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Preface

Upon encountering this publication, one might ask the obvious question,
“Why do we need another deep learning and natural language process-
ing book?” Several excellent ones have been published, covering both
theoretical and practical aspects of deep learning and its application to
language processing. However, from our experience teaching courses on
natural language processing, we argue that, despite their excellent qual-
ity, most of these books do not target their most likely readers. The
intended reader of this book is one who is skilled in a domain other
than machine learning and natural language processing and whose work
relies, at least partially, on the automated analysis of large amounts of
data, especially textual data. Such experts may include social scientists,
political scientists, biomedical scientists, and even computer scientists
and computational linguists with limited exposure to machine learning.

Existing deep learning and natural language processing books gen-
erally fall into two camps. The first camp focuses on the theoretical
foundations of deep learning. This is certainly useful to the aforemen-
tioned readers, as one should understand the theoretical aspects of a
tool before using it. However, these books tend to assume the typical
background of a machine learning researcher and, as a consequence, I
have often seen students who do not have this background rapidly get
lost in such material. To mitigate this issue, the second type of book that
exists today focuses on the machine learning practitioner; that is, on how
to use deep learning software, with minimal attention paid to the theo-
retical aspects. We argue that focusing on practical aspects is similarly
necessary but not sufficient. Considering that deep learning frameworks
and libraries have gotten fairly complex, the chance of misusing them
due to theoretical misunderstandings is high. We have commonly seen
this problem in our courses, too.

xv



xvi Preface

This book, therefore, aims to bridge the theoretical and practical as-
pects of deep learning for natural language processing. We cover the
necessary theoretical background and assume minimal machine learning
background from the reader. Our aim is that anyone who took intro-
ductory linear algebra and calculus courses will be able to follow the
theoretical material. To address practical aspects, this book includes
pseudo code for the simpler algorithms discussed and actual Python
code for the more complicated architectures. The code should be un-
derstandable by anyone who has taken a Python programming course.
After reading this book, we expect that the reader will have the nec-
essary foundation to immediately begin building real-world, practical
natural language processing systems, and to expand their knowledge by
reading research publications on these topics.



1
Introduction

Machine learning (ML) has become a pervasive part of our lives. For
example, Pedro Domingos, a machine learning faculty member at Uni-
versity of Washington, discusses a typical day in the life of a 21st century
person, showing how she is accompanied by machine learning applica-
tions throughout the day from early in the morning (e.g., waking up
to music that the machine matched to her preferences) to late at night
(e.g., taking a drug designed by a biomedical researcher with the help
of a robot scientist) (Domingos, 2015). Of all approaches in ML, deep
learning has seen explosive success in the last decade, and today it is
ubiquitous in real-world applications of ML. At a high level, deep learn-
ing is the subfield of ML that focuses on artificial neural networks, which
were “inspired by information processing and distributed communication
nodes in biological systems.”1

Natural language processing (NLP) is an important inter-disciplinary
field that lies at the intersection of linguistics, computer science, and
machine learning. In general, NLP deals with programming comput-
ers to process and analyze large amounts of natural language data.2
As an example of its usefulness, consider that PubMed, a repository of
biomedical publications built by the National Institutes of Health,3 has
indexed more than one million research publications per year since 2010
(Vardakas et al., 2015). Clearly, no human reader (or team of readers)
can process so much material. We need machines to help us manage
this vast amount of knowledge. As one example out of many, an inter-
disciplinary collaboration that included our research team showed that

1 https://en.wikipedia.org/wiki/Deep_learning, accessed on May 10th, 2023
2 https://en.wikipedia.org/wiki/Natural_language_processing, accessed on

May 10th, 2023
3 https://www.ncbi.nlm.nih.gov/pubmed/

1



2 Introduction

machine reading discovers an order of magnitude more protein signaling
pathways4 in biomedical literature than exist today in humanly-curated
knowledge bases (Valenzuela-Escárcega et al., 2018). Only 60 to 80%
of these automatically-discovered biomedical interactions are correct (a
good motivation for not letting the machines work alone!). But, without
NLP, all of these would remain “undiscovered public knowledge” (Swan-
son, 1986), limiting our ability to understand important diseases such as
cancer. Other important and more common applications of NLP include
web search, machine translation, and speech recognition, all of which
have had a major impact in almost everyone’s life.

Since approximately 2014, the “deep learning tsunami” has hit the
field of NLP (Manning, 2015) to the point that, today, a majority of
NLP publications use deep learning. For example, the percentage of deep
learning publications at four top NLP conferences has increased from un-
der 40% in 2012 to 70% in 2017 (Young et al., 2018). There is good reason
for this domination: deep learning systems are relatively easy to build
(due to their modularity), and they perform better than many other ML
methods.5 For example, the site nlpprogress.com, which keeps track
of state-of-the-art results in many NLP tasks, is dominated by results of
deep learning approaches.

This book explains deep learning methods for NLP, aiming to cover
both theoretical aspects (e.g., how do neural networks learn?) and prac-
tical ones (e.g., how do I build one for language applications?).

The goal of the book is to do this while assuming minimal techni-
cal background from the reader. The theoretical material in the book
should be completely accessible to the reader who took linear algebra,
calculus, and introduction to probability theory courses, or who is will-
ing to do some independent work to catch up. From linear algebra, the
most complicated notion used is matrix multiplication. From calculus,
we use differentiation and partial differentiation. From probability the-
ory, we use conditional probabilities and independent events. The code
examples should be understandable to the reader who took a Python
programming course.

Starting nearly from scratch aims to address the background of what
we think will be the typical reader of this book: an expert in a discipline
other than ML and NLP, but who needs ML and NLP for her job. There

4 Protein signaling pathways “govern basic activities of cells and coordinate
multiple-cell actions”. Errors in these pathways “may cause diseases such as
cancer”. See: https://en.wikipedia.org/wiki/Cell_signaling

5 However, they are not perfect. See Section 1.3 for a discussion.



1.1 What this Book Covers 3

are many examples of such disciplines: the social scientist who needs
to mine social media data, the political scientist who needs to process
transcripts of political discourse, the business analyst who has to parse
company financial reports at scale, the biomedical researcher who needs
to extract cell signaling mechanisms from publications, etc. Further, we
hope this book will also be useful to computer scientists and computa-
tional linguists who need to catch up with the deep learning wave. In
general, this book aims to mitigate the impostor syndrome (Dickerson,
2019) that affects many of us in this era of rapid change in the field
of machine learning and artificial intelligence (this author certainly has
suffered and still suffers from it!6).

1.1 What this Book Covers
This book interleaves chapters that discuss the theoretical aspects of
deep learning for NLP with chapters that focus on implementing the
previously discussed theory. For the implementation chapters we will
use PyTorch, a deep learning library that is well suited for NLP appli-
cations.7

Chapter 2 begins the theory thread of the book by attempting to con-
vince the reader that machine learning is easy. We use a children’s book
to introduce key ML concepts, including our first learning algorithm.
From this example, we start building several basic neural networks. In
the same chapter, we formalize the perceptron algorithm, the simplest
neural network. In Chapter 3, we transform the perceptron into a logistic
regression network, another simple neural network that is surprisingly
effective for NLP. In Chapters 5 and 6 we generalize these algorithms
into feed forward neural networks, which operate over arbitrary combi-
nations of artificial neurons.

The astute historian of deep learning will have observed that deep
learning had an impact earlier on image processing than on NLP. For
example, in 2012, researchers at University of Toronto reported a massive
improvement in image classification when using deep learning (Krizhevsky
et al., 2012). However, it took more than two years to observe similar per-
formance improvements in NLP. One explanation for this delay is that
6 Even the best of us suffer from it. Please see Kevin Knight’s description of his

personal experience involving tears (not of joy) in the introduction of this
tutorial (Knight, 2009).

7 https://pytorch.org
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image processing starts from very low-level units of information (i.e.,
the pixels in the image), which are then hierarchically assembled into
blocks that are more and more semantically meaningful (e.g., lines and
circles, then eyes and ears, in the case of facial recognition). In contrast,
NLP starts from words, which are packed with a lot more semantic in-
formation than pixels and, because of that, are harder to learn from. For
example, the word house packs a lot of common-sense knowledge (e.g.,
houses generally have windows and doors and they provide shelter). Al-
though this information is shared with other words (e.g., building), a
learning algorithm that has seen house in its training data will not know
how to handle the word building in a new text to which it is exposed
after training.

Chapter 8 addresses this limitation. In it, we discuss word2vec, a
method that transforms words into a numerical representation that cap-
tures (some) semantic knowledge. This technique is based on the obser-
vation that “you shall know a word by the company it keeps” (Firth,
1957); that is, it learns these semantic representations from the con-
text in which words appear in large collections of texts. Under this for-
malization, similar words such as house and building will have similar
representations, which will improve the learning capability of our neu-
ral networks. An important limitation of word2vec is that it conflates all
senses of a given word into a single numerical representation. That is, the
word bank gets a single numerical representation regardless of whether
its current context indicates a financial sense, e.g., Bank of London, or
a geological one, e.g., bank of the river.

Chapter 10 introduces sequence models for processing text. For exam-
ple, while the word book is syntactically ambiguous (i.e., it can be either
a noun or a verb), the information that it is preceded by the determiner
the in a text gives strong hints that this instance of it is a noun. In
this chapter, we cover recurrent neural network architectures designed
to model such sequences, including long short-term memory networks
and conditional random fields.

The word2vec limitation mentioned above is addressed in Chapter 12
with contextualized embeddings that are sensitive to a word’s surround-
ings. These contextualized embeddings are built using transformer net-
works that rely on “attention,” a mechanism that computes the repre-
sentation of a word using a weighted average of the representations of
the words in its context. These weights are learned and indicate how
much ”attention” each word should pay to each of its neighbors (hence
the name).
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Chapter 14 discusses encoder-decoder methods (i.e., methods tailored
for NLP tasks that require the transformation of one text into another).
The most common example of such a task is machine translation, for
which the input is a sequence of words in one language, and the output
is a sequence that captures the translation of the original text in a new
language.

Chapter 16 shows how several natural language processing applica-
tions such as part-of-speech tagging, syntactic parsing, relation extrac-
tion, question answering, and machine translation can be robustly im-
plemented using the neural architectures introduced previously.

As mentioned before, the theoretical discussion in these chapters is
interleaved with chapters that discuss how to implement these notions
in PyTorch. Chapter 4 shows an implementation of the perceptron and
logistic regression algorithms introduced in Chapters 2 and 3 for a text
classification application. Chapter 7 presents an implementation of the
feed forward neural network introduced in Chapters 5 and 6 for the
same application. Chapter 9 enhances the previous implementation of a
neural network with the continuous word representations introduced in
Chapter 8.

Chapter 11 implements a part-of-speech tagger using the recurrent
neural networks introduced in Chapter 10. Chapter 13 shows the im-
plementation of a similar part-of-speech tagger using the contextualized
embeddings generated by a transformer network. The same chapter also
shows how to use transformer networks for text classification.

Lastly, Chapter 15 implements a machine translation application using
some of the encoder-decoder methods discussed in Chapter 14.

We recommend that the reader not familiar with the Python pro-
gramming language first read Appendixes A and B for a brief overview
of the programming language and pointers on how to handle interna-
tional characters represented in Unicode in Python.

1.2 What this Book Does Not Cover
It is important to note that deep learning is only one of the many sub-
fields of machine learning. In his book, Domingos provides an intuitive
organization of these subfields into five “tribes” (Domingos, 2015):

Connectionists: This tribe focuses on machine learning methods that
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(shallowly) mimic the structure of the brain. The methods described
in this book fall into this tribe.

Evolutionaries: The learning algorithms adopted by this group of ap-
proaches, also known as genetic algorithms, focus on the “survival of
the fittest”. That is, these algorithms “mutate” the “DNA“ (or param-
eters) of the models to be learned, and preserve the generations that
perform the best.

Symbolists: The symbolists rely on inducing logic rules that explain
the data in the task at hand. For example, a part-of-speech tagging
system in this camp may learn a rule such as if previous word is the,
then the part of the speech of the next word is noun.

Bayesians: The Bayesians use probabilistic models such as Bayesian
networks. All these methods are driven by Bayes’ rule, which describes
the probability of an event.

Analogizers: The analogizers’ methods are motivated by the obser-
vation that “you are what you resemble”. For example, a new email
is classified as spam because it uses content similar to other emails
previously classified as such.

It is beyond the goal of this book to explain these other tribes in detail.
For a more general description of machine learning, the interested reader
should look to other sources such as Domingos’ book, or Hal Daumé III’s
excellent Course in Machine Learning.8

Even from the connectionist tribe, we focus only on neural methods
that are relevant for fundamental language processing and which we
hope serve as a solid stepping stone towards research in NLP.9 Other
important, more advanced topics are not discussed. These include: do-
main adaptation, reinforcement learning, dialog systems, and methods
that process multi-modal data such as text and images.

1.3 Deep Learning Is Not Perfect
While deep learning has pushed the performance of many machine learn-
ing applications beyond what we thought possible just ten years ago, it is
certainly not perfect. Gary Marcus and Ernest Davis provide a thought-
ful criticism of deep learning in their book, Rebooting AI (Marcus and
Davis, 2019). Their key arguments are:
8 http://ciml.info
9 Most of methods discussed in this book are certainly useful and commonly used

outside of NLP as well.
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Deep learning is opaque: While deep learning methods often learn
well, it is unclear what is learned, i.e., what the connections between
the network neurons encode. This is dangerous, as biases and bugs
may exist in the models learned, and they may be discovered only
too late, when these systems are deployed in important real-world
applications such as diagnosing medical patients, or self-driving cars.

Deep learning is brittle: It has been repeatedly shown both in the
machine learning literature and in actual applications that deep learn-
ing systems (and for that matter most other machine learning ap-
proaches) have difficulty adapting to new scenarios they have not seen
during training. For example, self-driving cars that were trained in reg-
ular traffic on US highways or large streets do not know how to react
to unexpected scenarios such as a firetruck stopped on a highway.10

Deep learning has no common sense: An illustrative example for
this limitation is that object recognition classifiers based on deep learn-
ing tend to confuse objects when they are rotated in three-dimensional
space, e.g., an overturned bus in the snow is confused with a snow
plow. This happens because deep learning systems lack the common-
sense knowledge that some object features are inherent properties of
the category itself regardless of the object position, e.g., a school bus
in the US usually has a yellow roof, while some features are just con-
tingent associations, e.g., snow tends to be present around snow plows.
(Most) humans naturally use common sense, which means that we do
generalize better to novel instances, especially when they are outliers.

All the issues raised by Marcus and Davis remain largely unsolved today.

1.4 Mathematical Notations
While we try to rely on plain language as much as possible in this book,
mathematical formalisms cannot (and should not) be avoided. Where
mathematical notations are necessary, we rely on the following conven-
tions:

• We use lowercase characters such as x to represent scalar values, which
will generally have integer or real values.

• We use bold lowercase characters such as x to represent arrays (or
vectors) of scalar values, and xi to indicate the scalar element at posi-
tion i in this vector. Unless specified otherwise, we consider all vectors

10 https://www.teslarati.com/tesla-model-s-firetruck-crash-details/
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to be column vectors during operations such as multiplication, even
though we show them in text as horizontal. We use [x; y] to indicate
vector concatenation. For example, if x = (1, 2) and y = (3, 4), then
[x; y] = (1, 2, 3, 4).

• We use bold uppercase characters such as X to indicate matrices of
scalar values. Similarly, xij points to the scalar element in the matrix
at row i and column j. xi indicates the vector corresponding to the
entire row i in matrix X.

• We collectively refer to matrices of arbitrary dimensions as tensors. By
and large, in this book tensors will have dimension 1 (i.e., vectors) or
2 (matrices). Occasionally, we will run into tensors with 3 dimensions.

• A word with an arrow on top refers to the distributional representation
or embedding vector corresponding to that word. For example, ⃗queen

indicates the embedding vector for the word queen.



2
The Perceptron

This chapter covers the perceptron, the simplest neural network archi-
tecture. In general, neural networks are machine learning architectures
loosely inspired by the structure of biological brains. The perceptron is
the simplest example of such architectures: it contains a single artificial
neuron.

The perceptron will form the building block for the more compli-
cated architectures discussed later in the book. However, rather than
starting directly with the discussion of this algorithm, we will start with
something simpler: a children’s book and some fundamental observations
about machine learning. From these, we will formalize our first machine
learning algorithm, the perceptron. In the following chapters, we will
improve upon the perceptron with logistic regression (Chapter 3), and
deeper feed forward neural networks (Chapter 5).

2.1 Machine Learning Is Easy
Machine learning is easy. To convince you of this, let us read a chil-
dren’s story (Donaldson and SchefÒer, 2008). The story starts with a
little monkey that lost her mom in the jungle (Figure 2.1). Luckily, the
butterfly offers to help, and collects some information about the mother
from the little monkey (Figure 2.2). As a result, the butterfly leads the
monkey to an elephant. The monkey explains that her mom is neither
gray nor big, and does not have a trunk. Instead, her mom has a “tail
that coils around trees”. Their journey through the jungle continues un-
til, after many mistakes (e.g., snake, spider), the pair end up eventually
finding the monkey’s mom, and the family is happily reunited.

In addition to the exciting story that kept at least a toddler and

9
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Figure 2.1 A wonderful children’s book that introduces the fundamentals
of machine learning: Where’s My Mom, by Julia Donaldson and Axel
SchefÒer (Donaldson and SchefÒer, 2008).

Little monkey: “I’ve lost my mom!”

“Hush, little monkey, don’t you cry. I’ll help you find her,” said
butterfly. “Let’s have a think, How big is she?”

“She’s big!” said the monkey. “Bigger than me.”

”Bigger than you? Then I’ve seen your mom. Come, little mon-
key, come, come, come.”

“No, no, no! That’s an elephant.”

Figure 2.2 The butterfly tries to help the little monkey find her mom,
but fails initially (Donaldson and SchefÒer, 2008).

this parent glued to its pages, this book introduces several fundamental
observations about (machine) learning.

First, objects are described by their properties, also known in ma-
chine learning terminology as features. For example, we know that sev-
eral features apply to the monkey mom: isBig, hasTail, hasColor,
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numberOfLimbs, etc. These features have values, which may be Boolean
(true or false), a discrete value from a fixed set, or a number. For ex-
ample, the values for the above features are: false, true, brown (out of
multiple possible colors), and 4. As we will see soon, it is preferable to
convert these values into numbers because most of the machine learning
can be reduced to numeric operations such as additions and multiplica-
tions. For this reason, Boolean features are converted to 0 for false, and
1 for true. Features that take discrete values are converted to Boolean
features by enumerating over the possible values in the set. For exam-
ple, the color feature is converted into a set of Boolean features such as
hasColorBrown with the value true (or 1), hasColorRed with the value
false (or 0), etc.

Second, objects are assigned a discrete label, which the learning algo-
rithm or classifier (the butterfly has this role in our story) will learn how
to assign to new objects. For example, in our story we have two labels:
isMyMom and isNotMyMom. When there are two labels to be assigned
such as in our story, we call the problem at hand a binary classification
problem. When there are more than two labels, the problem becomes a
multiclass classification task. Sometimes, the labels are continuous nu-
meric values, in which case the problem at hand is called a regression
task. An example of such a regression problem would be learning to fore-
cast the price of a house on the real estate market from its properties,
e.g., number of bedrooms, and year it was built. However, in NLP most
tasks are classification problems (we will see some simple ones in this
chapter, and more complex ones starting with Chapter 10).

To formalize what we know so far, we can organize the examples the
classifier has seen (also called a training dataset) into a matrix of features
X and a vector of labels y . Each example seen by the classifier takes a
row in X, with each of the features occupying a different column. Each yi

is the label of the corresponding example xi. Table 2.1 shows an example
of a possible matrix X and label vector y for three animals in our story.

The third observation is that a good learning algorithm aggregates
its decisions over multiple examples with different features. In our story
the butterfly learns that some features are positively associated with
the mom (i.e., she is likely to have them), while some are negatively
associated with her. For example, from the animals the butterfly sees
in the story, it learns that the mom is likely to have a tail, fur, and
four limbs, and she is not big, does not have a trunk, and her color is
not gray. We will see soon that this is exactly the intuition behind the
simplest neural network, the perceptron.
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Table 2.1 An example of a possible feature matrix X (left table) and a
label vector y (right table) for three animals in our story: elephant,

snake, and monkey.

isBig hasTail hasTrunk hasColor numberOf
Brown Limbs

1 1 1 0 4
0 1 0 0 0
0 1 0 1 4

Label

isNotMyMom
isNotMyMom

isMyMom

Lastly, learning algorithms produce incorrect classifications when not
exposed to sufficient data. This situation is called overfitting, and it is
more formally defined as the situation when an algorithm performs well
in training (e.g., once the butterfly sees the snake, it will reliably clas-
sify it as not the mom when it sees in the future), but poorly on unseen
data (e.g., knowing that the elephant is not the mom did not help much
with the classification of the snake). To detect overfitting early, machine
learning problems typically divide their data into three partitions: (a)
a training partition from which the classifier learns; (b) a development
partition that is used for the internal validation of the trained classi-
fier, i.e., if it performs poorly on this dataset, the classifier has likely
overfitted; and (c) a testing partition that is used only for the final, for-
mal evaluation. Machine learning developers typically alternate between
training (on the training partition) and validating what is being learned
(on the development partition) until acceptable performance is observed.
Once this is reached, the resulting classifier is evaluated (ideally once)
on the testing partition.

2.2 Use Case: Text Classification
In the remaining of this chapter, we will begin to leave the story of
the little monkey behind us, and change to a related NLP problem,
text classification, in which a classifier is trained to assign a label to a
text. This is an important and common NLP task. For example, email
providers use binary text classification to classify emails into spam or
not. Data mining companies use multiclass classification to detect how
customers feel about a product, e.g., like, dislike, or neutral. Search
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engines use multiclass classification to detect the language a document
is written in before processing it.

Throughout the next few chapters, we will focus on text classification
for simplicity. We will consider only two labels for the next few chapters,
and we will generalize the algorithms discussed to multiclass classifica-
tion (i.e., more than two labels) in Chapter 6. After we discuss sequence
models (Chapter 10), we will introduce more complex NLP tasks such
as part-of-speech tagging and syntactic parsing.

For now, we will extract simple features from the texts to be classified.
That is, we will simply use the frequencies of words in a text as its
features. More formally, the matrix X, which stores the entire dataset,
will have as many columns as words in the vocabulary. Each cell xij

corresponds to the number of times the word at column j occurs in the
example stored at row i. For example, the text This is a great great buy
will produce a feature corresponding to the word buy with value 1, one
for the word great with value 2, etc., while the features corresponding to
all the other words in the vocabulary that do not occur in this document
receive a value of 0. This feature design strategy is often referred to as
bag of words, because it ignores all the syntactic structure of the text,
and treats the text simply as a collection of independent words. We will
revisit this simplification in Chapter 10, where we will start to model
sequences of words.

2.3 Evaluation Measures for Text Classification
The simplest evaluation measure for text classification is accuracy, de-
fined as the proportion of evaluation examples that are correctly clas-
sified. For example, the accuracy of the hypothetical classifier shown
in Table 2.2 is 3/5 = 60% because the classifier was incorrect on two
examples (rows 2 and 4).

Using the four possible outcomes for binary classification summarized
in the matrix shown in Table 2.3, which is commonly referred to as a
confusion matrix, accuracy can be more formally defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
(2.1)

For example, for the classifier output shown in Table 2.2, TP = 2 (rows
1 and 5), TN = 1 (row 3), FP = 1 (row 4), and FN = 1 (row 2).

While accuracy is obviously useful, it is not always informative. In
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Table 2.2 Example output of a hypothetical classifier on five evaluation
examples and two labels: positive (+) and negative (−). The “Gold”
column indicates the correct labels for the five texts; the “Predicted”

column indicates the classifier’s predictions.

Gold Predicted

1 + +
2 + −

3 − −

4 − +
5 + +

Table 2.3 Confusion matrix showing the four possible outcomes in
binary classification, where + indicates the positive label and −

indicates the negative label.

Classifier predicted + Classifier predicted −

Gold label is + True positive (TP) False negative (FN)
Gold label is − False positive (FP) True negative (TN)

problems where the two labels are heavily unbalanced, i.e., one is much
more frequent than the other, and we care more about the less frequent
label, a classifier that is not very useful may have a high accuracy score.
For example, assume we build a classifier that identifies high-urgency
Medicaid applications,1 i.e., applications must be reviewed quickly due
to the patient’s medical condition. The vast majority of applications
are not high-urgency, which means they can be handled through the
usual review process. In this example, the positive class is assigned to
the high-urgency applications. If a classifier labels all applications as
negative (i.e., not high-urgency), its accuracy will be high because the
TN count dominates the accuracy score. For example, say that out of
1,000 applications only 1 is positive. Our classifier’s accuracy is then:

0+999
0+1+0+999 = 0.999, or 99.9%. This high accuracy is obviously misleading
in any real-world application of the classifier.
1 Medicaid is a federal and state program in the United States that helps with

medical costs for some people with limited income and resources.
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For such unbalanced scenarios, two other scores that focus on class
of interest (say, the positive class) are commonly used: precision and
recall. Precision (P) is the proportion of correct positive examples out
of all positives predicted by the classifier. Recall (R) is the proportion of
correct positive examples out of all positive examples in the evaluation
dataset. More formally:

P =
TP

TP + FP
(2.2)

R =
TP

TP + FN
(2.3)

For example, both the precision and recall of the above classifier are 0
because TP = 0 in its output. On the other hand, a classifier that pre-
dicts 2 positives, out of which only one is incorrect, will have a precision
of 1/2 = 0.5 and a recall of 1/1 = 1, which are clearly more informative
of the desired behavior.

Often it helps to summarize the performance of a classifier using a
single number. The F1 score achieves this, as the harmonic mean of
precision and recall:

F1 =
2PR

P +R
(2.4)

For example, the F1 score for the previous example is: F1 = 2×0.5×1
0.5+1 =

0.67. A reasonable question to ask here is why not use instead the sim-
pler arithmetic mean between precision and recall (P+R

2 ) to generate
this overall score? The reason for choosing the more complicated har-
monic mean is that this formula is harder to game. For example, con-
sider a classifier that labels everything as positive. Clearly, this would
be useless in the above example of classifying high-urgency Medicaid
applications. This classifier would have a recall of 1 (because it did iden-
tify all the high-urgency applications), and a precision of approximately
0 (because everything else in the set of 1,000 applications is also la-
beled as high-urgency). The simpler arithmetic mean of the two scores
is approximately 0.5, which is an unreasonably high score for a classifier
that has zero usefulness in practice. In contrast, the F1 score of this
classifier is approximately 0, which is more indicative of the classifier’s
overall performance. In general, the F1 score penalizes situations where
the precision and recall values are far apart from each other.

A more general form of the F1 score is:



16 The Perceptron

Fβ = (1 + β2)
PR

(β2P ) +R
(2.5)

where β is a positive real value, which indicates that recall is β times
more important than precision. This generalized formula allows one to
compute a single overall score for situations when precision and recall are
not treated equally. For example, in the high-urgency Medicaid example,
we may decide that recall is more important than precision. That is,
we are willing to inspect more incorrect candidates for high-urgency
processing as long as we do not miss the true positives. If we set β = 10

to indicate that we value recall as being 10 times more important than
precision, the classifier in the above example (P = 0.5 and R = 1) has
a Fβ=10 score of: Fβ=10 = 101 0.5×1

(100×0.5)+1 = 0.99, which is much closer
to the classifier’s recall value (the important measure here) than the F1

score.
We will revisit these measures in Chapter 3, where we will generalize

them to multiclass classification, i.e., to situations where the classifier
must produce more than two labels, and in Chapter 4, where we will
implement and evaluate multiple text classification algorithms.

2.4 The Perceptron
Now that we understand our first NLP task, text classification, let us
introduce our first classification algorithm, the perceptron. The percep-
tron was invented by McCulloch and Pitts (1943), and first implemented
by (Rosenblatt, 1958). Its aim was to mimic binary decisions made by a
single neuron. Figure 2.3 shows a depiction of a biological neuron,2 and
Rosenblatt’s computational simplification, the perceptron. As the figure
suggests, the perceptron is the simplest possible artificial neural network.
We will generalize from this single-neuron architecture to networks with
an arbitrary number of neurons in Chapter 5.

The perceptron has one input for each feature of an example x, and
produces an output that corresponds to the label predicted for x. Impor-
tantly, the perceptron has a real-value weight vector w, with one weight
wi for each input connection i. Thus, the size of w is equal to the number
of features, or the number of columns in X. Further, the perceptron also
2 By BruceBlaus – Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=28761830
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Figure 2.3 A depiction of a biological neuron, which captures input stim-
uli through its dendrites and produces an activation along its axon and
synaptic terminals (left), and its computational simplification, the per-
ceptron (right).

has a bias term, b, that is scalar (we will explain why this is needed later
in this section). The perceptron outputs a binary decision, let’s say Yes
or No (e.g., Yes, the text encoded in x contains a positive review for a
product, or No, the review is negative), based on the decision function
described in Algorithm 1. The w ·x component of the decision function is
called the dot product of the vectors w and x. Formally, the dot product
of two vectors x and y is defined as:

x · y =

n
∑

i=1

xiyi (2.6)

where n indicates the size of the two vectors. In words, the dot product
of two vectors, x and y, is found by adding (Σ), the values found by
multiplying each element of x with the corresponding value of y. In the
case of the perceptron, the dot product of x and w is the weighted sum
of the feature values in x, where each feature value xi is weighted by
wi. If this sum (offset by the bias term b, which we will discuss later) is
positive, then the decision is Yes. If it is negative, the decision is No.

Sidebar 2.1 The dot product in linear algebra

In linear algebra, the dot product of two vectors x and y is equivalent
to xT y, where T is the transpose operation. However, in this book we
rely on the dot product notation for simplicity.

Sidebar 2.2 The sign function in the perceptron

The decision function listed in Algorithm 1 is often shown as sign(w ·
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Algorithm 1: The decision function of the perceptron.
1 if w · x + b > 0 then
2 return Yes
3 else
4 return No
5 end

x + b), where the + sign is used to represent one class, and the − sign
the other.

There is an immediate parallel between this decision function and the
story of the little monkey. If we consider the Yes class to be isMyMom,
then we would like the weights of the features that belong to the mom
(e.g., hasColorBrown) to have positive values, so the dot product be-
tween w and the x vector corresponding to the mom turns out positive,
and the features specific to other animals (e.g., hasTrunk) to receive neg-
ative weights, so the corresponding decision is negative. Similarly, if the
task to be learned is review classification, we would like positive words
(e.g., good, great) to have positive weights in w, and negative words (e.g.,
bad, horrible) to have negative weights.

In general, we call the aggregation of a learning algorithm or classifier
and its learned parameters (w and b for the perceptron) a model. All
classifiers aim to learn these parameters to optimize their predictions
over the examples in the training dataset.

The key contribution of the perceptron is a simple algorithm that
learns these weights (and bias term) from the given training dataset. This
algorithm is summarized in Algorithm 2. Let us dissect this algorithm
next. The algorithm starts by initializing the weights and bias term
with 0s. Note that lines of pseudocode that assign values to a vector
such as line 1 in the algorithm (w = 0) assign this scalar value to all the
elements of the vector. For example, the operation in line 1 initializes
all the elements of the weight vector with zeros.

Lines 3 and 4 indicate that the learning algorithm may traverse the
training dataset more than once. As we will see in the following exam-
ple, sometimes this repeated exposure to training examples is necessary
to learn meaningful weights. Informally, we say that the algorithm con-
verged when there are no more changes to the weight vector (we will
define convergence more formally later in this section). In practice, on
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Algorithm 2: Perceptron learning algorithm.
1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 d = decision(xi, w, b)
6 if d == yi then
7 continue
8 else if yi == Yes and d == No then
9 b = b+ 1

10 w = w + xi

11 else if yi == No and d == Yes then
12 b = b− 1

13 w = w − xi

14 end
15 end

real-world tasks, it is possible that true convergence is not reached, so,
commonly, line 3 of the algorithm is written to limit the number of
traversals of the training dataset (or epochs) to a fixed number.

Line 5 applies the decision function in Algorithm 1 to the current
training example. Lines 6 and 7 indicate that the perceptron simply
skips over training examples that it already knows how to classify, i.e.,
its decision d is equal to the correct label yi. This is intuitive: if the
perceptron has already learned how to classify an example, there is lim-
ited benefit in learning it again. In fact, the opposite might happen: the
perceptron weights may become too tailored for the particular examples
seen in the training dataset, which will cause it to overfit. Lines 8 – 10
address the situation when the correct label of the current training ex-
ample xi is Yes, but the prediction according to the current weights and
bias is No. In this situation, we would intuitively want the weights and
bias to have higher values such that the overall dot product plus the bias
is more likely to be positive. To move towards this goal, the perceptron
simply adds the feature values in xi to the weight vector w, and adds 1 to
the bias. Similarly, when the perceptron makes an incorrect prediction
for the label No (lines 11 – 13), it decreases the value of the weights and
bias by subtracting xi from w, and subtracting 1 from b.
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Sidebar 2.3 Error driven learning

The class of algorithms such as the perceptron that focus on “hard”
examples in training, i.e., examples for which they make incorrect predic-
tions at a given point in time, are said to perform error driven learning.

Figure 2.4 shows an intuitive visualization of this learning process.3
In this figure, for simplicity, we are ignoring the bias term and assume
that the perceptron decision is driven solely by the dot product x · w.
Figure 2.4 (a) shows the weight vector w in a simple two-dimensional
space, which would correspond to a problem that is represented using
only two features.4 In addition of w, the figure also shows the decision
boundary of the perceptron as a dashed line that is perpendicular on w.
The figure indicates that all the vectors that lie on the same side of the
decision boundary with w are assigned the label Yes, and all the vectors
on the other side receive the decision No. Vectors that lie exactly on the
decision boundary (i.e., their decision function has a value of 0) receive
the label No according to Algorithm 1. In the transition from (a) to (b),
the figure also shows that redrawing the boundary changes the decision
for x.

Why is the decision boundary line perpendicular on w, and why are
the labels so nicely assigned? To answer these questions, we need to
introduce a new formula that measures the cosine of the angle between
two vectors, cos:

cos(x, y) = x · y
||x||||y|| (2.7)

where ||x|| indicates the length of vector x, i.e., the distance between the
origin and the tip of the vector’s arrow, measured with a generalization of
Pythagoras’s theorem:5 ||x|| =

√

∑N

i=1 x
2
i . The cosine similarity, which

ranges between −1 and 1, is widely used in the field of information
retrieval to measure the similarity of two vectors (Schütze et al., 2008).
That is, two perfectly similar vectors will have an angle of 0◦ between
3 This visualization was first introduced by Schütze et al. (2008).
4 This simplification is useful for visualization, but it is highly unrealistic for

real-world NLP applications, where the number of features is often proportional
with the size of a language’s vocabulary, i.e., it is often in the hundreds of
thousands.

5 Pythagoras’s theorem states that the square of the hypothenuse, c, of a right
triangle is equal to the sum of the squares of the other two sides, a and b, or,
equivalently: c =

√
a+ b. In our context, c is the length of a vector with

coordinates a and b in a two-dimensional space.
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Figure 2.4 Visualization of the perceptron learning algorithm: (a) incor-
rect classification of the vector x with the label Yes, for a given weight
vector w; and (b) x lies on the correct side of the decision boundary after
x is added to w.

them, which has the largest possible cosine value of 1. Two “opposite”
vectors have an angle of 180◦ between them, which has a cosine of −1. We
will extensively use the cosine similarity formula starting with the next
chapter. But, for now, we will simply observe that the cosine similarity
value has the same sign with the dot product of the two vectors (because
the length of a vector is always positive). Because vectors on the same
side of the decision boundary with w have an angle with w in the interval
[−90◦, 90◦], the corresponding cosine (and, thus, dot product value) will
be positive, which yields a Yes decision. Similarly, vectors on the other
side of the decision boundary will receive a No decision.

Sidebar 2.4 Hyper planes and perceptron convergence

In a one-dimensional feature space, the decision boundary for the per-
ceptron is a dot. As shown in Figure 2.4, in a two-dimensional space, the
decision boundary is a line. In a three-dimensional space, the decision
boundary is a plane. In general, for a n-dimensional space, the decision
boundary of the perceptron is a hyper plane. Classifiers such as the per-
ceptron whose decision boundary is a hyper plane, i.e., it is driven by a
linear equation in w (see Algorithm 1), are called linear classifiers.

If such a hyper plane that separates the labels of the examples in the
training dataset exists, it is guaranteed that the perceptron will find it, or
will find another hyper plane with similar separating properties (Block,
1962; Novikoff, 1963). We say that the learning algorithm has converged
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Table 2.4 The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with three examples.

# good excellent bad horrible boring

#1 1 1 1 0 0
#2 0 0 1 1 0
#3 0 0 1 0 1

Label

Positive
Negative
Negative

when such a hyper plane is found, which means that all examples in the
training data are correctly classified.

Figure 2.4 (a) shows that, at that point in time, the training example
x with label Yes lies on the incorrect side of the decision boundary.
Figure 2.4 shows how the decision boundary is adjusted after x is added
to w (line 10 in Algorithm 2). After this adjustment, x is on the correct
side of the decision boundary.

To convince ourselves that the perceptron is indeed learning a mean-
ingful decision boundary, let us go trace the learning algorithm on a
slightly more realistic example. Table 2.4 shows the matrix X and label
vector y for a training dataset that contains three examples for a product
review classification task. In this example, we assume that our vocabu-
lary has only the five words shown in X, e.g., the first data point in this
dataset is a positive review that contains the words good, excellent, and
bad.

Table 2.5 traces the learning algorithm as it iterates through the train-
ing examples. For example, because the decision function produces the
incorrect decision for the first example (No), this example is added to w.
Similarly, the second example is subtracted from w. The third example
is correctly classified (barely), so no update is necessary. After just one
pass over this training dataset, also called an epoch, the perceptron has
converged. We will let the reader convince herself that all training ex-
amples are now correctly classified. The final weights indicate that the
perceptron has learned several useful things. First, it learned that good
and excellent are associated with the Yes class, and has assigned positive
weights to them. Second, it learned that bad is not to be trusted because
it appears in both positive and negative reviews, and, thus, it assigned
it a weight of 0. Lastly, it learned to assign a negative weight to horrible.
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Table 2.5 The perceptron learning process for the dataset shown in
Table 2.4, for one pass over the training data. Both w and b are

initialized with 0s.

Example seen: #1
x · w + b = 0
Decision = Negative
Update (add): w = (1, 1, 1, 0, 0), b = 1

Example seen: #2
x · w + b = 2
Decision = Positive
Update (subtract): w = (1, 1, 0,−1, 0), b = 0

Example seen: #3
x · w + b = 0
Decision = Negative
Update: none

However, it is not perfect: it did not assign a non-zero weight to boring
because of the barely correct prediction made on example #3. There are
other bigger problems here. We discuss them in Section 2.7.

This example as well as Figure 2.4 seem to suggest that the perceptron
learns just fine without a bias term. So why do we need it? To convince
ourselves that the bias term is useful let us walk through another simple
example, shown in Table 2.6. The perceptron needs four epochs, i.e.,
four passes over this training dataset, to converge. The final parameters
are: w = (2) and b = −4. We encourage the reader to trace the learning
algorithm through this dataset on her own as well. These parameters
indicate that the hyper plane for this perceptron, which is a dot in this
one-dimensional feature space, is at 2 (because the final inequation for
the positive decision is 2x − 4 > 0). That is, in order to receive a Yes
decision, the feature of the corresponding example must have a value
> 2, i.e., the review must have at least three positive words. This is
intuitive, as the training dataset contains negative reviews that contain
one or two positive words. What this shows is that the bias term allows
the perceptron to shift its decision boundary away from the origin. It
is easy to see that, without a bias term, the perceptron would not be
able to learn anything meaningful, as the decision boundary will always
be in the origin. In practice, the bias term tends to be more useful
for problems that are modeled with few features. In real-world NLP
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Table 2.6 The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with four examples. In
this example, the only feature available is the total number of positive

words in a review.

# Number of positive words

#1 1
#2 10
#3 2
#4 20

Label

Negative
Positive
Negative
Positive

tasks that are high-dimensional, learning algorithms usually find good
decision boundaries even without a bias term (because there are many
more options to choose from).

Sidebar 2.5 Implementations of the bias term

Some machine learning software packages implement the bias term
as an additional feature in x that is always active, i.e., it has a value
of 1 for all examples in X. This simplifies the math a bit, i.e., instead
of computing x · w + b, we now have to compute just x · w. It is easy
to see that modeling the bias as an always-active feature has the same
functionality as the explicit bias term in Algorithm 2. In this book, we
will maintain an explicit bias term for clarity.

2.5 Voting Perceptron
As we saw in the previous examples, the perceptron learns well, but it
is not perfect. Often, a very simple strategy to improve the quality of
classifier is to use an ensemble model. One such ensemble strategy is to
vote between the decisions of multiple learning algorithms. For exam-
ple, Figure 2.5 shows a visualization of such a voting perceptron, which
aggregates two individual perceptrons by requiring that both classifiers
label an example as × before issuing the × label.6

6 This example was adapted from Erwin Chan’s Ling 539 course at University of
Arizona.
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Figure 2.5 An example of a binary classification task, and a voting per-
ceptron that aggregates two imperfect perceptrons. The voting algorithm
classifies correctly all the data points by requiring two votes for the ×

class to yield a × decision. The decision boundary of the voting percep-
tron is shown in red.

The figure highlights two important facts. First, the voting perceptron
performs better than either individual classifier. In general, ensemble
models that aggregate models that are sufficiently different from each
other tend to perform better than the individual (or base) classifiers
that are part of the ensemble (Dietterich, 2000). This observation holds
for people too! It has been repeatedly shown that crowds reach better
decisions than individuals. For example, in 1907, Sir Francis Galton has
observed that while no individual could correctly guess the weight of
an ox at a fair, averaging the weights predicted by all individuals came
within a pound or two of the real weight of the animal (Young, 2009).
Second, the voting perceptron is a non-linear classifier, i.e., its decision
boundary is no longer a line (or a hyper plane in n dimensions): in
Figure 2.5, the non-linear decision boundary for the voting perceptron
is shown with red lines.

While the voting approach is an easy way to produce a non-linear clas-
sifier that improves over the basic perceptron, it has drawbacks. First,
we need to produce several individual perceptron classifiers. This can be
achieved in at least two distinct ways. For example, instead of initializ-
ing the w and b parameters with 0s (lines 1 and 2 in Algorithm 2), we
initialize them with random numbers (typically small numbers centered
around 0). For every different set of initial values in w and b, the result-
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ing perceptron will end up with a different decision boundary, and, thus,
a different classifier. The drawback of this strategy is that the training
procedure must be repeated for each individual perceptron. A second
strategy for producing multiple individual perceptron that avoids this
training overhead is to keep track of all ws and bs that are produced
during the training of a single perceptron. That is, before changing the
b and w parameters in Algorithm 2 (lines 9 and 12), we store the current
values (before the change) in a list. This means that at the end of the
training procedure, this list will contain as many individual perceptrons
as the number of updates performed in training. We can even sort these
individual classifiers by their perceived quality: the more iterations a
specific b and w combination “survived” in training, the better the qual-
ity of this classifier is likely to be. This indicator of quality can be used
to assign weights to the “votes” given to the individual classifiers, or
to filter out base models of low quality (e.g., remove all classifiers that
survived fewer than 10 training examples).

The second drawback of the voting perceptron is its runtime over-
head at evaluation time. When the voting perceptron is applied on a
new, unseen example, it must apply all its individual classifiers before
voting. Thus, the voting perceptron is N times slower than the individ-
ual perceptron, where N is the number of individual classifiers used. To
mitigate this drawback, we will need the average perceptron, discussed
next.

2.6 Average Perceptron

The average perceptron is a simplification of the voting perceptron we
discussed previously. The simplification consists in that, instead of keep-
ing track of all w and b parameters created during the perceptron up-
dates like the voting algorithm, these parameters are averaged into a
single model, say avgW and avgB. This algorithm, which is summa-
rized in Algorithm 3, has a constant runtime overhead for computing
the average model, i.e., the only additional overhead compared to the
regular perceptron are the additions in lines 12 – 14 and 18 – 20, and the
divisions in lines 25 and 26. Further, the additional memory overhead
is also constant, as it maintains a single extra weight vector (totalW)
and a single bias term (totalB) during training. After training, the av-
erage perceptron uses a decision function different from the one used
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Algorithm 3: Average perceptron learning algorithm.
1 w = 0
2 b = 0
3 numbertotalOfUpdates = 0
4 totalW = 0
5 totalB = 0
6 while not converged do
7 for each training example xi in X do
8 d = decision(xi, w, b)
9 if d == yi then

10 continue
11 else if yi == Yes and d == No then
12 numberOfUpdates = numberOfUpdates + 1

13 totalW = totalW + w
14 totalB = totalB + b

15 w = w + xi

16 b = b+ 1

17 else if yi == No and d == Yes then
18 numberOfUpdates = numberOfUpdates + 1

19 totalW = totalW + w
20 totalB = totalB + b

21 w = w − xi

22 b = b− 1

23 end
24 end
25 avgB = totalB/numberOfUpdates
26 avgW = totalW/numberOfUpdates

during training. This function has a similar shape to the one listed in
Algorithm 1, but uses avgW and avgB instead.

Despite its simplicity, the average perceptron tends to perform well in
practice, usually outperforming the regular perceptron, and approaching
the performance of the voting perceptron. But why is the performance
of the average perceptron so good? After all, it remains a linear classifier
just like the regular perceptron, so it must have the same limitations.
The high-level explanation is that the average perceptron does a better
job than the regular perceptron at controlling for noise. Kahneman et al.
(2021) define noise as unwanted variability in decision making. Note that
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noise is a common occurrence in both human and machine decisions. For
example, Kahneman et al. (2021) report that judges assign more lenient
sentences if the outside weather is nice, or if their favorite football team
won their match the prior weekend. Clearly, these decisions should not
depend on such extraneous factors.

Similarly, in the machine learning space, the regular perceptron may
be exposed to such noisy, unreliable features during training. When
this happens, these features will receive weight values in the percep-
tron model (the w vector) that are all over the place, sometimes positive
and sometimes negative. All these values are averaged in the average
vector, and, thus, the average weight value for these unreliable features
will tend to be squished to (or close to) zero. The effect of this squishing
is that the decision function of the average perceptron will tend to not
rely on these features (because their contribution to the dot product in
the decision function will be minimal). This differs from the regular per-
ceptron, which does not benefit from this averaging process that reduces
the weights of unimportant features. In general, this process of squishing
the weights of features that are not important is called regularization.
We will see other regularization strategies in Chapter 6.

2.7 Drawbacks of the Perceptron
The perceptron algorithm and its variants are simple, easy to customize
for other tasks beyond text classification, and they perform fairly well
(especially in the voting and average form). However, they also have
important drawbacks. We discuss these drawbacks here, and we will
spend a good part of this book discussing solutions that address them.

The first obvious limitation of the perceptron is that, as discussed in
this chapter, it is a linear classifier. Yes, the voting perceptron removes
this constraint, but it comes at the cost of maintaining multiple indi-
vidual perceptrons. Ideally, we would like to have the ability to learn a
single classifier that captures a non-linear decision boundary. This abil-
ity is important, as many tasks require such a decision boundary. A
simple example of such a task was discussed by Minsky and Papert as
early as 1969: the perceptron cannot learn the XOR function (Minsky
and Papert, 1969). To remind ourselves, the XOR function takes two
binary variables, i.e., numbers that can take only one of two values: 0
(which stands for False) or 1 (or True), and outputs 1 when exactly
one of these values is 1, and 0 otherwise. A visualization of the XOR is
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Figure 2.6 Visualization of the XOR function operating over two vari-
ables, x and y. The dark circles indicate that the XOR output is 1; the
clear circles stand for 0.

shown in Figure 2.6. It is immediately obvious that there is no linear de-
cision boundary that separates the dark circles from the clear ones. More
importantly in our context, language is beautiful, complex, and ambigu-
ous, which means that, usually, we cannot model tasks that are driven
by language using methods of limited power such as linear classifiers.
We will address this important limitation in Chapter 5, where we will
introduce neural networks that can learn non-linear decision boundaries
by combining multiple layers of “neurons” into a single network.

A second more subtle but very important limitation of the perceptron
is that it has no “smooth” updates during training, i.e., its updates are
the same regardless of how incorrect the current model is. This is caused
by the decision function of the perceptron (Algorithm 1), which relies
solely on the sign of the dot product. That is, it does not matter how
large (or small) the value of the dot product is; when the sign is incorrect,
the update is the same: adding or subtracting the entire example xi
from the current weight vector (lines 10 and 13 in Algorithm 2). This
causes the perceptron to be a slow learner because it jumps around good
solutions. One University of Arizona student called this instability “Tony
Hawk-ing the data”.7 On data that is linearly separable, the perceptron
will eventually converge (Novikoff, 1963). However, real-world datasets
do not come with this guarantee of linear separation, which means that
this “Tony Hawk-ing” situation may yield a perceptron that is far from
acceptable. What we would like to have is a classifier that updates its
model proportionally with the errors it makes: a small mistake causes

7 Tony Hawk is an American skateboarder, famous for his half-pipe skills. See:
https://en.wikipedia.org/wiki/Tony_Hawk.
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a small update, while a large one yields a large update. This is exactly
what the logistic regression does. We detail this in the next chapter.

The third drawback of the perceptron, as we covered it so far, is that it
relies on hand-crafted features that must be designed and implemented
by the machine learning developer. For example, in the text classifica-
tion use case introduced in Section 2.2, we mentioned that we rely on
features that are simply the words in each text to be classified. Unfortu-
nately, in real-world NLP applications feature design gets complicated
very quickly. For example, if the task to be learned is review classifica-
tion, we should probably capture negation. Certainly the phrase great
should be modeled differently than not great. Further, maybe we should
investigate the syntactic structure of the text to be classified. For exam-
ple, reviews typically contain multiple clauses, whose sentiment must be
composed into an overall classification for the entire review. For exam-
ple, the review The wait was long, but the food was fantastic. contains
two clauses: The wait was long and but the food was fantastic, each
one capturing a different sentiment, which must be assembled into an
overall sentiment towards the corresponding restaurant. Further, most
words in any language tend to be very infrequent (Zipf, 1932), which
means that a lot of the hard work we might invest in feature design
might not generalize enough. That is, suppose that the reviews included
in a review classification training dataset contain the word great but not
the word fantastic, a fairy similar word in this context. Then, any ML
algorithm that uses features that rely on explicit words will correctly
learn how to associate great with a specific sentiment, but will not know
what to do when they see the word fantastic. Chapter 8 addresses this
limitation. We will discuss methods to transform words into a numeri-
cal representation that captures (some) semantic knowledge. Under this
representation, similar words such as great and fantastic will have sim-
ilar forms, which will improve the generalization capability of our ML
algorithms.

Lastly, in this chapter we focused on text classification applications
such as review classification that require a simple ML classifier, which
produces a single binary label for an input text, e.g., positive vs. negative
review. However, many NLP applications require multiclass classification
(i.e., more than two labels), and, crucially, produce structured output.
For example, a part-of-speech tagger, which identifies which words are
nouns, verbs, etc., must produce the sequence of part of speech tags
for a given sentence. Similarly, a syntactic parser identifies syntactic
structures in a given sentence such as which phrase serves as subject for
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a given verb. These structures are typically represented as trees. The
type of ML algorithms that produce structures rather than individual
labels are said to perform structured learning. We will begin discussing
structured learning in Chapter 10.

2.8 Historical Background
The perceptron was invented by McCulloch and Pitts in 1943 (McCul-
loch and Pitts, 1943). Frank Rosenblatt provided a first software im-
plementation in 1958 (Rosenblatt, 1958), and soon after, a hardware
implementation as the “Mark I Perceptron”, a machine built for image
recognition. The Mark I Perceptron now resides at the Smithsonian In-
stitution. Interestingly enough, at the time Rosenblatt was a research
psychologist at the Cornell Aeronautical Laboratory; Warren McCulloch
was a professor of psychiatry at the University of Illinois at Chicago,
while Walter Pitts was an unofficial student of mathematics, logic, and
biology. Computer science did not exist as a formal academic discipline
at the time. The first computer science department in the United States
was only to be established at Purdue University in 1962.

Following the development of the perceptron, Rosenblatt stated: “Sto-
ries about the creation of machines having human qualities have long
been a fascinating province in the realm of science fiction …Yet we are
about to witness the birth of such a machine – a machine capable of per-
ceiving, recognizing and identifying its surroundings without any human
training or control.” (Lefkowitz, 2019) Needless to say, such statements
were premature, especially considering the perceptron’s limitations as a
linear classifier, i.e., it cannot learn simple non-linear functions such as
the XOR (Minsky and Papert, 1969). This discrepancy between claims
and reality caused the first artificial intelligence “winter,” i.e., a pe-
riod of several decades during which government funding for AI was
drastically reduced. Some argue that Rosenblatt has been vindicated
by the tremendous empirical achievements of today’s neural networks
(Lefkowitz, 2019), while others have continued to argue that statements
such as Rosenblatt’s (and many other artificial intelligence researchers’)
continue to be disconnected from what today’s artificial intelligence can
actually do (Dreyfus, 1992; Marcus and Davis, 2019)

Nevertheless, regardless where one stands in this controversy, it is
clear that the perceptron and its variants (see next section) made a
tremendous contribution to machine learning and natural language pro-
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cessing, and paved the way for today’s deep learning field (as we will see
throughout the rest of this book).

2.9 References and Further Readings
The original perceptron papers where (McCulloch and Pitts, 1943) (the-
ory) and (Rosenblatt, 1958) (first implementation). Block (1962); Novikoff
(1963) demonstrated the convergence of the perceptron training algo-
rithm, i.e., if a hyper plane that separates the labels of the examples in
the training dataset exists, it is guaranteed that the perceptron will find
it, or will find another hyper plane with similar separating properties.

Minsky and Papert (1969) demonstrated the limitations of the per-
ceptron, i.e., that it cannot learn non-linear functions such as the XOR.

Despite its simplicity (or perhaps because of it), the perceptron has
been widely used and extended for various problems in machine learning
and natural language processing. For example, Duda et al. (1973) ex-
tended the original binary perceptron to multiclass classification. Cram-
mer and Singer (2003); Crammer et al. (2006) proposed a generalized
multiclass setting for the perceptron, and introduced several new train-
ing algorithms for it that have improved worst-case behavior. Collins
(2002) introduced a variant of the perceptron adapted for sequence
problems in natural language processing such as part-of-speech tagging.
Collins and Roark (2004) extended this algorithm for syntactic parsing.

2.10 Summary
This chapter presented the perceptron, one of the simplest machine
learning algorithms, which will serve as the building block for the neural
networks explored throughout the rest of the book. We also discussed a
couple of perceptron variants, starting with the voting perceptron, our
first exposure to a non-linear classifier. It was followed by the average
perceptron, which introduced regularization, i.e., reducing the impor-
tance of noisy information in the learned model.
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Logistic Regression

As mentioned in the previous chapter, the perceptron does not perform
smooth updates during training, which may slow down learning, or cause
it to miss good solutions entirely in real-world situations. In this chapter,
we will discuss logistic regression (LR), a machine learning algorithm
that elegantly addresses this problem.

3.1 The Logistic Regression Decision Function and
Learning Algorithm

As we discussed, the lack of smooth updates in the training of the per-
ceptron is caused by its reliance on a discrete decision function driven
by the sign of the dot product. The first thing LR does is replace this
decision function with a new, continuous function, which is:

decision(x,w, b) =
1

1 + e−(w·x+b)
(3.1)

The 1
1+e−x function is known as the logistic function, hence the name of

the algorithm. The logistic function belongs to a larger class of functions
called sigmoid functions because they are characterized by an S-shaped
curve. Figure 3.1 shows the curve of the logistic function. In practice,
the name sigmoid (or σ) is often used instead of logistic, which is why
the LR decision function is often summarized as: σ(w ·x+b). For brevity,
we will use the σ notation in our formulas as well.

Figure 3.1 shows that the logistic function has values that monotoni-
cally increase from 0 to 1. We will use this property to implement a bet-
ter learning algorithm, which has “soft” updates that are proportional

33
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Algorithm 4: Logistic regression learning algorithm.
1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 d = decision(xi, w, b)
6 w = w + α(yi − d)xi // yi is the correct label for example

xi

7 b = b+ α(yi − d)
8 end
9 end

lines 8 – 10 in Algorithm 2). When yi = 0 when d = 1, the algorithm
reduces to subtracting xi from w and 1 from b (similar to lines 11 – 13
in Algorithm 2).

The interesting behavior occurs in the majority of the situations when
the LR decision is neither perfectly correct nor perfectly incorrect. In
these situations, the LR performs a soft update that is proportional with
how incorrect the current decision is, which is captured by yi−d. That is,
the more incorrect the decision is, the larger the update. This is exactly
what we would like a good learning algorithm to do.

Once the algorithm finishes training, we would like to use the learned
weights (w and b) to perform binary classification, e.g., classify a text
into a positive or negative review. For this, at prediction time we will
convert the LR decision into a discrete output using a threshold τ , com-
monly set to 0.5.1 That is, if decision(x,w, b) ≥ 0.5 then the algorithm
outputs one class (say, positive review); otherwise it outputs the other
class.

3.2 The Logistic Regression Cost Function
The next three sections of this chapter focus on deriving the LR learning
algorithm shown in Algorithm 4. The reader who is averse to math,
or is satisfied with the learning algorithm and the intuition behind it,
1 Other values for this threshold are possible. For example, for applications where

it is important to be conservative with predictions for class 1, τ would take
values larger than 0.5.
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may skip to Section 3.7. However, we encourage the reader to try to
stay with us through this derivation. These sections introduce important
concepts, i.e., cost functions and gradient descent, which are necessary
for a thorough understanding of the following chapters in this book. We
will provide pointers to additional reading, where more mathematical
background may be needed.

The first observation that will help us formalize the training process
for LR is that the LR decision function implements a conditional proba-
bility, i.e., the probability of generating a specific label given a training
example and the current weights. More formally, we can write:

p(y = 1|x;w, b) = σ(x;w, b) (3.2)

The left term of the above equation can be read as the probability of
generating a label y equal to 1, given a training example x and model
weights w and b (the vertical bar “|” in the conditional probability for-
mula should be read as “given”). Intuitively, this probability is an in-
dicator of confidence (the higher the better). That is, the probability
approaches 1 when the model is confident that the label for x is 1, and
0 when not. Similarly, the probability of y being 0 is:

p(y = 0|x;w, b) = 1− σ(x;w, b) (3.3)

These probabilities form a probability distribution, i.e., the sum of
probabilities over all possible labels equals 1. Note that while we aim
to minimize the use of probability theory in this section, some of it is
unavoidable. The reader who wants to brush up on probability theory
may consult other material on this topic such as (Griffiths, 2008).

To simplify notations, because we now know that we estimate la-
bel probabilities, we change the notation for the two probabilities to:
p(1|x;w, b) and p(0|x;w, b). Further, when it is obvious what the model
weights are, we will skip them and use simply p(1|x) and p(0|x). Lastly,
we generalize the above two formulas to work for any of the two possible
labels with the following formula:

p(y|x) = (σ(x;w, b))y(1− σ(x;w, b))1−y (3.4)

It is trivial to verify that this formula reduces to one of the two equations
above, for y = 1 and y = 0.

Intuitively, we would like the LR training process to maximize the
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probability of the correct labels in the entire training dataset. This prob-
ability is called the likelihood of the data (L), and is formalized as:

L(w, b) = p(y|X) (3.5)
= Πm

i=1p(yi|xi) (3.6)

where y is the vector containing all the correct labels for all training
examples, X is the matrix that contains the vectors of features for all
training examples, and m is the total number of examples in the training
dataset. Note that the derivation into the product of individual prob-
abilities is possible because we assume that the training examples are
independent of each other, and the joint probability of multiple indepen-
dent events is equal to the product of individual probabilities (Griffiths,
2008).

A common convention in machine learning is that instead of maxi-
mizing a function during learning, we instead aim to minimize a cost
or loss function2 C, which captures the amount of errors in the model.
By definition, C must return only positive values. That is, C will return
large values when the model does not perform well, and is 0 when the
learned model is perfect. We write the logistic regression cost function
C in terms of likelihood L as:

C(w, b) = − logL(w, b) (3.7)

= −
m
∑

i=1

(yi logσ(xi;w, b) + (1− yi) log(1− σ(xi;w, b))) (3.8)

Equation 3.7 is often referred to as the negative log likelihood of the
data, a descriptive term that summarizes well the content of the equa-
tion. It is easy to see that C satisfies the constraints of a cost function,
which are:

• First, the cost function must always return positive values. In our case,
the logarithm of a number between 0 and 1 is negative; the negative

2 Formally, the loss function operates on a single training example, while the cost
function considers all examples in the training dataset. However, this
terminology has become more ambiguous in the literature. For this reason, we
will use “loss” and “cost” interchangeably in this book. For example, in the
theory chapters we prefer to use “cost” because we tend to apply to an entire
training set (or a partition of it). On the other hand, in the coding chapters we
will use “loss” more frequently because it matches PyTorch’s terminology.
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sign in front of the sum turns the value of the sum into a positive
number.

• Second, the cost function returns large values when the model makes
many mistakes (i.e., the likelihood of the data is small), and ap-
proaches 0 when the model is correct (i.e., the likelihood approaches
1).

Thus, we can formalize the goal of the LR learning algorithm as min-
imizing the above cost function. Next we will discuss how we do this
efficiently.

3.3 Gradient Descent
The missing component that connects the cost function just introduced
with the LR training algorithm (Algorithm 4) is gradient descent. Gra-
dient descent is an iterative method that finds the parameters that min-
imize a given function. In our context, we will use gradient descent to
find the LR parameters (w and b) that minimize the cost function C.

However, for illustration purposes, let us take a step away from the
LR cost function and begin with a simpler example: let us assume we
would like to minimize the function f(x) = (x+1)2+1, which is plotted
in Figure 3.2. Clearly, the smallest value this function takes is 1, which
is obtained when x = −1. Gradient descent finds this value by taking
advantage of the function slope, or derivative of f(x) with respect to x,
i.e., d

dx
f(x). Note: if the reader needs a refresher of what function deriva-

tives are, and how to compute them, now is a good time to do so. Any
calculus textbook or even the Wikipedia page for function derivatives3
provide sufficient information for what we need in this book.

One important observation about the slope of a function is that it
indicates the function’s direction of change. That is, if the derivative is
negative, the function decreases; if it is positive, the function increases;
and if it is zero, we have reached a local minimum or maximum for
the function. Let us verify that is the case for our simple example. The
derivative of our function d

dx
((x+1)2+1) is 2(x+1), which has negative

values when x < −1, positive values when x > −1, and is 0 when
x = −1. Intuitively, gradient descent uses this observation to take small
steps towards the function’s minimum in the opposite direction indicated
by the slope. More formally, gradient descent starts by initializing x

3 https://en.wikipedia.org/wiki/Derivative
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and small (so we do not “Tony Hawk” the data). To demonstrate the
latter situation, consider the situation when α = 1. In this case, in
the first iteration x becomes 1, which means we already skipped over
the value that yields the function’s minimum (x = −1). Even worse,
in the second iteration, x goes back to −3, and we are now in danger
of entering an infinite loop! To mitigate this situation, α usually takes
small positive values, say, between 0.00001 and 0.1. In Chapter 6 we
will discuss other strategies to dynamically shrink the learning rate as
the learning advances, so we further reduce our chance of missing the
function’s minimum.

The gradient descent algorithm generalizes to functions with multi-
ple parameters: we simply update each parameter using its own partial
derivative of the function to be minimized. For example, consider a new
function that has two parameters, x1 and x2: f(x1, x2) = (x1 + 1)2 +

3x2+1. For this function, in each gradient descent iteration, we perform
the following updates:

x1 = x1 − α
d

dx1
f(x1, x2) = x1 − 0.1(2x1 + 2)

x2 = x2 − α
d

dx2
f(x1, x2) = x2 − 0.1(3)

or, in general, for a function f(x), we update each parameter xi using
the formula:

xi = xi − α
d

dxi

f(x) (3.10)

One obvious question that should arise at this moment is why are we
not simply solving the equation where the derivative equals 0, as we were
taught in calculus? For instance, for the first simple example we looked
at, f(x) = (x+1)2+1, zeroing the derivative yields immediately the exact
solution x = −1. While this approach works well for functions with a
single parameter or two, it becomes prohibitively expensive for functions
with four or more parameters. Machine learning in general falls in this
latter camp: it is very common that the functions we aim to minimize
have thousands (or even millions) of parameters. In contrast, as we will
see later, gradient descent provides a solution whose runtime is linear
in the number of parameters times the number of training examples.
Further, in some situations, training data is not available ahead of time,
but, instead, is provided sequentially, i.e., a few examples at a time.
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example, x and y are known and constant. That is, we know the values of
the features and the label for each given example in training, and all we
have to do is compute w and b. Thus, the training process of LR reduces
to repeatedly updating each wj in w and b features by the corresponding
partial derivative of C:

wj = wj − α
d

dwj

C(w, b) (3.11)

b = b− α
d

db
C(w, b) (3.12)

Given a sufficient number of iterations and a learning rate α that is
not too large, w and b are guaranteed to converge to the optimal values
because the logistic regression cost function is convex.5 However, one
problem with this approach is that computing the two partial deriva-
tives requires the inspection of all training examples (this is what the
summation in Equation 3.8 indicates), which means that the learning
algorithm would have to do many passes over the training dataset be-
fore any meaningful changes are observed. Because of this, in practice,
we do not compute C over the whole training data, but over a small
number of examples at a time. This small group of examples is called a
mini batch. In the simplest case, the size of the mini batch is 1, i.e., we
update the w and b weights after seeing each individual example i, using
a cost function computed for example i alone:6

Ci(w, b) = −(yi logσ(xi;w, b) + (1− yi) log(1− σ(xi;w, b))) (3.13)

This simplified form of gradient descent is called stochastic gradient
descent (SGD), where “stochastic” indicates that we work with a stochas-
tic approximation (or an estimate) of C. Building from the last three
equations above, we can write the logistic regression training algorithm
as shown in Algorithm 5. The reader will immediately see that this for-
mulation of the algorithm is similar to Algorithm 4, which we introduced
at the beginning of this chapter. In the next section, we will demonstrate
that these two algorithms are indeed equivalent, by computing the two
5 Demonstrating that the LR cost function is convex is beyond the scope of this

book. The interested reader may read other materials on this topic such as
http://mathgotchas.blogspot.com/2011/10/
why-is-error-function-minimized-in.html.

6 Technically, Ci is a loss function because it applies to a single data point.
However, we will continue to use the term “cost function” for readability.
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Algorithm 5: Logistic regression learning algorithm using
stochastic gradient descent.

1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 for each wj in w do
6 wj = wj − α d

dwj
Ci(w, b)

7 end
8 b = b− α d

db
Ci(w, b)

9 end
10 end

partial derivatives d
dwj

Ci(w, b) and d
db
Ci(w, b). Importantly, the runtime

of this algorithm is linear in the number of parameters (lines 5 and 8)
times the number of training examples (line 4), which makes this algo-
rithm a practical solution for training on large datasets.

3.4 Deriving the Logistic Regression Update Rule

Here we will compute the partial derivative of the cost function Ci(w, b)

of an individual example i, with respect to each feature weight wj and
bias term b. For these operations we will rely on several rules to compute
the derivatives of a few necessary functions. These rules are listed in
Table 3.1.

Let us start with the derivative of C with respect to one feature weight
wj :

d

dwj

Ci(w, b) =
d

dwj

(−yi logσ(xi;w, b)− (1− yi) log(1− σ(xi;w, b)))

Let us use σi to denote σ(xi;w, b) below, for simplicity:

=
d

dwj

(−yi logσi − (1− yi) log(1− σi))



44 Logistic Regression

Pulling out the yi constants and then applying the chain rule on the two
logarithms:

= −yi
d

dσi

logσi

d

dwj

σi − (1− yi)
d

d(1− σi)
log(1− σi)

d

dwj

(1− σi)

After applying the derivative of the logarithm:

= −yi
1

σi

d

dwj

σi − (1− yi)
1

1− σi

d

dwj

(1− σi)

After applying the chain rule on d
dwj

(1− σi):

= −yi
1

σi

d

dwj

σi + (1− yi)
1

1− σi

d

dwj

σi

= (−yi
1

σi

+ (1− yi)
1

1− σi

)
d

dwj

σi

=
−yi(1− σi) + (1− yi)σi

σi(1− σi)

d

dwj

σi

=
σi − yi

σi(1− σi)

d

dwj

σi

After applying the chain rule on σi:

=
σi − yi

σi(1− σi)

d

d(w · xi + b)
σi

d

dwj

(w · xi + b)

After the derivative of the logistic function and then canceling numerator
and denominator:

=
σi − yi

σi(1− σi)
σi(1− σi)

d

dwj

(w · xi + b)

= (σi − yi)
d

dwj

(w · xi + b)

Lastly, after applying the derivative of the dot product:

= (σi − yi)xij (3.14)

where xij is the value of feature j in the feature vector xi.
Following a similar process, we can compute the derivative of Ci with

respect to the bias term as:
d

db
Ci(w, b) =

d

db
(−yi logσ(xi;w, b)− (1− yi) log(1− σ(xi;w, b))) = σi − yi

(3.15)

Knowing that σi is equivalent with decision(xi, w, b), one can immedi-
ately see that applying Equation 3.15 in line 8 of Algorithm 5 transforms



Table 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these
formulas, f and g are functions, a and b are constants, x is a variable.

Description Formula

Chain rule d
dx

f(g(x)) = d
dg(x)

f(g(x)) d
dx

g(x)

Derivative of summation d
dx

(af(x) + bg(x))) = a d
dx

f(x) + b d
dx

g(x)

Derivative of natural logarithm d

dx
log(x) = 1

x

Derivative of logistic d
dx

σ(x) = d
dx

( 1
1+e−x ) = −

1
(1+e−x)2

(−e−x) = σ(x)(1− σ(x))

Derivative of dot product between
vectors x and a with respect to xi

d
dxi

(x · a) = ai
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the update of the bias into the form used in Algorithm 4 (line 7). Sim-
ilarly, replacing the partial derivative in line 6 of Algorithm 5 with its
explicit form from Equation 3.14 yields an update equivalent with the
weight update used in Algorithm 4. The superficial difference between
the two algorithms is that Algorithm 5 updates each feature weight wj

explicitly, whereas Algorithm 4 updates all weights at once by updating
the entire vector w. Needless to say, these two forms are equivalent. We
prefer the explicit description in Algorithm 5 for clarity. But, in practice,
one is more likely to implement Algorithm 4 because vector operations
are efficiently implemented in most machine learning software libraries.

3.5 From Binary to Multiclass Classification
So far, we have discussed binary logistic regression, where we learned
a classifier for two labels (1 and 0), where the probability of predicting
label 1 is computed as: p(1|x;w, b) = σ(x;w, b) and probability of label
0 is: p(0|x;w, b) = 1 − p(1|x;w, b) = 1 − σ(x;w, b). However, there are
many text classification problems where two labels are not sufficient.
For example, we might decide to implement a movie review classifier
that produces five labels, to capture ratings on a five-star scale. To ac-
commodate this class of problems, we need to generalize the binary LR
algorithm to multiclass scenarios, where the labels to be learned may
take values from 1 to k, where k is the number of classes to be learned,
e.g., 5 in the previous example.

Figure 3.4 provides a graphical explanation of the multiclass LR. The
key observation is that now, instead of maintaining a single weight vec-
tor w and bias b, we maintain one such vector and bias term for each
class to be learned. Intuitively, this architecture is a merger of multiple
“neurons,” one for each class. This complicates our notations a bit: in-
stead of using a single index to identify positions in an input vector x or
in w, we now have to maintain two. That is, we will use wi to indicate
the weight vector for class i, wij to point to the weight of the edge that
connects the input xj to the class i, and bi to indicate the bias term
for class i. The output of each “neuron” i in the figure produces a score
for label i, defined as the sum between the bias term of class i and the
dot product of the weight vector for class i and the input vector. More
formally, if we use zi to indicate the score for label i, then: zi = wi ·x+bi.

Note that these scores are not probabilities: they are not bounded
between 0 and 1, and they will not sum up to 1. To turn them into
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p(0|x;W, b) = ew0·x+b0

ew0·x+b0+ew1·x+b1
= e−((w1−w0)·x+(b1−b0))

e−((w1−w0)·x+(b1−b0))+1

= 1− p(1|x;W, b) (3.18)

From these two equations, we can immediately see that the two formula-
tions of binary LR, i.e., logistic vs. softmax, are equivalent when we set
the parameters of the logistic to be equal to the the difference between
the parameters of class 1 and the parameters of class 0 in the softmax
formulation, or w = w1 − w0, and b = b1 − b0, where w and b are the
logistic parameters in Equations 3.17 and 3.18.

The cost function for multiclass LR follows the same intuition and for-
malization as the one for binary LR. That is, during training we want to
maximize the probabilities of the correct labels assigned to training ex-
amples, or, equivalently, we want to minimize the negative log likelihood
of the data. Similarly to Equation 3.7, the cost function for multiclass
LR is defined as:

C(W, b) = − logL(W, b) = −
m
∑

i=1

log p(yi|xi;W, b) (3.19)

or, for a single training example i:

Ci(W, b) = − log p(yi|xi;W, b) (3.20)

where yi is the correct label for training example i, and xi is the fea-
ture vector for the same example. The probabilities in this cost function
are computed using the softmax formula, as in Equation 3.16. This cost
function, which generalizes the negative log likelihood cost function to
multiclass classification, is called cross entropy. Its form for binary clas-
sification is called binary cross entropy. Using Equations 3.17 and 3.18,
it is easy to show that in the case of binary logistic regression, Equa-
tion 3.19 is equivalent with our initial cost function from Equation 3.8.
These are probably the most commonly used cost function in NLP prob-
lems. We will see them a lot throughout the book.

The learning algorithm for multiclass LR stays almost the same as
Algorithm 5, with small changes to account for the different cost func-
tion and the larger number of parameters, i.e., we now update a matrix
W instead of a single vector w, and a vector b instead of the scalar b.
The adjusted algorithm is shown in Algorithm 6. We leave the compu-
tation of the derivatives used in Algorithm 6 as an at-home exercise for
the interested reader. However, as we will see in the next chapter, we
can now rely on automatic differentiation libraries such as PyTorch to
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Algorithm 6: Learning algorithm for multiclass logistic regres-
sion.

1 W = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 for each wjk in W do
6 wjk = wjk − α d

dwjk
Ci(W, b)

7 end
8 for each bj in b do
9 bj = bj − α d

dbj
Ci(W, b)

10 end
11 end
12 end

Table 3.2 Example of a confusion matrix for three-class classification.
The dataset contains 1,000 data points, with 2 data points in class C1,

100 in class C2, and 898 in class C3.

Classifier Classifier Classifier
predicted C1 predicted C2 predicted C3

Gold label is C1 1 1 0
Gold label is C2 10 80 10
Gold label is C3 1 7 890

compute these derivatives for us, so this exercise is not strictly needed
to implement multiclass LR.

3.6 Evaluation Measures for Multiclass Text
Classification

Now that we generalized our classifier to operate over an arbitrary num-
ber of classes, it is time to generalize the evaluation measures introduced
in Section 2.3 to multiclass problems as well. Throughout this section,
we will use as a walkthrough example a three-class version of the Med-
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icaid application classification problem from Section 2.3. In this ver-
sion, our classifier has to assign each application to one of three classes,
where classes C1 and C2 indicate the high- and medium-priority appli-
cations, and class C3 indicate regular applications that do not need to
be rushed through the system. Same as before, most applications fall
under class C3. Table 3.2 shows an example confusion matrix for this
problem for a hypothetical three-class classifier that operates over an
evaluation dataset that contains 1,000 applications.

The definition of accuracy remains essentially the same for multiclass
classification, i.e., accuracy is the ratio of data points classified correctly.
In general, the number of correctly classified points can be computed
by summing up the counts on the diagonal of the confusion matrix.
For example, for the confusion matrix shown in Table 3.2, accuracy is
1+80+890

1,000 = 971
1,000 .

Similarly, the definitions of precision and recall for an individual class
c, remain the same:

Pc =
TPc

TPc + FPc

(3.21)

Rc =
TPc

TPc + FNc

(3.22)

where TPc indicate the number of true positives for class c, FPc indicate
the number of positives for class c, and FNc indicate the number of false
negatives for the same class. However, because we now have more than
two rows and two columns in the confusion matrix, we have to do a bit
more additional math to compute the FPc and FNc counts. In general,
the number of false positives for a class c is equal to the sum of the
counts in the column corresponding to class c, excluding the element
on the diagonal. The number of false negatives for a class c is equal to
the sum of the counts in the corresponding row, excluding the element
on the diagonal. For example, for class C2 in the table, the number of
true positives is TPC2 = 80, the number of false positives is FPC2 =

1 + 7 = 8, and the number of false negatives is FNC2 = 10 + 10 = 20.
Thus, the precision and recall for class C2 are: PC2 = 80

80+8 = 0.91, and
RC2 = 80

80+20 = 0.80. We leave it as an at-home exercise to show that
PC1 = 0.08, RC1 = 0.5, PC3 = 0.99, and RC3 = 0.99. From these values,
one can trivially compute the respective F scores per class.

The important discussion for multiclass classification is how to average
these sets of precision/recall scores into single values that will give us



3.6 Evaluation Measures for Multiclass Text Classification 51

a quick understanding of the classifier’s performance. There are two
strategies to this end, both with advantages and disadvantages:

Macro averaging: Under this strategy we simply average all the in-
dividual precision/recall scores into a single value. For example, for
the above example, the macro precision score over all three classes is:
macro P = PC1+PC2+PC3

3 = 0.08+0.91+0.99
3 = 0.66. Similarly, the macro

recall score is: macro R = RC1+RC2+RC3

3 = 0.50+0.80+0.99
3 = 0.76. The

macro F1 score is the harmonic mean of the macro precision and recall
scores.

As discussed in Section 2.3, in many NLP tasks the labels are highly
unbalanced, and we commonly care less about the most frequent la-
bel. For example, here we may want to measure the performance of our
classifier on classes C1 and C2, which require rushed processing in the
Medicaid system. In such scenarios, the macro precision and recall scores
exclude the frequent class, e.g., C3 in our case. Thus, the macro preci-
sion becomes: macro P = PC1+PC2

2 = 0.08+0.91
2 = 0.50, which is more

indicative of the fact that our classifier does not perform too well on the
two important classes in this example.

The advantage of the macro scores is that they treat all the classes we
are interested in as equal contributors to the overall score. But, depend-
ing on the task, this may also be a disadvantage. For example, in the
above example, the latter macro precision score of 0.50 hides the fact
that our classifier performs reasonably well on the C2 class (PC2 = 0.91),
which is 100 times more frequent than C1 in the data!

Micro averaging: This strategy addresses the above disadvantage of
macro averaging, by computing overall precision, recall, and F scores
where each class contributes proportionally with its frequency in the
data. In particular, rather than averaging the individual precision/recall
scores, we compute them using the class counts directly. For example,
the micro precision and recall scores for the two classes of interest in the
above example, C1 and C2, are:

micro P = TPC1+TPC2

TPC1+TPC2+FPC1+FPC2

= 1+80
1+80+11+8 = 0.81 (3.23)

micro R = TPC1+TPC2

TPC1+TPC2+FNC1+FNC2

= 1+80
1+80+1+20 = 0.79 (3.24)
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Similar to macro averaging, the micro F1 score is computed as the har-
monic mean of the micro precision and recall scores.

Note that in this example, the micro scores are considerably higher
than the corresponding macro scores because: (a) the classifier’s perfor-
mance on the more frequent C2 class is higher than the performance
on class C1, and (b) micro averaging assigns more importance to the
frequent classes, which, in this case, raises the micro precision and re-
call scores. The decision of which averaging strategy to use is problem
specific, and depends on the answer to the question: should all classes
be treated equally during scoring, or should they be weighted by their
frequency in the data? In the former case, the appropriate averaging is
macro; in the latter, micro.

3.7 Drawbacks of Logistic Regression
The logistic regression algorithm solves the lack of smooth updates in
the perceptron algorithm through its improved update functions on its
parameters. This seemingly small change has an important practical im-
pact: in most NLP applications, logistic regression tends to outperform
the perceptron.

However, the other drawbacks observed with the perceptron still hold.
Binary logistic regression is also a linear classifier because its deci-
sion boundary remains a hyperplane. It is tempting to say that the
above statement is not correct because the logistic is clearly a non-
linear function. However, the linearity of the binary LR classifier is easy
to prove with just a bit of math. Remember that the decision function
for the binary LR is: if 1

1+e−(w·x+b) ≥ 0.5 we assign one label, and if
1

1+e−(w·x+b) < 0.5 we assign the other label. Thus, the decision boundary
is defined by the equation 1

1+e−(w·x+b) = 0.5. From this we can easily de-
rive that e−(w·x+b) = 1, and −(w · x+ b) = 0, where the latter is a linear
function on the parameters w and b. This observation generalizes to the
multiclass logistic regression introduced in Section 3.5. In the multiclass
scenario, the decision boundary between all classes consists of multi-
ple intersecting segments, each of which are fragments of a hyperplane.
Figure 3.5 shows an example of such a decision boundary for a 4-class
problem, where each data point is described by two features: x1 and x2.7

7 This figure was generated by Clayton Morrison and is reproduced with
permission.
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repeated discovery was identified, Verhulst was rightfully credited for
both the formula and the name (Yule, 1925).

The gradient descent algorithm we used to train the logistic regression
classifier in this chapter was also discovered multiple times through his-
tory (Kelley, 1960; Dreyfus, 1990, 1962, inter alia). We will revisit this
history in Chapter 5, where we will introduce a generalization of this
algorithm to networks with an arbitrary number of neurons.

3.9 References and Further Readings
Because of its ubiquity, logistic regression is described in many statis-
tics and machine learning books and courses. The one that helped us
the most is Andrew Ng’s CS229 Machine Learning course at Stanford
University (Ng, 2019).

3.10 Summary
This chapter introduced logistic regression, which improves upon the
perceptron by performing soft updates during training, i.e., each pa-
rameter is updated based on its contribution to an incorrect decision.
We also extended the vanilla logistic regression, which was designed for
binary classification, to handle multiclass classification.

Through logistic regression, we introduced the concept of cost function
(i.e., the function we aim to minimize during training), and gradient
descent, the algorithm that implements this minimization procedure.



4
Implementing Text Classification Using

Perceptron and Logistic Regression

In the previous chapters we have discussed the theory behind the percep-
tron and logistic regression, including mathematical explanations of how
and why they are able to learn from examples. In this chapter we will
transition from math to code. Specifically, we will discuss how to imple-
ment these models in the Python programming language. All the code
that we will introduce throughout this book is available online as well:
http://clulab.github.io/gentlenlp/. The reader who is not famil-
iar with the Python programming language is encouraged to read first
Appendix A, for a brief introduction to the language, and Appendix B,
for a discussion on how computers encode and preprocess text. Once
done, please return here.

To get a better understanding of how these algorithms work under
the hood, we will start by implementing them from scratch. However,
as the book progresses, we will introduce some of the popular tools and
libraries that make Python the language of choice for machine learning,
e.g., PyTorch,1 and Hugging Face’s transformers.2

The code for all the examples in the book is provided in the form of
Jupyter notebooks.3 Important fragments of these notebooks will be pre-
sented in the implementation chapters so that the reader has the whole
picture just by reading the book. However, we strongly encourage you to
download the notebooks and execute them yourself. We also encourage
you to modify them to conduct your own experiments!

1 https://pytorch.org
2 https://huggingface.co
3 https://jupyter.org/

55
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4.1 Binary Classification
We begin this chapter with binary classification. That is, we aim to
train classifiers that assign one of two labels to a given text. As the
example for this task, we will train a review classifier using the the
Large Movie Review Dataset (Maas et al., 2011).4 We tackle this task
by implementing first a binary perceptron classifier, followed by a binary
logistic regression one. We will implement the latter both from scratch
as well as using PyTorch, so the reader has a clearer understanding on
how PyTorch works “under the hood.”

4.1.1 Large Movie Review Dataset
This dataset contains movie reviews and their associated scores (between
1 and 10) as provided by IMDb.5 Maas et al. converted these scores to
binary labels by assigning each review a positive or negative label if the
review score was above 6 or below 5, respectively. Reviews with scores
5 and 6 were considered too neutral and thus excluded. We follow the
same protocol in this chapter.

The dataset is divided in two even partitions called train and test,
each containing 25,000 reviews. The dataset also provides additional
unlabeled reviews, but we will not use those here. Each partition con-
tains two directories called pos and neg where the positive and negative
examples are stored. Each review is stored in an independent text file,
whose name is composed of an id unique to the partition and the score
associated with the review, separated by an underscore. An example of
a positive and a negative review is shown in Table 4.1.

4.1.2 Bag-of-words Model
As discussed in Section 2.2, we will encode the text to classify as a bag
of words. That is, we encode each review as a list of numbers, with each
position in the list corresponding to a word in our vocabulary, and the
value stored in that position corresponding to the number of times the
word appears in the review. For example, say we want to encode the
following two reviews:

4 https://ai.stanford.edu/~amaas/data/sentiment/
5 https://www.imdb.com/
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Table 4.1 Two examples of movie reviews from IMDb. The first is a
positive review of the movie Puss in Boots (1988). The second is a

negative review of the movie Valentine (2001). These reviews can be
found at https://www.imdb.com/review/rw0606396/ and
https://www.imdb.com/review/rw0721861/, respectively.

Filename Score Binary Review Text
Label

train/pos/24_8.txt 8/10 Positive Although this was obviously a
low-budget production, the per-
formances and the songs in
this movie are worth seeing.
One of Walken’s few musical
roles to date. (he is a mar-
velous dancer and singer and
he demonstrates his acrobatic
skills as well - watch for the
cartwheel!) Also starring Ja-
son Connery. A great children’s
story and very likable charac-
ters.

train/neg/141_3.txt 3/10 Negative This stalk and slash turkey
manages to bring nothing new
to an increasingly stale genre.
A masked killer stalks young,
pert girls and slaughters them
in a variety of gruesome ways,
none of which are particularly
inventive. It’s not scary, it’s
not clever, and it’s not funny.
So what was the point of it?

Review 1: "I liked the movie. My friend liked it too."
Review 2: "I hated it. Would not recommend."

First, we need to create a vocabulary that maps each word to an id
that uniquely identifies it. Each of these numbers will be used as the
index in a list, so they must start at zero and grow by one for each word
in the vocabulary. For example, one possible vocabulary that encodes
the previous reviews is:

{'would': 0,
'hated': 1,
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