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Abstract

Neural image compression methods have seen increas-
ingly strong performance in recent years. However, they
suffer orders of magnitude higher computational complex-
ity compared to traditional codecs, which hinders their
real-world deployment. This paper takes a step forward
in closing this gap in decoding complexity by adopting
shallow or even linear decoding transforms. To compen-
sate for the resulting drop in compression performance,
we exploit the often asymmetrical computation budget be-
tween encoding and decoding, by adopting more power-
ful encoder networks and iterative encoding. We theoret-
ically formalize the intuition behind, and our experimen-
tal results establish a new frontier in the trade-off between
rate-distortion and decoding complexity for neural image
compression. Specifically, we achieve rate-distortion per-
formance competitive with the established mean-scale hy-
perprior architecture of Minnen et al. (2018) at less than
50K decoding FLOPs/pixel, reducing the baseline’s overall
decoding complexity by 80%, or over 90% for the synthe-
sis transform alone. Our code can be found at https:
//github.com/mandt-lab/shallow—-ntc.

1. Introduction

Deep-learning-based methods for data compression [51]
have achieved increasingly strong performance on visual
data compression, increasingly exceeding classical codecs
in rate-distortion performance. However, their enormous
computational complexity compared to classical codecs, es-
pecially required for decoding, is a roadblock towards their
wider adoption [34, 37]. In this work, inspired by the parallel
between nonlinear transform coding and traditional trans-
form coding [17], we replace deep convolutional decoders
with extremely lightweight and shallow (and even linear)
decoding transforms, and establish the R-D (rate-distortion)
performance of neural image compression when operating
at the lower limit of decoding complexity.

More concretely, our contributions are as follows:
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Figure 1. R-D performance on Kodak v.s. decoding computation
complexity as measured in KMACs (thousand multiply-accumulate
operations) per pixel. The circle radius corresponds to the parame-
ter count of the synthesis transform in each method (see Table. 1)

* We offer new insight into the image manifold param-
eterized by learned synthesis transforms in nonlinear
transform coding. Our results suggest that the learned
manifold is relatively flat and preserves linear com-
binations in the latent space, in contrast to its highly
nonlinear counterpart in generative modeling [11].

* Inspired by the parallel between neural image compres-
sion and traditional transform coding, we study the
effect of linear synthesis transform within a hyperprior
architecture. We show that, perhaps surprisingly, a
JPEG-like synthesis can perform similarly to a deep lin-
ear CNN, and we shed light on the role of nonlinearity
in the perceptual quality of neural image compression.

* We give a theoretical analysis of the R-D cost of neu-
ral lossy compression in an asymptotic setting, which
quantifies the performance implications of varying the
complexity of encoding and decoding procedures.

* We equip our JPEG-like synthesis with powerful en-
coding methods, and augment it with a single hidden
layer. This simple approach yields a new state-of-the-



art result in the trade-off between R-D performance and
decoding complexity for nonlinear transform coding, in
the regime of sub-50K FLOPs per pixel believed to be
dominated by classical codecs.

2. Background and notation
2.1. Neural image compression

Most existing neural lossy compression approaches are
based on the paradigm of nonlinear transform coding (NTC)
[6]. The idea is similar to traditional transform coding [23],
and the goal is to learn a pair of analysis (encoding) trans-
form f and synthesis (decoding) transform ¢, such that
an encoded representation of the data achieves good R-
D (rate-distortion) performance. Let the input image be
x € REXWX3 The analysis transform computes a continu-
ous latent representation z := f(x), which is then quantized
to Z = |z] and transmitted to the receiver under an entropy
model P(Z); the final reconstruction is then computed by
the synthesis transform as X := ¢(2). The hard quantization
is typically replaced by uniform noise to enable end-to-end
training [3]. We refer to [51] for the technical details.

Instead of orthogonal linear transforms in traditional
transform coding, the analysis and synthesis transforms in
NTC are typically CNNs (convolutional neural networks)
[43, 3] or variants with residual connections or attention
mechanisms [13, 25]. The (convolutional) latent coefficients
z € R"%C form a 3D tensor with C' channels and a spa-
tial extent (h, w) smaller than the input image. We denote
the “downsampling” factor by s, such that h = H/s and
w = W/s; this is also the “upsampling” factor of the synthe-
sis transform.

To improve the bitrate of NTC, a hyperprior [5] is com-
monly used to parameterize the entropy model P(Z) via
another set of latent coefficients h and an associated pair
of transforms (fy, gn). The hyper analysis f;, computes
h = f,(2) at encoding time, and the hyper synthesis gy,
predicts the (conditional) entropy model P(z|h) based on
the quantized h = |h]. We adopt the Mean-scale Hy-
perprior from Minnen et al. [35] as our base architecture,
which is widely used as a basis for other NTC methods
[28, 13, 36, 25]. In this architecture, the various transforms
are parameteried by CNNs, with GDN activation [3] for the
analysis and synthesis transforms and ReLLU activation for
the hyper transforms. Furthermore, the synthesis (g) takes
over 80% of the overall decoding complexity (see Table 1),
and is the focus of this work.

2.2. Iterative inference

Given an image x to be encoded, instead of computing
its discrete representation by rounding the analysis output,
ie., z = |f(x)], Yang et al. [49] cast the encoding prob-
lem as that of variational inference, and propose to infer the

discrete representation that optimizes the per-data R-D cost.
Their proposed method, SGA (Stochastic Gumbel Anneal-
ing), essentially solves a discrete optimization problem by
constructing a categorical variational distribution ¢(z|x) and
optimizing w.r.t. its parameters by gradient descent, while
annealing it to become deterministic so as to close the quan-
tization gap [49]. In this work, we will adopt their proposed
standalone procedure and opt to run SGA at test time, essen-
tially treating it as a black-box powerful encoding procedure
for a given NTC architecture.

3. Methodology

We begin with new empirical insight into the qualitative
similarity between the synthesis transforms in NTC and
traditional transform coding [17] (Sec. 3.1). This motivates
us to adopt simpler synthesis transforms, such as JPEG-like
block-wise linear transforms, which are computationally
much more efficient than deep neural networks (Sec. 3.2).
We then analyze the resulting effect on R-D performance
and mitigate the performance drop using powerful encoding
methods from the neural compression toolbox (Sec. 3.3).

3.1. The case for a shallow decoder

Although the transforms in NTC are generally black-box
deep CNNs, Duan et al. [17] showed that they in fact bear
strong qualitative resemblance to the orthogonal transforms
in traditional transform coding. They showed that the learned
synthesis transform in various NTC architectures satisfy a
certain separability property, i.e., a latent tensor can be de-
composed spatially or across channels, then decoded sepa-
rately, and finally combined in the pixel space to produce
a reasonable reconstruction. Moreover, decoding “standard
basis” tensors in the latent space produces image patterns
resembling the basis functions of orthogonal transforms.'

Here, we obtain new insights into the behavior of the
learned synthesis transform in NTC. We show that the man-
ifold of image reconstructions is approximately flat, in the
sense that straight paths in the latent space are mapped to
approximately straight paths (i.e., naive linear interpolations)
in the pixel space. Additionally, the learned synthesis trans-
form exhibits an approximate “mixup” [52] behavior despite
the lack of such explicit regularization during training.

Suppose we are given an arbitrary pair of im-
ages (x(9,x(1), and we obtain their latent coefficients
(z(9), (1)) using the analysis transform (we ignore the effect
of quantization as in Duan et al. [17]). Lety : [0, 1] — Z be
the straight path in the latent space defined by the two latent
tensors, i.e., Y(t) := (1 — t)z(® + tz(1). Using the syn-
thesis transform g, we can then map the curve in the latent
space to one in the space of reconstructed images, defined by

'We note that similar patterns can be produced simply by performing
PCA on small image patches.



Figure 2. Conceptual illustration of the image manifold parameter-
ized by 4(t) (purple curve), obtained by decoding a straight path
~(t) in the latent space. We show it does not significantly deviate
from a straight path (dashed line) connecting its two end points.
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Figure 3. Visualizing the 1-D manifold of image reconstructions
{#(t)|t € [0, 1]} (top row) and the linear interpolation between its
two end points, {(1 — )% 4+ x|t € [0,1]} (bottom row).

A(t) = g(v( )). We denote the two end-points of the curve
by £ = g(z®) = 4(0) and £V = g(z() = 4(1).
Instead of traversing the image manifold parameterized by g,
we could also travel between the two end-points in a straight
path, which we define by %(*) := (1 — )% + t%(!) and is
given by a simple linear interpolation in the pixel space. The
idea is illustrated in Figure 2.

Fig. 3 visualizes an example of the resulting curve of
images 4(¢) (top row), compared to the interpolating straight
path £*) (bottom row), as ¢ goes from 0 to 1. The results
appear very similar, suggesting the latent coefficients largely
carry local and mostly low-level information about the image
signal. As a rough measure of the “distance” between the
two trajectories, Fig. 4a computes the MSE between 4(t) and
%(®) at corresponding time steps, for pairs of random image
crops from COCO [30]. The results (solid lines) indicate
that the two curves do not align perfectly. However, since
the parameterization of any curve is not unique, we get a
better sense of the behavior of the manifold curve 4(t) by
considering its length L(¥) in relation to the length of the
interpolating straight path ||%(®) — %(1)||. We compute the
two lengths (the curve length can be computed using the
Jacobian of g; see Appendix Sec. 7.4.1), and plot them for
random image pairs in Fig. 4b. The resulting curve lengths
fall very closely to the straight path lengths regardless of
the absolute length of the curves, indicating that the curves
globally follow nearly straight paths. Note that if g was
linear (affine), then 4(¢) and %(*) would perfectly overlap .

Additionally, inspired by mixup regularization [52], we
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Figure 4. The effect of traversing the synthesis manifold, with end
points defined by random image pairs. (a): Mean-squared error
distance between the decoded curve 4(t) and straight paths in the
image space (reconstructions %® and originals x(t)) (b): The
length of the curve 4 v.s. that of the interpolating straight path %,
The image pixel values are scaled to [—0.5, 0.5].

examine how well the synthesized curve %(t) can recon-
struct the linear interpolation of the two ground truth im-
ages, defined by x® := (1 — #)x(© + tx(!). Fig. 4a plots
the reconstruction error for the same random image pairs
in dashed lines, and shows that the synthesized curve 4(t)
generally offers consistent reconstruction quality along the
entire trajectory. Note that if g was linear (affine), then this
reconstruction error would vary linearly across .

The above observations form a stark contrast to the typical
behavior of the decoder network in generative modeling,
where different images tend to be separated by regions of
low density under the model, and the decoder function varies
rapidly when crossing such boundaries [12], e.g., across a
linear interpolation of images in pixel space.

We obtained these results with a Mean-scale Hyperprior
model [35] trained with A = 0.01, and we observe simi-
lar behavior at other bit-rates (with the curves 4 becoming
even “straighter” at higher bit-rates) and in various NTC
architectures [4, 35, 360] (see Appendix Sec. 7.4 for more
examples). Our empirical observations corroborate the ear-
lier findings [!7], and raise the question: Given the many
similarities, can we replace the deep convolutional synthesis
in NTC with a linear (affine) function? Our motivation is
mainly computational: a linear synthesis can offer drastic
computation savings over deep neural networks. This is not
always the case for an arbitrary linear (affine) function from
the latent to image space, so we restrict ourselves to effi-
cient convolutional architectures. As we show empirically in
Sec. 4.3, a single JPEG-like transform with a large enough
kernel size can emulate a more general cascade of transposed
convolutions, while being much more computationally ef-
ficient. Compared to fixed and orthogonal transforms in
traditional transform coding, learning a linear synthesis from
data allows us to still benefit from end-to-end optimization.
Further, in Sec. 4.2, we show that strategically incorporating
a small amount of nonlinearity can significantly improve
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the R-D performance without much increase in computation
complexity.

3.2. Shallow decoder design

JPEG-like synthesis At its core, JPEG works by dividing
an input image into 8 x 8 blocks and applying block-wise
transform coding. This can be implemented efficiently in
hardware and is a key factor in JPEG’s enduring popularity.
By analogy to JPEG, we interpret the h x w x C' latent tensor
in NTC as coefficients corresponding to a linear synthesis
transform. In the most basic form (and similarly to JPEG),
the output reconstructions are computed in s X s blocks;
the (7, j)th block reconstruction is computed by taking a
linear combination of “basis images” K, € R¥***Cout ¢ =
1,...,C, weighted by the (quantized) coefficients in z; ; €
R,

c
Bi,j = Zzi,j,cKc- (D
c=1

Note that we recover the per-channel discrete cosine trans-
form of JPEG by setting s = 8,C = 64,C,,; = 1, and
{K¢,¢=1,...,64} to be the bases of the 8 x 8 discrete co-
sine transform.  Eq 1 can be implemented efficiently via a
transposed convolution on z, using K as the kernel weights
and s as the stride. In terms of MACs, the computation
complexity of the JPEG-like synthesis then equals

M(JPEG-like) = C' x h x w x 8% x Cout, (2)

where C,,; = 3 for a color image.” Note that for a given
latent tensor and “upsampling” rate s, Eq. 2 gives the min-
imum achievable MACs by any non-degenerate synthesis
transform based on (transposed) convolutions. As we see
in Sec. 4.2, although the minimal JPEG-like synthesis dras-
tically reduces the decoding complexity, it can introduce
severe blocking artifacts since the blocks are reconstructed
independently. We therefore allow overlapping basis func-
tions with spatial extent k¥ x k, where £ > s and k — s is
the number of overlapping pixels; we compute each k X k
blocks as in Eq. 1, then form the reconstructed image by tak-
ing the sum of the (overlapping) blocks. This corresponds to
simply increasing the kernel size from (s, s) to (k, k) in the
corresponding transposed convolution, and increases the s?
factor in Eq. 2 to k2.

Two-layer nonlinear synthesis Despite its computational
advantage, the JPEG-like synthesis can be overly restrictive.
Indeed, nonlinear transform coding benefits from the abil-
ity of the synthesis transform to adapt to the shape of the

2When the latent coefficients are sparse (which often occurs at low
bit-rates), the computation can be reduced by using sparse matrix/tensor
operations, although we do not exploit this in the current work.

data manifold [6]. We therefore introduce a small degree
of nonlinearity in the JPEG-like transform. Many possibil-
ities exist, and we found that introducing a single hidden
layer with nonlinearity to work well. Concretely, we use
two layers of transposed convolutions (conv_1, conv_2),
with strides (s1, s2), kernel sizes (k1, k2), and output chan-
nels (N, C,,t) respectively. At lower bit-rates, we found
it more parameter- and compute-efficient to also allow a
residual connection from z to the hidden activation us-
ing another transposed convolution conv_res (see a di-
agram and more details in Appendix Sec. 7.1). Thus,
given a latent tensor z € R the output is g(z) =
conv_2(&(conv_1(z)) + conv_res(z)), where £ is a
nonlinear activation.

The MAC count in this architecture is then approximately

M (2-layer) = C x h x w x k¥ x 2N 3)

+ N x hsy x wsy X k2 X Coyy.

To keep this decoding complexity low, we use large convolu-
tion kernels (k; = 13) with aggressive upsampling (s; = 8)
in the first layer, in the spirit of a JPEG-like synthesis, fol-
lowed by a lightweight output layer with a smaller upsam-
pling factor (sy = 2) and kernel size (k2 = 5). We use the
simplified (inverse) GDN activation [28] for £ as it gave the
best R-D performance with minor computational overhead.
We discuss these and other architectural choices in Sec. 4.4.

3.3. Formalizing the role of the encoder in lossy
compression performance

We theoretically analyze the rate-distortion performance
of neural compression in an idealized, asymptotic setting.
Our novel decomposition of the R-D objective pinpoints the
performance loss caused by restricting to a simpler (e.g., lin-
ear) decoding transform, and suggests reducing the inference
gap as a simple and theoretically principled remedy.

Consider a general neural lossy compressor operating as
follows. Let Z be a latent space, p(z) a prior distribution
over Z known to both the sender and receiver, and g : Z —
X the synthesis transform belonging to a family of functions
G. Given a data point x, the sender computes an inference
distribution ¢(z|x); this can be the output of an encoder
network, or a more sophisticated procedure such as iterative
optimization with SGA [49]. We assume relative entropy
coding [16, 44] is applied with minimal overhead, so that
the sender can send a sample of z ~ ¢(z|x) with an average
bit-rate not much higher than K L(q(z|x)|/p(z)). Given a
neural compression method, which can be identified with
the tuple (¢(z|x), g, p(2z)), its R-D cost on data distributed
according to Px thus has the form of a negative ELBO [19]



L(q(z|x),g,p(z)) := 4
AEsn Px zrq(zlx) [P(X, 9(2))] + Ex i [K L(q(2]x)[|p(2))],

where A > 0 controls the R-D tradeoff, and p : X x X -
[0, 00) is the distortion function (commonly the MSE). Note
that the encoding distribution ¢(z|x) appears in both the rate
and distortion terms above. We show that the compression
cost admits the following alternative decomposition, where
the effects of p(z), g, and ¢(z|x) can be isolated:

L(q(z[x),9,p(2)) = (5)
= F(G) + (Ex~rx[—10gT 0 (x)] = F(9))
N~~~
irreducible modeling gap
+ Eonpy [KL(q(z]x)|Ip(z]x)] - (6)

inference gap

The derivation and definition of various quantities are given
in Sec. 7.2, and mirror a similar decomposition in lossless
compression [53]; here we give a high-level explanation of
the three terms. The first term represents the fundamentally
irreducible cost of compression; this depends only on the
intrinsic compressibility of the data Px [50] and the trans-
form family G. The second term represents the excess cost
of compression given our particular choice of decoding ar-
chitecture, i.e., the prior p(z) and transform g, compared to
the optimum achievable (the first term); we thus call it the
modeling gap. Note that for each choice of (g,p(z)), the
optimal inference distribution has an explicit formula, which
allows us to write the R-D cost under optimal inference in the
form of a negative log partition function (the — log I term).
Finally, we consider possibility of suboptimal inference and
isolate its effect in the third term, representing the overhead
caused by a sub-optimal encoding/inference method ¢(z|x)
for a given model (g, p(z)); we call it the inference gap.

Although the above result assumes an asymptotic set-
ting, it still gives us insight about the performance of neural
compression algorithms as we vary the decoder complexity.
When we use a simpler synthesis transform architecture, we
place restrictions on our transform family G, thus causing
the first (irreducible) part of compression cost to increase.
The modeling gap may or may not increase as a result,’
but we can always lower the overall compression cost by
reducing the inference gap, without affecting the decoding
computational complexity.

In this work, we explore two orthogonal approaches for
reducing the inference gap, which can be further decomposed
into an (1) approximation gap and (2) amortization gap [15].
For a given decoding architecture, we therefore propose to
(1) use a more powerful analysis transform, e.g., from a

3The modeling gap can be reduced by adopting a more expressive prior
p(z), although doing so can lead to higher decoding complexity.

recent SOTA method such as ELIC [25], and (2) perform
iterative encoding using SGA [49] at compression time.

4. Experiments
4.1. Data and training

We train all of our models on random 256 x 256 image
crops from the COCO 2017 [30] dataset. We follow the
standard training procedures as in [4, 35] and optimize for
MSE as the distortion metric. We verified that our base Mean-
scale Hyperprior model matches the reported performance
in the original paper [35].

4.2. Comparison with existing methods

We compare our proposed methods with standard neural
compression methods [4, 35, 36] and state-of-the-art meth-
ods [25, 47] targeting computational efficiency. We obtain
the baseline results from the CompressAl library [7], or trace
the results from papers when they are not available. For our
shallow synthesis transforms, we use k = 18 in the JPEG-
like synthesis, and N = 12, k; = 13, ko = 5 in the 2-layer
synthesis; we ablate on these choices in Sec. 4.3 and 4.4.

Table 1 summarizes the computational complexity of
various methods, ordered by decreasing overall decoding
complexity. We use the keras—f1lops package * to mea-
sure the FLOPs on 512 x 768 images, and report the results
in KMACs (thousand multiply-accumulates) per pixel. Note
that the Factorized Prior architecture [4] lacks the hyperprior,
while CHARM [36] and ELIC [25] use autoregressive com-
putation in the hyperior. Our proposed models borrow the
same hyperprior from Mean-Scale Hyperprior [35].

While most existing methods use analysis and synthesis
transforms with symmetric computational complexity, our
proposed methods adopt the relatively more expensive anal-
ysis transform from ELIC [25] (column “f”"), and drastically
reduces the complexity of the synthesis transform (column
“g”) — over 50 times smaller than ELIC, and 17 smaller than
Mean-scale Hyperprior.> As a result, the hyper synthesis
transform (the same as in Mean-scale Hyperprior) accounts
for a great majority of our overall decoding complexity.

In Fig. 5a, we plot the R-D performance of various meth-
ods on the Kodak [29] benchmark, with quality measured in
PSNR. We also compute the BD [9] rate savings (%) relative
to BPG [&], and summarize the average BD rate savings v.s.
the total decoding complexity in Table 1 and Fig. 1. As can
be seen, our model with ELIC analysis transform and JPEG-
like synthesis transform (green) comfortably outperforms
the Factorized Prior architecture [4]; the latter employs a
more expensive CNN synthesis transform but a less powerful

4https://pypi.org/project/keras-flops/

5In our preliminary measurements, this translates to 6 ~12 times reduc-
tion in running time of the synthesis transform compared to the Mean-scale
Hyperprior, depending the hardware used.
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Computational complexity (KMAC) Syn. param BD rate

Method f fr enc. tot. g gh dec. tot. count (Mil.) savings (%) T
He 2022 ELIC [25] 25542 6773  262.15 25542 126.57 381.99 7.34 26.98
Minnen 2020 CHARM [36] 93.79 590  99.70 93.79  256.51 350.30 4.18 20.02
Wang 2023 EVC [47] 263.25 1.86 265.11 25794 3482 29276 3.38 22.56
Minnen 2018 Hyperprior [35]  93.79 6.73 100.52  93.79  15.18  108.97 3.43 3.30
Ballé 2017 Factorized Prior [4]  81.63 0.00  81.63 81.63 0.00 81.63 3.39 -32.93
2-layer syn. + SGA (proposed) 255.42 6.73 ~10° 5.34 15.18 20.52 1.30 4.67
2-layer syn. (proposed) 25542  6.73  262.15 5.34 15.18 20.52 1.30 -5.19
JPEG-like syn. (proposed) 25542 6773 262.15 1.22 15.18 16.39 0.31 -20.95

Table 1. Computational complexity of various neural compression methods, v.s. average BD rate savings relative to BPG [§] on Kodak.
Complexity is measured in KMACs (thousand multiply—accumulate operations) per pixel, and does not include entropy coding. f, f, g, gn
stand for analysis, hyper analysis, synthesis, and hyper synthesis transforms. We also report the parameter count of synthesis transforms (g)
in the second-to-last column, and a rough estimate of the overall encoding complexity of SGA-based encoding (~10° KMACs/pixel).
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Figure 5. Comparison of the R-D performance of the proposed methods with existing neural image compression methods. All the models
were optimized for MSE distortion.

entropy model. However, our JPEG-like synthesis still sig- tional codecs such as BPG and JPEG 2000. Our proposed
nificantly lags behind BPG and the Mean-scale Hyperprior. method with a two-layer synthesis and iterative encoding

By adopting the two-layer synthesis (orange), the overall (blue) still outperforms BPG, but no longer outperforms the
decoding complexity increases marginally (since the major- Mean-scale Hyperprior (pink). Indeed, as we see in Fig. 6,
ity of complexity comes from the hyper decoder), while the the reconstructions of the proposed shallow synthesis trans-
R-D performance improves significantly, to within < 6% forms can exhibit artifacts similar to classical codecs (e.g.,
bit-rate of BPG. Finally, performing iterative encoding with BPG) at low bit-rates, such as blocking or ringing, but to a
SGA (blue) gives a further boost in R-D performance, out- lesser degree with the nonlinear two-layer synthesis (second

performing the Mean-scale Hyperprior (and BPG) without panel) than the JPEG-like synthesis (third panel).
incurring any additional decoding complexity.

Additionally, we examine the R-D performance using the In Sec. 7.4.3 of the Appendix, we report additional R-D
more perceptually relevant MS-SSIM metric [48]. Follow- results evaluated on Tecnick [2] and the CLIC validation set
ing standard practice, we display it in dB as —101log; (1 — [1], as well as under the perceptual distortion LPIPS [54].
MS-SSIM). The results are shown in Fig. 5b. We observe Overall, we find that our proposed two-layer synthesis with
largely the same phenomenon as before under PSNR, except SGA encoding matches the Hyperprior performance when
that the existing methods based on CNN decoders achieve evaluated on PSNR, but under-performs by 8% ~ 12% (in
relatively much stronger performance compared to tradi- BD-rate) when evaluated on either MS-SSIM or LPIPS.

)
w
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Figure 6. Visualizing the different kinds of distortion artifacts at comparable low bit-rates between various methods. Left to right: Mean-scale
Hyperprior [35], two-layer synthesis (proposed), JPEG-like synthesis (proposed), and BPG [&]. See Sec. 4.2 for relevant discussion.

4.3. JPEG-like synthesis

In this section, we study the JPEG-like synthesis in isola-
tion. We start with the Mean-scale Hyperprior architecture,
and replace its CNN synthesis with a single transposed con-
volution with varying kernel sizes. Additionally, instead
of replacing the CNN synthesis entirely, we also consider
a linear version of it (“linear CNN synthesis”) where we
remove all the nonlinear activation functions. This results in
a composition of four transposed convolution layers, which
in general cannot be expressed by a single transposed convo-
lution; however, note that this is still a linear (afffine) map
from the latent space to image space.

Fig. 7 illustrates the distortion artifacts of the JPEG-like
synthesis and linear CNN synthesis at comparable bit-rates,
and reveals the following: (i). Using the smallest non-
degenerate kernel size (k = s = 16) results in severe block-
ing artifacts, e.g., as seen in the 16 x 16 cloud patches in the
sky, similarly to JPEG. (ii). Increasing k by a small amount
(16 — 18) already helps smooth out the blocking, but fur-
ther increase gives diminishing returns. (iii). At k = 32,
the reconstruction of JPEG-like synthesis no longer shows
obvious blocking artifacts, but shows ringing artifacts near
object boundaries instead; the reconstruction by the linear
CNN synthesis gives visually very similar results.

Indeed, Fig. 8 confirms that increasing k quantitatively im-
proves the R-D performance of the JPEG-like synthesis, with
k = 26 approaching the R-D performance of the linear CNN
synthesis (within 1% aggregate bit-rate) while requiring 94%
less FLOPs. We conclude that for image compression, a
single transposed convolution with large enough kernel size
is largely able to emulate a deep but linear CNN, and the
additional nonlinearity is necessary for achieving spatially
smooth reconstructions in nonlinear transform coding.

4.4. Ablation studies

The analysis transform. We ablate on the choice of anal-
ysis transform for our proposed two-layer synthesis architec-
ture. Replacing the analysis transform of ELIC [25] with that

9]

of Mean-scale Hyperprior results in over 6% worse bitrate
(with BPG as the anchor). This gap can be reduced to ~5% by
increasing the number of base channels in the CNN analysis,
although with diminishing returns and becomes suboptimal
compared to switching to the ELIC analysis transform. See
Appendix Sec. 7.4.2 for details.

Two-layer synthesis architecture Due to resource con-
straints, we were not able to conduct an exhaustive architec-
ture search, and instead set the hyperparameters manually.
Fig. 9 presents ablation results on the main architectural
elements of the proposed two-layer synthesis. We found
that the residual connection slightly improves the R-D per-
formance at low bit-rates, compared to a simple two-layer
architecture with comparable FLOPs (using 2N = 24 hid-
den channels). We also found the use of (inverse) GDN
activation [3] and increased kernel size in the output layer
(k2) to be beneficial, which only cost a minor (less than 5%)
increase in FLOPs . The number of channels (/V) and kernel
size (k1) in the hidden layer are more critical in the trade-off
between decoding FLOPs and R-D performance, and we
leave a more detailed architecture search to future work.

5. Related works

Computationally Efficient Neural Compression To re-
duce the high decoding complexity in neural compression,
Johnston et al. [28] proposed to prune out filters in con-
volutional decoders with group-Lasso regularization [22].
Rippel and Bourdev [39] developed one of the earliest lossy
neural image codecs with comparable running time to classi-
cal codecs, based on a multi-scale autoencoder architecture
inspired by wavelet transforms such as JPEG 2000. Recent
works propose computationally efficient neural compres-
sion architectures based on residual blocks [13, 25], more
lightweight entropy model [26, 25], network distillation [47],
and accelerating learned entropy coding [31]. We note there
is also related effort on improving the compression perfor-
mance of traditional codecs with learned components while



Figure 7. Comparing the distortion artifacts at low bit-rate for different kernel sizes (k = 16, 18, 32, from left to right) in our JPEG-like
synthesis, as well as a linear CNN synthesis (rightmost panel). The JPEG-like blocking artifacts are reduced as k increases; see Sec. 4.3.
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Figure 9. Ablation on various architectural choices of the proposed
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Kodak (the higher the better). See Sec. 4.4 for a discussion.

maintaining high computational efficiency [18, 27].

Test-time / encoding optimization in compression The
idea of improving compression performance with a power-

ful, content-adaptive encoding procedure is well-established
in data compression. Indeed, vector quantization [21] can
be seen as implementing the most basic and general form
of an optimization-based encoding procedure, and can be
shown to be asymptotically optimal in rate-distortion per-
formance [14]. The encoders in commonly used traditional
codecs such as H.264 [4 1] and HEVC [42] are also equipped
with an exhaustive search procedure to select the optimal
block partitioning and coding modes for each image frame.
More recently, the idea of iterative and optimization-based
encoding is becoming increasingly prominent in nonlinear
transform coding [10, 49, 46], as well as computer vision
in the form of implicit neural representations [38, 33]. Itis
therefore interesting to see whether ideas from vector quanti-
zation and implicit neural representations may prove fruitful
for further reducing the decoding complexity in NTC.

Manifold learning A distantly related line of work is in
metric learning with deep generative models, where the idea
is to learn a latent representation of the data such that dis-
tance in the latent space preserves the similarity in the data
space. Chen et al. [12] proposes the use of the Riemannian
distance metric induced by a decoding transform of a latent
variable to measure similarity in the data space. Further, they
proposed to learn “flat manifolds” with VAEs [1 1], whose de-
coder essentially preserves the Euclidean distance between
points in the latent space and the decoded points in the data
space. Their method is based on regularizing the Jacobian of
the VAE decoder to become constant, essentially resulting
in a linear (affine) decoder with similar behavior to what we
observed in learned synthesis transforms in Section 3.1.

6. Discussion

In this work, took a step towards closing the enormous
gap between the decoding complexity of neural and tradi-
tional image compression methods. The main idea is to
exploit the often asymmetrical computation budget of en-
coding and decoding: by pairing a lightweight decoder with
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a powerful encoder, we can obtain high R-D performance
while enjoying low decoding complexity. We formalize this
intuition theoretically, and show that the encoding procedure
affects the R-D cost of lossy compression via an inference
gap, and more powerful encoders improve R-D performance
by reducing this gap. In our implementation, we adopt shal-
low decoding transforms inspired by classical codecs such as
JPEG and JPEG 2000, while employing more sophisticated
encoding methods including iterative inference. Empirically,
we show that by pairing a powerful encoder with a shallow
decoding transform, the resulting method achieves R-D per-
formance competitive with BPG and the base Mean-scale
Hyperprior architecture [35], while reducing the complexity
of the synthesis transform by over an order of magnitude.
We are optimistic that the synthesis complexity can be fur-
ther reduced by going beyond the transposed convolutions
used in this work, e.g., via sub-pixel convolution [40] or
(transposed) depthwise convolution.

The success of nonlinear transform coding [0] over tradi-
tional transform coding can be mostly attributed to (1) data
adaptive transforms and (2) expressive deep entropy models.
We focused on improving the R-D-Compute efficiency of
the synthesis transform, given that it accounts for the vast
majority of decoding complexity in existing approaches, and
left the hyperprior [35] unchanged. As a result, entropy de-
coding (via the hyper-synthesis transform) now takes up a
majority (50 % - 80%) of the overall decoding computation
in our method. Interestingly, we note that related work in
learning flat manifolds has shown the necessity of an expres-
sive prior [ 1], and recent work in video compression [32]
also features a simplified transform in the data space and
a more expressive and computationally expensive entropy
model. Given recent advances in computationally efficient
entropy models [25, 26, 31], we are optimistic that the en-
tropy decoder in our approach can be significantly improved
in rate-distortion-complexity, and leave this important direc-
tion to future work.

A limitation of our shallow synthesis is its worse per-
formance on perceptual distortion compared to deeper ar-
chitectures. Our study focused on the MSE distortion as
in traditional transform coding; in this setting, it is known
that an orthogonal linear transform gives optimal R-D per-
formance for Gaussian-distributed data [21]. However, the
distribution of natural images is far from Gaussian, and com-
pression methods are increasingly evaluated on perceptual
metrics such as MS-SSIM [48] — both factors motivating
the use of nonlinear transforms. We believe insights from
traditional signal processing and deep generative modeling
may inspire more efficient nonlinear transforms with high
perceptual quality, or an efficient pipeline based on a cheap
MSE-optimized reconstruction followed by generative arti-
fact removal/denoising for better perceptual quality.
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