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Abstract

In this work, we revisit the problem of semi-supervised named entity recognition (NER) focusing on extremely light

supervision, consisting of a lexicon containing only 10 examples per class. We introduce ELLEN, a simple, fully

modular, neuro-symbolic method that blends fine-tuned language models with linguistic rules. These rules include

insights such as “One Sense Per Discourse”, using a Masked Language Model as an unsupervised NER, leveraging

part-of-speech tags to identify and eliminate unlabeled entities as false negatives, and other intuitions about classifier

confidence scores in local and global context. ELLEN achieves very strong performance on the CoNLL-2003 dataset

when using the minimal supervision from the lexicon above. It also outperforms most existing (and considerably more

complex) semi-supervised NER methods under the same supervision settings commonly used in the literature (i.e.,

5% of the training data). Further, we evaluate our CoNLL-2003 model in a zero-shot scenario on WNUT-17 where we

find that it outperforms GPT-3.5 and achieves comparable performance to GPT-4. In a zero-shot setting, ELLEN also

achieves over 75% of the performance of a strong, fully supervised model trained on gold data. Our code is publicly

available.

Keywords: semi-supervised learning, named entity recognition, neuro-symbolic, rules, language models,

modular architectures

1. Introduction

Named entity recognition (NER), i.e., the task of
identifying named (and sometimes numeric) enti-
ties such person and organization names, drugs,
protein names, diseases, and dates, is one of
the earliest formal natural language processing
(NLP) tasks (Grishman and Sundheim, 1996). NER
remains critical to many real-world applications
such as question answering and information ex-
traction (Yadav and Bethard, 2019). Despite the
tremendous progress observed on the NER task in
the past almost three decades, we argue that there
are several practical limitations in the way this task
is generally formalized, which impact our under-
standing of what methods perform best in practice.
In particular:

(1) Current settings for the NER task require an
amount of annotations that are unrealistic for many
real-world applications. For example, a common
setting for semi-supervised NER uses 5% of the
CoNLL-2003 corpus’ (Tjong Kim Sang and De Meul-
der (2003)) training data, or over 10K total to-
kens (Chen et al., 2020; Zheng et al., 2023). In our
work (Vacareanu et al., 2024), we have observed
that NER annotations take approximately 3.2 sec-
onds per token in practice. Thus, annotating the
equivalent amount of data in a new domain would
take approximately 9 person hours. This is unrealis-
tic in many scenarios (e.g., intelligence, pandemic

surveillance) that require the rapid development of
custom models and where domain experts “do not
want to come willingly and do not come cheaply.”1

(2) While recent directions that use in-context learn-
ing (ICL) for NER with autoregressive decoder-
based large language models (LLMs) perform well
(Chen et al., 2023), they do not scale as well as
encoder-based methods due to the decoder’s high
inference overhead; each generated token requires
its own forward pass through the model.

(3) Recent trends rely mostly on neural networks
(NNs) to learn the NER task, ignoring linguistic hints
such as “one sense per discourse” (Gale et al.,
1992) that might be present and are likely to be
useful in lightly-supervised settings.

To remedy these limitations we propose an ex-
tremely lightly supervised scenario for NER, in
which the only supervision comes in the form of
a lexicon containing 10 examples per entity class.
Importantly, the 10 examples are selected by a
domain expert that does not have access to any
dataset annotations. Further, we propose a simple
NER approach for this scenario that is efficient and
performs well despite the limited supervision. Our
method uses an encoder-only inference strategy,
but, at training time, it combines multiple strate-
gies including language models and several lin-
guistic heuristics. We call our method Extremely

1IARPA program manager, personal communication
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Lightly Supervised Learning for Efficient Named
Entity Recognition (ELLEN)2.

Our main contributions are as follows:

(1) We demonstrate the effectiveness of combin-
ing language models with commonsense linguis-
tic rules inspired by (Liao and Veeramachaneni,
2009) and aggregated under a self-training, mod-
ular, neuro-symbolic architecture. Our approach
is considerably simpler than other complex statis-
tical methods for semi-supervised NER (Nagesh
and Surdeanu, 2018; Lakshmi Narayan et al., 2019;
Peng et al., 2019; Zhou et al., 2022; Chen et al.,
2019; Clark et al., 2018; Chen et al., 2020; Zheng
et al., 2023, inter alia).

(2) Our approach includes a novel component
called the Masked Language Modeling (MLM)
Heuristic, which is a fully unsupervised NER
method that achieves over 55% precision on the
CoNLL-2003 NER dataset. Further, this component
complements other self training as well as linguistic
heuristics in the semi-supervised setting.

(3) We evaluate our method on CoNLL-2003 (Tjong
Kim Sang and De Meulder (2003)) under three dif-
ferent degrees of supervision, and in a zero-shot
setting on WNUT-17 (Derczynski et al. (2017)). On
CoNLL, under the proposed setting of extremely lim-
ited supervision, we show that our method achieves
an F1 score of 76.87%. Further, when we increase
the degree of supervision to match other methods
which are state-of-the-art in the semi-supervised
NER setting, we find that our method achieves
comparable performance. We also show that our
method continues to scale, even when using all of
the data available for supervision. In a zero-shot
evaluation on WNUT-17, we find our method to be
comparable to LLMs such as GPT-3.5 (OpenAI,
2023b) and GPT-4 (OpenAI, 2023a), while also
obtaining over 75% of the performance of a fully
supervised model trained on WNUT-17.

2. Related Works

Recently, Large Language Models (LLM’s) have
emerged as the dominant approach for a wide vari-
ety of NLP tasks, including Named Entity Recog-
nition. (Wang et al., 2023) and (Zhou et al., 2023)
show that LLM’s consistenly achieve SOTA perfor-
mance on many NER datasets. With In-Context
Learning, LLM’s have also proven to be very useful
in the FewShot NER setting, as recently shown by
(Ashok and Lipton, 2023). However, LLM’s typi-
cally have a high inference overhead (Narayanan
et al., 2023) and may not always perform well in
specialized or low-resource domains. Moreover,
there are increasing concerns about data contami-
nation. (Golchin and Surdeanu, 2023) demonstrate

2https://github.com/hriaz17/ELLEN

that GPT-3.5 and GPT-4 have encountered test
data with labels from widely-used NLP benchmark
datasets during pre-training. (Sainz et al., 2023)
claim that this is true for CoNLL-2003, one of our
evaluation datasets.

Focusing on Semi-Supervised NER, and not
FewShot NER, current state-of-the-art methods in-
clude JointProp (Zheng et al., 2023), which is a
multi-task learning framework that jointly tries to
solve relation classification and NER using a het-
erogeneous graph structure. Semi-LADA (Chen
et al., 2020) adapts the mixup data augmentation
technique to sequence labeling, and then trains
on linearly interpolated pairs of samples. Both of
these methods use at least 5% of the labeled data
as their most minimally supervised setting, which
we argue, is an impractical level of supervision for
semi-supervised NER. Another class of statistical
methods (Peng et al., 2019; Zhou et al., 2022) try
to solve the reliance on gold labels by resorting to
distant supervision: they construct lexicons based
on large dataset independent knowledge bases.
These methods then use Positive-Unlabeled (PU)
learning to train classifiers using only labeled posi-
tive examples and a set of unlabeled data contain-
ing both positives and negatives.

Other approaches like (Liu et al., 2019a) showed
the benefits of augmenting neural NER taggers with
external gazetteers. However, external gazetteers
may not always be available for particular domains.
In contrast we propose a semi-supervised method
for NER along the lines of the approach taken by
(Liao and Veeramachaneni, 2009): one that com-
bines the generalizability of contemporary deep
learning with intuitive reasoning and linguistic in-
sights, and we demonstrate its strong performance,
under a setting of extremely low supervision. We
posit that such an approach can rival more multi-
faceted statistical techniques for semi-supervised
NER, such as PU learning & data augmentation,
among others.

3. Proposed Method

As our method does not rely on any explicitly la-
beled texts, we begin by discarding all labels in the
NER dataset (CoNLL-2003 in this paper). We then
ask a domain expert to generate a small lexicon
of 10 example named entities per class, for each
of the four classes in CoNLL-2003, i.e., PER, ORG,
LOC, and MISC. This lexicon: a) is sourced entirely
from the tokens in the dataset; b) is constructed
without looking at any of the labels in the dataset;
c) does not rely on any external knowledge-base or
dictionary; and d) serves as the sole source of “gold
supervision” for our method. The domain expert
is able to construct the lexicon (refer to Table 1) in
less than 30 minutes for CoNLL-2003. We believe
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Algorithm 1 A simple NER self-training algorithm

1: Given:

2: L - a small set of labeled training data

3: U - unlabeled data

4: for k iterations do

5: Step 1: Train a NER Ck based on L

6: Step 2: Extract new data D based on Ck

7: Step 3: Add D to L

8: end for

be of higher quality to reduce noise in future itera-
tions. Inspired by this idea, we propose an intuitive,
three-stage framework, illustrated in Figure 1, for ef-
fectively combining linguistic rules with pre-trained
language models such as (He et al., 2023). We
design our framework to simultaneously balance
two orthogonal goals:

1. avoiding the pitfalls of classic self-training (e.g.,
a model failing to correct its errors and instead
amplifying them) to the extent possible, and

2. still being conceptually similar to self-training
at a high level.

Our proposed NER method is fully modular, uses
the deberta-v3-large encoder3 as the neural
component, and blends various other linguistic and
statistical heuristics in a sieve (Lee et al., 2013).
We first describe each of these heuristics below,
and then describe how they are integrated in the
three-stage ELLEN framework.

3.1. Unsupervised Entity Recognition
Using A Masked Language Model
(MLM)

Motivated by the observation that any language
model, subjected to pretraining via the Masked Lan-
guage Modeling (MLM) objective, likely acquires se-
mantic, syntactic, and world knowledge, we hypoth-
esize that the capability to discern named entities
is also inherently embedded within such models.
We present a novel, fully unsupervised algorithm,
implemented as a rule in our neuro-symbolic mod-
ular architecture that allows us to gain additional
“free” supervision , beyond our small lexicon of ten
entities. This algorithm relies on a small pre-trained
LM from (Liu et al., 2019b), which leverages our lex-
icon to extract new Named Entities from unlabeled
data.

Unlike recent prompt-based approaches for NER,
particularly few-shot NER, which involve either

3DeBERTa-v3 is the current state-of-the-art encoder-

based model on many benchmark NLP tasks. The key

advantage of using DeBERTa is its relative positional

encoding, which allows the model to generalize better to

longer sequences.

prompting LLM’s with in-context examples to in-
ject NER ability (Chen et al., 2023), or involve con-
structing dynamic templates based on label aware
pivot words, our approach is much simpler and
more constrained. We first use a very simple, lin-
guistically inspired regular expression, based on
part-of-speech (POS) tags, for detecting named
entity spans:

(NNP|NNPS)+(IN(NNP|NNPS)+)?

where NNP/NNPS are the POS tags of singular/plu-
ral proper nouns, and IN is the POS tag assigned
to prepositions. On the unlabeled portion of the
CoNLL training dataset, this rule can detect named
entity boundaries with a precision of 85.16%, as
shown in Table 2. Note that this rule is consider-
ably simpler and more efficient than other recent
computationally-intensive approaches, e.g., the en-
tity typing and span identification method of Shen
et al. (2023), or the span classification approach
adopted by Arora and Park (2023) and Chen et al.
(2022). Typically, these approaches initially train a
model for span classification, followed by a model
for entity type classification.

Precision Recall F1 Score

85.16% 90.96% 87.96%

Table 2: Micro-F1 scores of the regex rule for detecting

named entity boundaries.

Once entity spans are identified, we label them
using a masking heuristic. Intuitively, our method
selects the entity label whose exemplars in the lexi-
con fill in the span with the highest likelihood. More
formally, we first mask the span identified by the
regex above with a number of [MASK] tokens equal
to the tokens included in the span. For example,
the span John Doe in the sentence: John Doe is
happy will be masked as [MASK] [MASK] is happy.
We then iteratively fill in lexicon entries of the same
length (across all entity classes) and keep track
of all token probabilities. For example, the entry
Dole in the Person lexicon, which is tokenized as
Do and ##le,4 produces the sentence: Do ##le is
happy. Lastly, we select the entity label based on
the following formula:

c = argmax
k

max
j

1

n

n∑

i

p(ti|x)

where ti is the ith masked token (e.g., Do is t0 in the
example above); x is the sentence with the masked
tokens; n is the total number of masks for the cur-
rent example (e.g., 2 for the example above); the

4We use the BERT tokenizer convention for multi-

token words here for readability.
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j index iterates over all exemplars for the current
entity label; and k iterates over all entity class lexi-
cons. That is, for each exemplar, we first compute
the average probability of all its tokens. Then we
pick the exemplar with the highest probability in a
given lexicon as the probability of the correspond-
ing entity label. Lastly, we select the entity label c
with the highest probability.

We denote this rule as the Masked Language
Modeling (MLM) Heuristic. We demonstrate its
NER effectiveness on the development set of
CoNLL-2003, in a fully unsupervised fashion in Ta-
ble 3. As shown in the table, the F1 score of the
MLM heuristic is over 56% on the development set
of CoNLL-2003. In each iteration of the procedure
shown in figure 1, the MLM is used in the burn-in
and intermediate stages to annotate a subset of the
unlabeled data U , which is eventually added back
to L.

Entity Type Precision Recall F1

Overall 61.78% 51.90% 56.41%

LOC 69.72% 41.53% 52.05%

MISC 45.18% 55.15% 49.67%

ORG 44.85% 40.88% 42.77%

PER 85.07% 65.02% 73.71%

Table 3: P/R/F1 of the Masked Language Modeling

Heuristic as a fully unsupervised NER algorithm on the

CoNLL-2003 development set. It obtains an entity-level

F1 score of 56.41% with over 60% overall precision.

3.2. Dynamic Window Filtering

In most lightly supervised settings, NER models
tend to suffer from the “unlabeled entity problem” as
described in (Li et al., 2021), where the entities of
a sentence may not be fully annotated. This tends
to seriously degrade model performance, since
the model treats unlabeled entities as negative or
O/Outside instances. Even self-training methods
may not be sufficient to completely alleviate the
false negative problem since they are susceptible
to confirmation bias (Arazo et al., 2020), i.e.,
erroneously predicted pseudo-labels are likely to
deteriorate the model’s performance in subsequent
rounds of training. In contrast to (Li et al., 2021)’s
method which uses negative sampling to avoid
training the NER on unlabeled entities, we propose
a very simple and run-time efficient linguistically
inspired algorithm for controlling the effect of false
negatives in sparsely annotated data settings, such
as ours. We refer to our algorithm as “Dynamic
Window Filtering.” Using part-of-speech (POS) tag

information5 and an intuition that tokens which are
labeled as O/Outside and which possess a POS
tag of NNP (singular proper noun) are highly likely
to be unlabeled named entities and thus should
be discarded from the NER’s training data. We
implement this algorithm as the following rule: we
slide a contextual window across each sentence
in the labeled subset of the data, L, and for each
named entity segment we encounter whose label
is known, we create a window of size W , which
dynamically expands in both directions around the
labeled entity until an O token that is also tagged
with the POS tag of NNP (singular proper noun), is
encountered6. We also emphasize that our POS
tags are inherently noisy, since they are obtained
from an external LSTM-CRF based POS tagger
that was trained exclusively on the Penn Treebank
corpus (Marcus et al., 1993). We do not use the
gold POS tags from the CoNLL data. The example
below illustrates this rule:

Example 1:
EU rejects German call to boycott British Lamb.

Suppose “EU” and “British” are both Named Enti-
ties with known labels and are also proper nouns.
Suppose “German” is also a proper noun but with
an unknown named entity label (and, thus, it is
currently labeled as O). Dynamic Window Filter-
ing creates a contextual window around “EU” and
“British”, expanding in size until it encounters the
token “German”. This algorithm would thus break
the original example into two new segments:

1. “EU rejects”

2. “call to boycott British lamb.”

In every stage of our method, we apply dynamic
window filtering on the data that the NER is trained
on. This includes both the initial set of sparsely
annotated gold data and its augmentations with
the pseudo-labeled data (D) that is extracted from
the unlabeled data (U ) in each iteration. We find
that this algorithm achieves the same goal as the
method presented in (Li et al., 2021) i.e. discarding
Named Entities with unknown labels, while being
much simpler and computationally cheaper.

5POS tags are now available for many languages (see

https://universaldependencies.org/) and can

be obtained from various off-the-shelf models or lan-

guage processing tools.
6We note that alternatives to Dynamic Windowing ex-

ist for managing unlabeled entities. For instance, as

demonstrated in (Vacareanu et al., 2024), unlabeled en-

tities can remain in the NER’s training data with their

impact mitigated by excluding them from the loss calcu-

lation, i.e., by backpropagating only over gold-annotated

tokens.
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3.3. Global Rules

Lightly supervised NER models may confuse
named entities between Organizations and Per-
sons, Organizations and Locations (and vice versa)
due to their shared context. To remedy this, we ap-
ply a series of commonsense linguistic rules on
the aggregated predictions of the NER model and
the Masked Language Modeling (MLM) heuristic.
We apply rules for disambiguating named entity
segments that have been tagged as Persons (PER)
but end in a company suffix. We update the labels
of such segments, including the company suffix
to ORG. For example, if the entity segment “Walt
Disney” is tagged as PER, but it is immediately fol-
lowed by “Inc.” (a company suffix), the rule would
force the whole segment “Walt Disney Inc.” to be
an ORG. Similarly, if any named entity segment is
tagged as a Location, but it is followed or follows
a segment tagged as an Organization, we update
the labels of the both the Location segment and
the Organization segment to be ORG.

Additionally, we observe that many instances of
the CoNLL-2003 validation set consist of terse re-
ports of scores of games between sports teams
(which are Organization entities), but which also
semantically overlap with Location names. For ex-
ample, the name “Somerset” could refer to a county
in England (LOC) or a cricket club (ORG). It is com-
mon for a lightly supervised model to confuse the
labels to be assigned to such examples. To rem-
edy this, we propose an additional heuristic, which
identifies segments labeled as Locations (LOC) and
if these segments are followed a score token or at
least two integer numbers resembling a score7, we
force their labels to be ORG.

3.4. One Sense Per Discourse

(Amalvy et al., 2023) demonstrated the significance
of both local and global document-level context in
enhancing the efficacy of pre-trained transformer-
based models for NER. In our work, we harness the
document-level metadata provided in CoNLL-03 to
integrate the “One Sense Per Discourse” (OSPD)
principle (Gale et al., 1992) into our neuro-symbolic
approach. Primarily conceived for word sense dis-
ambiguation, OSPD posits that a term’s sense re-
mains consistent when repeatedly used within a
cohesive discourse. We operationalize this idea by
asserting that if a named entity’s predominant clas-
sification within a CoNLL discourse leans towards
a particular label, then all instances of that entity
within the discourse should adopt this dominant
label. For instance, should “IBM” appear five times
in a document—thrice as an ORG and twice as a

7We use regular expressions to detect score tokens,

integer patterns, and hyphens respectively.

LOC—our method dictates that all mentions of “IBM”
be labeled as ORG due to its majority occurrence.

3.5. Confidence-Based Rules

In semi-supervised learning, classifier confidence
can effectively guide the inclusion of unlabeled data.
Nonetheless, contemporary deep neural networks
often produce overconfident predictions. To har-
ness the confidence-based heuristics outlined in
(Liao and Veeramachaneni, 2009), we adopt the
“Smoothed Generalized Cross Entropy” loss from
(Zhang and Sabuncu, 2018) & (Dimachkie, 2023),
which has been shown to regulate and calibrate
model predictions. We then include the following
rules in our method: For any segment of tokens
classified as an ORG, LOC, or PER with a classifier
confidence score > T 8, we find other mentions of
the same segment within the same CoNLL doc-
ument and force their label(s) to be the same as
the high confidence segment. This is known as
the multi-mention heuristic. In addition, if the high
confidence segment ends in a company suffix, we
remove the company suffix and apply the multi-
mention property on the remaining segment. We
apply the same rule for a high confidence segment
that begins with a Person title (from a list of common
English honorifics). Furthermore, for each segment
ending in a company suffix or starting with a Per-
son prefix, we remove the affix, while retaining the
context, to form a new, previously unseen sentence
which we then reclassify. For example, suppose
we have a sentence in the training data with a PER

segment tagged with high confidence as follows:
“The meeting was led by Ms. Taylor.” Then, remov-
ing the Person title would yield the new sentence:
“The meeting was led by Taylor.” Should the pre-
dicted labels of this altered segment in the new
sentence differ from those before the affix removal,
especially if classified without high confidence, we
designate such sentences for inclusion in subset
D. This subset is reintroduced to the training data
in the subsequent semi-supervised learning iter-
ation, as illustrated in figure 1. We apply these
confidence-based heuristics in a sieve i.e. in order
of decreasing precision.

3.6. Minimizing The Dependency On A
Lexicon

We minimize the dependency of our self-training
algorithm on the lexicon chosen by the domain ex-
pert by outlining a process that they must follow
for picking the lexicon. Using the simple regular
expression defined in Section 3.1 (that is able to
detect named entity boundaries with high preci-
sion), we harvest named entity candidates from the
CoNLL-2003 training data in a fully unsupervised

8In our experiments, we empirically set T to 0.9.
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manner. These candidates, ranked by their fre-
quency of occurrence in the data, are presented to
the domain expert who is tasked to select the most
frequent and unambiguous ones for each class (i.e.
for each class, the lexicon should not contain enti-
ties that overlap with another class). By enforcing
this criteria of objectivity, we implicitly minimize the
chances of multiple domain experts picking vastly
different lexicons, thereby minimizing the effects of
lexicon variability on our method.

3.7. ELLEN: Integrating Neural And
Symbolic Components

In Figure 1, we depict a three-stage framework for
amalgamating the heuristics and determining the
subset D from unlabeled data U to augment the
labeled set L in each semi-supervised learning iter-
ation. This procedure involves three stages: initial
burn-in, subsequent intermediate stage, and a con-
cluding burn-out stage. Our selection criterion for
D is straightforward: only sentences with entity la-
bel updates due to heuristics are considered. This
approach aims to expand model knowledge within
each cycle while curtailing classic self-training pit-
falls. During burn-in, predictions from the Masked
Language Modeling Heuristic (MLM) are combined
with those from the NER, favoring the MLM due
to the NER’s initial weakness. Confidence-based
heuristics, reliant on the NER’s outputs, are de-
ferred. Global rules and OSPD are applied solely
on sentences modified by the MLM. As the NER ma-
tures through training on MLM outputs, the interme-
diate phase gives it precedence over the MLM; here,
confidence-based heuristics solely target NER pre-
dictions, while global rules and OSPD extend to
any NER or model-updated sentence. In the burn-
out phase, we relax constraints, allowing full self-
training. With the model now robust, it gleans any
residual data from U for a final training iteration.

4. Experimental Results

4.1. Data & Setup

We evaluate our method on CoNLL-2003 using
three different degrees of supervision (see Table
4). We define the “degree of supervision” to be
the percentage of named entities annotated, rela-
tive to the total number of entities present in the
data. The first setting is the proposed extremely
lightly supervised setting, equivalent to 9.13% in
terms of degree of supervision or about “1%” in
terms of the number of labeled sentences. We
borrow the second “5%” data setting (which corre-
sponds to the first 700 sentences in CoNLL-03’s
training split) from the current state-of-the-art ap-
proaches on semi-supervised NER (Chen et al.,
2020; Zheng et al., 2023). However, unlike Chen

et al. (2020), which uses Fairseq (Ott et al., 2019)
for augmenting the unlabeled data with equivalent
back-translations from German, we sample 10,000
unlabeled sentences at random9, without any aug-
mentation. The third setting is the fully supervised
setting, where we evaluate the effectiveness of
ELLEN against ACE (Wang et al., 2021), the cur-
rent SOTA method on CoNLL-03, and a DeBERTa
V3 (He et al., 2023) classifier10 finetuned on CoNLL-
03.

To summarize, the three different sources of su-
pervision in our experiments, are as follows:

1. 1% data setting: We use the unambiguous
lexicon produced by the domain expert con-
sisting of 10 examples for each of the four
CoNLL-03 classes: MISC, ORG, LOC and PER.

2. 5% data setting: In this setting, we also ex-
tract an unambiguous lexicon from the entities
within the first 700 sentences of the CoNLL-03
training split, adhering to the consistent defini-
tion of ‘unambiguous’ as described in Section
3.6—entities within each class must not over-
lap with those from other classes. This lexicon,
comprising 98 examples for the MISC class,
174 for ORG, 189 for LOC, and 274 for PER, is
then used for annotating the unlabeled data
and for the MLM.

3. Fully supervised setting: In this setting, we
do not use a lexicon for annotating the data
since all gold labels are available. However,
since the MLM heuristic (section 3.1) requires
a lexicon, we extract an unambiguous one just
for the MLM, from all of the labeled sentences
in CoNLL-03’s training split. This lexicon con-
tains 868 examples for the MISC class, 2329
for ORG, 1245 for LOC, and 3598 for PER (refer
to Appendix C).

4.2. Results Using 1% Labeled Data

As shown in table 5, in the extremely lightly super-
vised setting, which is more restrictive than typical
semi-supervised NER approaches, we find that our
method achieves an F1 score of 76.87% on the
CoNLL-2003 test set. The only supervision here
comes from a domain expert’s lexicon which itself
does not use any gold labels from CoNLL-2003.
This result indicates our method’s real-world effec-
tiveness, where annotations are scarce and lexi-
cons like ours are the only source(s) of supervision.

9We do 3 random augmentations for choosing the

10,000 unlabeled sentences. The first 700 sentences are

chosen without randomization, to keep the data setting

exactly the same as Semi-LADA (Chen et al., 2020) &

JointProp (Zheng et al., 2023).
10https://huggingface.co/tner/

deberta-v3-large-conll2003
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Setting 1% 5% Supervised

Supervision degree 9.13% 28.5% 100%

# Labeled tokens 2569 6971 34043

Table 4: Statistics on degrees of supervision used in

this work. 5% (in terms of number of sentences) is a

common setting for semi-supervised NER. For the 1%

and 5% settings, we calculate the supervision degree

based on unambiguous lexicons.

Type Precision Recall F1

Overall 74.63
±0.33%

79.26
±0.92%

76.87
±0.48%

LOC 87.92
±1.21%

78.68
±4.76%

83.04
±2.36%

MISC 56.32
±1.82%

61.00
±1.25%

58.57
±0.53%

ORG 62.29
±0.39%

77.26
±1.64%

68.97
±0.51%

PER 87.98
±0.92%

92.71
±0.27%

90.28
±0.43%

Table 5: Precision/Recall/F1 scores for ELLEN on

CoNLL-2003 under the extremely lightly supervised set-

ting. All of our runs are averaged over 3 random seeds.

We present entity-level metrics using the official CoNLL-

scoring script.

4.3. Results Using 5% Labeled Data

Under the 5% data setting (or 28.5% in terms of
“degree of supervision”), we show that our method
achieves an F1 score of 84.87% (Table 6), outper-
forming more complex methods like PU learning
(Zhou et al., 2022), models based on hierarchical
latent variables (Chen et al., 2019) & those employ-
ing noise strategies (Lakshmi Narayan et al., 2019).
We find that it also performs favorably compared to
Semi-LADA (Chen et al., 2020) without using any
back-translations for the unlabeled data. More im-
portantly, we highlight that our method outperforms
PU-Learning approaches whilst using much fewer
exemplars per class (the PU-Learning methods of
(Peng et al., 2019) & (Zhou et al., 2022) rely on
a lexicon that contains “2,000 person names, 748
location names, 353 organization names, and 104
MISC entities”). We include Table 10 (Appendix A),
which is directly taken from (Peng et al., 2019), to
illustrate this.

Furthermore, we also highlight Figure 4 from
GPT-NER (Wang et al., 2023) which shows the
performance of ACE (Wang et al., 2021) in a low-
resource context. Specifically, when ACE is trained
on a 1% subset (in terms of the number of sen-
tences) of CoNLL-03’s training data, it’s F1 score

falls below 20% and below 70% when trained on
a 5% subset. Although a fair comparison with our
method cannot be made due to differing definitions
of “low resource,” it is noteworthy that ELLEN at-
tains F1 scores of 76.87% and 84.87% under our
equivalent “1%” and “5%” settings respectively, sug-
gesting that our method significantly outperforms
ACE in resource-constrained scenarios.

Methods P R F1

VSL-GG-Hier 84.13% 82.64% 83.38%

MT + Noise 83.74% 81.49% 82.60%

Semi-LADA 86.93% 85.74% 86.33%

Jointprop 89.88% 85.98% 87.68%

PU-Learning 85.79% 81.03% 83.34%

ELLEN† 81.88
±1.18%

88.01
±0.19%

84.87
±0.62%

Table 6: Performance on CoNLL 2003 with 5% labeled

data. It should be noted that JointProp (Zheng et al.,

2023) is a multi-task learning framework. All of our runs

are averaged over 3 random seeds.

4.4. Zero-Shot Evaluation

We apply our extremely lightly supervised (“1%”)
method in a zero-shot manner on WNUT-17, a
dataset from the social media domain, character-
ized by noisy text. That is, using the model that
was trained on CoNLL-03 with only a lexicon of 10
samples per class (provided by the domain expert),
we proceed to evaluate this model on the WNUT-
17 test dataset. After aligning the predictions of
each model with the label space of CoNLL-03 (see
Appendix B for details), we observe that ELLEN
achieves comparable zero-shot performance to
GPT-3.5 and GPT-4, and also achieves relatively
strong zero-shot performance against a fully super-
vised model11 from the the T-NER library (Ushio
and Camacho-Collados, 2021) that was actually
trained on WNUT-17 gold data (see Table 7). This
result is exciting because it indicates the potential
for our method to be used across domains, given
the relatively small size of our model and its ex-
tremely light supervision.

4.5. Results Using Full Supervision

Lastly, we show that our method can also be
adapted to a fully-supervised setting. Table 8
shows that we obtain a respectable F1 score of

11We use the RoBERTa large model, avail-

able here: https://huggingface.co/tner/

roberta-large-wnut2017
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Method LOC MISC ORG PER AVG

T-NER 64.21% 42.04% 42.98% 66.11% 55.11%

GPT-3.5 49.17% 8.06% 29.71% 59.84% 39.96%

GPT-4 58.70% 25.40% 38.05% 56.87% 43.72%

ELLEN† 44.82
±3.84%

6.21
±1.25%

26.49
±5.01%

67.00
±3.54%

41.56
±0.92%

Table 7: Comparing F1 scores: ELLEN, GPT-3.5, and

GPT-4 are evaluated in zero-shot mode against T-NER’s

fully supervised model on the WNUT-17 test set, after la-

bel alignment with CoNLL-03 († indicates our framework).

For ELLEN, we report the average zero-shot score of 3

different random initializations and training runs of the

models under extremely light supervision.

90.98% relative to ACE (94.6%) and a standard
supervised classifier (92.2%). We note that, while
our neuro-symbolic approach is effective in low re-
source settings, when full supervision is available,
other methods may outperform ours. This is primar-
ily due to the noise introduced by the various heuris-
tics we propose in Section 3 (MLM, One Sense Per
Discourse, confidence-based rules), which may er-
roneously annotate O/Outside entities as belonging
to a non-O class, leading to our model being itera-
tively retrained on some noisy data (as shown in
Figure 1).

Model F1

ELLEN 90.98 ±0.54%

DeBERTa V3 92.2%

ACE (Wang et al., 2021) 94.6%

Table 8: Performance of ELLEN on CoNLL-2003 test

when using all available annotations from the CoNLL-

2003 training data (fully supervised setting). For ELLEN,

we report an average of training runs over 3 random

seeds.

4.6. Error Analysis And Ablation
Experiment

Focusing on the extremely lightly supervised setting
for CoNLL-03, we observed that over 30% of model
errors on validation data involve confusing ORG and
LOC entities. These errors can be attributed to a
combination of factors: a) a bias in CoNLL-03’s
validation and test data towards sporting events
not sufficiently reflected in the training data, b) the
inadequacy of a global rule (refer to Section 3.3) to
differentiate between sports teams (ORG) and loca-
tions (LOC) in nuanced contexts, e.g., both ‘YORK-
SHIRE’ and ‘HEADINGLEY’ would be labeled as

ORG’s in the sentence: “YORKSHIRE AT HEAD-
INGLEY” even though ‘HEADINGLEY’ is a LOC.
c) errors arising from noisy POS tags and incor-
rectly identified entity spans, e.g., “Dhaka Stock
Exchange” would be identified as two separate en-
tities “Dhaka” and “Stock Exchange” by the regular
expression, leading to incorrect labels by the MLM
Heuristic during training; and d) confusion between
ORG and MISC classes, partly because the MISC

class lexicon primarily includes nationalities, which
does not fully represent its broader scope (e.g.,
events, products, works of art).

In an ablation on the CoNLL-2003 dev set (Table
9), we found the MLM to be the most impactful com-
ponent. This was followed by dynamic window filter-
ing, which allows our method to achieve a 64.7% F1
score on its own. Importantly, reintegrating other
components—OSPD, confidence-based heuristics,
and global rules—each further enhances perfor-
mance, underscoring their collective contribution
to the method’s effectiveness.

Ablations P R F1

Full system 71.31 ±2.4% 75.90 ±0.9% 73.52 ±1.6%

MLM 61.96 ±1.1% 74.00 ±1.0% 67.40 ±0.2%

CR, GR, 70.30 ±3.5% 74.36 ±0.8% 72.23 ±2.1%

OSPD

MLM, CR, 59.20 ±1.8% 71.30 ±1.0% 64.70 ±1.3%

GR, OSPD

Table 9: Ablation of major components in our sys-

tem, measured by P/R/F1 on CoNLL-03 validation data.

‘CR’ refers to “Confidence-Based Rules.” ‘GR’ refers to

“Global Rules.” ‘OSPD’ refers to “One Sense Per Dis-

course”. ‘MLM’ refers to the “Masked Language Model”.

5. Conclusion

In this paper, we present a framework that har-
moniously blends linguistics and deep learning to
overcome the paucity of labeled data for NER, re-
quiring significantly less supervision than previous
methods. Real-world entity extraction is often hin-
dered by the lack of annotated data, especially in
low-resource domains. While LLMs offer poten-
tial remedies, they are not without limitations. Our
solution, ELLEN, introduces an efficient, encoder-
only method that enables the assembly of an NER
system in as little as “half a day”, requiring only a
single expert-provided lexicon. We show ELLEN’s
strong performance in the extremely low resource
setting, showing that it scales well under varying
supervision levels, while also outperforming other,
more complex approaches.
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Limitations

Our proposed method, while showcasing promising
results in settings of lightly supervised named en-
tity recognition (NER), faces certain limitations that
warrant discussion. Primarily, our evaluation was
conducted only on two flat NER datasets. Adapting
our method across a broader spectrum of datasets,
especially those that may feature more complex,
fine-grained, or nested entity structures, needs fur-
ther exploration. Consequently, our current ap-
proach does not explicitly address the challenges
associated with more intricate NER tasks, such
as nested, fine-grained, hierarchical or intersec-
tional NER, which require the identification of enti-
ties within entities or the recognition of novel entity
types beyond traditional categories.

Some of the rules employed by our method are
domain and language-specific, which could limit
their wider applicability. However, we also high-
light that four out of the eleven total rules in our
method are domain and language-independent (as-
suming the existence of a language model for that
domain/language). These include the Masked Lan-
guage Model (MLM), a heuristic for “free” super-
vision from exemplars (which can come from any
domain or language), Dynamic Window Filtering,
which assumes that POS tags are available for
a given language/domain and that the language
distinguishes between common nouns and proper
nouns, One Sense Per Discourse (OSPD) which
simply propagates the majority label within a doc-
ument, and the basic multi-mention heuristic for
label propagation which only uses classifier confi-
dence scores. MLM and dynamic window filtering,
both language and domain-independent, are the
two components that contribute the most to the per-
formance of our NER method (as shown in Table
9).

Certain rules, such as those dependent on
company suffixes and person honorifics, are not
domain-independent but are transferable across
languages with the adaptation of language-specific
affixes. This adaptability suggests a pathway to
applying our method to new languages, provided a
list of relevant suffixes and honorifics is used. How-

ever, there may be challenges in directly applying
some of these rules to languages which use vastly
different conventions for naming entities. Never-
theless, in presenting our findings, we have not
claimed our method to be universally applicable
across all languages and domains. Instead, we
aimed to demonstrate how the integration of lin-
guistic insights with neural networks can mitigate
the scarcity of labeled data in NER. Our framework,
which harmoniously blends these elements, points
to a significant step forward, while highlighting the
necessity for further research to extend its applica-
bility to more diverse and complex NER scenarios.

Ethical Considerations

This work utilizes two public, commonly-used
datasets for Named Entity Recognition (NER). One
dataset, WNUT-17, derived from the social media
domain, mainly consists of user-generated com-
ments, of which a very small portion may include
language that some might find inappropriate or of-
fensive. Furthermore, our approach incorporates
open-source pre-trained language models. Thus,
any biases inherent in these models due to their
pre-training data would also apply to our work. Re-
garding the selection of named entity seeds (see
Section 3.6), while efforts were made to minimize
subjectivity in the creation of the lexicon, it is the-
oretically possible for the proposed method to be
used to intentionally introduce biases into an NER
model. However, we believe that, apart from the
potential issues already mentioned, this work does
not raise any significant ethical concerns.
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A. Statistics of Labeling With PU
Learning Lexicon

Type # of 1.w. Precision Recall

PER 2,507 89.26% 17.38%

LOC 4,384 85.07% 50.03%

ORG 3,198 86.17% 29.45%

MISC 1,464 92.13% 30.59%

Table 10: Data labeling results using the lexicon used by

PU Learning methods: the number of labeled words (# of

l.w.), the word-level precision (# of true labeled words/#

of total labeled words) and recall, on CoNLL-2003.

Table 10, which is directly taken from the work
of (Peng et al., 2019), illustrates the data labeling
statistics of the large lexicons (sourced from ex-
ternal dictionaries) used by PU-learning methods.
This is in stark contrast to our method, where the
lexicon contains only 10 exemplars per class in the
‘1%’ data setting or at most, a few hundred for the
PER class in the ‘5%’ data setting.

B. WNUT-17: Zero-Shot Evaluation

To allow our model, which was trained on CoNLL-
2003, to be fairly compared in a zero-shot set-
ting against the fully supervised roberta-large

model from the T-NER (Ushio and Camacho-
Collados, 2021) library (which is trained on WNUT-
17 gold data), we mapped the generated labels
from the fully supervised model onto the label
space of CoNLL-2003. We aligned the classes from

WNUT-17 with CoNLL classes (ORG, LOC, PER,

MISC) based on semantic overlap. We aligned the
‘products’ and ‘creative-work’ classes with the MISC
class from CoNLL. This is because the MISC class
from CoNLL also contains many product names
and ‘works of art,’ e.g., “Ain’t No Telling” by Jimi
Hendrix.

We aligned the ‘group’ class from WNUT-17
with ‘ORG’ from CoNLL because many ‘group‘
names in the WNUT-17 test data have a semantic
overlap with organizations, e.g., ‘Nirvana”, ‘San
Diego Padres.’ Based upon our inspection of
the data, the ‘group’ class also includes entities
like musical bands, sports teams, non-profit or-
ganizations, political groups, etc. Such entities
fit well within the typical CoNLL understanding
of an ‘organization.’ For the remaining classes
of WNUT-17 (corporation, location, per-

son), we mapped them directly to their correspond-
ing CoNLL-03 equivalents. We also applied this
mapping to the zero-shot predictions of GPT-3.5
and GPT-4, to allow all models to be fairly com-
pared against each other. We evaluated all models
shown in Table 7 on the full test set (1287 samples)
of WNUT-17.

We accessed GPT-3.5 and GPT-4 through the
Azure OpenAI service, using the gpt-35-turbo-

0613 and gpt-4-0613 models with tempera-

ture=0 for deterministic results. We borrow the
prompt format from the vanilla zero-shot prompt
used by (Xie et al., 2023) (shown in the figure be-
low). In the zero-shot evaluation with GPT-3.5 and
GPT-4, we observed issues similar to those ob-
served by (Wang et al., 2023), i.e., both LLMs often
fail to match the output length with the input sen-
tence’s token count in sequence labeling tasks like
NER, a challenge amplified in longer sentences.
This is documented in Table 11, distinguishing “Mis-
alignment errors”—the discrepancy in the number
of LLM generated NER tags versus sentence to-
kens—and “Parsing errors,” where the LLM gen-
eration does not form a valid sequence of NER
labels and hence, cannot be parsed, with GPT-3.5
showing more pronounced issues.

To mitigate these alignment problems, we used
a simple approach:

1. For outputs with fewer NER tags than input
tokens, we padded the sequence on the right
with ‘O’ tags to equalize the lengths.

2. For outputs with excess NER tags, we trun-
cated the surplus from the right to match the
input token sequence length.

We then evaluated the aligned and corrected
predictions of both LLM’s on the WNUT-17 test
set using the official CoNLL-scoring script (results
reported in Table 7).
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Model Misalignment Errors Parsing Errors

GPT-3.5 426 80

GPT-4 195 44

Table 11: Comparison of error counts between GPT-3.5

and GPT-4.

Prompt Used For Zero-Shot Evaluation of
GPT-3.5/4

Given entity label set: [‘B-PER’, ‘I-PER’, ‘B-
ORG’, ‘I-ORG’, ‘B-LOC’, ‘I-LOC’, ‘B-MISC’,
‘I-MISC’, ‘O’]
Based on the given entity label set, please
recognize the named entities for each token
in the given text, and return the answer as
a list of named entity tags.
Text: {input text}

Answer: {ChatGPT response}

C. Masked Language Model (MLM):
Inverse Breaking Ties

In order to obtain more robust annotations from the
Masked Language Model (MLM), we only consider
the entity span xi labeled by the MLM where the
difference between the score of the class that is
predicted with the highest probability and the score
of the class that is predicted with the second highest
probability is greater than some threshold tclass:

xi | P (yi = l1|xi)− P (yi = l2|xi) > tclass

Here l1 is the most likely class label and l2 is
the second most likely class label, according to the
MLM. This is motivated by the Breaking Ties active
learning method of Scheffer et al. (2001); Luo et al.
(2005), which aims to select token samples where
the difference between the top two predictions is
the smallest, in order to increase the likelihood of
confident classifications. However, for the MLM,
we adopt the inverse of breaking ties, where we
maximize the difference between the top two pre-
dictions, based on a threshold. We use different
thresholds for each class as shown in Table 12. We
empirically observe that we obtain a slightly higher
F1 score with the MLM as an unsupervised NER
on the CoNLL-03 development set when using dif-
ferent thresholds for each class instead of a single
threshold value for all classes.

In our experiments, we also empirically observe
that the MLM tends to produce more robust proba-
bilities when the lexicon entities filling the [MASK]

slot(s) are segmented into fewer subwords by the
model’s tokenizer. This is supported by the findings

of Kauf and Ivanova (2023), who observe that meth-
ods that estimate the psuedo-log-likelihood of a
sentence yield inflated scores for out-of-vocabulary
words. Hence we employ an additional heuristic
where we filter the lexicon entities to only single
subword entities. We believe that better methods
for estimating and aggregating probabilities for sen-
tences that contain out-of-vocabulary words can be
explored in future work. Kauf and Ivanova (2023) in-
troduce one such method, which has been shown to
address the issue of attributing uneven likelihoods
to multi-token words. Specifically, it proves benefi-
cial to mask not only the current token but also all
subsequent tokens that are part of the same word.

Furthermore, given the large size of the lexicons
extracted for the MLM in both the “5%” and fully
supervised setting, we filter our lexicon to keep only
the top 20 entities for each class, sorted by their
frequency of occurrence in the training data.

Class Threshold

ORG 0.28
PER 0.2
LOC 0.1
MISC 0.05

Table 12: Per class thresholds used by the Masked

Language Model (MLM) to implement “inverse breaking

ties”.

D. Hyperparameters and Hardware

Instead of the regular cross-entropy loss, we use
a Generalized Cross Entropy Loss function with
label smoothing (Dimachkie, 2023) for training our
models, which offers a better trade-off between
the noise-robustness of mean absolute error and
the noise sensitivity of cross entropy loss. This
trade-off can be controlled by a hyperparameter
q. We experiment with multiple settings where we
vary q, along with the learning rate, the dynamic
window size, the number of burn-in, intermediate
and burn-out stages and the total number of self-
training iterations. This search involved under 20
runs, based on the development partition of CoNLL-
2003. We use a dynamic window size of 5, a batch
size of 16 for training, a learning rate of 1e−5, and
a confidence-threshold of 0.9 across all of our data
settings. We show the other hyperparameters in
Table 13. All experiments were carried out on a
system with 2 Nvidia RTX 3090 GPUs.
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Setting Burn-in

stages

Intermediate

stages

Burn-out

stages

Noise-level

(q)

Self-training

iterations

Label

Smoothing

1% data 1 2 1 0.9 4 0.1

5% data 1 2 0 0.7 3 0.1

100% data 1 1 0 0.7 2 0.2

Table 13: The Hyperparameters we use for training ELLEN under various supervision settings.
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