

art result in the trade-off between R-D performance and

decoding complexity for nonlinear transform coding, in

the regime of sub-50K FLOPs per pixel believed to be

dominated by classical codecs.

2. Background and notation

2.1. Neural image compression

Most existing neural lossy compression approaches are

based on the paradigm of nonlinear transform coding (NTC)

[6]. The idea is similar to traditional transform coding [23],

and the goal is to learn a pair of analysis (encoding) trans-

form f and synthesis (decoding) transform g, such that

an encoded representation of the data achieves good R-

D (rate-distortion) performance. Let the input image be

x ∈ R
H×W×3. The analysis transform computes a continu-

ous latent representation z := f(x), which is then quantized

to ẑ = ⌊z⌉ and transmitted to the receiver under an entropy

model P (ẑ); the final reconstruction is then computed by

the synthesis transform as x̂ := g(ẑ). The hard quantization

is typically replaced by uniform noise to enable end-to-end

training [3]. We refer to [51] for the technical details.

Instead of orthogonal linear transforms in traditional

transform coding, the analysis and synthesis transforms in

NTC are typically CNNs (convolutional neural networks)

[43, 3] or variants with residual connections or attention

mechanisms [13, 25]. The (convolutional) latent coefficients

z ∈ R
h,w,C form a 3D tensor with C channels and a spa-

tial extent (h,w) smaller than the input image. We denote

the “downsampling” factor by s, such that h = H/s and

w = W/s; this is also the “upsampling” factor of the synthe-

sis transform.

To improve the bitrate of NTC, a hyperprior [5] is com-

monly used to parameterize the entropy model P (ẑ) via

another set of latent coefficients h and an associated pair

of transforms (fh, gh). The hyper analysis fh computes

h = fh(ẑ) at encoding time, and the hyper synthesis gh
predicts the (conditional) entropy model P (ẑ|ĥ) based on

the quantized ĥ = ⌊h⌉. We adopt the Mean-scale Hy-

perprior from Minnen et al. [35] as our base architecture,

which is widely used as a basis for other NTC methods

[28, 13, 36, 25]. In this architecture, the various transforms

are parameteried by CNNs, with GDN activation [3] for the

analysis and synthesis transforms and ReLU activation for

the hyper transforms. Furthermore, the synthesis (g) takes

over 80% of the overall decoding complexity (see Table 1),

and is the focus of this work.

2.2. Iterative inference

Given an image x to be encoded, instead of computing

its discrete representation by rounding the analysis output,

i.e., ẑ = ⌊f(x)⌉, Yang et al. [49] cast the encoding prob-

lem as that of variational inference, and propose to infer the

discrete representation that optimizes the per-data R-D cost.

Their proposed method, SGA (Stochastic Gumbel Anneal-

ing), essentially solves a discrete optimization problem by

constructing a categorical variational distribution q(z|x) and

optimizing w.r.t. its parameters by gradient descent, while

annealing it to become deterministic so as to close the quan-

tization gap [49]. In this work, we will adopt their proposed

standalone procedure and opt to run SGA at test time, essen-

tially treating it as a black-box powerful encoding procedure

for a given NTC architecture.

3. Methodology

We begin with new empirical insight into the qualitative

similarity between the synthesis transforms in NTC and

traditional transform coding [17] (Sec. 3.1). This motivates

us to adopt simpler synthesis transforms, such as JPEG-like

block-wise linear transforms, which are computationally

much more efficient than deep neural networks (Sec. 3.2).

We then analyze the resulting effect on R-D performance

and mitigate the performance drop using powerful encoding

methods from the neural compression toolbox (Sec. 3.3).

3.1. The case for a shallow decoder

Although the transforms in NTC are generally black-box

deep CNNs, Duan et al. [17] showed that they in fact bear

strong qualitative resemblance to the orthogonal transforms

in traditional transform coding. They showed that the learned

synthesis transform in various NTC architectures satisfy a

certain separability property, i.e., a latent tensor can be de-

composed spatially or across channels, then decoded sepa-

rately, and finally combined in the pixel space to produce

a reasonable reconstruction. Moreover, decoding “standard

basis” tensors in the latent space produces image patterns

resembling the basis functions of orthogonal transforms.1

Here, we obtain new insights into the behavior of the

learned synthesis transform in NTC. We show that the man-

ifold of image reconstructions is approximately flat, in the

sense that straight paths in the latent space are mapped to

approximately straight paths (i.e., naive linear interpolations)

in the pixel space. Additionally, the learned synthesis trans-

form exhibits an approximate “mixup” [52] behavior despite

the lack of such explicit regularization during training.

Suppose we are given an arbitrary pair of im-

ages (x(0),x(1)), and we obtain their latent coefficients

(z(0), z(1)) using the analysis transform (we ignore the effect

of quantization as in Duan et al. [17]). Let γ : [0, 1] → Z be

the straight path in the latent space defined by the two latent

tensors, i.e., γ(t) := (1 − t)z(0) + tz(1). Using the syn-

thesis transform g, we can then map the curve in the latent

space to one in the space of reconstructed images, defined by

1We note that similar patterns can be produced simply by performing

PCA on small image patches.

the R-D performance without much increase in computation

complexity.

3.2. Shallow decoder design

JPEG-like synthesis At its core, JPEG works by dividing

an input image into 8 × 8 blocks and applying block-wise

transform coding. This can be implemented efficiently in

hardware and is a key factor in JPEG’s enduring popularity.

By analogy to JPEG, we interpret the h×w×C latent tensor

in NTC as coefficients corresponding to a linear synthesis

transform. In the most basic form (and similarly to JPEG),

the output reconstructions are computed in s × s blocks;

the (i, j)th block reconstruction is computed by taking a

linear combination of “basis images” Kc ∈ R
s×s×Cout , c =

1, ..., C, weighted by the (quantized) coefficients in zi,j ∈
R

C ,

 \hat {B}_{i, j} = \sum _{c=1}^C \mathbf {z}_{i,j,c} \mathbf {K}_c. \label {eq:jpeg-syn}

 (1)

Note that we recover the per-channel discrete cosine trans-

form of JPEG by setting s = 8, C = 64, Cout = 1, and

{Kc, c = 1, ..., 64} to be the bases of the 8× 8 discrete co-

sine transform. Eq 1 can be implemented efficiently via a

transposed convolution on z, using K as the kernel weights

and s as the stride. In terms of MACs, the computation

complexity of the JPEG-like synthesis then equals

 M(\text {JPEG-like}) = C \times h \times w \times s^2 \times C_{out} , \label {eq:jpegl-macs-formulae} (2)

where Cout = 3 for a color image.2 Note that for a given

latent tensor and “upsampling” rate s, Eq. 2 gives the min-

imum achievable MACs by any non-degenerate synthesis

transform based on (transposed) convolutions. As we see

in Sec. 4.2, although the minimal JPEG-like synthesis dras-

tically reduces the decoding complexity, it can introduce

severe blocking artifacts since the blocks are reconstructed

independently. We therefore allow overlapping basis func-

tions with spatial extent k × k, where k ≥ s and k − s is

the number of overlapping pixels; we compute each k × k
blocks as in Eq. 1, then form the reconstructed image by tak-

ing the sum of the (overlapping) blocks. This corresponds to

simply increasing the kernel size from (s, s) to (k, k) in the

corresponding transposed convolution, and increases the s2

factor in Eq. 2 to k2.

Two-layer nonlinear synthesis Despite its computational

advantage, the JPEG-like synthesis can be overly restrictive.

Indeed, nonlinear transform coding benefits from the abil-

ity of the synthesis transform to adapt to the shape of the

2When the latent coefficients are sparse (which often occurs at low

bit-rates), the computation can be reduced by using sparse matrix/tensor

operations, although we do not exploit this in the current work.

data manifold [6]. We therefore introduce a small degree

of nonlinearity in the JPEG-like transform. Many possibil-

ities exist, and we found that introducing a single hidden

layer with nonlinearity to work well. Concretely, we use

two layers of transposed convolutions (conv_1,conv_2),
with strides (s1, s2), kernel sizes (k1, k2), and output chan-

nels (N,Cout) respectively. At lower bit-rates, we found

it more parameter- and compute-efficient to also allow a

residual connection from z to the hidden activation us-

ing another transposed convolution conv_res (see a di-

agram and more details in Appendix Sec. 7.1). Thus,

given a latent tensor z ∈ R
h,w,C the output is g(z) =

conv_2(ξ(conv_1(z)) + conv_res(z)), where ξ is a

nonlinear activation.

The MAC count in this architecture is then approximately

 M(\text {2-layer}) &= C \times h \times w \times k_1^2 \times 2N \\ \nonumber &+ N \times h s_1\times w s_1 \times k_2^2 \times C_{out}.

To keep this decoding complexity low, we use large convolu-

tion kernels (k1 = 13) with aggressive upsampling (s1 = 8)

in the first layer, in the spirit of a JPEG-like synthesis, fol-

lowed by a lightweight output layer with a smaller upsam-

pling factor (s2 = 2) and kernel size (k2 = 5). We use the

simplified (inverse) GDN activation [28] for ξ as it gave the

best R-D performance with minor computational overhead.

We discuss these and other architectural choices in Sec. 4.4.

3.3. Formalizing the role of the encoder in lossy
compression performance

We theoretically analyze the rate-distortion performance

of neural compression in an idealized, asymptotic setting.

Our novel decomposition of the R-D objective pinpoints the

performance loss caused by restricting to a simpler (e.g., lin-

ear) decoding transform, and suggests reducing the inference

gap as a simple and theoretically principled remedy.

Consider a general neural lossy compressor operating as

follows. Let Z be a latent space, p(z) a prior distribution

over Z known to both the sender and receiver, and g : Z →
X̂ the synthesis transform belonging to a family of functions

G. Given a data point x, the sender computes an inference

distribution q(z|x); this can be the output of an encoder

network, or a more sophisticated procedure such as iterative

optimization with SGA [49]. We assume relative entropy

coding [16, 44] is applied with minimal overhead, so that

the sender can send a sample of z ∼ q(z|x) with an average

bit-rate not much higher than KL(q(z|x)∥p(z)). Given a

neural compression method, which can be identified with

the tuple (q(z|x), g, p(z)), its R-D cost on data distributed

according to PX thus has the form of a negative ELBO [19]

 &\mathcal {L}(q(\z | \x), g, p(\z)) :=\\ \nonumber & \lambda \E _{\x \sim P_\X , \z \sim q(\z |\x)} [\rho (\x , g(\z))] + \E _{\x \sim P_\X }[KL(q(\z | \x) \| p(\z))],

where λ ≥ 0 controls the R-D tradeoff, and ρ : X × X̂ →
[0,∞) is the distortion function (commonly the MSE). Note

that the encoding distribution q(z|x) appears in both the rate

and distortion terms above. We show that the compression

cost admits the following alternative decomposition, where

the effects of p(z), g, and q(z|x) can be isolated:

 &\mathcal {L}(q(\z | \x), g, p(\z)) :=\\ \nonumber & = \underbrace {\mathcal {F}(\mathcal {G})}_{\text {irreducible}} + \underbrace {\left (\E _{\x \sim P_\X }[- \log \Gamma _{g, p(\z)} (\x)] - \mathcal {F}(\mathcal {G})\right)}_{\text {modeling gap}} \\ & + \underbrace {\E _{x\sim P_X}[KL(q(\z |\x) \| p(\z |\x)]}_{\text {inference gap}}. \label {eq:rd-decomposition}

 (6)

The derivation and definition of various quantities are given

in Sec. 7.2, and mirror a similar decomposition in lossless

compression [53]; here we give a high-level explanation of

the three terms. The first term represents the fundamentally

irreducible cost of compression; this depends only on the

intrinsic compressibility of the data PX [50] and the trans-

form family G. The second term represents the excess cost

of compression given our particular choice of decoding ar-

chitecture, i.e., the prior p(z) and transform g, compared to

the optimum achievable (the first term); we thus call it the

modeling gap. Note that for each choice of (g, p(z)), the

optimal inference distribution has an explicit formula, which

allows us to write the R-D cost under optimal inference in the

form of a negative log partition function (the − log Γ term).

Finally, we consider possibility of suboptimal inference and

isolate its effect in the third term, representing the overhead

caused by a sub-optimal encoding/inference method q(z|x)
for a given model (g, p(z)); we call it the inference gap.

Although the above result assumes an asymptotic set-

ting, it still gives us insight about the performance of neural

compression algorithms as we vary the decoder complexity.

When we use a simpler synthesis transform architecture, we

place restrictions on our transform family G, thus causing

the first (irreducible) part of compression cost to increase.

The modeling gap may or may not increase as a result,3

but we can always lower the overall compression cost by

reducing the inference gap, without affecting the decoding

computational complexity.

In this work, we explore two orthogonal approaches for

reducing the inference gap, which can be further decomposed

into an (1) approximation gap and (2) amortization gap [15].

For a given decoding architecture, we therefore propose to

(1) use a more powerful analysis transform, e.g., from a

3The modeling gap can be reduced by adopting a more expressive prior

p(z), although doing so can lead to higher decoding complexity.

recent SOTA method such as ELIC [25], and (2) perform

iterative encoding using SGA [49] at compression time.

4. Experiments

4.1. Data and training

We train all of our models on random 256× 256 image

crops from the COCO 2017 [30] dataset. We follow the

standard training procedures as in [4, 35] and optimize for

MSE as the distortion metric. We verified that our base Mean-

scale Hyperprior model matches the reported performance

in the original paper [35].

4.2. Comparison with existing methods

We compare our proposed methods with standard neural

compression methods [4, 35, 36] and state-of-the-art meth-

ods [25, 47] targeting computational efficiency. We obtain

the baseline results from the CompressAI library [7], or trace

the results from papers when they are not available. For our

shallow synthesis transforms, we use k = 18 in the JPEG-

like synthesis, and N = 12, k1 = 13, k2 = 5 in the 2-layer

synthesis; we ablate on these choices in Sec. 4.3 and 4.4.

Table 1 summarizes the computational complexity of

various methods, ordered by decreasing overall decoding

complexity. We use the keras-flops package 4 to mea-

sure the FLOPs on 512× 768 images, and report the results

in KMACs (thousand multiply-accumulates) per pixel. Note

that the Factorized Prior architecture [4] lacks the hyperprior,

while CHARM [36] and ELIC [25] use autoregressive com-

putation in the hyperior. Our proposed models borrow the

same hyperprior from Mean-Scale Hyperprior [35].

While most existing methods use analysis and synthesis

transforms with symmetric computational complexity, our

proposed methods adopt the relatively more expensive anal-

ysis transform from ELIC [25] (column “f”), and drastically

reduces the complexity of the synthesis transform (column

“g”) – over 50 times smaller than ELIC, and 17 smaller than

Mean-scale Hyperprior.5 As a result, the hyper synthesis

transform (the same as in Mean-scale Hyperprior) accounts

for a great majority of our overall decoding complexity.

In Fig. 5a, we plot the R-D performance of various meth-

ods on the Kodak [29] benchmark, with quality measured in

PSNR. We also compute the BD [9] rate savings (%) relative

to BPG [8], and summarize the average BD rate savings v.s.

the total decoding complexity in Table 1 and Fig. 1. As can

be seen, our model with ELIC analysis transform and JPEG-

like synthesis transform (green) comfortably outperforms

the Factorized Prior architecture [4]; the latter employs a

more expensive CNN synthesis transform but a less powerful

4https://pypi.org/project/keras-flops/
5In our preliminary measurements, this translates to 6 ~12 times reduc-

tion in running time of the synthesis transform compared to the Mean-scale

Hyperprior, depending the hardware used.

Figure 6. Visualizing the different kinds of distortion artifacts at comparable low bit-rates between various methods. Left to right: Mean-scale

Hyperprior [35], two-layer synthesis (proposed), JPEG-like synthesis (proposed), and BPG [8]. See Sec. 4.2 for relevant discussion.

4.3. JPEG­like synthesis

In this section, we study the JPEG-like synthesis in isola-

tion. We start with the Mean-scale Hyperprior architecture,

and replace its CNN synthesis with a single transposed con-

volution with varying kernel sizes. Additionally, instead

of replacing the CNN synthesis entirely, we also consider

a linear version of it (“linear CNN synthesis”) where we

remove all the nonlinear activation functions. This results in

a composition of four transposed convolution layers, which

in general cannot be expressed by a single transposed convo-

lution; however, note that this is still a linear (afffine) map

from the latent space to image space.

Fig. 7 illustrates the distortion artifacts of the JPEG-like

synthesis and linear CNN synthesis at comparable bit-rates,

and reveals the following: (i). Using the smallest non-

degenerate kernel size (k = s = 16) results in severe block-

ing artifacts, e.g., as seen in the 16× 16 cloud patches in the

sky, similarly to JPEG. (ii). Increasing k by a small amount

(16 → 18) already helps smooth out the blocking, but fur-

ther increase gives diminishing returns. (iii). At k = 32,

the reconstruction of JPEG-like synthesis no longer shows

obvious blocking artifacts, but shows ringing artifacts near

object boundaries instead; the reconstruction by the linear

CNN synthesis gives visually very similar results.

Indeed, Fig. 8 confirms that increasing k quantitatively im-

proves the R-D performance of the JPEG-like synthesis, with

k = 26 approaching the R-D performance of the linear CNN

synthesis (within 1% aggregate bit-rate) while requiring 94%

less FLOPs. We conclude that for image compression, a

single transposed convolution with large enough kernel size

is largely able to emulate a deep but linear CNN, and the

additional nonlinearity is necessary for achieving spatially

smooth reconstructions in nonlinear transform coding.

4.4. Ablation studies

The analysis transform. We ablate on the choice of anal-

ysis transform for our proposed two-layer synthesis architec-

ture. Replacing the analysis transform of ELIC [25] with that

of Mean-scale Hyperprior results in over 6% worse bitrate

(with BPG as the anchor). This gap can be reduced to ~5% by

increasing the number of base channels in the CNN analysis,

although with diminishing returns and becomes suboptimal

compared to switching to the ELIC analysis transform. See

Appendix Sec. 7.4.2 for details.

Two-layer synthesis architecture Due to resource con-

straints, we were not able to conduct an exhaustive architec-

ture search, and instead set the hyperparameters manually.

Fig. 9 presents ablation results on the main architectural

elements of the proposed two-layer synthesis. We found

that the residual connection slightly improves the R-D per-

formance at low bit-rates, compared to a simple two-layer

architecture with comparable FLOPs (using 2N = 24 hid-

den channels). We also found the use of (inverse) GDN

activation [3] and increased kernel size in the output layer

(k2) to be beneficial, which only cost a minor (less than 5%)

increase in FLOPs . The number of channels (N) and kernel

size (k1) in the hidden layer are more critical in the trade-off

between decoding FLOPs and R-D performance, and we

leave a more detailed architecture search to future work.

5. Related works

Computationally Efficient Neural Compression To re-

duce the high decoding complexity in neural compression,

Johnston et al. [28] proposed to prune out filters in con-

volutional decoders with group-Lasso regularization [22].

Rippel and Bourdev [39] developed one of the earliest lossy

neural image codecs with comparable running time to classi-

cal codecs, based on a multi-scale autoencoder architecture

inspired by wavelet transforms such as JPEG 2000. Recent

works propose computationally efficient neural compres-

sion architectures based on residual blocks [13, 25], more

lightweight entropy model [26, 25], network distillation [47],

and accelerating learned entropy coding [31]. We note there

is also related effort on improving the compression perfor-

mance of traditional codecs with learned components while

a powerful encoder, we can obtain high R-D performance

while enjoying low decoding complexity. We formalize this

intuition theoretically, and show that the encoding procedure

affects the R-D cost of lossy compression via an inference

gap, and more powerful encoders improve R-D performance

by reducing this gap. In our implementation, we adopt shal-

low decoding transforms inspired by classical codecs such as

JPEG and JPEG 2000, while employing more sophisticated

encoding methods including iterative inference. Empirically,

we show that by pairing a powerful encoder with a shallow

decoding transform, the resulting method achieves R-D per-

formance competitive with BPG and the base Mean-scale

Hyperprior architecture [35], while reducing the complexity

of the synthesis transform by over an order of magnitude.

We are optimistic that the synthesis complexity can be fur-

ther reduced by going beyond the transposed convolutions

used in this work, e.g., via sub-pixel convolution [40] or

(transposed) depthwise convolution.

The success of nonlinear transform coding [6] over tradi-

tional transform coding can be mostly attributed to (1) data

adaptive transforms and (2) expressive deep entropy models.

We focused on improving the R-D-Compute efficiency of

the synthesis transform, given that it accounts for the vast

majority of decoding complexity in existing approaches, and

left the hyperprior [35] unchanged. As a result, entropy de-

coding (via the hyper-synthesis transform) now takes up a

majority (50 % - 80%) of the overall decoding computation

in our method. Interestingly, we note that related work in

learning flat manifolds has shown the necessity of an expres-

sive prior [11], and recent work in video compression [32]

also features a simplified transform in the data space and

a more expressive and computationally expensive entropy

model. Given recent advances in computationally efficient

entropy models [25, 26, 31], we are optimistic that the en-

tropy decoder in our approach can be significantly improved

in rate-distortion-complexity, and leave this important direc-

tion to future work.

A limitation of our shallow synthesis is its worse per-

formance on perceptual distortion compared to deeper ar-

chitectures. Our study focused on the MSE distortion as

in traditional transform coding; in this setting, it is known

that an orthogonal linear transform gives optimal R-D per-

formance for Gaussian-distributed data [21]. However, the

distribution of natural images is far from Gaussian, and com-

pression methods are increasingly evaluated on perceptual

metrics such as MS-SSIM [48] – both factors motivating

the use of nonlinear transforms. We believe insights from

traditional signal processing and deep generative modeling

may inspire more efficient nonlinear transforms with high

perceptual quality, or an efficient pipeline based on a cheap

MSE-optimized reconstruction followed by generative arti-

fact removal/denoising for better perceptual quality.

Acknowledgements

Yibo Yang acknowledges support from the HPI Research

Center in Machine Learning and Data Science at UC Irvine.

Stephan Mandt acknowledges support by the National Sci-

ence Foundation (NSF) under an NSF CAREER Award IIS-

2047418 and IIS-2007719. Stephan Mandt thanks Qual-

comm for unrestricted research gifts.

References

[1] Challenge on learned image coding, 2018.

http://clic.compression.cc/2018/challenge/. 6

[2] N. Asuni and A. Giachetti. TESTIMAGES: A large-scale

archive for testing visual devices and basic image processing

algorithms (SAMPLING 1200 RGB set). In STAG: Smart

Tools and Apps for Graphics, 2014. 6, 18

[3] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end opti-

mization of nonlinear transform codes for perceptual quality.

In Picture Coding Symposium, 2016. 2, 7

[4] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end Opti-

mized Image Compression. In International Conference on

Learning Representations, 2017. 3, 5, 6

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational Image Compression

with a Scale Hyperprior. International Conference on Learn-

ing Representations, 2018. 2, 15, 16

[6] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E.

Agustsson, S. J. Hwang, and G. Toderici. Nonlinear transform

coding. IEEE Trans. on Special Topics in Signal Processing,

15, 2021. 2, 4, 9

[7] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay

Pushparaja. Compressai: a pytorch library and evaluation

platform for end-to-end compression research. arXiv preprint

arXiv:2011.03029, 2020. 5

[8] Fabrice Bellard. BPG specification, 2014. (accessed Oct 3,

2022). 5, 6, 7

[9] Gisle Bjontegaard. Calculation of average psnr differences

between rd-curves. VCEG-M33, 2001. 5

[10] Joaquim Campos, Simon Meierhans, Abdelaziz Djelouah,

and Christopher Schroers. Content adaptive optimization for

neural image compression. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, 2019. 8

[11] Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer,

and Patrick Van Der Smagt. Learning flat latent manifolds

with vaes. arXiv preprint arXiv:2002.04881, 2020. 1, 8, 9

[12] Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang,

Justin Bayer, and Patrick Smagt. Metrics for deep generative

models. In International Conference on Artificial Intelligence

and Statistics, pages 1540–1550. PMLR, 2018. 3, 8, 15

[13] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Learned image compression with discretized gaussian

mixture likelihoods and attention modules. arXiv preprint

arXiv:2001.01568, 2020. 2, 7, 12

[14] Thomas M Cover. Elements of information theory. John

Wiley & Sons, 1999. 8

[15] Chris Cremer, Xuechen Li, and David Duvenaud. Inference

suboptimality in variational autoencoders. In International

Conference on Machine Learning, pages 1078–1086, 2018. 5

[16] P. Cuff. Communication requirements for generating corre-

lated random variables. In 2008 IEEE International Sym-

posium on Information Theory, pages 1393–1397, 2008. 4,

12

[17] Zhihao Duan, Ming Lu, Zhan Ma, and Fengqing Zhu. Open-

ing the black box of learned image coders. In 2022 Picture

Coding Symposium (PCS), pages 73–77. IEEE, 2022. 1, 2, 3

[18] Lyndon R Duong, Bohan Li, Cheng Chen, and Jingning Han.

Multi-rate adaptive transform coding for video compression.

In ICASSP 2023-2023 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

1–5. IEEE, 2023. 8

[19] G. Flamich, M. Havasi, and J. M. Hernández-Lobato. Com-

pressing Images by Encoding Their Latent Representations

with Relative Entropy Coding, 2020. Advances in Neural

Information Processing Systems 34. 4, 12

[20] Brendan J Frey. Bayesian networks for pattern classification,

data compression, and channel coding. Citeseer, 1998. 14

[21] Allen Gersho and Robert M Gray. Vector quantization and sig-

nal compression, volume 159. Springer Science & Business

Media, 2012. 8, 9

[22] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & simple

resource-constrained structure learning of deep networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1586–1595, 2018. 7

[23] Vivek K Goyal, Jun Zhuang, and M Veiterli. Transform

coding with backward adaptive updates. IEEE Transactions

on Information Theory, 46(4):1623–1633, 2000. 2

[24] Robert M Gray. Entropy and information theory. Springer

Science & Business Media, 2011. 12

[25] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei

Qin, and Yan Wang. Elic: Efficient learned image compres-

sion with unevenly grouped space-channel contextual adap-

tive coding. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5718–5727,

2022. 2, 5, 6, 7, 9, 12, 15, 16, 17

[26] Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and

Hongwei Qin. Checkerboard context model for efficient

learned image compression. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 14771–14780, 2021. 7, 9

[27] Berivan Isik, Onur G Guleryuz, Danhang Tang, Jonathan

Taylor, and Philip A Chou. Sandwiched video compression:

Efficiently extending the reach of standard codecs with neural

wrappers. arXiv preprint arXiv:2303.11473, 2023. 8

[28] Nick Johnston, Elad Eban, Ariel Gordon, and Johannes Ballé.

Computationally efficient neural image compression. arXiv

preprint arXiv:1912.08771, 2019. 2, 4, 7, 15, 17

[29] Kodak. PhotoCD PCD0992, 1993. 5

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 3, 5, 15, 16

[31] Anji Liu, Stephan Mandt, and Guy Van den Broeck. Loss-

less compression with probabilistic circuits. In International

Conference on Learning Representations, 2022. 7, 9

[32] Fabian Mentzer, George Toderici, David Minnen, Sung-Jin

Hwang, Sergi Caelles, Mario Lucic, and Eirikur Agusts-

son. Vct: A video compression transformer. arXiv preprint

arXiv:2206.07307, 2022. 9

[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021.

8

[34] David Minnen. Current Frontiers In Neural Image Com-

pression: The Rate-Distortion-Computation Trade-Off And

Optimizing For Subjective Visual Quality, 2021. 1

[35] D. Minnen, J. Ballé, and G. D. Toderici. Joint Autoregressive

and Hierarchical Priors for Learned Image Compression. In

Advances in Neural Information Processing Systems 31. 2018.

2, 3, 5, 6, 7, 9, 15, 16, 17

[36] D. Minnen and S. Singh. Channel-wise autoregressive entropy

models for learned image compression. In IEEE International

Conference on Image Processing (ICIP), 2020. 2, 3, 5, 6, 12,

15, 16

[37] Debargha Mukherjee. Challenges in incorporating ML in

a mainstream nextgen video codec. CLIC Workshop and

Challenge on Learned Image Compression, 2022. 1

[38] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-

combe, and Steven Lovegrove. Deepsdf: Learning continuous

signed distance functions for shape representation. In Pro-

ceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 165–174, 2019. 8

[39] O. Rippel and L. Bourdev. Real-time adaptive image com-

pression. In Proceedings of the 34th International Conference

on Machine Learning, 2017. 7

[40] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1874–1883, 2016. 9

[41] Gary J Sullivan, Pankaj N Topiwala, and Ajay Luthra. The

h. 264/avc advanced video coding standard: Overview and

introduction to the fidelity range extensions. Applications of

Digital Image Processing XXVII, 5558:454–474, 2004. 8

[42] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High

efficiency video coding (hevc). In Integrated circuit and

systems, algorithms and architectures, volume 39, page 40.

Springer, 2014. 8

[43] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy

Image Compression with Compressive Autoencoders. In

International Conference on Learning Representations, 2017.

2

[44] Lucas Theis and Noureldin Yosri. Algorithms for the commu-

nication of samples. 2021. 4, 12

[45] James Townsend, Tom Bird, and David Barber. Practical

lossless compression with latent variables using bits back

coding. arXiv preprint arXiv:1901.04866, 2019. 14

[46] Ties van Rozendaal, Iris A. M. Huijben, and Taco S. Co-

hen. Overfitting for fun and profit: Instance-adaptive data

compression, 2021. 8

[47] Guo-Hua Wang, Jiahao Li, Bin Li, and Yan Lu. Evc: Towards

real-time neural image compression with mask decay. In

International Conference on Learning Representations, 2023.

5, 6, 7

[48] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems Computers,

2003, volume 2, pages 1398–1402 Vol.2, 2003. 6, 9

[49] Yibo Yang, Robert Bamler, and Stephan Mandt. Improving

inference for neural image compression. In Neural Informa-

tion Processing Systems (NeurIPS), 2020, 2020. 2, 4, 5, 8,

15

[50] Yibo Yang and Stephan Mandt. Towards empirical sand-

wich bounds on the rate-distortion function. In International

Conference on Learnning Representations, 2022. 5, 13, 14

[51] Yibo Yang, Stephan Mandt, and Lucas Theis. An introduc-

tion to neural data compression. Foundations and Trends in

Computer Graphics and Vision, 2023. 1, 2

[52] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David

Lopez-Paz. mixup: Beyond empirical risk minimization.

arXiv preprint arXiv:1710.09412, 2017. 2, 3

[53] Mingtian Zhang, Peter Hayes, and David Barber. Gen-

eralization gap in amortized inference. arXiv preprint

arXiv:2205.11640, 2022. 5, 14

[54] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The Unreasonable Effectiveness of Deep Features as a Per-

ceptual Metric. In 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 586–595, 2018. 6, 18

