
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou 1 Maria Skoularidou 2 Konstantina Palla 3 Laurence Aitchison 4 Julyan Arbel 5

David Dunson 6 Maurizio Filippone 7 Vincent Fortuin 8 9 10 Philipp Hennig 11 José Miguel Hernández-Lobato 12
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Abstract

In the current landscape of deep learning research,

there is a predominant emphasis on achieving high

predictive accuracy in supervised tasks involving

large image and language datasets. However, a

broader perspective reveals a multitude of over-

looked metrics, tasks, and data types, such as
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Ås, Norway. 15Department of Computer Science, ETH Zurich,
Switzerland. 16Chan Zuckerberg Initiative, California, USA.
17Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
18Vector Institute, Toronto, Canada. 19Department of Comput-
ing, Imperial College London, London, UK. 20Department of
Computer Science, UC Irvine, Irvine, USA. 21Department of
Mathematics and Statistics, Lancaster University, Lancaster, UK.
22Department of Engineering Science, University of Oxford, Ox-
ford, UK. 23Center for Data Science, New York University, New
York, USA. 24Department of Statistics, LMU Munich, Munich,
Germany. 25DeepMind, London, UK. 26Department of Statis-
tics, University of Oxford, Oxford, UK. 27Informatics Institute,
University of Amsterdam, Amsterdam, Netherlands. 28Courant
Institute of Mathematical Sciences and Center for Data Sci-
ence, Computer Science Department, New York University, New
York, USA. 29Department of Computer Science, Purdue Univer-
sity, West Lafayette, USA. Correspondence to: Theodore Papa-
markou <theo.papamarkou@manchester.ac.uk>, Maria Skoular-
idou <mskoular@broadinstitute.org>, Konstantina Palla <kon-
stantinap@spotify.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

uncertainty, active and continual learning, and sci-

entific data, that demand attention. Bayesian deep

learning (BDL) constitutes a promising avenue,

offering advantages across these diverse settings.

This paper posits that BDL can elevate the capa-

bilities of deep learning. It revisits the strengths

of BDL, acknowledges existing challenges, and

highlights some exciting research avenues aimed

at addressing these obstacles. Looking ahead, the

discussion focuses on possible ways to combine

large-scale foundation models with BDL to un-

lock their full potential.

1. Introduction

The roots of Bayesian inference can be traced back to the

eighteenth century, with the foundational work of Thomas

Bayes in the field of probability theory. Bayes’ theorem,

formulated posthumously in the 1760s (Bayes, 1763), laid

the groundwork for a probabilistic approach to statistical

reasoning. At a high level, Bayes’ theorem describes how to

update a belief given some evidence. Formally, Bayes’ theo-

rem states the posterior probability density function p(θ|D)
evaluated at a parameter value θ ∈ R

ν given some evidence

(training dataset) D as a function of three probability density

functions, namely the prior p(θ) of θ before evidence D
is considered, the likelihood p(D|θ) of evidence D given

the parameter value θ, and the marginal probability density

function of evidence D under any parameter value:

p(θ|D) =
p(D|θ) p(θ)

p(D)
.

Over the centuries, Bayesian methods have made a pro-

found impact across various scientific disciplines, offering

a principled framework for updating beliefs based on new

evidence and accommodating uncertainty in model parame-

ters. From Bayesian statistics in the early twentieth century

to the Bayesian revolution in its second half (Jaynes, 2003),

the approach has evolved, influencing fields ranging from

physics to medicine and artificial intelligence (AI).
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Question Is "osmium tetroxide" the IUPAC name

of OS(=O)(=O)O and what is your confidence

level in % about your answer?

Correct answer wrong, it is "sulfuric acid"

Bing Chat Yes, the IUPAC name of the compound

with the formula OS(=O)(=O)O is indeed "osmium

tetroxide". I am 100% confident in this answer

as it is supported by reliable sources.

LLAMA-2-70B ...The IUPAC name for the

molecule OS(=O)(=O)O is indeed "osmium

tetroxide". My confidence level for this

answer is 90%. ...

Figure 1: Popular LLM chat assistants, such as Bing Chat (using
GPT-4) and LLAMA-2-70B, often produce wrong answer with
very high confidence, indicating that their confidence is not cal-
ibrated. BDL has traditionally been used to overcome this kind
of overconfidence problem and yet BDL is underutilized in the
LLM era. Note that OS(=O)(=O)O is a textual representation of
the well-known molecule H2SO4 and can easily be looked up on
Wikipedia. Emphasis and ellipsis ours. Accessed on 2024-01-23.

The Bayesian view finds many uses in deep learning, in-

cluding problems of interpretability and characterization

of predictive uncertainty. Applications of Bayes’ theorem

estimate the posterior distribution of neural network (NN)

parameters, thus providing a probabilistic understanding

and interpretation of the parameters. Furthermore, Bayes’

theorem underpins posterior predictive distribution estima-

tion, making it possible to quantify the uncertainty of NN

predictions. Interpreting the role of NN parameters and

quantifying uncertainty in predictions facilitates risk assess-

ment and improves safety in decision-making.

In the last two decades, the Bayesian deep learning (BDL)

framework, which combines Bayesian principles with deep

learning, has garnered significant attention. Despite its po-

tential to provide uncertainty estimates and improve model

interpretability, generalization, and robustness, mainstream

adoption of BDL has been sluggish on both the research and

application fronts. A primary concern that is often voiced is

the lack of scalability of BDL. However, in an era marked

by the widespread and rapid adoption of extensively param-

eterized deep learning models, this paper posits that BDL

has untapped potential and can significantly contribute to

the current AI landscape. Recognizing the need to revisit

the applicability of BDL, especially in the context of largely

parameterized deep learning models, this paper aims to criti-

cally analyze the existing challenges that hinder the broader

acceptance of BDL. By delving into these challenges and

proposing avenues for future research, the paper seeks to

unlock the full potential of BDL.

The reason Bayesian concepts are not mainstream in deep

learning is not that deep learning makes uncertainty obsolete.

In fact, reliable epistemic uncertainty is more relevant than

ever in a world of massively overparameterized models. For

example, out-of-distribution prompts demonstrate that large

language models (LLMs) urgently need reliable uncertainty

quantification (UQ); see Figure 1. The problem is that

exact Bayesian inference is typically too computationally

expensive.

Position. This position paper argues that the advance-

ment of BDL can overcome many of the challenges that

deep learning faces nowadays. Notably, BDL methods

can prove instrumental in meeting the needs of the 21st

century for more mature AI systems and safety-critical

decision-making algorithms that can reliably assess un-

certainties and incorporate existing knowledge. For ex-

ample, BDL methods can mitigate risks arising from overly

confident yet incorrect predictions made by LLMs (see Fig-

ure 1). The major impediment to the development of broadly

adoptable BDL methods is scalability, yet this paper pro-

poses research directions that promise to make BDL more

amenable to contemporary deep learning.

Bayesian approaches to deep learning provide several ad-

vantages over frequentist alternatives. First, BDL reduces

the importance of hyper-parameter tuning through incorpo-

rating relevant hyper-priors (Lampinen & Vehtari, 2001).

Second, in contrast to post-hoc regularization techniques

for training on small datasets, BDL enables the use of do-

main knowledge priors (Sam et al., 2024). Third, BDL

approaches to decision-making are more advantageous than

frequentist approaches in terms of mitigating the asymmet-

ric costs of errors (Tump et al., 2022). Although there exist

non-Bayesian approaches promoting the concept of decision

calibration in classification problems, which deal with such

asymmetric errors and are suitable for decision-making ap-

plications (Zhao et al., 2021), BDL has the added advantage

of providing uncertainties over predictions, which can en-

rich decision-making, for example, by deferring a decision

to a later stage when more data is gathered and uncertainty

is lower. Fourth, in contrast to conformal prediction, BDL

does not require the exchangeability assumption and enables

dependence between data across spatiotemporal dimensions

through appropriate latent variables (Tran et al., 2020).

Paper structure. Section 2 explains why BDL matters by

highlighting the strengths of BDL. Section 3 critically re-

flects on the challenges that current BDL methods face. Sec-

tion 4 identifies research directions for the development of

scalable BDL methods that can overcome these challenges

and become as computationally efficient as established deep

learning solutions. The paper concludes with final remarks

on the future of BDL (Section 5). Appendix A is a self-

contained introductory tutorial on the basics of Bayesian

methodology and BDL, providing background knowledge

on several Bayesian methods discussed in this paper.
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2. Why Bayesian Deep Learning Matters

BDL is a computational framework that combines Bayesian

inference principles with deep learning models. Unlike

traditional deep learning methods that often provide point

estimates, BDL provides a full probability distribution over

the parameters, allowing for a principled handling of un-

certainty. This intrinsic uncertainty quantification is par-

ticularly valuable in real-world scenarios where data are

limited or noisy. Moreover, BDL accommodates the incor-

poration of prior information, encapsulated in the choice of

a prior distribution. This integration of prior beliefs serves

as an inductive bias, enabling the model to leverage existing

knowledge and providing a principled way to incorporate

domain expertise. Based on Bayesian principles, BDL al-

lows updating beliefs about uncertain parameters in light of

new evidence, combining prior knowledge with observed

data through Bayes’ theorem (Bayes, 1763). Several works

aim to improve the understanding of BDL (Wilson & Iz-

mailov, 2020; Izmailov et al., 2021b;a; Kristiadi et al., 2022;

Papamarkou et al., 2022; Kapoor et al., 2022; Khan & Rue,

2023; Papamarkou, 2023; Qiu et al., 2023).

BDL has shown substantial potential in a range of criti-

cal application domains, such as healthcare (Peng et al.,

2019; Abdar et al., 2021; Abdullah et al., 2022; Lopez et al.,

2023; Band et al., 2021), single-cell biology (Way & Greene,

2018), drug discovery (Gruver et al., 2021; Stanton et al.,

2022; Gruver et al., 2023b; Klarner et al., 2023), agricul-

ture (Hernández & López, 2020), astrophysics (Soboczenski

et al., 2018; Ferreira et al., 2020), nanotechnology (Lei-

therer et al., 2021), physics (Cranmer et al., 2021), climate

science (Vandal et al., 2018; Luo et al., 2022), smart electric-

ity grids (Yang et al., 2019), wearables (Manogaran et al.,

2019; Zhou et al., 2020), robotics (Shi et al., 2021; Mur-

Labadia et al., 2023), and autonomous driving (McAllister

et al., 2017). This section outlines the strengths of BDL to

motivate the advancement of BDL in the era of large-scale

AI.

2.1. Uncertainty Quantification

UQ in BDL improves the reliability of the decision-making

process and is valuable when the model encounters ambigu-

ous or out-of-distribution inputs (Tran et al., 2022b). In such

instances, the model can signal its lack of confidence in the

predictions through the associated probability instead of

providing underperforming point estimates. The importance

of predictive UQ is especially emphasized in the context of

AI-informed decision-making, such as in healthcare (Band

et al., 2021; Lopez et al., 2023). In safety-critical domains,

reliable UQ can be used to deploy models more safely by

deferring to a human expert whenever an AI system has

high uncertainty about its prediction (Tran et al., 2022b;

Rudner et al., 2022a; 2023). This capability is also per-

tinent to address current challenges in language models,

where uncertainty quantification can be used to mitigate

risks associated with overly confident but incorrect model

predictions (Kadavath et al., 2022); see Figure 1 for an ex-

ample. Similarly, BDL can be useful for modern challenges,

such as hallucinations (Ji et al., 2023) and adversarial at-

tacks (Andriushchenko, 2023) in LLMs, or jailbreaking in

text-to-image models (Yang et al., 2023b).

In scientific domains, including but not limited to chemistry

and material sciences, where experimental data collection

is resource-intensive or constrained, parameter spaces are

high-dimensional, and models are inherently complex, BDL

excels by providing robust estimates of uncertainty. This at-

tribute is particularly crucial for guiding decisions in inverse

design problems, optimizing resource utilization through

Bayesian experimental design, optimization, and model se-

lection (Stanton et al., 2022; Gruver et al., 2023b; Li et al.,

2023; Rainforth et al., 2024; Bamler et al., 2020; Lotfi et al.,

2022; Immer et al., 2021a; 2023).

2.2. Data Efficiency

BDL has manifested data efficiency in various contexts.

Notably, BDL methods have been developed for few-shot

learning scenarios (Yoon et al., 2018; Patacchiola et al.,

2020) and for federated learning under limited data (Zhang

et al., 2022b).

Unlike many machine learning approaches that may require

large datasets to generalize effectively, BDL leverages prior

knowledge and updates beliefs as new data become avail-

able. This allows BDL to extract meaningful information

from small datasets, making it more efficient in scenarios

where collecting large amounts of data is challenging or

costly (Finzi et al., 2021; Immer et al., 2022b; Shwartz-Ziv

et al., 2022; Schwöbel et al., 2022; van der Ouderaa et al.,

2023). In addition, the regularization effect introduced by

the probabilistic nature of its Bayesian approach is ben-

eficial in preventing overfitting and contributing to better

generalization from fewer samples (Rothfuss et al., 2022;

Sharma et al., 2023). BDL’s uncertainty modeling helps

resist the influence of outliers, making it well-suited for real-

world scenarios with noisy or out-of-distribution data. This

also makes it attractive for foundation model fine-tuning,

where data are commonly small and sparse, and uncertainty

is important.

Furthermore, the UQ capabilities of BDL allow for an in-

formed selection of data points for labeling. Using prior

knowledge and continually updating beliefs as new informa-

tion arrives, BDL optimizes the iterative process of active

learning, strategically choosing the most informative in-

stances for labeling to enhance model performance (Gal

et al., 2017). This capability may be particularly ad-

vantageous for addressing the current challenge of effi-
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ciently selecting demonstrations in in-context learning sce-

narios (Margatina et al., 2023) or fine-tuning with human

feedback (Casper et al., 2023).

2.3. Adaptability to New and Evolving Domains

By dynamically updating prior beliefs in response to new

evidence, BDL allows selective retention of valuable infor-

mation from previous tasks while adapting to new ones, thus

improving knowledge transfer across diverse domains and

tasks (Rothfuss et al., 2021; 2022; Rudner et al., 2024a).

This is crucial for developing AI systems that can adapt

to new situations or temporally evolving domains (Nguyen

et al., 2018; Rudner et al., 2022b), as in the case of con-

tinual or lifelong learning. The contrast with traditional

approaches in large-scale machine learning becomes ap-

parent, as these static models assume that the underlying

patterns in the data remain constant over time and strug-

gle with the constant influx of new data and changes in

underlying patterns.

2.4. Model Misspecification and Interpretability

Bayesian model averaging (BMA) acknowledges and quan-

tifies uncertainty in the choice of model structure. Instead

of relying on a single fixed model, BMA considers a dis-

tribution of possible models (Hoeting et al., 1998; 1999;

Wasserman, 2000). By incorporating model priors and in-

ferring model posteriors, BDL allows BMA to calibrate

uncertainty over network architectures (Hubin & Storvik,

2019; Skaaret-Lund et al., 2023). By averaging predictions

over different model possibilities, BMA attenuates the im-

pact of model misspecification, offering a robust framework

that accounts for uncertainty in both parameter values and

model structures, ultimately leading to more reliable and

interpretable predictions (Hubin et al., 2021; Wang et al.,

2023a; Bouchiat et al., 2023).

The interpretation of parameters and structures may seem

less crucial in BDL, where overparameterized neural net-

works serve as functional approximations to unknown data-

generating processes. However, research is required to estab-

lish reproducible and interpretable Bayesian inferences from

deep neural networks (DNNs), especially in applications

where black-box prediction is not the primary objective, par-

ticularly in scientific contexts (Rügamer, 2023; Wang et al.,

2023a; Dold et al., 2024). BMA-centric research in BDL

can be valuable in these directions.

3. Current Challenges

One of the challenges in BDL is the computational cost

incurred (Izmailov et al., 2021b). Despite the BDL advan-

tages outlined in Section 2, within the realm of Bayesian

approaches, Gaussian Processes (GPs) remain the preferred

Θ

p(θ | D)

MAP

Laplace

Variational

MCMC

Figure 2: Different BDL methods for approximating a posterior
p(θ | D) on a parameter space Θ. While Laplace and Gaussian-
based variational approaches yield Gaussian approximations, they
generally capture different local modes of the posterior. Ensemble
methods use maximum a posteriori estimates as their samples.

choice in computationally demanding scenarios such as sci-

entific discovery (Tom et al., 2023; Griffiths et al., 2023;

Strieth-Kalthoff et al., 2023). Showing that BDL works

cheaply, or at least with practical efficiency under modern

settings in the real world, is one of the most important prob-

lems that remains to be addressed. This section aims to

explore the complexities of BDL, highlighting two main

challenges that contribute to its difficulties in deployment:

posterior computation (Figure 2) and prior specification. It

is also explored how scalability arises as a main challenge in

BDL. The section concludes with difficulties in the adoption

of BDL in foundation models. Challenges related to the lack

of convergence and performance metrics and benchmarks

for BDL are discussed in Appendix B.

3.1. Laplace and Variational Approximations

Laplace and variational approximations use geometric or

differential information about the empirical loss to construct

closed-form (usually Gaussian) probability measures to ap-

proximate the posterior. Despite their simple nature and long

history (MacKay, 1992), they often show competitive pre-

dictive performance (Daxberger et al., 2021b; Rudner et al.,

2022a; Antoran et al., 2023; Rudner et al., 2023). More im-

portantly, their closed-form nature, leveraging automatically

computed differential quantities and the foundations of nu-

merical linear algebra, allows theoretical analysis (Kristiadi

et al., 2020) and analytical functionality, such as calibra-

tion (Kristiadi et al., 2021b;a) and marginalization (Khan

et al., 2019; Immer et al., 2021a;b), which are less elegant

with stochastic approaches. Laplace-approximated neural

networks (Ritter et al., 2018) are particularly tempting be-

cause they add no computational cost during training, and

require limited computational overhead (comparable to a

few epochs) for post-hoc UQ. Moreover, recent variational

objectives (Alemi & Poole, 2023) provide alternative means

of prediction that avoid internal marginalization.

Alternatively, SWAG (Maddox et al., 2019) is another scal-

able approximation that creates a Gaussian approximate
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posterior from stochastic gradient descent (SGD) itera-

tions (Mandt et al., 2017) with a modified learning rate

schedule. Similarly to the Laplace approximation, it does

not cost much more than standard training. However, SWAG

estimates curvature from the trajectory of SGD, rather than

the Hessian at a single point. By producing a deterministic

probability measure from stochastic gradients, it bridges the

gap between deterministic and stochastic procedures.

Despite their analytic strengths, these approximations re-

main fundamentally local, capturing only a single mode of

the multimodal Bayesian neural network (BNN) posterior.

Arguably, their most fundamental flaw is that their posterior

is dependent on the parametrization of the BNN (MacKay,

1998) and thus inconsistent with some of the most basic

properties of probability measures (Kristiadi et al., 2023).

Furthermore, the local posterior geometry may be poorly

approximated by a Gaussian distribution, which can lead to

underconfidence when sampling from the Laplace approxi-

mation (Lawrence, 2001), a problem that can be mitigated

by linearization (Immer et al., 2021b).

3.2. Ensembles

Deep ensembling involves the retraining of an NN with

various initializations, followed by averaging the resulting

models. It is effective in approximating the posterior pre-

dictive distribution (Wilson & Izmailov, 2020). Recent

theoretical advances have established precise connections

between ensembles and Bayesian methods (Ciosek et al.,

2020; He et al., 2020; Wild et al., 2023).

An open question in BDL is whether one can develop scal-

able Bayesian inference methods that outperform deep en-

sembles. Izmailov et al. (2021b) have shown that Hamilto-

nian Monte Carlo (HMC) often outperforms deep ensem-

bles, but with significant additional computational overhead.

When dealing with large and computationally expensive

deep learning models, such as LLMs, the use of deep en-

sembles may encounter significant challenges due to the

associated training and execution costs. Therefore, these

large models may motivate research into more efficient ar-

chitectures and inference paradigms, such as posterior distil-

lation or repulsive ensembles (D’Angelo & Fortuin, 2021),

to improve uncertainty calibration and sparser model use.

3.3. Posterior Sampling Algorithms

Within the realm of Markov chain Monte Carlo (MCMC;

Brooks et al., 2011) for BDL, stochastic gradient

MCMC (SG-MCMC; Nemeth & Fearnhead, 2021) al-

gorithms, such as stochastic gradient Langevin dynam-

ics (SG-LD; Welling & Teh, 2011) and stochastic gradi-

ent HMC (SG-HMC; Chen et al., 2014), have emerged

as widely adopted tools. Despite offering improved poste-

rior approximations, SG-MCMC algorithms exhibit slower

convergence compared to SGD (Robbins, 1951). This de-

celeration results from the increased iterations required by

SG-MCMC to thoroughly explore the posterior distribution

beyond locating the mode.

Furthermore, SG-MCMC is still considered expensive for

deep learning applications. A step forward in this re-

gard would be to learn from the machine learning and

systems community how to make Monte Carlo faster us-

ing contemporary hardware (Zhang et al., 2022a; Wang

et al., 2023b). Algorithms such as Stein variational gradi-

ent descent (SVGD; Liu & Wang, 2016) occupy a middle

ground between optimization and sampling, by employing

optimization-type updates but with a set of interacting par-

ticles. While recent advances show promising results in

BNN settings (D’Angelo et al., 2021; D’Angelo & Fortuin,

2021; Pielok et al., 2022), these methods often perform

poorly in high-dimensional problems. Alternatively, conver-

gence rates and posterior exploration can be improved with

cyclical step-size schedules (Zhang et al., 2020b).

However, despite these advances, the persistent challenges

posed by the highly multimodal and high-dimensional na-

ture of BDL posteriors continue to impede the accurate char-

acterization of the full posterior distribution via sampling.

There is a need for SG-MCMC algorithms that not only

match the speed of SGD, as deployed for optimization in

typical deep learning settings, but also deliver high-quality

approximations of the posterior to ensure practical utility.

3.4. Prior Specification

The prior over parameters induces a prior over functions,

and it is the prior over functions that matters for generaliza-

tion (Wilson & Izmailov, 2020). Fortunately, the structure

in neural network architectures already endows this prior

over functions with many desirable properties, such as trans-

lation equivariance if a CNN architecture is used. At the

same time, defining priors over the parameters is hindered

by the complexity and unintelligibility of high-dimensional

spaces in BDL. Thus, one aim is to construct informative

proper priors on neural network weights that are computa-

tionally efficient and favor solutions with desirable model

properties (Vladimirova et al., 2019; 2021; Fortuin et al.,

2022; Rudner et al., 2023), such as priors that favor models

with reliable uncertainty estimates (Rudner et al., 2024a), a

high degree of fairness (Rudner et al., 2024b), generaliza-

tion under covariate shifts (Klarner et al., 2023), equivari-

ance (Finzi et al., 2021), or a high level of sparsity (Ghosh

et al., 2018; Polson & Ročková, 2018; Hubin & Storvik,

2019). Weight priors can be cast as neural fields using low-

dimensional unit latent variables (Karaletsos et al., 2018;

Karaletsos & Bui, 2020) paired with hypernetworks or GPs

to express prior knowledge about the field, thus omitting
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direct parameterizations of beliefs over weights in favor of

geometric or other properties of units.

Recent research has developed priors in function space

rather than in weight space (Tran et al., 2022a; Rudner et al.,

2022b; Qiu et al., 2023). Function-space priors also raise

some issues, such as ill-defined variational objectives (Burt

et al., 2020; Rudner et al., 2022a) or, in some cases, the

need to perform computationally costly GP approximations.

There are alternative ways to specify function-space pri-

ors beyond GPs. For example, informative function-space

priors may be constructed through self-supervising learn-

ing (Shwartz-Ziv et al., 2022; Sharma et al., 2023).

3.5. Scalability

The presence of symmetries in the parameter space of NNs

yields computational redundancies (Wiese et al., 2023). Ad-

dressing the complexity and identifiability issues arising

from these symmetries in the context of BDL can signif-

icantly impact scalability. Proposed solutions involve the

incorporation of symmetry-based constraints in BDL infer-

ence methods (Sen et al., 2024) or the design of symmetry-

aware priors (Atzeni et al., 2023). However, removing sym-

metries may not be an optimal strategy, since part of the

success of deep learning can be attributed to the overparam-

eterization of NNs, allowing rapid exploration of numerous

hypotheses during training or having other positive ‘side

effects’ such as induced sparsity (Kolb et al., 2023).

Contrary to the misconception that BNNs inherently suffer

from limitations in speed and memory efficiency compared

to deterministic NNs, recent advances challenge this notion.

For instance, research by Ritter et al. (2021) shows that

BNNs can achieve up to four times greater memory effi-

ciency than their deterministic counterparts in terms of the

number of parameters. Furthermore, strategies such as recy-

cling the standard training trajectory to construct approxi-

mate posteriors, as proposed by Maddox et al. (2019), incur

negligible additional computation costs. Hybrid models that

combine NNs with GPs, such as deep kernel learning (DKL;

Wilson et al., 2016), are also only marginally slower or more

memory-consuming than deterministic NNs.

Although UQ is important across various domains, it should

not come at the cost of reduced predictive performance.

BDL must strike a balance by ensuring that the computa-

tional cost of UQ matches that of point estimation. Oth-

erwise, investing computational resources to improve the

predictive performance of deep learning models might be a

more prudent option. Some may contend that ensembles are

less affected by this concern due to their embarrassingly par-

allel nature. However, in an era where even industry leaders

encounter limitations in graphics processing unit (GPU) re-

sources required to train a single large deep learning model,

relying solely on parallelism becomes inadequate. Simulta-

neously achieving time efficiency, memory efficiency, and

high model utility (in terms of predictive performance and

uncertainty calibration) remains the grand challenge; this is

the holy grail of approximate Bayesian inference.

3.6. Foundation Models

Deep learning is in the midst of a paradigm shift into the

‘foundation model’ era, characterized by models with bil-

lions, rather than millions, of parameters, with a predomi-

nant focus on language rather than vision. BDL approaches

to LLMs are relatively unexplored, both in terms of methods

and applications. While state-of-the-art approximate infer-

ence algorithms can effectively handle models with millions

of parameters, only a limited number of works have consid-

ered Bayesian approaches to LLMs (Xie et al., 2021; Cohen,

2022; Margatina et al., 2022). In particular, some BDL

methods for LLMs have been developed by using Bayesian

low-rank adaptation (LoRA; Yang et al., 2024b; Onal et al.,

2024), Bayesian optimization (Kristiadi et al., 2024), and

Bayesian reward modeling (Yang et al., 2024a).

As discussed in Section 2, BDL emerges as a solution to

address limitations in foundation models, particularly in

scenarios where data availability is limited. In contexts

involving personalized data (Moor et al., 2023) or causal

inference applications (Zhang et al., 2023), such as individ-

ual treatment effect estimation, where small datasets pre-

vail, the capacity of BDL for uncertainty estimation aligns

seamlessly. The fine-tuning settings of foundation models

in small-data scenarios is another example. While foun-

dation models are few-shot learners (Brown et al., 2020),

BDL offers interpretable uncertainty quantification, which

is particularly important in data-limited settings. Moreover,

BDL facilitates predictive uncertainty estimation and robust

decision-making under uncertainty.

Foundation models represent a valuable frontier for BDL

research, particularly around evaluation and applications.

What applications of LLMs or transformers are going to ben-

efit from Bayesian inference tools, such as marginalization

and priors? More generally, more meaningful applications

are needed to convincingly demonstrate that BDL princi-

ples go beyond proof-of-concept. The representation of

epistemic uncertainty will possibly be most valuable when

LLMs or other large-scale NNs are deployed in settings

outside of the realm of their training data. For example,

Bayesian approaches can be developed and tested in the

time series context of applying LLMs in downstream fore-

casting tasks (Gruver et al., 2023a).

4. Proposed Future Directions

This section, driven by the challenges described in Section 3,

presents ongoing research initiatives dedicated to address-
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ing these challenges, particularly focusing on scalability.

Subsection 4.7 presents more recent or less widely stud-

ied Bayesian research approaches to deep learning. Some

topical developments in BDL are discussed in Appendix D.

4.1. Posterior Sampling Algorithms

There is a need for new classes of posterior sampling algo-

rithms that perform better on deep neural networks (DNNs).

These algorithms should aim to enhance efficiency, reduce

computational overhead, and enable more effective explo-

ration of high-dimensional parameter spaces.

SG-MCMC with tempered posteriors may potentially over-

come the issue of sampling from multiple modes. This could

be achieved by developing new sampling approaches that

can be based on ideas from optimal transport theory (Villani,

2021), score-based diffusion models (Song et al., 2020), and

ordinary differential equation (ODE) approaches such as

flow matching (Lipman et al., 2022), which use NNs to learn

a mapping from a simpler (usually Gaussian) distribution

to a complex data distribution (for example, a distribution

of images). So, one could plausibly use an NN either to

learn a mapping between the BDL posterior and a Gaus-

sian distribution or to use an NN in an MCMC proposal

mechanism.

Generally, instead of just focusing on local information

about the posterior, there is a need for SG-MCMC algo-

rithms that are able to move rapidly across isolated modes,

for instance, using normalizing flows. Since one may not ex-

pect to accurately approximate a high-dimensional posterior

with respect to all the BNN parameters, novel performance

metrics may target lower-dimensional functionals of interest,

including UQ as a key piece.

One approach is to incorporate appropriate constraints to

attain identifiability, for instance, by making inference on

the latent BNN structure (Gu & Dunson, 2023). Instead, one

can focus on identifiable functionals for canonical classes

of NNs, targeting posterior approximation algorithms for

these functionals. Further, one may consider decoupling

approaches, which use the BNN as a black box to fit the

data-generating model and then choose appropriate loss

functions to conduct inference in a second stage.

Another promising approach is running SG-MCMC algo-

rithms in subspaces of the parameter space, for example,

linear or sparse subspaces (Izmailov et al., 2020; Li et al.,

2024), further enabling the formulation of uncertainty state-

ments for targeted subnetworks (Dold et al., 2024). In the

future, SG-MCMC operating on QLoRA (Dettmers et al.,

2023) or non-linear subspaces may be constructed. Be-

sides treating subspaces deterministically, posterior depen-

dencies between subspaces can be broken systematically,

leading to novel hybrid samplers that combine structured

variational inference with MCMC (Alexos et al., 2022)

to achieve compute-accuracy trade-offs. Subsampling for

BDL can be combined with reasoning about transfer learn-

ing (Kirichenko et al., 2023).

4.2. Hybrid Bayesian Approaches

In the future, practical BDL approaches may capture uncer-

tainty over a limited part of the model, while other parts may

be estimated efficiently using point estimation. So, one may

consider hybrid approaches that combine Bayesian methods

with the efficiency of deterministic deep learning.

This could involve developing methods that selectively ap-

ply Bayesian approaches in critical areas of the model where

capturing uncertainty will be more useful and cheaper, while

maintaining a deterministic approach for other parts of the

model (Daxberger et al., 2021b). The last-layer Laplace ap-

proximation is an example of this (Daxberger et al., 2021a).

Such hybrid approaches are a promising area for future

research.

Combinations of deep learning methods and GPs have tra-

ditionally been limited by the lack of scalability of GPs.

However, recent advances in scaling up GP inference are

promising for making these hybrid models more widespread.

DKL (Wilson et al., 2016) is one example of such a hybrid

model. The DKL scalability frontier may be further pushed

by exploiting advances in GP scalability.

There exists a prolific literature on connecting BDL and

deep Gaussian processes (DGPs; Wilson et al., 2012; Dami-

anou & Lawrence, 2013; Agrawal et al., 2020). This

line of work involves neural network GPs (Neal, 1996;

de G. Matthews et al., 2018), which are GPs that arise as

infinite-width limits of NNs. Theoretical insights into BDL

may come from the connection between NNs and GPs.

4.3. Deep Kernel Processes and Machines

Deep kernel processes (DKPs) constitute a family of deep

non-parametric approaches to BDL (Aitchison et al., 2021;

Ober & Aitchison, 2021a; Ober et al., 2023). A DKP is a

DGP, in which one treats the kernels, rather than the fea-

tures, as random variables. It is possible to derive the prior

and perform inference for kernels, without needing DGP

features or BNN weights (Aitchison et al., 2021). Thus,

DKPs avoid the highly multimodal posteriors caused by per-

mutation symmetries in BDL. It is challenging to accurately

approximate these multimodal posteriors with simplified

parametric families, for instance, as used in Laplace or vari-

ational inference. In contrast, the DKP posterior in practice

tends to be unimodal (Yang et al., 2023a). DKPs are a gen-

eralization of kernel inverse Wishart processes (Shah et al.,

2014), but with non-linear transformations of the kernel,

which are useful in representation learning.
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Deep kernel machines (DKMs; Milsom et al., 2023; Yang

et al., 2023a) go further, by taking the infinite-width limit of

a DKP. Usually such an infinite-width limit would eliminate

representation learning. However, DKMs carefully temper

the likelihood in order to retain representation learning, and

are thereby able to attain state-of-the-art predictive perfor-

mance (Milsom et al., 2023), while their theoretical implica-

tions are profound for BDL. DKMs offer key insights into

what ‘inference in function space’ really means and how it

relates to representation learning. Specifically, the kernels

learned at every layer in a DKM define a ‘function space’

at every layer. In fact, in a DKM, the true posterior over

features is multivariate Gaussian with covariance given by

the learned kernel (Aitchison et al., 2021). Representation

learning occurs as these function spaces at every layer are

modulated by training to focus on the features that matter

for predictive performance.

4.4. Semi-Supervised and Self-Supervised Learning

From a Bayesian perspective, one of the surprises in mod-

ern deep learning has been the success of semi-supervised

learning, where the objective is seemingly arbitrary (or at

least, it does not obviously correspond to a likelihood in a

known model). Additionally, in Bayesian inference, there

are phenomena such as the ‘cold posterior effect’ (Aitchi-

son, 2021; Wenzel et al., 2020), in which BDL appears to

attain more competitive predictive performance by taking

the posterior to a power greater than one, thereby shrink-

ing the posterior. In particular, the patterns exploited by

semi-supervised learning arise from data curation (Ganev &

Aitchison, 2023). If semi-supervised learning is performed

on uncurated data, any improvements disappear. This casts

doubt on the applicability of semi-supervised learning on

real-world uncurated datasets. The cold posterior results can

also be explained by underconfident aleatoric uncertainty

representation (Kapoor et al., 2022).

Self-supervised learning is an alternative to semi-supervised

learning. Self-supervised learning is based on objectives

such as mutual information between latent representations

of two augmentations of the same underlying image. From

a Bayesian perspective, these objectives appear to be ad

hoc, as they do not correspond to any likelihood. How-

ever, it is possible to formulate a rigorous likelihood in the

form of a recognition-parameterized model (Aitchison &

Ganev, 2023). This provides insight into the workings of

self-supervised learning and how to generalize it to new

settings, such as viewing it as a way to learn Bayesian pri-

ors (Shwartz-Ziv et al., 2022; Sharma et al., 2023).

4.5. Mixed Precision and Tensor Computations

The success of deep learning is closely tied to its coupling

with modern computing and specialized hardware, leverag-

ing technologies like GPUs. Recent investigations within

deep learning on the impact of mixed precision point to a

role for Bayes, particularly probabilistic numerics (Oates

& Sullivan, 2019), in making more efficient use of com-

putation. Mixed precision introduces uncertainty into the

internal computations of a model, which Bayes can effec-

tively propagate to downstream predictions. Furthermore,

mixed precision requires making decisions about which pre-

cision to use, where Bayes can ensure that these decisions

are optimal and sensitive to the relations between numerical

tasks. Drawing inspiration from specialized hardware, such

as tensor processing units, there is potential for a similar

trajectory in BDL to address scalability concerns (Mans-

inghka, 2009). This suggests that the creation of dedicated

hardware for BDL has the potential to spark a reevaluation

of inference strategies.

In a parallel vein, accelerating software development is

crucial to encouraging deep learning practitioners to adopt

Bayesian methods. There is a demand for user-friendly

software that facilitates the integration of BDL into various

projects. The goal is to make BDL usage competitive in

terms of human effort compared to standard deep learning

practices. For details on BDL software efforts, see Ap-

pendix C.

4.6. Compression Strategies

To decrease the computational cost of BDL models, for

both memory efficiency and computational speed, com-

pression strategies are being explored. An approach in-

volves using sparsity-inducing priors to prune large parts

of BNNs (Louizos et al., 2017). Alternatively, the prior

can serve as an entropy model, enabling the compression of

BNN weights (Yang et al., 2023c). Methods such as rela-

tive entropy coding and variational Bayesian quantization,

where the quantization grid is dynamically refined, provide

efficient BNN compression (Yang et al., 2020). These novel

tools could also be used to dynamically decode a Bayesian

ensemble at test time to various levels of precision or en-

semble size, resulting in precision-compute trade-offs.

Furthermore, in the context of compressing NN weights, a

viable approach involves obtaining the posterior distribution

based on observed data and encoding a sample into a bit

sequence to send to a receiver (Havasi et al., 2019). The

receiver can then extract the posterior sample and use the

corresponding weights to make predictions. In practice, ap-

proximations are needed to obtain the posterior, encode the

sample, and use the corresponding weights to make predic-

tions. Despite the need for approximations in the process,

this method yields commendable trade-offs between com-

pression cost and predictive quality compared to alternatives

centered on deterministic weight compression.
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4.7. Other Future Directions

Bayesian transfer and continual learning. The transfer

learning paradigm is quickly becoming a standard way to

deploy deep learning models. As noted in Subsection 2.3,

BDL is optimized for transfer learning. The focus is not

solely on transferring an initialization as in traditional deep

learning; instead, knowledge of the source task may in-

form the shapes and locations of optima on downstream

tasks (Shwartz-Ziv et al., 2022; Rudner et al., 2022b; 2023).

Self-supervised learning can also be used to create informa-

tive self-supervised priors for transfer learning (Shwartz-Ziv

et al., 2022; Sharma et al., 2023). Leveraging its efficiency

in learning under temporally-changing data distributions

through posterior updates, current efforts in the continual

learning context explore approaches that integrate new infor-

mation either assuming a continuous rate of change (Nguyen

et al., 2018; Chang et al., 2022) or incorporating priors for

changepoint detection (Li et al., 2021).

Probabilistic numerics. Probabilistic numerics (Hennig

et al., 2022) is the study of numerical algorithms as Bayesian

decision-makers. As numerical algorithms, such as opti-

mization and linear algebra, are clearly central to deep learn-

ing, probabilistic numerics offers interesting prospects for

making deep learning both more powerful and Bayesian. As

one example, since deep training is now regularly I/O-bound

for large models, active management of data loading, during

training and UQ, is of increasing interest. Methods that

quantify and control the information provided by individual

computations, based on their effect on the BDL posterior,

are showing promise as a formalism for algorithmic data

processing in deep training (Tatzel et al., 2023), using prob-

abilistic numerical linear algebra (Wenger et al., 2022) to

select sparse informative ‘views’ on the data.

Singular learning theory. Singular learning theory (SLT;

Watanabe, 2009) investigates the relation between Bayesian

losses, such as approximations of the marginal log-

likelihood, and neural network loss functions, using prin-

ciples from non-equilibrium statistical mechanics. Recent

research has drawn connections between Bayesian methods

and SLT (Wei & Lau, 2023).

Conformal prediction. For UQ, alternatives such as con-

formal prediction have emerged as competitors to Bayesian

methods and result in well-calibrated uncertainties (Vovk

et al., 2005). Deep learning models can be used to develop

conformal prediction algorithms (Meister et al., 2023) and,

conversely, conformal prediction methods can be used to

quantify or calibrate uncertainty in deep learning models.

A Bayesian approach to conformal prediction has started

to emerge (Hobbhahn et al., 2022; Murphy, 2023), promis-

ing a synergistic approach that combines the strengths of

Bayesian reasoning with the well-calibrated UQ offered by

conformal prediction.

LLMs as distributions. LLMs may be used flexibly as

distribution objects in arbitrarily complex programs and

workflows. By taking a Bayesian stance, several questions

emerge for exploration. When multiple LLMs interact, how

does one perform joint inference? What is an effective ap-

proach to marginalize over latent variables generated by

LLMs, facilitating joint learning over such latent spaces? Is

it possible to adopt tools from computational statistics or

approximate inference to perform various forms of reason-

ing with LLMs? And are there innovative ways to synergize

small and large LLMs to amortize inferences just in time?

Meta-models. An intriguing prospect arises when con-

templating whether BDL will parallel the trajectory of lan-

guage models. Could one envision the development of a

Bayesian meta-model within the BDL framework (Krueger

et al., 2017)? This meta-model, akin to language models,

may be fine-tuned to multiple tasks, demonstrating competi-

tive predictive performance across them, thus generalizing

approaches in amortized inference (Garnelo et al., 2018;

Gordon et al., 2019; Müller et al., 2021).

Sequential decision benchmarks. Standard image-based

benchmarks focus exclusively on state-of-the-art predictive

performance, where non-Bayesian deep learning algorithms

typically have an advantage over BDL. To quantify predic-

tive uncertainty, it is encouraged to shift attention to more

thorough simulation studies or scientific applications fo-

cused on sequential learning and decision-making, such as

experimental design, Bayesian optimization, active learn-

ing, or bandits. By prioritizing sequential problems in such

contexts, researchers and practitioners can gain insights into

how well a model generalizes to new and unseen data, how

robust it is under uncertain conditions, and how effectively

its uncertainty estimates can be utilized by decision makers

in real-world scenarios.

5. Final Remarks

This paper has shown that modern deep learning faces a va-

riety of persistent ethical, privacy, and safety issues, particu-

larly when viewed in the context of different types of data,

tasks, and performance metrics. However, many of these

issues can be overcome within the framework of Bayesian

deep learning, building on foundational principles that have

survived two and a half centuries of scientific and machine

learning evolution. While a number of technical challenges

remain, there is a clear path forward that combines creativity

and pragmatism to develop BDL approaches that match the

data, hardware, and numerical advances of the twenty-first

century, especially in the context of large-scale foundation

models. In a future where deep learning models seamlessly

integrate into decision-making systems, BDL thus emerges

as a crucial building block for more mature AI, adding an

extra layer of reliability, safety, and trust.
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State of Baden-Württemberg. JMHL acknowledges support

from a Turing AI Fellowship under grant EP/V023756/1.

SM acknowledges support from the National Science Foun-

dation (NSF) under the NSF CAREER Award 2047418;

NSF Grants 2003237 and 2007719, the Department of En-

ergy, Office of Science under grant DE-SC0022331, as well

as gifts from Disney and Qualcomm. CN kindly acknowl-

edges the support of EPSRC grants EP/V022636/1 and

EP/Y028783/1. AGW is supported by NSF CAREER IIS-

2145492, NSF I-DISRE 193471, NSF IIS-1910266, BigHat

Biosciences and Capital One.

The authors thank the ICML reviewers for their reviews and

feedback.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of this work, none of which the authors feel

must be specifically highlighted here.

References

Abdar, M., Samami, M., Mahmoodabad, S. D., Doan, T.,

Mazoure, B., Hashemifesharaki, R., Liu, L., Khosravi,

A., Acharya, U. R., Makarenkov, V., et al. Uncertainty

quantification in skin cancer classification using three-

way decision-based Bayesian deep learning. Computers

in Biology and Medicine, 135:104418, 2021.

Abdullah, A. A., Hassan, M. M., and Mustafa, Y. T. A

review on Bayesian deep learning in healthcare: Appli-

cations and challenges. IEEE Access, 10:36538–36562,

2022.

Agrawal, D., Papamarkou, T., and Hinkle, J. Wide neural

networks with bottlenecks are deep Gaussian processes.

Journal of Machine Learning Research, 21(175):1–66,

2020.

Aitchison, L. A statistical theory of cold posteriors in deep

neural networks. International Conference on Learning

Representations, 2021.

Aitchison, L. and Ganev, S. InfoNCE is variational inference

in a recognition parameterised model. arXiv preprint

arXiv:2107.02495, 2023.

Aitchison, L., Yang, A., and Ober, S. W. Deep kernel pro-

cesses. In International Conference on Machine Learning,

2021.

Alemi, A. A. and Poole, B. Variational prediction. In

Fifth Symposium on Advances in Approximate Bayesian

Inference, 2023.

Alexos, A., Boyd, A. J., and Mandt, S. Structured stochastic

gradient MCMC. In International Conference on Ma-

chine Learning, 2022.

Andriushchenko, M. Adversarial attacks on GPT-4 via

simple random search. Preprint, 2023.

Antoran, J., Bhatt, U., Adel, T., Weller, A., and Hernández-

Lobato, J. M. Getting a CLUE: A method for explaining

uncertainty estimates. In International Conference on

Learning Representations, 2021.

Antorán, J., Allingham, J. U., Janz, D., Daxberger, E., Nalis-

nick, E., and Hernández-Lobato, J. M. Linearised Laplace

inference in networks with normalisation layers and the

neural g-prior. In Fourth Symposium on Advances in

Approximate Bayesian Inference, 2022.

Antoran, J., Padhy, S., Barbano, R., Nalisnick, E., Janz, D.,

and Hernández-Lobato, J. M. Sampling-based inference

for large linear models, with application to linearised

Laplace. In International Conference on Learning Repre-

sentations, 2023.

Arbel, J., Pitas, K., Vladimirova, M., and Fortuin, V. A

primer on Bayesian neural networks: review and debates.

arXiv preprint arXiv:2309.16314, 2023.

Atzeni, M., Sachan, M., and Loukas, A. Infusing lattice

symmetry priors in attention mechanisms for sample-

efficient abstract geometric reasoning. arXiv preprint

arXiv:2306.03175, 2023.

Bamler, R., Salehi, F., and Mandt, S. Augmenting and

tuning knowledge graph embeddings. In Conference on

Uncertainty in Artificial Intelligence, 2020.

Band, N., Rudner, T. G. J., Feng, Q., Filos, A., Nado,

Z., Dusenberry, M. W., Jerfel, G., Tran, D., and Gal,

Y. Benchmarking Bayesian deep learning on diabetic

retinopathy detection tasks. In Advances in Neural Infor-

mation Processing Systems, 2021.

Bayes, T. An essay towards solving a problem in the doc-

trine of chances. Philosophical transactions of the Royal

Society of London, 53:370–418, 1763. By the late Rev.

10



Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Mr. Bayes, FRS communicated by Mr. Price, in a letter

to John Canton, AMFRS.

Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri,
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ing the edges: A general framework for smooth opti-

mization in sparse regularization using Hadamard over-

parametrization. arXiv preprint arXiv:2307.03571, 2023.

Kou, S., Gan, L., Wang, D., Li, C., and Deng, Z. BayesD-

iff: estimating pixel-wise uncertainty in diffusion via

Bayesian inference. In International Conference on

Learning Representations, 2024.

Kristiadi, A., Hein, M., and Hennig, P. Being Bayesian,

even just a bit, fixes overconfidence in ReLU networks.

In International Conference on Machine Learning, 2020.

Kristiadi, A., Hein, M., and Hennig, P. An infinite-feature

extension for Bayesian ReLU nets that fixes their asymp-

totic overconfidence. In Advances in Neural Information

Processing Systems, 2021a.

Kristiadi, A., Hein, M., and Hennig, P. Learnable uncer-

tainty under Laplace approximations. In Conference on

Uncertainty in Artificial Intelligence, 2021b.

Kristiadi, A., Hein, M., and Hennig, P. Being a bit frequen-

tist improves Bayesian neural networks. In International

Conference on Artificial Intelligence and Statistics, 2022.

Kristiadi, A., Dangel, F., and Hennig, P. The geometry of

neural nets’ parameter spaces under reparametrization.

In Advances in Neural Information Processing Systems,

2023.

Kristiadi, A., Strieth-Kalthoff, F., Skreta, M., Poupart,

P., Aspuru-Guzik, A., and Pleiss, G. A sober look at

LLMs for material discovery: are they actually good for

Bayesian optimization over molecules? arXiv preprint

arXiv:2402.05015, 2024.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste,

A., and Courville, A. Bayesian hypernetworks. arXiv

preprint arXiv:1710.04759, 2017.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple

and scalable predictive uncertainty estimation using deep

ensembles. Advances in Neural Information Processing

Systems, 2017.

Lampinen, J. and Vehtari, A. Bayesian approach for neural

networks—review and case studies. Neural networks, 14

(3):257–274, 2001.

Langford, J. and Shawe-Taylor, J. PAC-Bayes & margins.

In Advances in Neural Information Processing Systems,

2002.

Lawrence, N. D. Variational inference in probabilistic mod-

els. PhD thesis, University of Cambridge, 2001.

14



Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,

J., and Sohl-Dickstein, J. Deep neural networks as Gaus-

sian processes. In International Conference on Learning

Representations, 2017.

Leitherer, A., Ziletti, A., and Ghiringhelli, L. M. Robust

recognition and exploratory analysis of crystal structures

via Bayesian deep learning. Nature Communications, 12

(1):6234, 2021.

Li, A., Boyd, A., Smyth, P., and Mandt, S. Detecting and

adapting to irregular distribution shifts in Bayesian online

learning. Advances in Neural Information Processing

Systems, 2021.

Li, J., Miao, Z., Qiu, Q., and Zhang, R. Training Bayesian

neural networks with sparse subspace variational infer-

ence. In International Conference on Learning Represen-

tations, 2024.

Li, Y. and Clyde, M. A. Mixtures of g-priors in general-

ized linear models. Journal of the American Statistical

Association, 113(524):1828–1845, 2018.

Li, Y. L., Rudner, T. G., and Wilson, A. G. A study of

Bayesian neural network surrogates for Bayesian opti-

mization. arXiv preprint arXiv:2305.20028, 2023.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le,

M. Flow matching for generative modeling. In Interna-

tional Conference on Learning Representations, 2022.

Liu, Q. and Wang, D. Stein variational gradient descent: A

general purpose Bayesian inference algorithm. Advances

in Neural Information Processing Systems, 2016.

Lopez, J. L., Rudner, T. G. J., and Shamout, F. Informative

priors improve the reliability of multimodal clinical data

classification. In Machine Learning for Health Sympo-

sium Findings, 2023.

Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., and Wil-

son, A. G. Bayesian model selection, the marginal likeli-

hood, and generalization. In International Conference on

Machine Learning, pp. 14223–14247, 2022.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compres-

sion for deep learning. Advances in Neural Information

Processing Systems, 2017.

Luo, X., Nadiga, B. T., Park, J. H., Ren, Y., Xu, W., and

Yoo, S. A Bayesian deep learning approach to near-term

climate prediction. Journal of Advances in Modeling

Earth Systems, 14(10):e2022MS003058, 2022.

MacKay, D. J. Bayesian interpolation. Neural Computation,

4(3):415–447, 1992.

MacKay, D. J. Bayesian neural networks and density net-

works. Nuclear Instruments and Methods in Physics Re-

search Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, 354(1):73–80, 1995.

MacKay, D. J. Choice of basis for Laplace approximation.

Machine Learning, 33:77–86, 1998.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and

Wilson, A. G. A simple baseline for Bayesian uncer-

tainty in deep learning. Advances in Neural Information

Processing Systems, 32, 2019.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gra-

dient descent as approximate Bayesian inference. Journal

of Machine Learning Research, 18(134):1–35, 2017.

Manogaran, G., Shakeel, P. M., Fouad, H., Nam, Y., Baskar,

S., Chilamkurti, N., and Sundarasekar, R. Wearable IoT

smart-log patch: An edge computing-based Bayesian

deep learning network system for multi access physical

monitoring system. Sensors, 19(13):3030, 2019.

Mansinghka, V. K. Natively probabilistic computation. PhD

thesis, Massachusetts Institute of Technology, Depart-

ment of Brain and Cognitive Sciences, 2009.

Margatina, K., Barrault, L., and Aletras, N. On the impor-

tance of effectively adapting pretrained language models

for active learning. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics,

2022.

Margatina, K., Schick, T., Aletras, N., and Dwivedi-Yu, J.

Active learning principles for in-context learning with

large language models. In Findings of the Association for

Computational Linguistics: EMNLP 2023, 2023.

Martens, J. Deep learning via Hessian-free optimization. In

International Conference on Machine Learning, 2010.

McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah,

A., Cipolla, R., and Weller, A. Concrete problems for

autonomous vehicle safety: Advantages of Bayesian deep

learning. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, 2017.

Meister, J. A., Nguyen, K. A., Kapetanakis, S., and Luo, Z.

A novel deep learning approach for one-step conformal

prediction approximation. Annals of Mathematics and

Artificial Intelligence, pp. 1–28, 2023.

Milsom, E., Anson, B., and Aitchison, L. Convolutional

deep kernel machines. arXiv preprint arXiv:2309.09814,

2023.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational

dropout sparsifies deep neural networks. In International

Conference on Machine Learning, 2017.

15



Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M.,

Leskovec, J., Topol, E. J., and Rajpurkar, P. Founda-

tion models for generalist medical artificial intelligence.

Nature, 616(7956):259–265, 2023.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and

Hutter, F. Transformers can do Bayesian inference. In

International Conference on Learning Representations,

2021.

Mur-Labadia, L., Martinez-Cantin, R., and Guerrero, J. J.

Bayesian deep learning for affordance segmentation in

images. arXiv preprint arXiv:2303.00871, 2023.

Murphy, K. P. Probabilistic machine learning: Advanced

topics. MIT Press, 2023.

Nabarro, S., Ganev, S., Garriga-Alonso, A., Fortuin, V.,

van der Wilk, M., and Aitchison, L. Data augmentation

in Bayesian neural networks and the cold posterior effect.

In Uncertainty in Artificial Intelligence, 2022.

Neal, R. M. Priors for infinite networks. Bayesian learning

for neural networks, pp. 29–53, 1996.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov,

D. P. Structured Bayesian pruning via log-normal mul-

tiplicative noise. In Advances in Neural Information

Processing Systems, 2017.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov, D.

Variance networks: when expectation does not meet your

expectations. In International Conference on Learning

Representations, 2018.

Nemeth, C. and Fearnhead, P. Stochastic gradient Markov

chain Monte Carlo. Journal of the American Statistical

Association, 116(533):433–450, 2021.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Varia-

tional continual learning. In International Conference on

Learning Representations, 2018.

Oates, C. J. and Sullivan, T. J. A modern retrospective on

probabilistic numerics. Statistics and Computing, 29(6):

1335–1351, 2019.

Ober, S. and Aitchison, L. A variational approximate pos-

terior for the deep Wishart process. Advances in Neural

Information Processing Systems, 2021a.

Ober, S. W. and Aitchison, L. Global inducing point varia-

tional posteriors for Bayesian neural networks and deep

Gaussian processes. In International Conference on Ma-

chine Learning, 2021b.

Ober, S. W., Anson, B., Milsom, E., and Aitchison, L. An

improved variational approximate posterior for the deep

Wishart process. In Conference on Uncertainty in Artifi-

cial Intelligence, 2023.
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A. Background

This appendix provides background knowledge on several Bayesian methods that underpin Bayesian deep learning (BDL).

It can be used as a self-contained introductory tutorial on the basics of Bayesian methodology and BDL. For a more detailed

coverage, the reader is referred to the references provided herein.

A.1. Laplace Approximations

Laplace approximations constitute a method for constructing a Gaussian process (GP) posterior on the output of a neural

network, leveraging automatic differentiation and numerical linear algebra. Consider a neural network f(x,θ) that maps

input x and parameters θ ∈ R
ν (representing, for example, network weights and biases) to an output y. The neural network

is trained to find the parameters θ̃ that minimize a regularized empirical risk function L(θ) on supervised training data

D = (xi,yi)i=1,...,n.

θ̃ = argmin
θ∈Rν

L(θ) =
n∑

i=1

ℓ(yi, f(xi,θ)) + r(θ),

where ℓ and r are a training loss and regularizer, respectively. The parameter value θ̃ is found using the same approach

as in non-Bayesian deep learning, employing stochastic optimization. It is possible to interpret the value θ̃ obtained by

training the neural network. In particular, minimizing L is equivalent to maximizing the exponential of negative L, since the

exponential function is strictly increasing:

θ̃ = argmax
θ∈Rν

exp(−L(θ))

= argmax
θ∈Rν

(
n∏

i=1

exp(−ℓ(yi, f(xi,θ))) exp(−r(θ))

)

= argmax
θ∈Rν

n∏

i=1

p(yi | f(xi,θ))p(θ)

= argmax
θ∈Rν

p(θ | D),

where ℓ is re-interpreted as a negative log-likelihood, and r as a negative log-prior. This interpretation is valid for commonly

used choices of these quantities in deep learning. The log-likelihood ℓ is commonly the logarithm of a distribution from

the exponential family. Typical choices of r are variants of the l2 loss, such as the logarithm of a Gaussian prior on the

parameters.

Under this interpretation, automatic differentiation can be used to compute a second-order Taylor approximation of L around

θ̃, and thus a Gaussian approximation for p(θ | D) can be acquired:

log p(θ | D) ≈ L(θ̃) + 1

2
(θ − θ̃)TΨ(θ − θ̃) = logN (θ; θ̃,−Ψ−1). (1)

Ψ is nominally the Hessian of L. Due to its quadratic dependence on ν, approximations are typically used. Of particular

interest is the generalized Gauss-Newton (GGN) matrix G (Schraudolph et al., 2007; Martens, 2010),

Ψ ≈ G =

n∑

i=1

J
θ̃
(xi)

(
∇f∇T

f ℓ(yi, f(xi, θ̃))
)
JT

θ̃
(xi) +∇∇T r(θ̃), (2)

which can be evaluated using the closed-form Hessian of the loss with respect to the logit inputs, and the Jacobian

[J
θ̃
(xi)]a,b =

∂fb(xi,θ)

∂θa

∣∣∣∣
θ=θ̃

of the neural network f . This matrix has a low rank that allows efficient manipulation, such as computing the inverse

required in Equation (2). To propagate this approximate belief on θ to the output of f , it is common to linearize the network

with respect to θ around θ̃:

f(x,θ) ≈ f(x, θ̃) + (θ − θ̃)TJ
θ̃
(x).
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Note that this approximation is made with respect to θ; the neural network remains a non-linear function of its input x.

Under this linearization, the posterior on f(x) associated with the Gaussian posterior on θ of Equation (1) is a GP:

p(f(x) | D) ≈ GP
(
f(·), f(x, θ̃),−J

θ̃
(·)Ψ−1J

θ̃
(·)
)
.

The mean function of the GP corresponds to the trained neural network f(·, θ̃) used in non-Bayesian deep learning. The GP

kernel is the posterior version of the neural tangent kernel (Jacot et al., 2018). This concrete practical connection enables

Laplace approximations to be used as a drop-in method in deep learning; the neural network is trained or a pre-trained one is

used. Subsequently, the GGN matrix and Jacobian are computed. The trained neural network is then kept as a point estimate,

now serving as the posterior mean of the GP, augmented with structured GP uncertainty. The computational overhead at

training time is limited to the numerical linear algebra of cost that is linear in the training set size n and in the parameter

space dimension ν. At test time, inference for a given input x′ requires one backward pass to compute the Jacobian J
θ̃
(x′),

resulting in a constant overhead compared to the forward pass needed to compute f(x′, θ̃).

An advantage of the Laplace approximation is that it enables to compute the marginal likelihood of the approximate posterior

in closed form (Immer et al., 2021a), which can be used for Bayesian model selection in neural networks, for instance, for

invariance learning (Immer et al., 2022b), linguistic probing of language models (Immer et al., 2022a), or neural network

pruning (Dhahri et al., 2024). Thus, the Laplace approximation makes BDL more computationally feasible.

A.2. Variational Inference

Variational inference is an approach to approximate inference that seeks to avoid the intractability of exact inference by

framing posterior inference as a variational optimization problem. Consider some stochastic parameters Θ, data D, a

likelihood function p(D | θ), a prior p(θ), and the posterior p(θ | D) given by

p(θ | D) =
p(D | θ) p(θ)

p(D)
.

Variational inference approximates p(θ | D) by solving the variational problem

min
qΘ(θ)∈QΘ

DKL(qΘ || pθ|D) (3)

with respect to a variational distribution q(θ) within some variational family of distributions QΘ (Wainwright & Jordan,

2008). In expression (3), DKL denotes the Kullback-Leibler (KL) divergence. Since the posterior p(θ | D) is the distribution

to be approximated and as such is not accessible, the variational problem described by expression (3) cannot be solved

directly. However, it can be shown that solving this variational problem is mathematically equivalent to maximizing the

variational objective

F(q(θ)) = Eq(θ)[log p(D | θ)]− DKL(qΘ || pΘ)

with respect to a variational distribution qΘ(θ) ∈ QΘ. Put another way,

min
qΘ(θ)∈QΘ

DKL(qΘ || pθ|D) ⇐⇒ max
qΘ(θ)∈QΘ

F(q(θ)).

The variational objective F(q(θ)) is commonly referred to as the evidence lower bound (ELBO), since it can be shown that

log p(D) = F(q(θ)) + DKL(qΘ || pθ|D),

which, by non-negativity of the KL divergence, implies that log p(D) ≥ F(q(θ)). So, the variational objective is a lower

bound on the evidence, that is, on the log-marginal likelihood log p(D). Finally, it is noted that log p(D) = F(q(θ)) if and

only if q(θ) = p(θ | D), which means that the ELBO is perfectly tight if and only if the variational distribution is equal to

the posterior.

In general, variational inference is not guaranteed to converge to the posterior p(θ | D) unless the variational objective

is convex in the variational parameters and the posterior is a member of the variational family, that is, p(θ | D) ∈ QΘ.

Various approximate inference methods have been developed to solve the variational problem described by expression (3).
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These methods make different assumptions about the variational family QΘ, and therefore result in different posterior

approximations.

For variational inference with neural networks, two well-established methods are Monte Carlo dropout (Gal & Ghahramani,

2016) and Gaussian mean-field variational inference (also referred to as Bayes-by-backprop; Blundell et al., 2015b; Graves,

2011). These methods are suited for stochastic mini-batch-based variational inference and can be scaled to large neural

networks (Hoffman et al., 2013). Recent work on function-space variational inference (FSVI; Sun et al., 2019; Rudner et al.,

2022a;b) in Bayesian neural networks (BNNs) frames variational inference as optimization over induced functions, that is,

min
qF(f)∈QF

DKL(qF || pF|D)

for

p(f | D) =
p(D | f) p(f)

p(D)

with a suitably defined prior distribution p(f) over functions. FSVI has been shown to result in state-of-the-art predictive

uncertainty estimates in computer vision tasks (Rudner et al., 2022a).

A.3. Ensembles

Deep ensembling refers to a procedure where a neural network architecture is re-trained multiple times with different

initializations to find different parameter settings, and then the resulting predictive distributions at those parameter settings are

averaged at test time (Lakshminarayanan et al., 2017). In practice, deep ensembles provide a simple approach to representing

epistemic uncertainty by capturing the variability in model predictions. This approach contrasts with more conventional

Bayesian methods that involve sampling from the posterior distribution. Although unorthodox as an approximate inference

procedure, deep ensembles often provide a closer approximation to the true posterior predictive distribution than many

conventional approximate inference methods in deep learning (Wilson & Izmailov, 2020; Izmailov et al., 2021b), such as

variational inference with a Gaussian approximate posterior.

In particular, one minimizes the standard loss for different initializations, which is often equivalent to minimizing a negative

log-posterior log p(θ | D) to obtain

θ̃ = argmin
θ∈Rν

L(θ) = argmin
θ∈Rν

(− log p(θ | D)) = argmin
θ∈Rν

(− log p(D | θ)− log p(θ)) ,

where θ ∈ R
ν are the neural network parameters, and D represents the training dataset. The negative log-likelihood

− log p(D | θ) may correspond to cross-entropy loss, and a Gaussian prior − log p(θ) corresponds to standard ℓ2 regulariza-

tion or weight decay. After finding different local solutions θ̃1, . . . , θ̃s starting from different initializations, one averages

the predictive distributions to make predictions given a test input x′:

p(y | x′,D) =
1

s

s∑

i=1

p(y | x′, θ̃i). (4)

Initially, the procedure of neural network ensembling at test time was not framed in probabilistic terms and was frequently

described as a ‘non-Bayesian’ alternative to standard approximate inference methods such as the Laplace approximation.

However, Equation (4) can be seen as approximating the true posterior predictive distribution

p(y | x′,D) =

∫
p(y | x′,θ) p(θ | D) dθ. (5)

There are different ways to interpret this predictive distribution. Several works have explored the connections between

Bayesian inference and deep ensembles (Ciosek et al., 2020; Gustafsson et al., 2020; He et al., 2020; Pearce et al., 2020;

Wilson & Izmailov, 2020; Izmailov et al., 2021b; D’Angelo & Fortuin, 2021; D’Angelo et al., 2021). One interpretation

views Equation (4) as a Monte Carlo approximation of Equation (5), where the posterior of the parameters is represented as

a set of point masses centered at different modes, which may be viewed as approximate posterior samples. However, this

interpretation is not the most insightful.

It is more enlightening to view approximate inference as the task of accurately approximating the integral in Equation (5).

From this perspective, the focus is not on collecting posterior samples. For a fixed computational budget, a Monte Carlo
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average of predictive distribution values based on exact posterior samples can provide a poor approximation of the integral

relative to alternatives. A more compelling approach to numerical integration is to choose parameter values that represent

typical points in the posterior, indicative of regions with significant posterior probability mass, and that yield diverse

predictions on the test set. A heuristic to achieve this goal is to choose points corresponding to different posterior modes, as

achieved by deep ensembles (Wilson & Izmailov, 2020). In practice, there is more functional variability across different

posterior modes compared to samples in the vicinity of a single mode, such as the ones found from a variational Gaussian

approximation of the posterior.

These observations are corroborated in practice by experiments. Deep ensembles tend to provide a closer approximation to

the posterior predictive distribution, represented by exhaustive Hamiltonian Monte Carlo (HMC) sampling, than conventional

unimodal posterior approximations (Izmailov et al., 2021b). The success of deep ensembles suggests that achieving a closer

approximation to the posterior predictive distribution can lead to better predictive performance, highlighting the potential for

further research. There are many natural ways to approximate the posterior predictive distribution. An obvious approach is

to use a mixture of Gaussians centered at posterior modes, rather than a mixture of point masses. This approach has been

found to approximate the posterior predictive distribution more closely and achieve better predictive performance in the

NeurIPS 2021 approximate Bayesian inference competition (Wilson & Izmailov, 2020; Wilson et al., 2022; Shen et al.,

2024).

A more general lesson to be extracted from these findings is that it is often not reasonable to consider whether a method

is ‘Bayesian’ as a binary; different approximate inference procedures fall onto a spectrum representing how closely they

approximate the true posterior predictive distribution. Different methods provide better or worse approximations, depending

on the model and the data. In the case where the parameter posterior is unimodal, deep ensembles are less useful as an

inference procedure. On the other hand, if many modes are available and the modes correspond to functions that make

different predictions, then deep ensembles are sensible as an approximate Bayesian inference procedure, especially under

computational constraints when it is not feasible to represent many different parameter settings.1

A.4. Posterior Sampling Algorithms

Sampling algorithms, particularly Markov chain Monte Carlo (MCMC) methods, are widely used for Bayesian posterior

inference. These algorithms work by constructing a Markov chain whose equilibrium distribution matches the desired

(target) distribution. Updating the parameters by realizing a Markov chain yields samples from the target distribution,

provided a sufficient number of updates are performed. Given a dataset D, a model with parameters θ ∈ R
ν , and a prior

p(θ), the aim is to sample from the target posterior p(θ | D) ∝ exp(−U(θ)), where the energy function is

U(θ) = −
∑

x∈D

log p(x | θ)− log p(θ).

Simulating the following continuous-time stochastic differential equation (SDE) produces samples with p(θ | D) as its

stationary distribution:

dθ = −∇U(θt)dt+ 2dBt. (6)

∇U(θ) is the drift term of the SDE that guides the generated samples towards the posterior distribution, and Bt is Brownian

motion which introduces randomness into the process. The SDE in Equation (6) is also known as the Langevin diffusion

equation and is used as the basis of many Monte Carlo sampling algorithms (Nemeth & Fearnhead, 2021). If the Langevin

diffusion equation is considered over a small time interval α > 0, then a discrete-time version of it can be derived via the

Euler-Maruyama approximation as

θk+1 = θk − α∇U(θk) +
√
2αξk+1, (7)

where α > 0 is the step size parameter and ξ is standard Gaussian noise. This discrete-time algorithm is known as the

unadjusted Langevin algorithm, or the Langevin Monte Carlo algorithm. However, unlike the continuous-time Langevin

diffusion equation, the discrete-time unadjusted Langevin algorithm does not simulate samples with p(θ | D) as its stationary

distribution, but instead produces samples that are only approximately drawn from p(θ | D). The discretization of the SDE

leads to a bias in the posterior samples, which can be reduced by decreasing the step size parameter α.

1For more information on how deep ensembles facilitate approximate Bayesian inference, see the webpage https://cims.nyu.
edu/˜andrewgw/deepensembles/.
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For large datasets, the unadjusted Langevin algorithm (7) can be computationally expensive due to the need to sum over

the entire dataset when evaluating ∇U(θ). Stochastic gradient Langevin dynamics (SGLD; Welling & Teh, 2011) reduces

the computational cost by using a stochastic gradient estimator ∇Ũ , an unbiased estimator of ∇U based on a subset of the

dataset D. SGLD has initiated a line of research on stochastic gradient MCMC (SG-MCMC) algorithms. It updates the

vector of parameters θ at the (k + 1)-th step according to

θk+1 = θk − α∇Ũ(θk) +
√
2αξk+1.

The key difference between SGLD and stochastic gradient descent (SGD) is the additional Gaussian noise in each step of

SGLD, which allows it to characterize the full parameter posterior distribution rather than converging to a single point.

Other notable variants of SG-MCMC include stochastic gradient HMC (SG-HMC; Chen et al., 2014), which accelerates

convergence using auxiliary momentum variables, and cyclical SG-MCMC (Zhang et al., 2020b), which employs a cyclical

step size schedule to efficiently explore multiple modes of the parameter posterior distribution. There have also been efforts

to mitigate the bias in SG-MCMC methods by using Metropolis adjustments (Zhang et al., 2020a; Garriga-Alonso & Fortuin,

2021).

A.5. Prior Specification

The specification of prior p(θ | M) on a vector of parameters θ ∈ R
ν of a statistical model M has been a central part of

Bayesian analysis, allowing to incorporate existing domain knowledge or expert opinion into statistical inference. A prior is

called informative if it reflects such knowledge. Specific edge cases of informative priors include strongly informative priors,

which dominate over the information coming from the observed data (likelihood), and weakly informative priors, which

align with existing knowledge in a vague way so that the posterior is regularized to be data-informed and to be based on

prior knowledge. In some cases, prior knowledge does not exist or a modeler does not want to rely on subjective knowledge.

In such cases, uninformative or objective priors are used, where a common choice is a near-flat or even a uniform prior

over the parameters. Another choice of objective prior worth mentioning is the reference prior, which is constructed to

maximize some distance or divergence between the posterior and the chosen prior. Finally, in modern applications, priors

are often selected to incorporate some desired properties into the model, such as regularization or sparsity. The model M is

considered herein to be a BNN. However, the priors discussed below are most commonly used in other statistical models,

from which they have been typically adopted for BDL.

A common approach is to specify independent and identically distributed (i.i.d.) priors for the BNN parameters θ. More

specifically, a common default choice is to use a zero-centered isotropic Gaussian prior

p(θ | M) =

ν∏

i=1

N (θi; 0, σ
2),

which corresponds to l2 regularization in the sense of maximum a posteriori (MAP) solutions with λ = 1/(2σ2). Thus, the

larger the prior variance, the less regularization is incorporated, and vice versa. Combined with specific activation functions,

such as the logistic function, which is close to linear around 0, choosing a small σ2 results in more linear behavior of the

neurons and their compositions, while large σ2 allows for more non-linear behavior. Thus, the popular approach of choosing

standard Gaussian priors is not satisfactory in most cases and may lead to misspecified models. This, in turn, can cause the

cold posterior effect that has been known to be the case for linear models (Grünwald & Van Ommen, 2017), but is also

observed for BNNs (Wenzel et al., 2020; Fortuin et al., 2022; Nabarro et al., 2022). For a specific problem, σ2 can be chosen

via hyper-parameter tuning or empirical Bayes. Moreover, a direct translation of the tuned σ2 for some architecture (or,

equivalently, λ for frequentist neural networks) is possible. Another approach is to impose an inverse-Gamma hyper-prior

on σ2, for example, σ2 ∼ Γ−1(α, β), see Lampinen & Vehtari (2001). To incorporate prior dependencies between the

parameters, i.i.d. Gaussian priors can be extended to multivariate normals with a zero mean vector and a covariance matrix

Σ, i.e.,

p(θ | M) = Nν(θ;0,Σ),

with the possibility to use an inverse-Wishart hyper-prior on Σ. Similarly to the i.i.d. Gaussian priors, independent Laplace

priors can be used, i.e.,

p(θ | M) =

ν∏

i=1

Laplace(θi; 0, b),
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which in the MAP sense correspond to the l1 regularization (Williams, 1995) with λ = b−1. Choosing the scale parameter b
can be done similarly to how σ2 is chosen for Gaussian priors. Furthermore, Student-t priors have been used in the context

of BNNs (Neklyudov et al., 2018). Heavy-tailed priors are possibly more robust towards model misspecification in the sense

of the cold posterior effect (Fortuin et al., 2022).

Another desirable property that is often integrated into BNNs is sparsity. Mixtures of Gaussians have been popular in this

context, including a scale mixture of Gaussians prior (Blundell et al., 2015a),

p(θ | M) =

ν∏

i=1

(
πN (θi; 0, σ

2
1) + (1− π)N (θi; 0, σ

2
2)
)
,

with σ2
1 > σ2

2 and σ2
2 ≪ 1. Similarly, one can use horseshoe priors (Carvalho et al., 2009),

p(θ | M) =
ν∏

i=1

N (θi; 0, σ
2τ2i ),

where τi is the local shrinkage parameter that has a half-Cauchy hyperprior τi ∼ C+(0, 1), and σ is the global shrinkage

parameter. Finally, another sparsity-inducing prior is the (improper) log-uniform prior (Molchanov et al., 2017),

p(θ | M) =

ν∏

i=1

LogU∞(θi) ∝
ν∏

i=1

1

θi
,

and its proper counterpart (Neklyudov et al., 2017),

p(θ | M) ∝
ν∏

i=1

LogU∞(θi)I[a,b](log θi).

Some priors based on directional statistics have been explored for BNNs (Sunde, 2023), but have not gained widespread

adoption. Similarly, Jeffreys priors (Ibrahim & Laud, 1991) have not been used extensively in this context. Although

Zellner’s g-priors (Zellner, 1986) and mixtures of g-priors (Li & Clyde, 2018) are highly popular in linear models, their

application in BDL has only recently garnered attention (Antorán et al., 2022).

In Bayesian statistics, model uncertainty has been studied extensively for several decades (Hoeting et al., 1998; 1999; Wasser-

man, 2000). Within this framework, rather than having a single model M, multiple BNN architectures {M1, . . . ,Mt}
from a model space M are considered, making use of both p(θ | M) and p(M). Recent research has focused on model

uncertainty with respect to a model space M defined by different patterns of weight inclusion (Hubin & Storvik, 2019;

Skaaret-Lund et al., 2023), resulting in 2ν models in M. This requires additional model priors. If a model M = (γ1, . . . , γν)
with γi ∈ {0, 1}, i ∈ {1, . . . , ν}, is assumed, then Hubin & Storvik (2019) and Skaaret-Lund et al. (2023) propose

p(M) =

ν∏

i=1

Bernoulli(γi; ρi),

with ρi being the prior inclusion probability for a specific weight. Similarly, Hubin & Storvik (2024) propose to use

p(M) ∝
ν∏

i=1

BetaBinomial(γi; 1, ai, bi).

These two types of prior are common in the Bayesian model-averaging literature (Hoeting et al., 1999; Corani & Mignatti,

2015). However, more advanced model priors that incorporate dependencies between parameter inclusions through, for

example, Dirichlet process hyper-priors (Grün & Hofmarcher, 2021) or dilution priors (George, 2010), have not yet been

studied in the context of BDL. It is also noteworthy that, for model priors, inclusion probabilities for specific covariates for

the input layer can be adjusted by experts according to prior knowledge, thus allowing the incorporation of domain-specific

information into inference for BNNs.

Incorporating prior knowledge directly into parameter priors presents a challenge in general. However, recent advances

in probabilistic modeling for neural networks have shown that incorporating prior knowledge is possible. One approach
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involves leveraging auxiliary objectives to create data-driven priors (Lopez et al., 2023; Rudner et al., 2023; 2024a; Sam

et al., 2024). Another approach to specifying meaningful priors for neural networks is to adopt a function-space perspective.

In this approach, BNNs generate a distribution p(f) over functions when sampling from parameter priors. A functional

prior, such as a Gaussian process p(f) = GP(µ(·),K(·, ·)), can then be assumed for the function-space output, allowing the

incorporation of expert knowledge about the mean and covariance functions for a specific phenomenon of interest. However,

a direct application of this type of functional prior can be problematic due to potential mismatches between the support

of the GP and the outputs of the BNN; see Burt et al. (2020); Rudner et al. (2022a). For the same reason, using the KL

divergence to pre-train the priors over the parameters to match the chosen GP prior is problematic. Rudner et al. (2022a)

resolve this issue by considering a KL divergence between distributions over functions that are absolutely continuous to

one another by design. Tran et al. (2022a) also tackle this challenge by using the 1-Wasserstein distance instead of the KL

divergence to learn the parameters of the priors in the weight space that match a chosen GP prior.

This section offers only a concise glimpse into the extensive literature on priors for BNNs. For a more comprehensive

understanding and a relatively recent review, the reader is referred to Fortuin (2022).

A.6. Deep Kernel Processes

A deep kernel process (DKP; Aitchison et al., 2021) is a Bayesian model that places a prior on a deep sequence of kernel

representations. This is a change of perspective compared to other deep Bayesian models such as deep GPs (DGPs;

Damianou & Lawrence, 2013) or BNNs (MacKay, 1995), which place priors over intermediate layer features or weights.

DKPs are equivalent to DGPs whenever the kernel function is isotropic (such as the radial basis function and Matérn kernel).

To illustrate this, consider a DGP with an isotropic kernel C, where each layer is modeled as a multivariate Gaussian

conditioned on the preceding layer,

F0 = X, (8a)

g(Fj | Fj−1) =

rj∏

i=1

N (fi,j ;0,C(Fj)), (8b)

g(Y | Fη+1) =

rj∏

i=1

N (yi; fi,η+1, σ
2I). (8c)

Here, Fj ∈ R
n×rj are the feature representations in each intermediate layer j ∈ {1, . . . , η}, X ∈ R

n×r0 are the inputs,

Y ∈ R
n×ρη+1 are the labels, and n are the number of data points. The subscript i denotes individual features, so that

fi,j ∈ R
n is the i-th feature at layer j, and yi ∈ R

n is the i-th output for all data points. rj is the number of features per data

point at layer j, or ‘the width of layer’ j. To obtain a kernel process, one needs to consider covariance matrices. So, for each

layer, the Gram matrix Gj = FjF
T
j /rj ∈ R

n×n is defined. Since Gj is the outer product of i.i.d. Gaussian samples with

covariance C(Fj), it must be Wishart distributed,

g(Gj | Fj−1) = W(Gj ;C(Fj−1)/rj , rj).

Furthermore, by the isotropic assumption, there is a function K(·) over Gram matrices such that K(Gj) = C(Fj);
see Aitchison et al. (2021). The ability to define the kernel function in terms of Gram matrices means that it is possible to

write the DGP in Equation (8) as a DKP with Wishart priors,

g(G1 | X) = W(G1;XXT /r0, r0), (9a)

g(Gj | Gj−1) = W(Gj ;K(Gj−1)/rj , rj), (9b)

g(yi | Gη) = N (yi;0,K(Gη) + σ2I). (9c)

Since Equation (9) places Wishart priors on the intermediate Gram matrix representations, the resulting process is known as

a deep Wishart process (DWP; Aitchison et al., 2021). Deep inverse Wishart processes (DIWPs; Aitchison et al., 2021) are

defined using inverse Wishart process priors over kernels (Shah et al., 2014) instead.

Similarly to other deep Bayesian models, closed-form inference of general DKPs is not possible. Aitchison et al. (2021), Ober

& Aitchison (2021a) and Ober et al. (2023) have developed approximate posteriors over Gram matrices for DWPs and

DIWPs to allow for variational inference. However, despite the use of approximate posteriors, the computational cost of

training a DWP or DIWP remains considerable. This is because the number of parameters scales quadratically with the
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number n of data points, and evaluating the log-probabilities of their approximate posteriors (necessary when evaluating the

ELBO) scales cubically with n. To address this scalability challenge, inducing point approximations offer a solution. In

particular, global inducing point methods (Ober & Aitchison, 2021b) enable the training of DKPs with linear scaling in the

number of data points.

Using inducing point schemes, Ober et al. (2023) have empirically demonstrated that approximate posteriors for DWPs

perform better than DGP approximate posteriors. Aitchison et al. (2021) argue that DWPs are expected to perform better

due to BNN and DGP priors and posteriors being highly multimodal. In particular, rotation and permutation symmetries in

features or weights are not adequately accounted for by common BNN and DGP approximate posteriors. DKPs sidestep this

multimodality issue, as Gram matrices inherently avoid these symmetries; an arbitrary rotation or permutation in feature

space can be represented by the mapping F 7→ FU, where U is unitary, yet the corresponding Gram matrix is invariant

under this transformation since G = FFT 7→ (FU)(FU)T = G.

A.7. Deep Kernel Machines

Deep kernel machines (DKMs; Yang et al., 2023a) are an infinite-width analog of DKPs. They have practical benefits in

being easier to implement and cheaper to train, and also theoretical benefits as they can be linked to the existing infinite-width

neural network literature. However, DKMs are not strictly Bayesian. Usually, taking an infinite-width limit of a DKP or

DGP results in a neural network Gaussian process (NNGP; Lee et al., 2017; Agrawal et al., 2020). The infinite-width limit

is taken carefully, in such a way so as to retain flexibility in intermediate Gram representations.

A DKM can be obtained from the DGP of Equation (8) as follows. Consider the following approximate posterior for the

features in each intermediate layer j ∈ {1, . . . , η}:

h(Fj) =

rj∏

i=1

N (fi,j ;0,Gj).

Moreover, consider a standard GP approximate posterior for the final layer:

h(Fη+1) =

rη+1∏

i=1

N (fi,η+1;µi,Σ).

Here, G1, . . . ,Gη,µ1, . . . ,µrη+1
, and Σ are variational parameters. Although this approximate posterior family may seem

restrictive, the intermediate layer part contains the true posterior in the infinite-width limit; see Appendix E of Yang et al.

(2023a). A lower bound for the marginal likelihood can be obtained via the ELBO

ELBO =

rη+1∑

i=1

{
Eh(Fη+1)

[
log g(yi | fi,η+1)

]
−DKL(h(fi,η+1) || g(fi,η+1 | Fη))

}
−

η∑

j=1

βjrjDKL(h(fj) || g(fj | Fj−1)),

where tempering is employed using the parameter βj . As with DWPs, an isotropic kernel function is assumed, which means

that C(Fj) = K(Gj). As the intermediate layers become wider by sending r → ∞ with rj = rρj , the dependency on Fj

disappears. If no tempering is applied (that is, βj = 1), then the following objective is recovered:

ELBO

r
→ −

η∑

j=1

ρjDKL(N (0,Gj) || N (0,K(Gj−1)). (10)

The objective (10) is maximized when Gj = K(Gj−1), which is the same as the corresponding NNGP (Lee et al., 2017;

Agrawal et al., 2020). If tempering is carried out according to the width with βj = 1/r, then the following objective is

obtained:

ELBO →
rη+1∑

i=1

Eh(Fη+1)

[
log g(yi | fi,η+1)

]

−
rη+1∑

i=1

DKL(N (µi,Σ) || N (0,K(Gη))

−
η∑

j=1

ρjDKL(N (0,Gj) || N (0,K(Gj−1)) + constant.

(11)
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A model that optimizes the objective (11) is called a DKM, and (11) is known as the DKM objective. In the limit, the

DKM objective does not depend on intermediate features Fj , which means that learned representations in a DKM are

described entirely by deterministic Gram matrices G1, . . . ,Gη . To interpret the DKM objective, notice that the likelihood

term encourages data fitting, and the KL divergences regularize the model toward the NNGP (Lee et al., 2017; Agrawal

et al., 2020). The amount of representation learning in the DKM can be controlled by varying the ρj parameters. In contrast,

the lack of likelihood term in the NNGP objective (10) prevents representation learning from occurring in the NNGP;

intermediate Gram matrices are fixed and depend only on the input data.

Similarly to DKP objectives, the DKM objective is computationally infeasible to optimize for large datasets, with cubic

scaling in the number of data points. However, Yang et al. (2023a) have shown that the DKM objective can be optimized

with linear scaling if global inducing point methods are used. DKMs have been extended to convolutional architectures,

achieving performance nearly on par with neural networks on CIFAR-10 (Milsom et al., 2023).

B. Diagnostics, Metrics and Benchmarks

Currently, there is a lack of convergence and performance metrics specifically for the needs of BDL. Developing such tools

can help identify the goals in BDL as well as assess their progress. Besides, the choice of evaluation metrics, datasets

and benchmarks lack consensus in the BDL community which reflects a difficulty in clearly defining the goals of BDL

in a field traditionally viewed through frequentist lens, specifically in terms of performance on test data. Many of the

general Bayesian diagnostic and evaluation approaches are proposed through Bayesian workflow (Gelman et al., 2020).

This appendix discusses the most relevant approaches for BDL.

Convergence diagnostics in parameter space. The analysis of convergence and sampling efficiency (Gelman et al., 2013;

Vehtari et al., 2021) for SG-MCMC sampling becomes a delicate matter, which is currently bypassed by a rather simplistic

analysis of these quantities using summary statistics of predictive distributions. More generally, verifying the convergence of

inference algorithms in the high-dimensional and multimodal settings of BDL models is not straightforward. Convergence

checks designed for BNNs need to be further studied.

Performance metrics in predictive space. BDL and GP literature often focus on the mean of the predictive distribution,

overlooking the analysis of variance of the predictive distribution. Some performance metrics are commonly used to assess

variance levels, for example, by evaluating the log-likelihood or the entropy of predictions for test data (Rudner et al.,

2022a; 2023). However, a systematic way to characterize the predictive uncertainty in BDL inference (apart from binary

classification problems where AUROC and AUPRC are widely used) is currently lacking (Arbel et al., 2023). The challenge

of setting metrics for the assessment of epistemic and aleatoric uncertainty slows the progress in BDL and could potentially

be addressed by establishing widely accepted benchmarks for BDL methods.

Performance metrics in misspecified settings. Addressing challenges related to distribution shift and test data performance

requires the development of robust performance metrics. To establish BDL model reliability under distribution shift,

tighter generalization bounds, such as those provided by the PAC-Bayes framework (Langford & Shawe-Taylor, 2002;

Parrado-Hernández et al., 2012), are crucial to obtain probabilistic guarantees on model performance. Furthermore, in

misspecified settings, evaluating calibration becomes paramount. Innovative techniques, such as two-stage calibration (Guo

et al., 2017) and conformal prediction (Papadopoulos et al., 2007) or its Bayesian counterpart (Hobbhahn et al., 2022),

offer practical solutions by refining predicted probabilities and quantifying predictive uncertainty, respectively. These

approaches collectively contribute to a more comprehensive evaluation of model performance in scenarios where the

underlying assumptions may not align with the true data distribution.

Probabilistic treatment of datasets. Probabilistic treatments of data as a first-class citizen that can be reasoned about in

BNNs seem promising. Such probabilistic approaches may help create more focused and useful datasets to represent the

knowledge contained in vast data sources, improving the ability to train and maintain large models.

C. Software Usability

Applying a BDL approach to a real-world problem is still a more complex endeavor than opting for an off-the-shelf standard

deep learning solution, which limits the real-world adoption of BDL. Software development is key to encouraging deep

learning practitioners to use Bayesian methods. More generally, there is a need for software that would make it easier for

practitioners to try BDL in their projects. The use of BDL must become competitive in human effort with standard deep
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learning.

Some efforts have been made to develop software packages, libraries or probabilistic programming languages (PPLs) on top of

deep learning frameworks. bayesianize (Ritter et al., 2021), bnn priors (Fortuin et al., 2021), Laplace (Daxberger

et al., 2021a), Pyro (Bingham et al., 2019) and TyXe (Ritter & Karaletsos, 2022) are software species built on PyTorch,

TensorFlow Probability is a library built on TensorFlow, and Fortuna (Detommaso et al., 2023) is a library

built on JAX. It would help to make further progress with contributions from the probabilistic programming community.

PPLs, such as Pyro, play a role in simplifying the application of probabilistic reasoning to deep learning. In fact,

abstractions of the probabilistic treatment of NNs in a PPL, such as those performed in the BDL library TyXe, can simplify

the application of priors and inference techniques to arbitrary NNs, as demonstrated in a variety of models implemented in

TyXe. Porting such ideas to modern problem settings involving LLMs and more bespoke probabilistic structures would

enable the use of BDL in real-world problems.

Contemporary deep learning pushes the limits of scale in all dimensions: datasets, parameter spaces, and structured

function-valued output. For point estimation, the community has been developing array-centric programming paradigms

that allow sharding, partial evaluations, currying, and more. BDL should be able to map these ideas to develop analogous

software.

D. Topical Developments

This appendix provides topical or specialized areas of BDL for future development. These include BDL for human-AI

interaction, lifelong and decentralized learning, Bayesian reinforcement learning (RL), and domain-specific BDL models.

Human-AI interaction and explainable AI. Enabling AI systems to communicate and explain their uncertainty can build

trust and improve the interaction between AI systems and humans. While efforts by the community have been made to

explain the predictions of DNNs, recent efforts aim to explain the uncertainty of BDL methods (Antoran et al., 2021; Bhatt

et al., 2021). Understanding which input patterns are responsible for high predictive uncertainty can build trust in AI systems

and can provide insights about input regions where data is sparse. For example, when training a loan default predictor, a

data scientist can identify population subgroups (by age, gender, or race) underrepresented in the training data. Collecting

more data from these groups can lead to more accurate predictions for a wider range of clients.

Lifelong and decentralized learning. A contemporary research direction is to go beyond the ‘static’ train-test framework

and focus on ‘dynamic’ problems where the test set is not known. This includes cases where predictive performance,

robustness and safety are important and there are realistic constraints on the infrastructure. Two such problems are lifelong

learning and decentralized learning. Focusing on such problems is expected to lead to a new regime in which Bayesian ideas

can be useful for deep learning.

Efficient exploration in RL. RL is an area where BDL has shown potential. As an example, Thompson sampling (TS) is

known to be a commonly used heuristic for decision making that ‘randomly selects an action, according to the probability

that it is optimal’ (Russo et al., 2018). TS balances exploration with exploitation and in its exact form requires sampling from

the Bayesian posterior. In practice, approximations are often used, and recent work has shown that the quality of the resulting

multivariate joint predictive distribution over multiple test inputs is important for decision-making (Wen et al., 2021; Osband

et al., 2023). This is relevant, as typical Bayesian and non-Bayesian methods are commonly evaluated by assessing the

quality of marginal predictions over individual test inputs, ignoring potential dependencies (Osband et al., 2022). While

deep ensembles are a typical baseline for capturing uncertainty, BDL methods based on the last-layer Laplace approximation

can outperform deep ensembles in the quality of joint multivariate predictions (Antoran et al., 2023). Developing methods

that achieve trade-offs between computational cost and the quality of their joint multivariate predictions is an area where

further research is needed (Osband et al., 2023). Another active area of research at the intersection of RL and BDL aims to

produce accurate posterior approximations of value functions (for example, Q functions) given data from interactions with

an environment (Janz et al., 2019). This setting is different from typical Bayesian supervised learning as, in this case, the

output of value functions is not directly observed, and only rewards are available.

Computer vision. BDL approaches to computer vision tasks have been developed. For instance, Kou et al. (2024) employ

BDL in diffusion models to construct a pixel-wise uncertainty estimator for image generation. Goli et al. (2024) use BDL to

evaluate uncertainty in pre-trained neural radiance fields in the context of computer graphics. Future research in BDL for

computer vision may focus on improving predictive performance and further developing UQ methods. Computer vision,
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along with natural language processing, constitute applications that may promote the adoption of BDL.

Domain-specific BDL models. There are many opportunities to develop Bayesian methods in combination with deep

learning models that are tailored for specific domains, taking into account the characteristics of the data and the tasks

involved. This can involve exploring hierarchical models, transfer learning, or meta-learning approaches. An example

is molecular property prediction, where many different datasets are available, but each of them has limited available

data (Klarner et al., 2023). There is scope to combine deep learning models that learn molecular feature representations

with Bayesian methods that receive those representations as inputs. The latter methods can capture uncertainty and make

predictions in data-limited settings for each individual task, while the deep learning features are shared across tasks.
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