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Abstract

We explore multiple important choices that have not been analyzed in conjunction regarding active learning for
token classification using transformer networks. These choices are: (i) how to select what to annotate, (ii) decide
whether to annotate entire sentences or smaller sentence fragments, (i) how to train with incomplete annotations at
token-level, and (iv) how to select the initial seed dataset. We explore whether annotating at sub-sentence level can
translate to an improved downstream performance by considering two different sub-sentence annotation strategies:
(i) entity-level, and (ii) token-level. These approaches result in some sentences being only partially annotated. To
address this issue, we introduce and evaluate multiple strategies to deal with partially-annotated sentences during the
training process. We show that annotating at the sub-sentence level achieves comparable or better performance than
sentence-level annotations with a smaller number of annotated tokens. We then explore the extent to which the perfor-
mance gap remains once accounting for the annotation time and found that both annotation schemes perform similarly.

Keywords: active learning, named entity recognition, transformers

1. Introduction

One approach to mitigate the time and cost require-
ments of data annotation for machine learning is ac-
tive learning (Atlas et al., 1989; Balcan et al., 2006),
where the machine learning algorithm is actively
involved in deciding which examples are worth an-
notating. In the field of natural language processing
(NLP), most research on active learning (Thompson
et al., 1999; Zhang et al., 2022) has been concen-
trated on sequence classification (Tong and Koller,
2002; Zhang et al., 2016; Schréder et al., 2022), for
tasks such as text classification (Zhang et al., 2015;
Zhang and Plank, 2021), sentiment classification
(Socher et al., 2013; Margatina et al., 2021), ques-
tion answering (Fisch et al., 2019; Longpre et al.,
2022), question classification (Li and Roth, 2002;
Ein-Dor et al., 2020). In comparison, active learn-
ing (AL) for token classification (TC) has received
little attention, and most of the previous work has
concentrated either on pre-transformers methods
with sub-sentence level annotations (Lowell et al.,
2018; Radmard et al., 2021; Tsvigun et al., 2022) or
on transformer-based models but with full-sentence
annotations.

Exploring the use of transformers (Vaswani et al.,
2017) for active learning is important for two rea-
sons. First, it is unclear if transformers will exhibit
the same behavior as other architectures in the
active learning setting. As such, it is uncertain
how much of the previous insights from other ar-
chitectures are applicable to transformer networks,
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especially in the context of pretraining. Second, ap-
plying active learning to token classification tasks,
as opposed to sequence classification tasks, is an
understudied topic that presents unique challenges.
For example, there are open questions on how to
select what to annotate, annotating complete sen-
tences or only a few tokens (see Figure 1), or how
to select the initial dataset. In this work, we ana-
lyze these design choices with transformer-based
backbones. We experiment on the named entity
recognition (NER) task, as one of the most com-
mon token classification tasks, and two datasets.
Figure 2 shows an example sentence for the NER
task.

We make the following contributions: (1) We ana-
lyze which of the uncertainty-based query functions
performs the best with transformer networks. We
observe that Breaking Ties (Scheffer et al., 2001;
Luo et al., 2004) performs either the best or compa-
rably with the best; (2) We investigate three levels
of annotation schemes: (i) complete sentences
(sentence-level), (ii) entities (entity-level), (iii) indi-
vidual tokens (token-level). We find that annotat-
ing at sub-sentence level (i.e., token-level or entity-
level) achieves comparable or better performance
with a lower number of tokens annotated, but this
difference disappears once accounting for anno-
tation time; (3) We explore 4 different approaches
to enabling training with partially-annotated data.
Masking the unannotated tokens during backprop-
agation performs the best; (4) We explore if the
initial dataset can be selected in a better way than
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random sampling. Using the pre-trained language
model for the initial selection performs better or
comparable, at a reduced standard deviation.

2. Related Work

Active learning in NLP (and other fields) is a popular
choice for reducing annotation burden (Zhang et al.,
2022). In this work, we focus on active learning
for token classification, which is relatively under-
explored in comparison to active learning for sen-
tence classification (Zhang et al., 2016; Schréder
et al., 2022).

Our work is similar to that of Schréder et al.
(2021), as we both investigate how the traditional
uncertainty-based query strategies behave with
the newer pre-trained transformer networks. In
contrast, we work on active learning for the to-
ken classification task, something that has been
under-explored. Additionally, we investigate query-
ing smaller sentence fragments, the representation
of partially-annotated data, and selecting an initial
dataset beyond randomly sampling it.

Working with smaller sentence fragments for
named entity recognition has been explored before
(Jie et al., 2019; Mayhew et al., 2019; Strobl et al.,
2022). For example, Mayhew et al. (2019) learns a
classifier to reduce the weight of potential false neg-
ative o tags. Lietal. (2020) uses negative-sampling
to keep the probability of training with unlabeled
entities low. Effland and Collins (2021a) makes
no assumptions about the unannotated tokens and
treats them as latent variables. Different from these
approaches, we work with partial annotations in the
context of active learning.

In the context of active learning, most of the work
focuses on using full sentence annotations (Sapci
et al., 2021; Tsvigun et al., 2022; Nguyen et al.,
2022; Moniz et al., 2022). Transformer-based net-
works are explored in Tsvigun et al. (2022), but only
for sentence-level annotations. Additionally, they
use a different model for acquisition than for train-
ing. Moniz et al. (2022) shows that doing active
learning for multiple languages can improve the
efficiency.

Similar to our approach, but for the part-of-
speech tagging task, Chaudhary et al. (2020) ex-
plores token-level annotations. They use CVT
(Clark et al., 2018) to handle unannotated to-
kens, which is more complicated than our pro-
posed approach for training with partially-annotated
data. Shelmanov et al. (2021) uses transformer-
based networks for NER, but they work with fully-
annotated sentences and analyze a different set of
query strategies than us. Jafarpour et al. (2021)
combines AL with curriculum learning for named
entity recognition. Brantley et al. (2020) explores
a heuristic that provides noisy guidance for anno-

tations. They postpone querying the expert until a
second classifier predicts that the expert is likely to
disagree with the heuristic.

The work of Radmard et al. (2021) is close to
our approach. However, they ignore transformers
(Vaswani et al., 2017; Devlin et al., 2019) which in-
duced a paradigm shift in the field and it is unclear if
the same conclusions hold after using a pre-trained
transformer-based network as the starting point.
Their approach involves propagating the labels to
the same spans in different sentences to serve as
candidate labels. On the other hand, our proposed
approach for handling unannotated tokens is much
simpler: we ignore them when computing the loss.

Positive-Unlabeled Learning (Peng et al., 2019;
Zhou et al., 2022) is another relevant line of re-
search, where, similar to our setting, there is a
need to handle unannotated data. The main dif-
ference, however, is that we operate in the active
learning framework, where the model is allowed to
make queries. Additionally, we have no restrictions
on which type of tokens are unannotated, allowing
having annotations even for tokens that are labeled
as o.

3. Method

We analyze the contribution of three different de-
sign choices that are critical for AL for TC: (i) how to
select what to annotate, i.e., which query strategy is
optimal for TC?, (ii) at what level should annotations
be performed for TC, i.e., should one annotate com-
plete sentences or sentence fragments?, and (iii) if
one annotates fragments of sentences, how should
these incomplete annotations be represented? We
describe the various options in greater detail below.

3.1. Uncertainty-Based Query Strategies

We investigate four commonly used uncertainty-
based query strategies. Note that all these strate-
gies were designed for individual data points. How-
ever, for TC we must aggregate multiple data points
(i.e., when full sentences are to be selected for an-
notation). To apply these query strategies to com-
plete sentences, we aggregate the strategy scores
of each token in the sentence to obtain an overall
score for the entire sentence. The specific aggre-
gation function used (either min or max) depends
on the query strategy and are detailed below. To
apply the query strategies at sub-sentence level,
we use the scores of each individual token to deter-
mine which token should be selected for annotation.
Because the selection is context-specific, once a
token ¢ from a particular sentence s is selected for
annotation, that token is annotated only in sentence
s. At selection time, for each query strategy, we
sort the resulting list in ascending order and take
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After spending several weeks considering his options and consulting with his family , John decided to move to New York City .

his family John move to New York City

Figure 1: An example of a sentence with two named entities of interest: John, and New York City. The
top text shows the complete text, while the bottom text shows just the named entities (in bold) and the
local context sufficient for annotating the entity labels. The figure highlights that decisions for NER are
driven mostly by local context, i.e., most of the sentence text can be ignored during AL annotations.

York to watch the
I-LOC O O 0

Bowl final with his friends
I-MISC O o) o) 0

New
B-LOC

John flew to
B-PER O 0

Super
B-MISC

Figure 2: Example of a sentence (top) together with its corresponding annotations (bottom). We use
the same labels and IOB annotation scheme as the CoNLL-2003 dataset. The sentence contains three
named entities: John, labeled as PER, New York, labeled as 1.0C, and Super Bowl, labeled as MISC.
Everything else is labeled as 0. Each word within a named entity is further distinguished by whether it is

the first word of the entity (B-) or not (1-).

the pre-defined number of elements to annotate.
We detail each query strategy below.

Breaking Ties: Based on the model’s predic-
tions, we select token examples where the differ-
ence between the top two predictions is the small-
est (Scheffer et al., 2001; Luo et al., 2004). At
sentence-level, we consider the score of the token
with the smallest difference to correspond to the
score of the entire sentence (i.e., min); Formally,
we select tokens z; using:

argmin [P(y; = li|2;) — P(y; = l2|2;)]
where [; and I, is the most likely label and the
second most likely label, respectively, according to
the current model.

Least Confidence: Based on the model’s pre-
dictions, we select tokens with the smallest proba-
bility for the most confident prediction (Culotta and
McCallum, 2005). At sentence-level, we consider
the score of the token with the smallest prediction
confidence to correspond to the score of the entire
sentence (i.e., min). Formally, we select tokens z;
based on:

argmax [1 — P(y; = ly]x;)]
where [; is the most likely label according to the
model.

Prediction Entropy: Based on the model’s pre-
dictions, we select tokens with the highest entropy
for label probability distribution (Roy and McCallum,
2001). At sentence-level, we consider the score
of the token with the highest prediction entropy to
correspond to the score of the entire sentence (i.e.,
max).

armin E P(y; = l|a;)logP(y; = 1|x;)
=1

Random: We select random (uniformly) exam-
ples for annotation, irrespective of the model’s pre-
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diction. This query strategy does not need to aggre-
gate any score. At the sentence-level, we simply
select a given number of sentences and fully anno-
tate them. At sub-sentence level we only annotate
the selected tokens for the given sentences.

3.2. Annotation Level

We explore whether annotating at a lower granular-
ity than sentence-level is (i) feasible from a learn-
ing perspective, and (ii) practical. We question the
efficiency of sentence-level annotations for TC be-
cause they necessitate annotating a larger number
of tokens, even those that the model is already con-
fident about. For example, the class 0 is the most
prevalent class in a typical named entity recogni-
tion (NER) dataset and there may be little benefit
in extensively annotating such words. Figure 1 il-
lustrates the motivation behind this intuition with a
simple example.

To investigate this, we explore annotations at
sub-sentence level and compare the corresponding
models against models resulting from sentence-
level annotations. Importantly, annotating at sub-
sentence level means that we have sentences in
the training data that are only partially annotated.
To address this, we investigate different ways to
train the model with partially annotated sentences.
We detail them below.

3.2.1. Annotation Level

We describe below the three annotation levels we
experimented with: (i) sentence-level, (ii) entity-
level, and (iii) token-level.

Sentence-level: At this level we select complete
sentences to annotate. Particular to the TC task
is that we need to aggregate the score of each to-
ken to obtain a global score for the sentence. This
global score is used to determine whether the sen-
tence is selected for annotation or not. The specific



aggregation function used (either min or max) de-
pends on the query strategy. As discussed before,
we use min for Least Confidence, and Breaking
Ties, and max for Prediction Entropy, respectively.
For example, when using Least Confidence, the
score for a sentence is given by the score of the
token with the lowest (i.e., min) Least Confidence
value. We acknowledge that other aggregation
strategies, such average, are possible. However,
regardless of the aggregation strategy, the classifier
receives annotations for both certain and uncertain
tokens.

Sub-sentence-level: At this level we select
and annotate individual tokens, rather than com-
plete sentences. We investigate two distinct sub-
sentence levels: (i) entity-level and (ii) token-level.

Entity-level: If the selected token is part of
a named entity, we fully annotate that entity.
Otherwise, we only annotate that particular token.
For example, for the sentence John Doe flew
to New York City to watch the Super
Bowl final with his friends (see Fig-
ure 2), if the selected token is York, we will annotate
the full entity New York as B-1L0C I-LOC. The
motivation behind this direction is that entity labels
can often be determined using local context (Chieu
and Ng, 2003; Agarwal et al., 2021), which should
reduce the annotation effort (see Figure 1).

Token-level: With this strategy, we only anno-
tate the individual tokens, regardless if they are part
of an entity or not. For example, for the sentence
above, if the selected token is York, we only anno-
tate York as 1-1.0C, without annotating New. If the
selected token is flew, we only annotate flew as 0.

We acknowledge that the latter, token-level anno-
tations are complex in practice, as annotating entity
fragments may not be trivial. Consider, for example,
the token of. It can be part of an entity, for example,
They work for Bank of America, or it can be outside
of an entity, for example, They are coworkers of
mine. Nevertheless, we use it to investigate the
limits of learning with sub-sentence annotations.
Moreover, in practice, token-level annotations are
complex because of different annotations schemes
such as IOB vs. IOBES (Ramshaw and Marcus,
1995; Ratinov and Roth, 2009).

3.2.2. Data Representation

When we annotate at sub-sentence level, the
dataset will contain partially-annotated sentences.
For example, for the sentence in Figure 2, we might
have the following tokens annotated: {flew, to, New,
York} with the following annotations: {0, 0, B-
LOC, I-Loc}. Inorder to train the model with this
type of partially-annotated data, we examine the
following strategies:

(i) Masking all unknowns: We feed the model
the full sentence, regardless if it is fully annotated or

not. Then, we calculate the loss using only the an-
notated tokens, ignoring (i.e., masking) the predic-
tions for the unannotated tokens. For the sentence
in Figure 2 and given the aforementioned anno-
tated tokens, the loss is calculated using only the
predictions for the tokens flew, to, New, and York.
Nevertheless, the representation of annotated to-
kens is influenced by the unannotated tokens due
to the self-attention mechanism in transformers.’

(ii) Dropping all unknowns: Before feeding the
sentence to the model, we drop the unannotated
tokens. This process may result in an ungrammat-
ical sentence. For example, for the sentence in
Figure 2, we will feed only flew to New York to the
model. The training then proceeds as usual, since
all the tokens in the sentence are annotated.

(iii) Masking unknown tokens that look like
entities: In this strategy we use a heuristic com-
monly employed for NER tasks: the part-of-speech
(POS) tag of named entities constituents tend to
be NNP. Based on this observation, we assign a
label of 0 to every unannotated token that is not
an NNP. Then we use the same strategy as in (i).
That is, we feed the model the full sentence and we
only calculate the loss using the tokens that were
either gold annotated or annotated according to
our heuristic. For the sentence in Figure 2 with the
aforementioned annotations, we assign a label of
0 to the following unannotated tokens {to, watch,
the, final, with, his, friends} because their POS tag
is not NNP. The tokens {John, Super, Bowl} are left
unannotated because their POS tag is NNP. The
training then proceeds as in (i), ignoring only the
tokens {John, Super, Bowl}.

(iv) Dropping all unknowns tokens that look
like entities: We employ the same heuristic as
in (iii) and we combine it with the dropping all un-
knowns strategy. More concretely, we assign a
label of 0 to every unannotated token that is not an
NNP. Then we use the same strategy as in (ii). For
example, for the sentence in Figure 2 and given
the aforementioned annotated tokens, we assign
a label of 0 to the following unannotated tokens
{to, watch, the, final, with, his, friends} because
their POS tag is not NNP. The tokens {John, Super,
Bowl} are unannotated, but their POS tag is NNP,
so we drop them, as in (ii). The final sentence that
will be fed to the model is flew to New York to watch
the final with his friends.

We note that although masking and dropping are
conceptually similar, the key difference is that mask-
ing utilizes all tokens to compute the final represen-
tations, while dropping does not see unannotated
tokens in the text provided to the model.

This also holds true for LSTMs or CNNss, as they also
aggregate global context into local representations.
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3.3. Initial Dataset Selection

Traditionally, the initial (or seed) dataset is randomly
sampled from the dataset. We examine the possi-
bility of improving upon this selection process by
prioritizing sentences likely to contain more useful
signal, e.g., more named entities in the NER con-
text. The intuition is that it should be beneficial to
the model to see more examples of named entities
rather than more examples of tokens annotated
with 0. We investigate two novel approaches, that
we describe below:

NNP-guided random sampling: In this ap-
proach, we employ random sampling but restrict it
to sentences with a higher count of proper nouns
(NNP part-of-speech tags) Sentences containing
fewer than a threshold 7" number of words tagged
as NNP are filtered out. Then, we continue with
random sampling over the remaining set. For each
sentence s, we use an adaptive threshold that
depends on the number of words logarithmically
count_nnp(s) > « - log(len(s)). The intuition here
is that expecting the number of words in a sentence
that are tagged as NNP to grow linearly with the
sentence length is too strict.

Language model-guided selection: In this ap-
proach we explore the possibility of using the pre-
trained language model’s (LM) already-acquired
knowledge to select the most challenging sen-
tences. This is achieved by leveraging the capabili-
ties of the pre-trained LMs to select the examples
where the model has the most difficulties in predict-
ing the correct token. Formally, we measure this
difficulty by looking at the difference between the
two most likely predictions, similar to Breaking Ties.
A small difference indicates that the model has diffi-
culties in predicting the real token. We hypothesize
that sentences with such tokens are more informa-
tive for the model because there is no sufficient
background knowledge accumulated in the LM to
be used for the downstream task.

Random: We randomly select data points from
the dataset. We include this approach to serve as
a baseline, as it is the most common strategy in
the literature (Radmard et al., 2021).

4. Experiments

4.1.

We experiment with two widely used named en-
tity recognition datasets: CoNLL-2003 (Sang and
Meulder, 2003) and OntoNotes 5.0 (Pradhan et al.,
2012). We use the same learning rate and weight
decay for all our experiments. We use early stop-
ping and choose the best-performing model on
the validation partition. Similar to (Radmard et al.,
2021), we sample 1% of the training data to serve
as validation and use this for the early stopping

Experiment Setup

procedure. The rationale behind using an alterna-
tive, small validation partition than the one avail-
able with the datasets is that those partitions are
usually much larger, making the active learning ex-
periment unrealistic. We then show our exploratory
results on the complete development partition of
each dataset (i.e., not the randomly sampled 1%),
then use these insights and run the best settings on
the test partition. Due to computation budgets, we
train for only 25 active learning iterations. We be-
gin each experiment with 1% of the total sentences
fully annotated, regardless of the annotation level
used. The initial dataset is selected through ran-
dom sampling, unless otherwise specified. We
gradually increase the number of examples we an-
notate at each step to ensure a larger coverage
of the full dataset as we progress towards the end
of the active learning process. By the final active
learning iteration, approximately 80% of the data
is annotated. Further details can be found in the
supplementary material.

For all experiments, we use the F1 score, as it is
standard for the datasets (Sang and Meulder, 2003;
Pradhan et al., 2012; Radmard et al., 2021) and in-
clude the performance in the fully-supervised case,
as a baseline. The F1 is calculated according to the
official con1leval script (Nakayama, 2018). All
experiments were repeated with five random seeds.
All experiments follow the same set-up, unless oth-
erwise specified. We use early stopping with a
patience of 3 epochs on the F1 score. More details
can be found in the supplementary material. For
completeness, we include the performance on the
test partition in the supplementary material using
the insights from our exploration.

4.2. Datasets

We use CoNLL-2003 (Sang and Meulder, 2003)
and OntoNotes 5.0 (Pradhan et al., 2012). We use
the English data from both datasets. The datasets
are annotated with the T10B annotation scheme
(Ramshaw and Marcus, 1995), which means that
it differentiates between a token at the beginning
of a named entity (B-) and a token in the mid-
dle of a named entity (1-). CoNLL-2003 data is
sourced from the Reuters Corpus, while OntoNotes
5.0 contains data from multiple genres such as
news, conversational telephone speech, weblogs,
usenet newsgroups, broadcast, talk shows. Both
datasets come with part-of-speech tag annotations.
The named entities annotated in the datasets dif-
fer: CoNLL-2003 uses four named entities classes,
while OntoNotes 5.0 contains 18 (see Supplemen-
tary material).
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Figure 3: F1 Score on the validation partition for the datasets considered, as a function of the active
learning iteration. The annotations are at the sentence-level, meaning that all query strategies will have
the same number of sentences for training. Breaking Ties consistently performs the best or comparably to
the best. Additionally, all query strategies tend to perform similarly towards the end because approximately
80% of the data is annotated at this point. Lastly, all 3 uncertainty-based queries consistently outperform

the random query baseline up until saturation.

—— Mask Unknowns

Drop Unknowns
7 —— Mask Entity-Like Unknowns
—— Drop Entity-Like Unknowns
6 Supervised

- —— Mask Unknowns
Drop Unknowns
—— Mask Entity-Like Unknowns
—— Drop Entity-Like Unknowns
Supervised

0 10 70 80

20 30 40 50 60
Percentage of the total number of tokens annotated

(a) CoNLL-2003

[ 10 70 80

20 30 40 50 60
Percentage of the total number of tokens annotated

(b) OntoNotes

Figure 4: F1 Score on the validation partition for the datasets considered, as a function of the percentage
of the tokens annotated. We query at token-level and compare between 4 different ways to enable training
with partially-annotated sentences. The strategy Mask unknowns performs overall the best in all the cases

considered.

4.3. Query Strategy

In our analysis, we first evaluate the performance
of each query strategy presented in Section 3.1
using sentence-level annotations.

We present our results in Figure 3 and draw the
following observations. First, Breaking Ties per-
forms better or at least as well as the other uncer-
tainty queries, despite its simplicity. This is most
notable when little training data is used, which is,
arguably, the most realistic AL scenario. This aligns
with the observation of Schréder et al. (2022) for
sentence classification using Transformers. We
note, however, that Least Confidence is a strong
contender as well. Second, all query strategies per-
form similarly towards the end of the active learning

loop, as expected given that approximately 80% of
the data is annotated at this point. Third, the three
uncertainty-based queries consistently outperform
the random query baseline up until saturation.

4.4. Annotation Level

Following the observation in Section 4.3, we use
Breaking Ties as our default query strategy.

4.4.1. Data Representation

To investigate the feasibility of partial annotations,
we first explore different data representation strate-
gies to enable training with a partially-annotated
dataset, as described in Section 3.2.2. We query
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Figure 5: F1 Score on the validation partition for the datasets considered. We compare between annotating
at entity-level and annotating at sentence level. Annotating at entity-level obtains similar (or better)

performance, but at a greatly reduced cost.
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(a) CoNLL-2003

—— Random
NNP Filter

—— LM prediction guided
Supervised

1 2 9 10
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Percentage of the total number of tokens annotated

(b) OntoNotes

Figure 6: F1 Score on the validation partition for the datasets considered, as a function of the percentage
of the tokens annotated. We query at entity-level with Breaking Ties and compare against 3 different ways
of selecting the initial dataset. We remark that using more informed dataset selection strategies offer a
boost in performance in the early stage of the active learning loop, boost that decreases as the number of

tokens selected increases.

at the token-level using the Breaking Ties query
strategy. The F1 performance of these strategies is
shown in Figure 4 as a function of the percentage
of tokens annotated. We can see that the Mask
Unknowns data representation strategy, despite its
simplicity, performs the best. We suspect this is
caused by the attention mechanism in transform-
ers: being exposed to tokens even when they are
not labeled is helpful, as they are used to construct
the representation of the tokens that are annotated.
Second, we can see that querying at sub-sentence
level achieves a high performance early, saturating
at around 15% of the total number of tokens. Third,
we observe that dropping the unknowns performs
the worst until a large number of tokens have been
annotated. We suspect that this is because, in the
beginning, the tokens selected for annotation are
spread across a large number of sentences. There-

fore, in the Drop unknowns strategy, the model will
be exposed to a large number of short, even un-
grammatical sentences which is detrimental. In
(Effland and Collins, 2021b) the authors argue that
backpropagating only through labeled (and non-0)
tokens is detrimental to the model’s performance,
as it will not learn meaningful representation to pre-
dict the 0 tag. In contrast, we find empirically that
using an initial random sample of fully annotated
sentences and then only sub-sentence level annota-
tions gives enough initial signal to learn meaningful
representations to predict the o label, even though
the model predominantly selects non-0 tokens for
annotations.
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Figure 7: F1 Score on the test partition for the datasets considered, as a function of the percentage of the
tokens annotated. We show the mean and standard deviation of 5 runs.

4.4.2. Annotation Efficiency

We compare the performance of the Breaking Ties
query strategy at the sentence-level and at the sub-
sentence level. Following the observations in Sec-
tion 4.4.1, for the sub-sentence level, we use the
Mask Unknowns strategy to enable training with
partially-annotated data. We include the perfor-
mance with a Random query strategy to show that
both (i) a finer-grained annotation level, and (ii) an
informative query strategy are important in order
to obtain similar (or better) performance with the
same number of annotated tokens.

We show the F1 performance as a function of the
percentage of tokens annotated in Figure 5. We re-
mark that querying at sub-sentence level achieves
comparable (or better) performance as querying
at sentence-level, and it does so at a much faster
rate. Entity-level annotations achieves its top per-
formance at around 10% of the training data, while
sentence-level annotations does so at around 30%.
Lastly, we note that when a non-informative query
strategy is used (i.e., Random), the performance
at entity-level is similar with the performance at the
sentence level. This indicates that the gain in per-
formance at entity level comes from having labels
for the informative tokens.

For example, for both CoNLL-2003 and
OntoNotes the percentage of tokens annotated
with O is over 83%. In comparison, the number of
entities together with a window of 2 tokens (which
is an estimate of the local context necessary
to annotate the NER labels) constitutes only
33% of the dataset for CoNLL-2003 and 18% for
OntoNotes, respectively.

4.5. Initial Dataset Selection

In the following, we investigate whether it is possi-
ble to improve upon the traditional method of ran-

domly sampling the initial dataset. We explore two
new strategies: (i) NNP Filter, which is a baseline
that randomly selects sentences after filtering them
based on the number of NNPs (based on the heuris-
tic that sentences containing more proper nouns
are more informative for NER), and (ii) LM predic-
tion guided, which uses the underlying pre-trained
LM to select sentences based on its word-prediction
scores.

We show the F1 performance as a function of
the percentage of tokens annotated in Figure 6.
We remark that both NNP Filter and LM prediction
guided outperform the classical random dataset se-
lection algorithm until approximately 5% of the total
number of tokens. As the number of tokens anno-
tated increases, the difference decreases. This is
expected because Breaking Ties is able to identify
and select relevant tokens for annotations, there-
fore the ratio of relevant tokens increases. As it
reaches and surpasses 5% (i.e., ~ 1% selected
initially, ~ 4% during the active learning iteration
loop), the advantages of a more informed initial
dataset diminish. Nevertheless, we remark that the
best performance achieved with a more informed
dataset selection strategy is higher than random
selection, although the difference is small. More
importantly, the standard deviation of the model’s
F1 score across 5 runs for the more informed selec-
tion strategies is at less than half compared to the
random selection strategy, suggesting that a bet-
ter selection strategy can make the training more
stable. We find the LM-guided selection results
exciting considering that this strategy is agnostic to
the actual sequence modeling task.

4.6. Test Performance

Following the observations regarding various de-
sign choices for Active Learning (AL) for Token
Classification (TC) from the previous sections, we
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apply our resulting model on test. To facilitate com-
parison with the classical methods, we include the
performance with the sentence-level annotations
as well as the performance of the model in the fully-
supervised case. We show our results in Figure 7.
We remark that our proposed method obtains a sim-
ilar or better performance than the fully supervised
model at around 10%, after only 6 active learning
annotation rounds. We acknowledge the difference
in performance between our model and the state-of-
the-art. The difference in performance comes from
different model choices. Due to computation bud-
gets, we use DistilBERT, which is much lighter than
the ones used for the state-of-the-art. For exam-
ple, DistiiBERT-base has 65M parameters, while
BERT-base has 107M and BERT-large has 345M.
Furthermore, our goal was not to obtain the best
performance, as that would have required a large
computational budget, but instead to perform an
exploration of how transformer-based networks be-
have in the context of active learning for sequence
tagging at sentence and sub-sentence level.

4.7. Feasibility of Token-Level
Annotations

While § 4.4.1 indicates that for the same number
of annotated tokens, partial annotations perform
better, that experiment ignored the time cost of
annotating these tokens in the different scenarios.
In this section, we delve into the practicality of
token-level annotations, focusing on the annota-
tion workload aspect. Specifically, we investigate
whether opting for token-level annotations, as op-
posed to sentence-level annotations, leads to en-
hanced model performance while considering the
time investment required for annotation. To this
end, we compare: (a) a traditional NER annota-
tion task for sentence-level annotations, and (b) a
token-level annotation task, in which we leverage
the model’s predictions and ask the annotator to de-
cide which (if any) of the top 5 NE predictions for the
given token is correct. Based on this experiment
on OntoNotes, we approximate the annotation time
for a random sentence to ~ 27.5s and for a ran-
dom token to ~ 3.2s. Based on this, at each active
learning iteration, we select data amounting to 6h
of annotation effort. We show our results in Fig-
ure 8. Importantly, the X-axis in this figure uses the
same annotation time per iteration rather than the
number of tokens annotated. Overall, both anno-
tation schemes perform similarly once we account
for annotation time, suggesting that even though
in the sentence-level annotation setting the model
receives annotations for more tokens including to-
kens it was not confused about, they are overall
meaningfully contributing.
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Figure 8: Comparing the F1 score on OntoNotes be-
tween sentence- and token-level annotations once
accounting for annotation time.

5. Conclusion

We analyzed multiple important choices that have
not been analyzed jointly for active learning for to-
ken classification using transformer networks. We
investigated the following choices: (i) how to select
what to annotate, (ii) decide whether to annotate
complete sentences or smaller sentence fragments,
(iii) if we annotate smaller sentence fragments, how
to train with incomplete sentence annotations, and
(iv) how to select the initial dataset, beyond random
sampling. Our experiments showed that: (i) Break-
ing Ties performs better than other methods, (ii) an-
notating smaller sentence fragments can achieve
similar (or better) performance as annotating the
full sentence for a similar number of tokens an-
notated, but this difference advantage vanishes
once accounting for the annotation time, (iii) in or-
der to enable training with incomplete annotations,
masking the tokens with unknown annotation when
computing the loss performed the best out of the
strategies analyzed, and (iv) using the pre-trained
language model for the initial dataset selection can
increase the performance when little data is anno-
tated. Our code is publicly available.?
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7. Limitations

Despite being evaluated on multiple datasets and
multiple genres, our work focuses on one language,
English, and one task, named entity recognition. In
particular, it is unclear if the effectiveness of Mask
Unknown for training with partially-annotated data
translates to other languages and how dependent
it is on the perplexity of the underlying language
model. Future work will complement our explo-
ration to other languages and other tasks.

Our proposed method’s scalability to long text
depends on the underlying model’s scalability prop-
erties. In this paper, we used transformers with
quadratic attention which scales poorly to longer
texts. However, typically, named entity recognition
is performed at the sentence level.

8. Ethical Considerations

We use pre-trained language models, therefore
this work shares many of the same ethical issues
such as social biases or perpetuating stereotypes
(Weidinger et al., 2021). In this work we did not pre-
train any new language model. We do not envision
any additional negative societal impact resulting
from this work.
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A. Experimental Set-Up

A.1. Number of Examples for Annotation

Due to computation budgets, we gradually increase
the number of examples we annotate at each step
to ensure a larger coverage of the complete dataset
towards the end without the need of performing a
large number of active learning iteration. In the be-
ginning, we annotate 1% to allow for a finer-grained
view of the performance as the number of anno-
tated tokens increase. More precisely, the anno-
tation scheme is: {1%, 1%, 1%, 1%, 1%, 1%, 1%,
1%, 1%, 1%, 1%, 1%, 1%, 1%, 2.5%, 2.5%, 2.5%,
2.5%, 5%, 5%, 5%, 10%, 10%, 10%, 10% }, such
that at the last iteration we will have around 80%
of the full dataset annotated.

A.2. Datasets

The datasets we use have different named enti-
ties. CoNLL2003 has person, location, organiza-
tion, and miscellaneous.

And OntoNotes 5.0 has person, norp, fac, org,
gpe, loc, product, date, time, percent, money, quan-
tity, ordinal, cardinal, event, work_of_art, law, lan-

guage.

A.3. Hardware

We ran all our experiments on a system with Tesla
V100 SXM2 32 GB GPUs. We used distill-
bert, a lighter transformer-based model. From a
computation perspective, one single experiment
takes approximately 1 hour for CoNNL-2003 and 4
hours for OntoNotes on a single GPU.

A.4. Hyperparameters

We use a learning rate of 5e-5 and train for at most
20 epochs for each active learning iteration. We
use early stopping with a patience of 3 epochs.
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