ Cβνh2

8
(191)

Since we choose β = 8 throughout this work, β/8 = 1 can be absorbed in the constant C. Therefore,
the local truncation error for the Naive Velocity Verlet (NVV) in the momentum space is of the order
of O(νh2).

While the NVV sampler has nice theoretical properties, the local truncation error analysis can be
misleading for large step sizes. This is because at low NFE regimes (or with high step sizes h), the
assumption to ignore error contribution from higher-order terms like O(h3) might not be reasonable.
In the NVV scheme, we make a similar assumption in Eqns. 135,167 and 178 (when approximat-
ing the term in blue). This is the primary motivation for re-using the score function evaluation
sθ(x̄t, m̄t, T − t) between consecutive position and momentum updates in the RVV scheme. This
design choice has the following advantages:

1. Firstly, re-using the score function evaluation sθ(x̄t, m̄t, T − t) between consecutive po-
sition and momentum updates exactly cancels out the term in blue in Eqn. 135 eliminat-
ing error contribution from additional terms introduced by approximating sθ(x̄(t), m̄(t +
h/2), T − t). This is especially significant for larger step sizes during sampling.

2. Secondly, re-using a score function evaluation also reduces the number of NFEs per update
step from three in NVV to two in RVV. This allows the use of smaller step sizes during
inference for the same compute budget.

Next, we analyze the local truncation error for the RVV sampler.

C.2.5 ERROR ANALYSIS: REDUCED VELOCITY VERLET (RVV)

The NVV sampler has the following update rules:

m̄t+h/2 = m̄t +
hβ

4
[x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)] (192)

x̄t+h = x̄t +
hβ

2

[
Γx̄t −M−1

m̄t+h/2 + Γsxθ (x̄t, m̄t, T − t)
]

(193)

m̄t+h = m̄t+h/2 +
hβ

4

[
x̄t+h + νm̄t+h/2 +Mνsmθ (x̄t+h, m̄t+h/2, T − (t+ h))

]
(194)

Similar to our analysis for the NVV sampler, we first compute the local truncation error in both the
position and the momentum space.

RVV local truncation error in the position space: From the update equations,

x̄(t+ h) = x̄(t) +
hβ

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t), T − t)
]

(195)

= x̄(t) +
hβ

2

[

Γx̄(t)−M−1

(

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

)

(196)

+ Γsxθ (x̄(t), m̄(t), T − t)
]

(197)

Gh(x̄(t)) = x̄(t) +
hβ

2

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t), T − t)

]

− (198)

h2β2M−1

8

[

x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)
]

(199)

Gh(x̄(t)) = x̄(t) +
hβ

2

[

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t), T − t)

]

− h2βM−1

4

dm̄(t)

dt
(200)

Therefore, the local truncation error in the position space is given by,

Fh(x̄(t))− Gh(x̄(t)) =
h2βΓ

4

d

dt

[

x̄(t) + sxθ (x̄(t), m̄(t), T − t)
]

(201)

30

Published as a conference paper at ICLR 2024

The above equation implies that,

∥Fh(x̄(t))− Gh(x̄(t))∥ ≤ C̄βΓh2

4
(202)

Similar to the NVV case, the local truncation error for RVV is of the order O(Γh2). Since Γ
is usually small in PSLD (Pandey & Mandt, 2023) (for instance, 0.01 for CIFAR-10 and 0.005
for CelebA-64), its magnitude is comparable or less than h (particularly in the low NFE regime).
Therefore, the effective local truncation order for the NVV scheme is of the order of O(h3).

Next, we analyze the local truncation error for RVV in the momentum space.

RVV local truncation error in the momentum space: From the update equations,

m̄(t+ h) = m̄(t+ h/2) +
hβ

4

[

x̄(t+ h) + νm̄(t+ h/2)+ (203)

Mνsmθ (x̄(t+ h), m̄(t+ h/2), T − (t+ h))
]

(204)

m̄(t+ h) = m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

hβ

4
[x̄(t+ h)] + (205)

hβν

4
[m̄(t+ h/2)] +

hβMν

4
smθ (x̄(t+ h), m̄(t+ h/2), T − (t+ h)) (206)

m̄(t+ h) = m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (207)

hβ

4

[

x̄(t) +
hβ

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t), T − t)
]]

+ (208)

hβν

4

[

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

]

+ (209)

hβMν

4
smθ (x̄(t+ h), m̄(t+ h/2), T − (t+ h)) (210)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (211)

h2β

4

[β

2

[
Γx̄(t)−M−1

m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t), T − t)
]]

+ (212)

h2βν

8

[β

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

]

︸ ︷︷ ︸

=
dm̄(t)

dt

+ (213)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − (t+ h))− smθ (x̄(t), m̄(t), T − t)
]

(214)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (215)

h2β

4

[β

2

(

Γx̄(t)−M−1
(

m̄(t) +
hβ

4
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)]

)

(216)

+ Γsxθ (x̄(t), m̄(t), T − t)
)]

+
h2βν

8

dm̄(t)

dt
+ (217)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − (t+ h))− smθ (x̄(t), m̄(t), T − t)
]

(218)

(219)

31

Published as a conference paper at ICLR 2024

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] + (220)

h2β

4

[β

2

(

Γx̄(t)−M−1
m̄(t) + Γsxθ (x̄(t), m̄(t), T − t)

)

︸ ︷︷ ︸

=
dx̄t
dt

]

+
h2βν

8

dm̄(t)

dt
+

(221)

hβMν

4

[

smθ (x̄(t+ h), m̄(t+ h/2), T − t)− smθ (x̄(t), m̄(t), T − (t+ h))
]

+O(h3)

(222)

Approximating smθ (x̄(t + h), m̄(t + h/2), T − (t + h)) around smθ (x̄(t), m̄(t), T − t) using a
first-order Taylor series approximation (Ignoring higher order terms in O(h2)),

smθ (x̄(t+ h),m̄(t+ h/2), T − (t+ h)) ≈ smθ (x̄(t), m̄(t), T − t) + h
∂smθ (x̄(t), m̄(t), T − t)

∂t
(223)

+
∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

[

x̄(t+ h)− x̄(t)
]

(224)

+
∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

[

m̄(t+ h/2)− m̄(t)
]

(225)

smθ (x̄(t+ h),m̄(t+ h/2), T − t) = smθ (x̄(t), m̄(t), T − t) + h
∂smθ (x̄(t), m̄(t), T − t)

∂t
+ (226)

h

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+

∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)
(227)

[hβ

2

(

Γx̄(t)−M−1
m̄(t+ h/2) + Γsxθ (x̄(t), m̄(t+ h/2), T − t)

)]

(228)

smθ (x̄(t+ h),m̄(t+ h/2), T − t) = smθ (x̄(t), m̄(t), T − t) + h
∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

(229)

h

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+ h

∂smθ (x̄(t), m̄(t), T − t)

∂t
(230)

Substituting the above results in Eqn. 222, we get the following result,

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt

]

+ (231)

h2βν

8

dm̄(t)

dt
+

h2βMν

4

[∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

1

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
(232)

+ h
∂smθ (x̄(t), m̄(t), T − t)

∂t

]

+O(h3) (233)

32

Published as a conference paper at ICLR 2024

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt
+ ν

dm̄t

dt
+Mν

(234)
(∂smθ (x̄(t), m̄(t), T − t)

∂x̄(t)

dx̄t

dt
+

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

dm̄t

dt
+

∂smθ (x̄(t), m̄(t), T − t)

∂t
︸ ︷︷ ︸

= d
dt

sm
θ
(x̄(t),m̄(t),T−t)

)

(235)

− ν

2

dm̄(t)

dt
− Mν

2

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

]

(236)

m̄(t+ h) = m̄(t) +
hβ

2
[x̄(t) + νm̄(t) +Mνsmθ (x̄(t), m̄(t), T − t)] +

h2β

4

[dx̄t

dt
+ ν

dm̄t

dt
+Mν

(237)

dsmθ (x̄(t), m̄(t), T − t)

dt

]

− h2βν

8

[dm̄(t)

dt
+M

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

]

(238)

We can now use the above result to analyze the local truncation error in the momentum space as
follows,

Fh(m̄(t))− Gh(m̄(t)) =
h2βν

8

[dm̄(t)

dt
+M

∂smθ (x̄(t), m̄(t), T − t)

∂m̄(t)

]

(239)

The above equation implies that,

∥Fh(m̄(t))− Gh(m̄(t))∥ ≤ Cβνh2

8
(240)

Similar to the NVV sampler, the scaling factor β/8 = 1 can be absorbed in the constant C. There-
fore, the local truncation error for the Reduced Velocity Verlet (RVV) in the momentum space is of
the order of O(νh2).

C.3 STOCHASTIC SPLITTING INTEGRATORS

We split the Reverse Diffusion SDE for PSLD using the following splitting scheme.
(
dx̄t

dm̄t

)

=
β

2

(

2Γx̄t −M−1
m̄t + 2Γsxθ (z̄t, t)
0

)

dt

︸ ︷︷ ︸

A

+O +
β

2

(
0

x̄t + 2νm̄t + 2Mνsmθ (z̄t, t)

)

dt

︸ ︷︷ ︸

B

(241)

where O =

(
−βΓ

2 x̄tdt+
√
βΓdw̄t

−βν
2 m̄tdt+

√
Mνβdw̄t

)

is the Ornstein-Uhlenbeck component which injects

stochasticity during sampling. Similar to the deterministic case, x̄t = xT−t, m̄t = mT−t, s
x
θ

and sm
θ

denote the score components in the data and momentum space, respectively. We approxi-
mate the solution for splits A and B using a simple Euler-based numerical approximation. Formally,
we denote the Euler approximation for the splits A and B by LA and LB , respectively, with their
corresponding numerical updates specified as:

LA :

{

x̄t+h = x̄t +
hβ
2

[

Γx̄t −M−1
m̄t + Γsxθ (x̄t, m̄t, T − t)

]

m̄t+h = m̄t

(242)

LB :

{
x̄t+h = x̄t

m̄t+h = m̄t +
hβ
2

[

x̄t + νm̄t +Mνsmθ (x̄t, m̄t, T − t)
] (243)

It is worth noting that the solution to the OU component can be computed analytically:

LO :







x̄t+h = exp
(

−hβΓ
2

)

x̄t +
√

1− exp (−hβΓ)ϵx, ϵx ∼ N (0d, Id)

m̄t+h = exp
(

−hβν
2

)

m̄t +
√
M
√

1− exp (−hβν)ϵm, ϵm ∼ N (0d, Id)
(244)

33

Published as a conference paper at ICLR 2024

Next, we highlight the numerical update equations for the Naive-OBA sampler and the Reduced
OBA, BAO, and OBAB samplers.

C.3.1 NAIVE SPLITTING SAMPLERS

Naive OBA: In this scheme, for a given step size h, the solutions to the splitting pieces LA
h , LB

h and

LO
h are composed as L[OBA]

h = LA
h ◦ LB

h ◦ LO
h . Consequently, one numerical update step for this

integrator can be defined as,

x̄t+h = exp

(−hβΓ

2

)

x̄t +
√

1− exp (−hβΓ)ϵx (245)

m̄t+h = exp

(−hβν

2

)

m̄t +
√
M
√

1− exp (−hβν)ϵm (246)

m̂t+h = m̄t+h +
hβ

2
[x̄t+h + 2νm̄t+h + 2Mνsmθ (x̄t+h, m̄t+h, T − t)] (247)

x̂t+h = x̄t+h +
hβ

2

[
2Γx̄t+h −M−1

m̂t+h + 2Γsxθ (x̄t+h, m̂t+h, T − t)
]

(248)

where ϵx, ϵm ∼ N (0d, Id). Therefore, one update step for Naive OBA requires two NFEs.

C.3.2 EFFECTS OF CONTROLLING STOCHASTICITY

Similar to Karras et al. (2022), we introduce a parameter λs in the position space update for LO

to control the amount of noise injected in the position space. More specifically, we modify the
numerical update equations for the Ornstein-Uhlenbeck process in the position space as follows:

x̄t+h = exp

(−hβΓ

2

)

x̄t +
√

1− exp (−t̄λsβΓ)ϵx, ϵx ∼ N (0d, Id) (249)

where t̄ = (T−t)+(T−t−h)
2 , i.e., the mid-point for two consecutive time steps during sampling.

Adding a similar parameter in the momentum space leads to unstable sampling. We therefore restrict
this adjustment to only the position space.

C.3.3 REDUCED SPLITTING SCHEMES

We obtain the Reduced Splitting schemes by sharing the score function evaluation between the first
consecutive position and momentum updates for all samplers. Additionally, for half-step updates (as
in the OBAB scheme), we condition the score function with the timestep embedding of T − (t+ h)
instead of T − t. Moreover, we make the adjustments as described in Appendix C.3.2.

Reduced OBA: The numerical updates for this scheme are as follows (the terms in red denote the
changes from the Naive OBA scheme),

x̄t+h = exp

(−hβΓ

2

)

x̄t +
√

1− exp (−t̄λsβΓ)ϵx (250)

m̄t+h = exp

(−hβν

2

)

m̄t +
√
M
√

1− exp (−hβν)ϵm (251)

m̂t+h = m̄t+h +
hβ

2
[x̄t+h + 2νm̄t+h + 2Mνsmθ (x̄t+h, m̄t+h, T − t)] (252)

x̂t+h = x̄t+h +
hβ

2

[
2Γx̄t+h −M−1

m̂t+h + 2Γsxθ (x̄t+h, m̄t+h, T − t)
]

(253)

where ϵx, ϵm ∼ N (0d, Id). It is worth noting that Reduced OBA requires only one NFE per update
step since a single score evaluation is re-used in both the momentum and the position updates.

34

Published as a conference paper at ICLR 2024

Reduced BAO: The numerical updates for this scheme are as follows,

m̄t+h = m̄t +
hβ

2
[x̄t + 2νm̄t + 2Mνsmθ (x̄t, m̄t, T − t)] (254)

x̄t+h = x̄t +
hβ

2

[
2Γx̄t −M−1

m̄t+h + 2Γsxθ (x̄t, m̄t, T − t)
]

(255)

x̂t+h = exp

(−hβΓ

2

)

x̄t+h +
√

1− exp (−t̄λsβΓ)ϵx (256)

m̂t+h = exp

(−hβν

2

)

m̄t+h +
√
M
√

1− exp (−hβν)ϵm (257)

where ϵx, ϵm ∼ N (0d, Id). Similar to the Reduced OBA scheme, Reduced BAO also requires only
one NFE per update step since a single score evaluation is re-used in both the momentum and the
position updates.

Reduced OBAB: The numerical updates for this scheme are as follows,

x̄t+h = exp

(−hβΓ

2

)

x̄t +
√

1− exp (−t̄λsβΓ)ϵx (258)

m̄t+h = exp

(−hβν

2

)

m̄t +
√
M
√

1− exp (−hβν)ϵm (259)

m̂t+h/2 = m̄t+h +
hβ

4
[x̄t+h + 2νm̄t+h + 2Mνsmθ (x̄t+h, m̄t+h, T − t)] (260)

x̂t+h = x̄t+h +
hβ

2

[
2Γx̄t+h −M−1

m̂t+h/2 + 2Γsxθ (x̄t+h, m̄t+h, T − t)
]

(261)

m̂t+h = m̂t+h/2 +
hβ

4

[
x̂t+h + 2νm̂t+h/2 + 2Mνsmθ (x̂t+h, m̂t+h/2, T − (t+ h))

]
(262)

where ϵx, ϵm ∼ N (0d, Id). It is worth noting that, in contrast to the Reduced OBA and BAO
schemes, Reduced OBAB requires two NFE per update step. This is similar to the Reduced Velocity
Verlet (RVV) sampler.

D CONJUGATE SPLITTING INTEGRATORS

Here, we highlight relevant update equations for the Conjugate Splitting Samplers discussed in
Section. 3.3.

D.1 DETERMINISTIC CONJUGATE SPLITTING SAMPLERS

The splitting scheme for deterministic splitting samplers discussed in Section 3.2 is specified as
follows,
(
dx̄t

dm̄t

)

=
β

2

(

Γx̄t −M−1
m̄t + Γsxθ (z̄t, T − t)

0

)

dt

︸ ︷︷ ︸

A

+
β

2

(
0

x̄t + νm̄t +Mνsmθ (z̄t, T − t)

)

dt

︸ ︷︷ ︸

B

(263)
Conjugate Integrators applied to Splitting components. The Splitting component A in the posi-
tion space can be simplified as follows,

(
dx̄t

dm̄t

)

=
β

2

(

−Γx̄t +M−1
m̄t − Γsxθ (z̄t, T − t)

0

)

dt̄ (264)

=
β

2

(

−Γ M−1

0 0

)(
x̄t

m̄t

)

− Γβ

2

(
sxθ (z̄t, T − t)

0

)

dt̄ (265)

where t̄ = T − t. Moreover, for any time-dependent matrixCt, we denoteCm
t =m ◦Ct, where, ◦

denotes the Hadamard product of the maskm =

(
1 1

0 0

)

with the matrixCt. Therefore, Eqn. 265

35

Published as a conference paper at ICLR 2024

Algorithm 2 Conjugate Symplectic Euler

Input: Trajectory length T, Network function ϵθ(., .), number of sampling steps N , a monotonically de-

creasing timestep discretization {ti}Ni=0 spanning the interval (ϵ, T) and choice of Bt.
Output: zϵ = (xϵ, mϵ)

Compute {Âti}Ni=0 and {Φ̂ti}Ni=0 as in Eqn. 267 ▷ Pre-compute coefficients
zt0 ∼ p(zT) ▷ Draw initial samples from the generative prior
for n = 0 to N − 1 do

Compute ϵθ(xtn ,mtn , tn) and sθ(xtn ,mtn , tn) ▷ Compute score
h = (tn+1 − tn) ▷ Time step differential

mtn+1 = mtn − hβ

2

[

xtn + νmtn +Mνsm
θ (xtn ,mtn , tn)

]

▷ Momentum Update

Construct z̃tn = [xtn ,mtn+1]
⊤

dΦ̂t = (Φ̂tn+1 − Φ̂tn) ▷ Phi differential

ẑtn = Âtn z̃tn ▷ Transform

ẑtn+1 ← ẑtn + hλÂtn1Â
−1
tn

ẑtn + dΦ̂tϵθ(xtn ,mtn , tn) ▷ Update

xtn+1 , = Â
−1
tn+1

ẑtn+1 ▷ Project to original space and discard momentum

Construct ztn+1 = [xtn+1 ,mtn+1]
⊤

end for

Algorithm 3 Conjugate Velocity Verlet

Input: Trajectory length T, Network function ϵθ(., .), number of sampling steps N , a monotonically de-

creasing timestep discretization {ti}Ni=0 spanning the interval (ϵ, T) and choice of Bt.
Output: zϵ = (xϵ, mϵ)

Compute {Âti}Ni=0 and {Φ̂ti}Ni=0 as in Eqn. 267 ▷ Pre-compute coefficients
zt0 ∼ p(zT) ▷ Draw initial samples from the generative prior
for n = 0 to N − 1 do

Compute ϵθ(ϵθ(xtn ,mtn , tn)) and sθ(xtn ,mtn , tn) ▷ Compute score
h = (tn+1 − tn) ▷ Time step differential

m̃tn+1 = mtn − hβ

4

[

xtn + νmtn +Mνsm
θ (xtn ,mtn , tn)

]

▷ Momentum Update

Construct z̃tn = [xtn , m̃tn+1]
⊤

dΦ̂t = (Φ̂tn+1 − Φ̂tn) ▷ Phi differential

ẑtn = Âtn z̃tn ▷ Transform

ẑtn+1 ← ẑtn + hλÂtn1Â
−1
tn

ẑtn + dΦ̂tϵθ(Cin(tn)ztn ,Cnoise(tn)) ▷ Update

xtn+1 , = Â
−1
tn+1

ẑtn+1 ▷ Project to original space and discard momentum

Construct ztn+1 = [xtn+1 , m̃tn+1]
⊤

Compute ϵθ(xtn+1 , m̃tn+1 , tn+1) and sθ(xtn+1 , m̃tn+1 , tn+1) ▷ Compute score

mtn+1 = m̃tn+1 − hβ

4

[

xtn+1 + νm̃tn+1 +Mνsm
θ (xtn+1 , m̃tn+1 , tn+1)

]

▷ Momentum Update

end for

can be simplified as follows,
(
dx̄t

dm̄t

)

=

(

Fm
t z̄t −

1

2
Gm

t (G⊤
t)

m
[

Cm
skip(t)z̄t +C

m
out(t)ϵθ(Cin(t)zt, Cnoise(t))

])

dt̄ (266)

where Ft and Gt are the drift scaling matrix and the diffusion coefficients, respectively. We can
then determine the transformed ODE corresponding to the masked ODE in Eqn. 266 and perform
numerical integration in the projected space. We use the λ-DDIM-II as our choice of the conjugate
integrator and, therefore, setBt = λ1. The coefficientsAt and Φt are defined as,

Ât = exp

(∫ t

0

λ1− Fm
s +

1

2
Gm

s (G⊤
s)

mCm
skip(s)ds

)

, Φ̂t = −
∫ t

0

1

2
ÂsG

m
s (G⊤

s)
mCm

out(s)ds,

(267)

36

Published as a conference paper at ICLR 2024

Algorithm 4 Conjugate OBA

Input: Trajectory length T, Network function ϵθ(., .), number of sampling steps N , a monotonically de-

creasing timestep discretization {ti}Ni=0 spanning the interval (ϵ, T) and choice of Bt.
Output: zϵ = (xϵ, mϵ)

Compute {Âti}Ni=0 and {Φ̂ti}Ni=0 as in Eqn. 272 ▷ Pre-compute coefficients
zt0 ∼ p(zT) ▷ Draw initial samples from the generative prior
for n = 0 to N − 1 do

h = (tn+1 − tn) ▷ Time step differential

t′ = (tn + tn+1)/2

x̃tn = exp
(

hβΓ

2

)

xtn +
√

1− exp (−t′λsβΓ)ϵx ▷ OU-Update (Position)

m̃tn = exp
(

hβν

2

)

mtn +
√
M

√

1− exp (hβν)ϵm ▷ OU-Update (Momentum)

Compute ϵθ(x̃tn , m̃tn , tn) and sθ(x̃tn , m̃tn , tn) ▷ Compute score

mtn+1 = m̃tn − hβ

2

[

x̃tn + 2νm̃tn + 2Mνsm
θ (x̃tn , m̃tn , tn)

]

▷ Momentum Update

Construct z̃tn = [x̃tn ,mtn+1]
⊤

dΦ̂t = (Φ̂tn+1 − Φ̂tn) ▷ Phi differential

ẑtn = Âtn z̃tn ▷ Transform

ẑtn+1 ← ẑtn + hλÂtn1Â
−1
tn

ẑtn + dΦ̂tϵθ(x̃tn , m̃tn , tn) ▷ Update

xtn+1 , = A
−1
tn+1

ẑtn+1 ▷ Project to original space and discard momentum

Construct ztn+1 = [xtn+1 ,mtn+1]
⊤

end for

Based on this analysis, we provide the numerical update rules for the CSE and CVV samplers in
Algorithms 2 and 3, respectively.

D.2 STOCHASTIC CONJUGATE SPLITTING SAMPLERS

We split the Reverse Diffusion SDE for PSLD using the following splitting scheme.

(
dx̄t

dm̄t

)

=
β

2

(

2Γx̄t −M−1
m̄t + 2Γsxθ (z̄t, t)
0

)

dt

︸ ︷︷ ︸

A

+O +
β

2

(
0

x̄t + 2νm̄t + 2Mνsmθ (z̄t, t)

)

dt

︸ ︷︷ ︸

B

(268)
Therefore, the splitting component corresponding to the position space is,

(
dx̄t

dm̄t

)

=
β

2

(

−2Γx̄t +M−1
m̄t − 2Γsxθ (z̄t, T − t)

0

)

dt̄ (269)

=
β

2

(

−2Γ M−1

0 0

)(
x̄t

m̄t

)

− Γβ

(
sxθ (z̄t, T − t)

0

)

dt̄ (270)

where t̄ = T − t. Eqn. 270 can be further simplified as follows,

dz̄t =
(

F̃tz̄t − G̃tG̃
⊤
t

[

Cskip(t)z̄t +Cout(t)ϵθ(Cin(t)zt, Cnoise(t))
])

dt̄ (271)

where F̃t =
β
2

(

−2Γ M−1

0 0

)

and G̃t =

(√
Γβ 0
0 0

)

. We use the λ-DDIM-II as our choice of the

conjugate integrator and, therefore, setBt = λ1. The coefficients Ât and Φ̂t are defined as,

Ât = exp

(∫ t

0

λ1− F̃s + G̃sG̃
⊤
s C

m
skip(s)ds

)

, Φ̂t = −
∫ t

0

ÂsG̃sG̃
⊤
s C

m
out(s)ds, (272)

where, Cm
skip(t) = m ◦ Cskip(t) and Cm

out(t) = m ◦ Cout(t) and m =

(
1 1

0 0

)

Based on this

analysis, we present a complete analysis for the Conjugate OBA sampler in Algorithm 4.

37

Published as a conference paper at ICLR 2024

E IMPLEMENTATION DETAILS

Here, we present complete implementation details for all the samplers presented in this work.

E.1 DATASETS AND PREPROCESSING

We use the CIFAR-10 (Krizhevsky, 2009) (50k images), CelebA-64 (downsampled to 64 x 64 reso-
lution, ≈ 200k images) (Liu et al., 2015) and the AFHQv2-64 (Choi et al., 2020) (downsampled to
64 x 64 resolution, ≈ 15k images) datasets for both quantitative and qualitative analysis. We use the
AFHQv2 dataset (downsampled to the 128 x 128 resolution) only for qualitative analysis. During
training, all datasets are preprocessed to a numerical range of [-1, 1]. Following prior work, we
use random horizontal flips to train all new models across datasets as a data augmentation strategy.
During inference, we re-scale all generated samples between the range [0, 1].

E.2 PRE-TRAINED MODELS

For all ablation results in Section 3 in the main text, we use pre-trained PSLD (Pandey & Mandt,
2023) models for CIFAR-10 with SDE hyperparameters Γ = 0.01, ν = 4.01 and β = 8.0. The
resulting model consists of approximately 97M parameters. For more details on the score network
architecture, refer to Pandey & Mandt (2023). Moreover, pre-trained models from PSLD correspond
to the following choices of the design parameters in the score parameterization defined in Eqn. 5,

Cskip(t) = 0, Cout(t) = −L−⊤
t , Cin(t) = I, Cnoise(t) = t. (273)

where L−⊤
t is the transposed-inverse of the Cholesky decomposition of the covariance matrix Σt

of the perturbation kernel in PSLD. Most comparison baselines in Section 5 (like DEIS (Zhang &
Chen, 2023) and DPM-Solver (Lu et al., 2022)) use the VP-SDE (deep) model, which is around
108M parameters in size. Therefore, our model sizes are comparable with other baselines, making
our comparisons fair.

E.3 SCORE NETWORK PRECONDITIONING

For the score network parameterization discussed in Eqn. 5, we choose,

Cskip(t) = diag(Σ̄t), Cout(t) = −L−⊤
t , Cin(t) = I, Cnoise(t) = t.

where Lt is the Cholesky factorization of the variance Σt of the perturbation kernel in PSLD.
Similarly, Σ̄t is the variance of the perturbation kernel in PSLD with initial variance Σ̄

0
xx =

σ2
0I, Σ̄

0
xm = 0, Σ̄0

mm = MγI . For optimal sample quality, we set the weighting scheme
λ(t) = 1

∥Cout∥2
2

. We set σ2
0 = 0.25 for all experimental analysis. Since this requires newly trained

PSLD models, we highlight our score network architectures and training configuration next.

Score-Network architecture. Table 2 illustrates our score model architectures for different datasets.
We use the NCSN++ architecture (Song et al., 2020) for all newly trained models.

SDE Hyperparameters: Similar to Pandey & Mandt (2023), we set β = 8.0, M−1 = 4 and
γ = 0.04 for all datasets. For CIFAR-10, we set Γ = 0.01 and ν = 4.01, corresponding to the
best settings in PSLD. Similarly, for CelebA-64 and AFHQv2-64 datasets, we set Γ = 0.005 and
ν = 4.005. Similar to Pandey & Mandt (2023), we add a stabilizing numerical epsilon value of 1e−9

in the diagonal entries of the Cholesky decomposition of Σt when sampling from the perturbation
kernel p(zt|x0) during training.

Training Table 3 summarizes the different training hyperparameters across datasets. We use the
Hybrid Score Matching (HSM) objective during training.

E.4 EVALUATION

We report FID (Heusel et al., 2017) scores on 50k samples for to assess sample quality. We use the
Number of Function Evaluations (NFEs) for assessing sampling efficiency.

Timestep Selection during Sampling: We use quadratic striding for timestep discretization pro-
posed in Dockhorn et al. (2022b) during sampling, which ensures more number of score function

38

Published as a conference paper at ICLR 2024

Hyperparameter CIFAR-10 CelebA-64 AFHQv2-64

Base channels 128 128 128
Channel multiplier [2,2,2] [1,2,2,2] [1,2,2,2]
Residual blocks 8 4 4
Non-Linearity Swish Swish Swish
Attention resolution [16] [16] [16]
Attention heads 1 1 1
Dropout 0.15 0.1 0.25
FIR (Zhang, 2019) True True True
FIR kernel [1,3,3,1] [1,3,3,1] [1,3,3,1]
Progressive Input Residual Residual Residual
Progressive Combine Sum Sum Sum
Embedding type Fourier Fourier Fourier
Sigma scaling False False False
Model size 97M 62M 62M

Table 2: Score Network hyperparameters for training Preconditioned PSLD models. σ2
0 is set to

0.25 for all datasets

CIFAR-10 CelebA-64 AFHQv2

Random Seed 0 0 0
iterations 1.2M 1.2M 400k
Optimizer Adam Adam Adam
Grad Clip. cutoff 1.0 1.0 1.0
Learning rate (LR) 2e-4 2e-4 2e-4
LR Warmup steps 5000 5000 5000
FP16 False False False
EMA Rate 0.9998 0.9998 0.9998
Effective Batch size 128 128 128
GPUs 8 8 8
Train eps cutoff 1e-5 1e-5 1e-5

Table 3: Training hyperparameters

evaluations in the lower timestep regime (i.e., t, which is close to the data). This kind of timestep
selection is particularly useful when the NFE budget is limited. We also explored the timestep
discretization proposed in Karras et al. (2022) but noticed a degradation in sample quality.

Last-Step Denoising: It is common to add an Euler-based denoising step from a cutoff ϵ to zero to
optimize for sample quality (Song et al., 2020; Dockhorn et al., 2022b; Jolicoeur-Martineau et al.,
2021b) at the expense of another sampling step. For deterministic samplers presented in this work,
we omit this heuristic due to observed degradation in sample quality. However, for stochastic sam-
plers, we find that using last-step denoising leads to improvements in sample quality (especially
when adjusting the amount of stochasticity as discussed in Appendix C.3.2). Formally, we perform
the following update as a last denoising step for stochastic samplers:

(
x0

m0

)

=

(
xϵ

mϵ

)

+
βtϵ

2

(

Γxϵ −M−1
mϵ + 2Γsθ(zϵ, ϵ)|0:d

xϵ + νmϵ + 2Mνsθ(zϵ, ϵ)|d:2d)

)

(274)

Similar to PSLD, we set ϵ = 1e− 3 during sampling for all experiments. Though recent works (Lu
et al., 2022; Zhang & Chen, 2023) have found lower cutoffs to work better for a certain NFE budget,
we leave this exploration in the context of PSLD to future work.

Evaluation Metrics: Unless specified otherwise, we report the FID (Heusel et al., 2017) score on
50k samples for assessing sample quality. Similarly, we use the network function evaluations (NFE)
to assess sampling efficiency. In practice, we use the torch-fidelity(Obukhov et al., 2020)
package for computing all FID reported in this work.

39

Published as a conference paper at ICLR 2024

NFE (FID@50k ↓)
Method 50 70 100 150 200 250 500 1000

Euler 431.74 397.51 330.18 233.28 163.13 110.68 33.93 11.54
λ-DDIM (Bt = 0) 48.55 11.49 4.81 3.53 3.31 3.19 3.04 3.01

Table 4: Extended results for Fig. 2a. λ-DDIM outperforms baseline Euler when applied to the
PSLD Prob. Flow ODE. The choice ofBt = 0 corresponds to the exponential integrators proposed
in Zhang & Chen (2023); Zhang et al. (2022). In this case, Euler fails to generate high-quality
samples even with a high compute budget of 1000 NFEs. Values in bold indicate the best FID
scores for that column.

NFE λ-DDIM (Bt = 0) λ-DDIM-I (Bt = λI) λ-DDIM-II (Bt = λ1)

FID@50k (↓) FID@50k (↓) λ FID@50k (↓) λ

30 311.08 23.53 -0.0038 13.6 0.59
50 48.55 5.54 -0.0016 5.04 0.46
70 11.49 4.41 -0.0009 4.26 0.35

100 4.81 3.76 -0.0004 3.71 0.21
150 3.53 3.49 -0.0002 3.46 0.12
200 3.31 3.32 -0.00008 3.28 0.06
250 3.19 3.21 -0.00004 3.19 0.02

Table 5: Extended results for Figs. 2b,2c. Comparison between different choices of Bt for the
proposed λ-DDIM sampler. λ-DDIM with non-zero choices of Bt outperforms baseline choice
with Bt = 0 which suggests that the latter choice can be sub-optimal in certain scenarios. Most
gains in sample quality using a non-zero Bt are observed at low sampling budgets (NFE < 70).
Values in bold indicate the best among the three methods for a particular sampling budget.

λ 0.7 0.6 0.5 0.46 0.4 0.3 0.2 0.1 0

FID@50k ↓ 21.51 10.68 5.53 5.04 5.77 10.5 19.54 32.61 48.55

Table 6: Impact of the magnitude of λ on CIFAR-10 sample quality for a fixed NFE=50 steps for λ-
DDIM-II. Entries in bold indicate the best FID scores and the corresponding λ value. Interestingly,
increasing λ improves sample quality significantly compared to λ = 0. However, too much increase
in λ leads to significant degradation in sample quality.

F EXTENDED RESULTS

F.1 EXTENDED RESULTS FOR SECTION 3.1: CONJUGATE INTEGRATORS

We include extended results corresponding to Figs. 2a in Table 4 and for Figs. 2b, 2c in Table 5,
respectively.

Impact of varying λ on sample quality. Additionally, we illustrate the impact of varying λ on
sample quality for a fixed NFE=50 for λ-DDIM-II in Table 6. Increasing the value of λ leads to
significant improvements in sample quality. However, excessively increasing λ leads to degraded
sample quality. This observation empirically supports our theoretical results in Theorem 2.

F.2 EXTENDED RESULTS FOR SECTION 3.2: SPLITTING INTEGRATORS

We include extended results corresponding to Figs. 3a, 3b in Table 7 and for Fig. 3c in Table 8,
respectively.

Comparison between different Stochastic Reduced Splitting schemes. Table 9 compares the
performance of different reduced splitting schemes for stochastic sampling.

Impact of varying λs on stochastic sampling. Additionally, we illustrate the impact of varying
the parameter λs on sample quality in the context of the Reduced OBA sampler (See Table 10).

40

Published as a conference paper at ICLR 2024

NFE Prob Flow ODE NSE RSE NVV RVV

50 431.74 132.45 23.5 69.06 14.19
70 397.51 63.69 10.03 31.54 5.72

100 330.18 23.47 5.31 14.49 3.41
150 233.28 8.85 3.54 7.51 2.8
200 163.13 5.44 3.1 5.53 2.7
250 110.68 4.16 2.98 4.68 2.71
500 33.93 3.05 2.88 3.56 2.79
1000 11.54 2.92 2.89 3.2 2.86

Table 7: Extended Results for Figs. 3a, 3b. Comparison between Euler, Naive, and Reduced Split-
ting samplers applied to the PSLD ODE. Naive schemes improve significantly over Euler, indicating
the benefits of splitting. Adjusted schemes improve significantly over naive splitting samplers, high-
lighting the benefit of our proposed modifications to naive schemes. Values in bold highlight the
best-performing sampler among all comparison baselines. FID ↓ reported on 50k samples.

NFE EM SDE Naive OBA Reduced OBA Reduced OBA (+λs)

50 30.81 36.87 19.96 2.76 (1.16)
70 15.63 24.23 12.71 2.51 (0.66)
100 7.83 15.18 7.68 2.42 (0.37)
150 4.26 9.68 5.21 2.40 (0.2)
200 3.27 7.09 4.06 2.38 (0.13)
250 2.75 5.56 3.63 2.40 (0.1)
500 2.3 3.41 2.74 -

1000 2.27 2.76 2.45 -

Table 8: Extended Results for Figs. 3c. Comparison between EM, Naive, and Reduced OBA sam-
plers applied to the PSLD Reverse SDE. Adjusted schemes combined with the tuned parameter λs

improve stochastic sampling performance significantly. Values in bold highlight the best-performing
sampler among all comparison baselines. FID ↓ reported on 50k samples.

NFE RBAO ROBAB ROBA

(+λs) (-λs) (+λs) (-λs) (+λs) (-λs)

30 7.83 (1.18) 26.88 21.60 (0.24) 22.09 4.03 (2.72) 39.51
50 3.33 (0.7) 12.96 6.86 (0.2) 6.01 2.76 (1.16) 19.96
70 2.59 (0.44) 8.2 4.66 (0.16) 3.6 2.51 (0.66) 12.71

100 2.65 (0.3) 5.31 3.54 (0.14) 2.73 2.36 (0.37) 7.68
150 2.60 (0.18) 3.87 2.96 (0.12) 2.44 2.40 (0.2) 5.21
200 2.43 (0.1) 3.26 2.67 (0.1) 2.27 2.38 (0.13) 4.06

Table 9: Comparison between Reduced OBA, BAO, and OBAB schemes. Reduced OBA (with λs

performs the best among all schemes. Values in bold highlight the best-performing sampler among
all comparison baselines for a given NFE budget. FID ↓ reported on 50k samples. Values in (.)
indicate the corresponding λs for a sampler at a given compute budget.

Increasing the value of λs leads to significant improvements in sample quality. However, a large λs

degrades sample quality significantly.

F.3 EXTENDED RESULTS FOR SECTION 3.3: CONJUGATE SPLITTING INTEGRATORS

We include extended results corresponding to Fig. 4a in Table 11 and for Fig. 4b in Table 12.

F.4 EXTENDED RESULTS: IMPACT OF PRECONDITIONING

We include extended results corresponding to Figs. 4c, 4d in Table 13.

41

Published as a conference paper at ICLR 2024

λs 0.1 0.4 0.8 1.0 1.16 1.2 1.4 1.6

FID@50k ↓ 24.68 14.34 5.57 3.29 2.76 2.82 4.21 7.07

Table 10: Impact of the magnitude of λ on CIFAR-10 sample quality for a fixed NFE=50 steps for λ-
DDIM-II. Entries in bold indicate the best FID scores and the corresponding λ value. Interestingly,
increasing λ improves sample quality significantly compared to λ = 0. However, too much increase
in λ leads to significant degradation in sample quality.

RVV RSE CVV CSE

NFE FID@50k ↓ FID@50k↓ FID@50k ↓ λ FID@50k ↓ λ

30 89.86 94.21 7.23 -0.41 7.38 1.38
40 31.78 44.3 4.21 -0.3 4.95 1.35
50 14.19 23.5 3.21 -0.25 3.92 1.33
60 8.22 14.46 2.73 -0.21 3.38 1.33
70 5.72 10.03 2.44 -0.2 3.07 1.31
80 4.44 7.64 2.27 -0.17 2.87 1.3
90 3.78 6.21 2.18 -0.16 2.76 1.27

100 3.41 5.31 2.11 -0.14 2.68 1.25

Table 11: Extended Results for Fig. 4a. Comparison between Reduced Splitting samplers and
Conjugate Splitting samplers applied to the PSLD Prob. flow ODE. Conjugate Splitting samplers
largely outperform their reduced counterparts by a significant margin.

Reduced OBA Conjugate OBA

NFE FID@50k ↓ λs FID@50k↓ λ λs

30 4.03 2.72 4.4 -0.3 2.72
40 3.11 1.7 3.34 -0.2 1.7
50 2.76 1.16 2.94 -0.1 1.16
60 2.62 0.84 2.8 -0.1 0.84
70 2.51 0.66 2.64 -0.1 0.66
80 2.47 0.53 2.55 -0.1 0.53
90 2.44 0.43 2.55 -0.1 0.43

100 2.36 0.37 2.49 -0.1 0.37

Table 12: Extended Results for Fig. 4b. Comparison between Reduced OBA and Conjugate OBA
stochastic samplers. Both samplers share churn values for a given sampling budget. For CIFAR-10,
Conjugate OBA slightly degrades sample quality over Reduced OBA.

F.5 EXTENDED RESULTS FOR SECTION 4: STATE-OF-THE-ART RESULTS

We include extended results corresponding to Fig. 5 in Tables 13, 15, 16 for CIFAR-10, CelebA-64
and the AFHQv2-64 datasets, respectively. We include qualitative samples from our samplers used
for state-of-the-art comparisons in Figs. 6-11

42

Published as a conference paper at ICLR 2024

CSPS-D (+Pre.) CSPS-D SPS-S (+Pre.) SPS-S

NFE FID@50k ↓ λ FID@50k ↓ λ FID@50k ↓ λs FID@50k ↓ λs

30 7.57 -0.42 7.23 -0.41 3.89 2.65 4.03 2.72
40 3.26 -0.31 4.21 -0.3 3.05 1.7 3.11 1.7
50 2.65 -0.25 3.21 -0.25 2.74 1.15 2.76 1.16
60 2.42 -0.22 2.73 -0.21 2.58 0.86 2.62 0.84
70 2.34 -0.2 2.44 -0.2 2.54 0.66 2.51 0.66
80 2.3 -0.18 2.27 -0.17 2.52 0.53 2.47 0.53
90 2.23 -0.16 2.18 -0.16 2.5 0.45 2.44 0.43
100 2.24 -0.14 2.11 -0.14 2.47 0.38 2.36 0.37

Table 13: Extended Results for Figs. 4c, 4d. Impact of score network preconditioning on sam-
pler performance. Preconditioning improves sample quality for a low sampling budget but slightly
degrades sample quality for a higher budget. Values in bold indicate the best-performing sampler
with/without preconditioning.

Ablation Description Type NPU
FID@50k ↓
(NFE=50)

FID@50k ↓
(NFE=100)

Conjugate

(Sec. 3.1)

[C1] λ-DDIM-I Conjugate Integrator with choice Bt = I D 1 5.54 3.76

[C2] λ-DDIM-II Conjugate Integrator with choice Bt = 1 D 1 5.04 3.71

Splitting

(Sec 3.2)

[S1] NSE Naive Symplectic Euler D 2 132.45 23.47

[S2] NVV Naive Velocity Verlet D 3 69.06 14.49

[S3] RSE Reduced Symplectic Euler ([S1] + adjustments) D 1 23.5 5.31

[S4] RVV Reduced Velocity Verlet ([S2] + adjustments) D 2 14.19 3.41

[S5] NOBA Naive OBA S 2 36.87 15.18

[S6] ROBA Reduced OBA ([S5] + adjustments) S 1 2.76 2.36

Conjugate Splitting

(Sec 3.3)

[CS1] CSE Conjugate Symplectic Euler ([S3] + [C2]) D 1 3.92 2.68

[CS2] CVV Conjugate Velocity Verlet ([S4] + [C2]) D 2 3.21 2.11

[CS3] COBA Conjugate OBA ([S6] + [C2]) S 1 2.94 2.49

Table 14: Overview of our ablation samplers on the CIFAR-10 dataset for PSLD diffusion. NPU:
NFE per numerical update, D: Deterministic, S: Stochastic

CSPS-D (+Pre.) CSPS-S (+Pre.) SPS-S (+Pre.)

NFE FID@50k ↓ λ FID@50k ↓ λs FID@50k ↓ λs

30 25.75 -0.5 6.16 0.85 6.32 3.92
40 7.97 -0.4 3.94 0.8 4.56 2.6
50 4.41 -0.33 3.32 0.7 3.88 1.8
70 2.75 -0.23 2.81 0.5 3.06 1
100 2.25 -0.13 2.6 0.3 2.64 0.55

Table 15: State-of-the-art results for CelebA-64.

CSPS-D (+Pre.) CSPS-S (+Pre.) SPS-S (+Pre.)

NFE FID@50k ↓ λ FID@50k ↓ λs FID@50k ↓ λs

30 9.83 -0.15 3.59 2.8 6.17 1.5
40 5.22 -0.1 3.38 2.8 5.37 1.35
50 3.63 -0.07 3.1 2 4.36 1.15
70 2.7 -0.04 2.83 1 3.31 0.8

100 2.39 -0.02 2.61 0.2 2.73 0.5

Table 16: State-of-the-art results for AFHQv2-64.

43

Published as a conference paper at ICLR 2024

FID = 2.65 (NFE=50), Sampler: CSPS-D (+Pre.)

FID = 2.11 (NFE=100), Sampler: CSPS-D

Figure 6: Random CIFAR-10 samples generated using our deterministic samplers

44

Published as a conference paper at ICLR 2024

FID = 2.36 (NFE=100), Sampler: SPS-S

FID = 2.74 (NFE=50), Sampler: SPS-S (+Pre.)

Figure 7: Random CIFAR-10 samples generated using our stochastic samplers

45

Published as a conference paper at ICLR 2024

FID = 2.25 (NFE=100), Sampler: CSPS-D (+Pre.)

FID = 4.41 (NFE=50), Sampler: CSPS-D (+Pre.)

Figure 8: Random CelebA-64 samples generated using our deterministic samplers

46

Published as a conference paper at ICLR 2024

FID = 3.32 (NFE=50), Sampler: CSPS-S (+Pre.)

FID = 2.6 (NFE=100), Sampler: CSPS-S (+Pre.)

Figure 9: Random CelebA-64 samples generated using our stochastic samplers

47

Published as a conference paper at ICLR 2024

FID = 3.63 (NFE=50), Sampler: CSPS-D (+Pre.)

FID = 2.39 (NFE=100), Sampler: CSPS-D (+Pre.)

Figure 10: Random AFHQv2-64 samples generated using our deterministic samplers

48

Published as a conference paper at ICLR 2024

FID = 3.1 (NFE=50), Sampler: CSPS-S (+Pre.)

FID = 2.61 (NFE=100), Sampler: CSPS-S (+Pre.)

Figure 11: Random AFHQv2-64 samples generated using our stochastic samplers

49

	Introduction
	Background
	Designing efficient Samplers for Generative Diffusions
	Conjugate Integrators for efficient deterministic Sampling
	Splitting Integrators for Fast ODE and SDE Sampling
	Combining Splitting and Conjugate Integrators

	Additional Experimental Results
	Discussion
	Related Work
	Conjugate Integrators for Faster ODE Sampling
	Proof of Theorem 1
	Proof of Proposition 1: Connection with DDIM
	Proof of Proposition 2: Connections with DPM-Solver
	Proof of Proposition 2: Connections with DEIS
	Proof of Theorem 2
	Conjugate Integrators in the Wild

	Splitting Integrators for Fast ODE/SDE Sampling
	Introduction to Splitting Integrators
	Deterministic Splitting Integrators
	Naive Splitting Samplers
	Reduced Splitting Samplers
	Local Error Analysis for Deterministic Splitting Integrators
	Error Analysis: Naive Velocity Verlet (NVV)
	Error Analysis: Reduced Velocity Verlet (RVV)

	Stochastic Splitting Integrators
	Naive Splitting Samplers
	Effects of controlling stochasticity
	Reduced Splitting Schemes

	Conjugate Splitting Integrators
	Deterministic Conjugate Splitting Samplers
	Stochastic Conjugate Splitting Samplers

	Implementation Details
	Datasets and Preprocessing
	Pre-trained Models
	Score Network Preconditioning
	Evaluation

	Extended Results
	Extended Results for Section 3.1: Conjugate Integrators
	Extended Results for Section 3.2: Splitting Integrators
	Extended Results for Section 3.3: Conjugate Splitting Integrators
	Extended Results: Impact of Preconditioning
	Extended Results for Section 4: State-of-the-art Results

