Deep Learning for Natural Language
Processing:

A Gentle Introduction

Mihai Surdeanu and Marco A. Valenzuela-Escarcega

Department of Computer Science
University of Arizona

Contents

List of illustrations page viii
List of tables xiii
Preface XV
Preface Xv
Introduction 1
1.1 What this Book Covers 3
1.2 What this Book Does Not Cover 5
1.3 Deep Learning Is Not Perfect 6
1.4 Mathematical Notations 7
The Perceptron 9
2.1 Machine Learning Is Easy 9
2.2 Use Case: Text Classification 12
2.3 Evaluation Measures for Text Classification 13
2.4 The Perceptron 16
2.5 Voting Perceptron 24
2.6 Average Perceptron 26
2.7 Drawbacks of the Perceptron 28
2.8 Historical Background 31
2.9 References and Further Readings 32
2.10 Summary 32
Logistic Regression 33
3.1 The Logistic Regression Decision Function and

Learning Algorithm 33
3.2 The Logistic Regression Cost Function 35
3.3 Gradient Descent 38
3.4 Deriving the Logistic Regression Update Rule 43

3.5 From Binary to Multiclass Classification 46

iii

iv

Contents

3.6 Evaluation Measures for Multiclass Text Classifi-
cation

3.7 Drawbacks of Logistic Regression

3.8 Historical Background

3.9 References and Further Readings

3.10 Summary

Implementing Text Classification Using Perceptron

and LR

4.1 Binary Classification

4.2

4.3

4.1.1 Large Movie Review Dataset

4.1.2 Bag-of-words Model

4.1.3 Perceptron

4.1.4 Binary Logistic Regression from Scratch
4.1.5 Binary Logistic Regression Utilizing PyTorch
Multiclass Classification

4.2.1 AG News Dataset

4.2.2 Preparing the Dataset

4.2.3 Multiclass Logistic Regression Using PyTorch
Summary

Feed Forward Neural Networks

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Architecture of Feed Forward Neural Networks
Learning Algorithm for Neural Networks

The Equations of Back-propagation
Drawbacks of Neural Networks (So Far)
Historical Background

References and Further Readings

Summary

Best Practices in Deep Learning

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Mini-batching

Other Optimization Algorithms

Other Activation Functions

Cost Functions

Regularization

Dropout

Temporal Averaging

Parameter Initialization and Normalization
References and Further Readings
Summary

49
92
53
o4
54

55
96
56
56
60
63
66
69
69
69
74
(0]

7
79
82
84
90
91
92
92

93

93

97
101
104
107
109
111
112
114
115

10

Contents

Implementing Text Classification with Feed Forward

Networks

7.1 Data

7.2 Fully-Connected Neural Network

7.3 Training

7.4 Summary

Distributional Hypothesis and Representation Learn-

ing

8.1 Traditional Distributional Representations

8.2 Matrix Decompositions and Low-rank Approxima-
tions

8.3 Drawbacks of Rep. Learning Using Low-Rank
Approx.

8.4 The Word2vec Algorithm

8.5 Drawbacks of the Word2vec Algorithm

8.6 Historical Background

8.7 References and Further Readings

8.8 Summary

Implementing Text Classification Using Word Em-
beddings

9.1

9.2

9.3

Pre-trained Word Embeddings

9.1.1 Word Similarity

9.1.2 Word Analogies

9.1.3 Looking Under the Hood

9.1.4 Word Similarity from Scratch

9.1.5 Word Analogies from Scratch

Text Classification with Pretrained Word Embed-
dings

Summary

Recurrent Neural Networks

10.1
10.2
10.3
10.4
10.5

10.6

Vanilla Recurrent Neural Networks

Deep Recurrent Neural Networks

The Problem with Simple RNNs: Vanishing Gradient

Long Short-Term Memory Networks

Conditional Random Fields

10.5.1 Training a CRF with the Forward Algorithm

10.5.2 Applying the CRF Using the Viterbi
Algorithm

Drawbacks of Recurrent Neural Networks

116
117
119
120
125

127
128

130

133
134
141
141
143
143

144
144
146
147
148
149
151

152
158

159
160
162
163
164
168
170

176
177

vi

11

12

13

14

15

Contents

10.7 Historical Background
10.8 References and Further Readings
10.9 Summary

Implementing POS Tagging Using RINNs
11.1 Part-of-speech Tagging
11.2 Summary

Contextualized Embeddings and Transformer Net-
works
12.1 Architecture of a Transformer Layer
12.1.1 Positional Embeddings
12.1.2 Self Attention
12.1.3 Multiple Heads
12.1.4 Add and Normalize and Feed Forward Layers
12.2 Sub-word Tokenization
12.3 Training a Transformer Network
12.3.1 Pre-training
12.3.2 Fine-tuning
12.4 Drawbacks of Transformer Networks
12.5 Historical Background
12.6 References and Further Readings
12.7 Summary

Using Transformers with the Hugging Face Library
13.1 Tokenization

13.2 Text Classification

13.3 Part-of-speech Tagging

13.4 Summary

Encoder-decoder Methods

14.1 BLEU: an Evaluation Measure for Machine Trans-
lation

14.2 A First Sequence-to-sequence Architecture

14.3 Sequence-to-sequence with Attention

14.4 Transformer-based Encoder-decoder Architectures

14.5 Drawbacks of Encoder-decoder Methods

14.6 Historical Background

14.7 References and Further Readings

14.8 Summary

Implementing Encoder-decoder Methods
15.1 Translating English to Romanian

178
179
179

180
180
191

192
193
196
197
200
201
201
203
203
205
207
207
208
209

210
211
212
220
229

231

232
235
237
241
243
244
244
244

246
246

16

Appendiz A Overview of the Python Language and Key

Appendir B Character Encodings: ASCII and Unicode

Contents

15.2 Implementation of Greedy Generation

15.3 Fine-tuning Romanian to English Translation
15.4 Using a Previously Saved Model

15.5 Summary

Neural Architectures for NLP Applications
16.1 Text Classification
16.2 Part-of-speech Tagging
16.3 Named Entity Recognition
16.4 Dependency Parsing
16.5 Relation Extraction
16.6 Question Answering
16.6.1 Extractive Question Answering
16.6.2 Multiple-choice Question Answering
16.7 Machine Translation
16.8 Summary

Libraries
A.1 Python
A.1.1 Containers
A.1.2 String Formatting
A.1.3 Functions
A.1.4 Classes and Objects
A.1.,5 Context Managers
A2 NumPy
A.2.1 Arrays
A.2.2 Vectorized Operations
A.2.3 Indexing
A.2.4 Broadcasting
A.2.5 A Few Built-in NumPy Methods
A.3 PyTorch
A.3.1 PyTorch Tensors
A.3.2 Modules
A.3.3 GPU Usage in PyTorch

Bibliography
Index

vii

252
254
260
261

262
262
265
269
271
277
282
283
285
287
290

293
293
294
299
300
304
306
306
307
309
311
312
314
315
315
316
318

319

327
343

2.1

2.2

2.3

2.4

2.5

2.6

3.1
3.2
3.3
3.4
3.5

5.1

[lustrations

A wonderful children’s book that introduces the fundamen-
tals of machine learning: Where’s My Mom, by Julia Don-
aldson and Axel Scheffler (Donaldson and Scheffler, 2008).

The butterfly tries to help the little monkey find her mom,
but fails initially (Donaldson and Scheffler, 2008).

A depiction of a biological neuron, which captures input
stimuli through its dendrites and produces an activation
along its axon and synaptic terminals (left), and its com-
putational simplification, the perceptron (right).
Visualization of the perceptron learning algorithm: (a) in-
correct classification of the vector x with the label Yes, for
a given weight vector w; and (b) x lies on the correct side
of the decision boundary after x is added to w.

An example of a binary classification task, and a voting
perceptron that aggregates two imperfect perceptrons. The
voting algorithm classifies correctly all the data points by
requiring two votes for the x class to yield a x decision.
The decision boundary of the voting perceptron is shown in
red.

Visualization of the XOR function operating over two vari-
ables, and y. The dark circles indicate that the XOR out-
put is 1; the clear circles stand for 0.

The logistic function.

Plot of the function f(z) = (z + 1)% + 1.

Plot of the function f(x) = xsin(z)? + 1.

Multiclass logistic regression.

Example of a two-dimensional decision boundary for a 4-
class logistic regression classifier.

Decision boundary of a non-linear classifier.

viii

10

10

17

21

25

29
34
39
41
47

53
78

5.2
5.3

5.4
9.5

6.1

6.2

6.3
6.4

8.1

8.2

8.3

9.1

10.1

Illustrations ix

Fully-connected feed-forward neural network architecture. 78
A feed-forward neural network with linear activation func-

tions is a linear classifier. 81
Visual helper for Equation 5.5. 87

Visualization of the vanishing gradient problem for the logis-
tic function: changes in x yield smaller and smaller changes
in y at the two ends of the function, which means that %o
approaches zero in the two extremes. 89
Tllustration of momentum: sled 1 is more likely to get stuck
in the ravine than sled 2, which starts farther up the hill,
and carries momentum when it enters the ravine. 98
Comparison of the tanh (red continuous line) and logistic
(blue dashed line) functions. The derivative of the tanh is
larger than the derivative of the logistic for input values
around zero. 101
The ReLU (a) and Leaky ReLU (b) activation functions. 102
A simple neural network (a), and two views of it after dropout
is applied (b and c). Greyed out nodes and edges are dropped
out and, thus, ignored during the corresponding forward
pass and back-propagation in (b) and (c). 110
Summary of the four matrices in the singular value decom-
position equation: C = ULVT. The empty rectangles with
dashed lines indicate which elements are zeroed out under
the low-rank approximation. 132
An illustration of the word2vec algorithm, the skip-gram
variant, for the word bagel in the text: A bagel and cream
cheese (also known as bagel with cream cheese) is a common
food pairing in American cuisine. Blue indicates “input” vec-
tors; red denotes “output” vectors. The algorithm clusters
together output vectors for the words in the given context
window (e.g., cream and cheese) with the corresponding in-
put vector (bagel), and pushes away output vectors for words
that do not appear in its proximity (e.g., computer and cat).

135
Two-dimensional projection of 1000-dimensional vectors learned
by word2vec for countries and their capitals (Mikolov et al.,
2013a). 140
GloVe embedding corresponding to the word house, found
in the GloVe file glove.6B.50d.txt. We have broken the
vector in several lines for display purposes, but this is a
single line in the text file. 145
“Vanilla” recurrent neural network, where s; are state vec-
tors, x; are input vectors, and y; are output vectors. R and

10.2
10.3
10.4
10.5

10.6
10.7

10.8

12.1

12.2

12.3
12.4

13.1

13.2

14.1

Illustrations

O are functions that compute the next state and the current
output vector, respectively.

Stacked or “deep” recurrent neural network.

Bidirectional recurrent neural network.

Intuition behind the LSTM architecture.

Example of a binary gate (left) and gate with real-valued
elements (right).

Conditional random fields architecture on top of an RNN.
Lattice of possible tag assignments for the example sen-
tence from Figure 10.6. For simplicity, we only show four
of the possible part-of-speech tags: DET - determiner, NOUN -
common noun (either singular or plural), VERB - verb (any
tense), and ADJ - adjective. The thick (green) lines indicate
the correct path in the lattice; the dashed (red) lines indi-
cate the incorrect path suggested by the first interpretation
of the garden-path sentence.

A simple lattice for the walkthrough example of the forward
algorithm.

Intuition behind transformer networks: each output embed-
ding is a weighted average of all input embeddings in the
context.

A transformer network consists of multiple layers, where
each layer performs a weighted average of its input embed-
dings.

Architecture of an individual transformer layer.

Input example for the next sentence prediction pre-training
task. [SEP] is a special separator token used to indicate end
of sentence. The [CLS] token stands for class, and is used
to train the binary classifier, which indicates if sentence B
follows sentence A in text or not. The ## marker indicates
that the corresponding token is a subword token that should
be appended to the token to its left.

Confusion matrix corresponding to the LSTM-based part-
of-speech tagger developed in Chapter 11.

Confusion matrix corresponding to the transformer-based
part-of-speech tagger.

An encoder-decoder example for machine translation from
English to Romanian, where both encoder and decoder are
implemented using RNNs. Two virtual tokens, </s> and
<s>, indicate end of sentence and beginning of sentence,
respectively. The decoder uses the representation generated
for the entire input sequence, i.e., the hidden state vector ¢

160
163
164
165

166
168

169

173

194

194
195

205

229

230

14.2

14.3

14.4

14.5

16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8

Illustrations

of the </s> token in the English sentence, to generate the
equivalent Romanian words.

The Vauquois triangle that describes the hierarchy of ma-
chine translation approaches.

The architecture of a single decoder cell in a sequence-to-
sequence architecture with attention. The encoder for this
architecture is a bidirectional RNN that uses the input word
embeddings, x; to x,, to produce a sequence of hidden
states, h; to h,. The decoder is a left-to-right RNN. To
avoid confusion between the source and target languages
we use y; to indicate the input representation of the target
word decoded at position ¢, and s; to indicate the hidden
state produced by the decoder cell at position ¢. ¢; indicates
the custom encoding vector of the source text for position ¢
in the decoder.

Example of attention weights from (Bahdanau et al., 2015).
The x-axis corresponds to words in the source language (En-
glish); the y-axis contains the decoder words from the target
language (French). Each cell visualizes an attention weight
« between the corresponding words, where black indicates
0 and white indicates 1.

Architecture of an individual transformer decoder layer. The
decoder layer follows closely the architecture of the encoder
layer (see Figure 12.3), but it includes two new components
(shown in grey in the figure): a component that implements
an attention mechanism between the encoded and the de-
coded texts, and an additional add-and-normalize layer that
normalizes the outputs of the encoder-decoder attention
component.

Deep averaging network (DAN) for text classification.

An acceptor biRNN for text classification.

Transformer network for text classification.

A bidirectional transducer RNN for sequence modeling.
Transformer network transducer for sequence modeling.

A sample sentence parsed with universal dependencies.
Dependency parsing as sequence modeling. The classifier
that predicts the relative position of the head token is shown
in red; the classifier that predicts dependency labels is shown
in cyan.

An example of a maximum spanning tree (in red) for a hy-
pothetical graph containing two head predictions for each
sentence word. Each edge shows a (hypothetical) predic-
tion score; these scores are included to emphasize that the

Xi

232

233

238

240

241
263
264
264
267
267
272

274

xii Illustrations

maximum spanning tree has the highest overall score of all

possible spanning trees. 278
16.9 Examples of relation mentions from the TACRED corpus,

from https://nlp.stanford.edu/projects/tacred/. The first

example is an instance of the per:city_of_death relation,

which holds between a person and the city where this person

died; the second example is a mention of the org: founded_by

relation, which holds between an organization and the per-

son who founded it. The last example is not a relation, ac-

cording to the TACRED relation schema. 279
16.10 Relation extraction architecture with mention pooling. In

this example, the first entity spans two tokens, while the

second entity spans one. We omit the [CLS] and [SEP] to-

kens for simplicity. 281
16.11 Relation extraction architecture with entity markers. 282
16.12 Sample passage and question-answer pairs from the SQuAD

dataset. 283

16.13 Example of an unanswerable question from the SQuAD dataset. 283
16.14 Example of a multiple-choice question from the QASC dataset,

and the necessary facts to answer it. 286
16.15 Examples of three of the 18 NLP problems that T5 trains

on, all of which are formulated as text-to-text transfer. The

three tasks are: English-to-German translation (green), sum-

marization (yellow), and question answering (cyan). 288
16.16 Example data point for T5 pre-training. 288

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

4.1

Tables

An example of a possible feature matrix X (left table) and
a label vector y (right table) for three animals in our story:
elephant, snake, and monkey.

Example output of a hypothetical classifier on five evalu-
ation examples and two labels: positive (+) and negative
(—). The “Gold” column indicates the correct labels for the
five texts; the “Predicted” column indicates the classifier’s
predictions.

Confusion matrix showing the four possible outcomes in bi-
nary classification, where + indicates the positive label and
— indicates the negative label.

The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with three
examples.

The perceptron learning process for the dataset shown in
Table 2.4, for one pass over the training data. Both w and
b are initialized with Os.

The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with four
examples. In this example, the only feature available is the
total number of positive words in a review.

Rules of computation for a few functions necessary to derive
the logistic regression update rules. In these formulas, f and
g are functions, a and b are constants, x is a variable.
Example of a confusion matrix for three-class classification.
The dataset contains 1,000 data points, with 2 data points
in class C1, 100 in class C'2, and 898 in class C3.

Two examples of movie reviews from IMDb. The first is
a positive review of the movie Puss in Boots (1988). The
second is a negative review of the movie Valentine (2001).

xiii

12

14

14

22

23

24

45

49

xiv Tables

These reviews can be found at https://www.imdb.com/

review/rw0606396/ and https://www.imdb.com/review/

rw0721861/, respectively. 57
6.1 Three cost functions commonly used in NLP tasks. m indi-

cates the number of data points in the training dataset (or

the mini-batch, in the case of mini-batch gradient descent).

y; is the correct (or gold) label for example 3. 105
12.1 A self-attention walkthrough example for computing the

contextual embedding z; for the word bank in the text bank

of the river. 199
12.2 Two examples of NLP application inputs formatted for trans-

former networks. In the first example, the classifier on top

of the [CLS] embedding should predict the Positive label;

in the second case the prediction is Entailment. 206
14.1 A simple example of the BLEU evaluation measure. The

underlined words indicate matches between the candidate

translation and the reference. The BLEU score for this can-

didate translation is 3/6. 233
14.2 The BLEU measure allows multiple reference translations.

In such cases, the highest overlap is used. In this example,

the BLEU score is 4/6 due to the higher overlap with the

second reference translation. 234
14.3 Simple overlap can be abused by repeatedly generating the

same word from the reference translation. BLEU prevents

this by allowing each word from a reference translation to

be used just once. Naive overlap would score this candidate

translation 6/6; BLEU scores it 2/6. 234
16.1 Universal part-of-speech tags. 265
16.2 Example annotations for the BIO, IO, and BILOU anno-

tation schemas, and the CoNLL named entity types. Be-

cause in the IO representation the only label prefix is I-,

it sometimes omitted completely, e.g., I-PER becomes PER.

We show the prefix here for clarity. 270
16.3 Some universal dependency types from https://universaldependencies.

org/u/dep/all.html. See this URL for the complete list of

dependency types. 273
B.1 ASCII control characters. 320
B.2 ASCII printable characters. 321

B.3 The four normalization forms in Unicode. 325

Preface

Upon encountering this publication, one might ask the obvious question,
“Why do we need another deep learning and natural language process-
ing book?” Several excellent ones have been published, covering both
theoretical and practical aspects of deep learning and its application to
language processing. However, from our experience teaching courses on
natural language processing, we argue that, despite their excellent qual-
ity, most of these books do not target their most likely readers. The
intended reader of this book is one who is skilled in a domain other
than machine learning and natural language processing and whose work
relies, at least partially, on the automated analysis of large amounts of
data, especially textual data. Such experts may include social scientists,
political scientists, biomedical scientists, and even computer scientists
and computational linguists with limited exposure to machine learning.

Existing deep learning and natural language processing books gen-
erally fall into two camps. The first camp focuses on the theoretical
foundations of deep learning. This is certainly useful to the aforemen-
tioned readers, as one should understand the theoretical aspects of a
tool before using it. However, these books tend to assume the typical
background of a machine learning researcher and, as a consequence, I
have often seen students who do not have this background rapidly get
lost in such material. To mitigate this issue, the second type of book that
exists today focuses on the machine learning practitioner; that is, on how
to use deep learning software, with minimal attention paid to the theo-
retical aspects. We argue that focusing on practical aspects is similarly
necessary but not sufficient. Considering that deep learning frameworks
and libraries have gotten fairly complex, the chance of misusing them
due to theoretical misunderstandings is high. We have commonly seen
this problem in our courses, too.

XV

xvi Preface

This book, therefore, aims to bridge the theoretical and practical as-
pects of deep learning for natural language processing. We cover the
necessary theoretical background and assume minimal machine learning
background from the reader. Our aim is that anyone who took intro-
ductory linear algebra and calculus courses will be able to follow the
theoretical material. To address practical aspects, this book includes
pseudo code for the simpler algorithms discussed and actual Python
code for the more complicated architectures. The code should be un-
derstandable by anyone who has taken a Python programming course.
After reading this book, we expect that the reader will have the nec-
essary foundation to immediately begin building real-world, practical
natural language processing systems, and to expand their knowledge by
reading research publications on these topics.

1

Introduction

Machine learning (ML) has become a pervasive part of our lives. For
example, Pedro Domingos, a machine learning faculty member at Uni-
versity of Washington, discusses a typical day in the life of a 21st century
person, showing how she is accompanied by machine learning applica-
tions throughout the day from early in the morning (e.g., waking up
to music that the machine matched to her preferences) to late at night
(e.g., taking a drug designed by a biomedical researcher with the help
of a robot scientist) (Domingos, 2015). Of all approaches in ML, deep
learning has seen explosive success in the last decade, and today it is
ubiquitous in real-world applications of ML. At a high level, deep learn-
ing is the subfield of ML that focuses on artificial neural networks, which
were “inspired by information processing and distributed communication
nodes in biological systems.”!

Natural language processing (NLP) is an important inter-disciplinary
field that lies at the intersection of linguistics, computer science, and
machine learning. In general, NLP deals with programming comput-
ers to process and analyze large amounts of natural language data.?
As an example of its usefulness, consider that PubMed, a repository of
biomedical publications built by the National Institutes of Health,? has
indexed more than one million research publications per year since 2010
(Vardakas et al., 2015). Clearly, no human reader (or team of readers)
can process so much material. We need machines to help us manage
this vast amount of knowledge. As one example out of many, an inter-
disciplinary collaboration that included our research team showed that

I https://en.wikipedia.org/wiki/Deep_learning, accessed on May 10th, 2023

2 https://en.wikipedia.org/wiki/Natural_language_processing, accessed on
May 10th, 2023

3 https://www.ncbi.nlm.nih.gov/pubmed/

2 Introduction

machine reading discovers an order of magnitude more protein signaling
pathways* in biomedical literature than exist today in humanly-curated
knowledge bases (Valenzuela-Escércega et al., 2018). Only 60 to 80%
of these automatically-discovered biomedical interactions are correct (a
good motivation for not letting the machines work alone!). But, without
NLP, all of these would remain “undiscovered public knowledge” (Swan-
son, 1986), limiting our ability to understand important diseases such as
cancer. Other important and more common applications of NLP include
web search, machine translation, and speech recognition, all of which
have had a major impact in almost everyone’s life.

Since approximately 2014, the “deep learning tsunami” has hit the
field of NLP (Manning, 2015) to the point that, today, a majority of
NLP publications use deep learning. For example, the percentage of deep
learning publications at four top NLP conferences has increased from un-
der 40% in 2012 to 70% in 2017 (Young et al., 2018). There is good reason
for this domination: deep learning systems are relatively easy to build
(due to their modularity), and they perform better than many other ML
methods.5 For example, the site nlpprogress.com, which keeps track
of state-of-the-art results in many NLP tasks, is dominated by results of
deep learning approaches.

This book explains deep learning methods for NLP, aiming to cover
both theoretical aspects (e.g., how do neural networks learn?) and prac-
tical ones (e.g., how do I build one for language applications?).

The goal of the book is to do this while assuming minimal techni-
cal background from the reader. The theoretical material in the book
should be completely accessible to the reader who took linear algebra,
calculus, and introduction to probability theory courses, or who is will-
ing to do some independent work to catch up. From linear algebra, the
most complicated notion used is matrix multiplication. From calculus,
we use differentiation and partial differentiation. From probability the-
ory, we use conditional probabilities and independent events. The code
examples should be understandable to the reader who took a Python
programming course.

Starting nearly from scratch aims to address the background of what
we think will be the typical reader of this book: an expert in a discipline
other than ML and NLP, but who needs ML and NLP for her job. There

4 Protein signaling pathways “govern basic activities of cells and coordinate
multiple-cell actions”. Errors in these pathways “may cause diseases such as
cancer”. See: https://en.wikipedia.org/wiki/Cell_signaling

5 However, they are not perfect. See Section 1.3 for a discussion.

1.1 What this Book Covers 3

are many examples of such disciplines: the social scientist who needs
to mine social media data, the political scientist who needs to process
transcripts of political discourse, the business analyst who has to parse
company financial reports at scale, the biomedical researcher who needs
to extract cell signaling mechanisms from publications, etc. Further, we
hope this book will also be useful to computer scientists and computa-
tional linguists who need to catch up with the deep learning wave. In
general, this book aims to mitigate the impostor syndrome (Dickerson,
2019) that affects many of us in this era of rapid change in the field
of machine learning and artificial intelligence (this author certainly has
suffered and still suffers from it!®).

1.1 What this Book Covers

This book interleaves chapters that discuss the theoretical aspects of
deep learning for NLP with chapters that focus on implementing the
previously discussed theory. For the implementation chapters we will
use PyTorch, a deep learning library that is well suited for NLP appli-
cations.”

Chapter 2 begins the theory thread of the book by attempting to con-
vince the reader that machine learning is easy. We use a children’s book
to introduce key ML concepts, including our first learning algorithm.
From this example, we start building several basic neural networks. In
the same chapter, we formalize the perceptron algorithm, the simplest
neural network. In Chapter 3, we transform the perceptron into a logistic
regression network, another simple neural network that is surprisingly
effective for NLP. In Chapters 5 and 6 we generalize these algorithms
into feed forward neural networks, which operate over arbitrary combi-
nations of artificial neurons.

The astute historian of deep learning will have observed that deep
learning had an impact earlier on image processing than on NLP. For
example, in 2012, researchers at University of Toronto reported a massive
improvement in image classification when using deep learning (Krizhevsky
et al., 2012). However, it took more than two years to observe similar per-
formance improvements in NLP. One explanation for this delay is that

6 Even the best of us suffer from it. Please see Kevin Knight’s description of his
personal experience involving tears (not of joy) in the introduction of this
tutorial (Knight, 2009).

7 https://pytorch.org

4 Introduction

image processing starts from very low-level units of information (i.e.,
the pixels in the image), which are then hierarchically assembled into
blocks that are more and more semantically meaningful (e.g., lines and
circles, then eyes and ears, in the case of facial recognition). In contrast,
NLP starts from words, which are packed with a lot more semantic in-
formation than pixels and, because of that, are harder to learn from. For
example, the word house packs a lot of common-sense knowledge (e.g.,
houses generally have windows and doors and they provide shelter). Al-
though this information is shared with other words (e.g., building), a
learning algorithm that has seen house in its training data will not know
how to handle the word building in a new text to which it is exposed
after training.

Chapter 8 addresses this limitation. In it, we discuss word2vec, a
method that transforms words into a numerical representation that cap-
tures (some) semantic knowledge. This technique is based on the obser-
vation that “you shall know a word by the company it keeps” (Firth,
1957); that is, it learns these semantic representations from the con-
text in which words appear in large collections of texts. Under this for-
malization, similar words such as house and building will have similar
representations, which will improve the learning capability of our neu-
ral networks. An important limitation of word2vec is that it conflates all
senses of a given word into a single numerical representation. That is, the
word bank gets a single numerical representation regardless of whether
its current context indicates a financial sense, e.g., Bank of London, or
a geological one, e.g., bank of the river.

Chapter 10 introduces sequence models for processing text. For exam-
ple, while the word book is syntactically ambiguous (i.e., it can be either
a noun or a verb), the information that it is preceded by the determiner
the in a text gives strong hints that this instance of it is a noun. In
this chapter, we cover recurrent neural network architectures designed
to model such sequences, including long short-term memory networks
and conditional random fields.

The word2vec limitation mentioned above is addressed in Chapter 12
with contextualized embeddings that are sensitive to a word’s surround-
ings. These contextualized embeddings are built using transformer net-

’ a mechanism that computes the repre-

works that rely on “attention,’
sentation of a word using a weighted average of the representations of
the words in its context. These weights are learned and indicate how
much "attention” each word should pay to each of its neighbors (hence

the name).

1.2 What this Book Does Not Cover 5

Chapter 14 discusses encoder-decoder methods (i.e., methods tailored
for NLP tasks that require the transformation of one text into another).
The most common example of such a task is machine translation, for
which the input is a sequence of words in one language, and the output
is a sequence that captures the translation of the original text in a new
language.

Chapter 16 shows how several natural language processing applica-
tions such as part-of-speech tagging, syntactic parsing, relation extrac-
tion, question answering, and machine translation can be robustly im-
plemented using the neural architectures introduced previously.

As mentioned before, the theoretical discussion in these chapters is
interleaved with chapters that discuss how to implement these notions
in PyTorch. Chapter 4 shows an implementation of the perceptron and
logistic regression algorithms introduced in Chapters 2 and 3 for a text
classification application. Chapter 7 presents an implementation of the
feed forward neural network introduced in Chapters 5 and 6 for the
same application. Chapter 9 enhances the previous implementation of a
neural network with the continuous word representations introduced in
Chapter 8.

Chapter 11 implements a part-of-speech tagger using the recurrent
neural networks introduced in Chapter 10. Chapter 13 shows the im-
plementation of a similar part-of-speech tagger using the contextualized
embeddings generated by a transformer network. The same chapter also
shows how to use transformer networks for text classification.

Lastly, Chapter 15 implements a machine translation application using
some of the encoder-decoder methods discussed in Chapter 14.

We recommend that the reader not familiar with the Python pro-
gramming language first read Appendixes A and B for a brief overview
of the programming language and pointers on how to handle interna-
tional characters represented in Unicode in Python.

1.2 What this Book Does Not Cover

It is important to note that deep learning is only one of the many sub-
fields of machine learning. In his book, Domingos provides an intuitive
organization of these subfields into five “tribes” (Domingos, 2015):

Connectionists: This tribe focuses on machine learning methods that

6 Introduction

(shallowly) mimic the structure of the brain. The methods described
in this book fall into this tribe.

Evolutionaries: The learning algorithms adopted by this group of ap-
proaches, also known as genetic algorithms, focus on the “survival of
the fittest”. That is, these algorithms “mutate” the “DNA“ (or param-
eters) of the models to be learned, and preserve the generations that
perform the best.

Symbolists: The symbolists rely on inducing logic rules that explain
the data in the task at hand. For example, a part-of-speech tagging
system in this camp may learn a rule such as if previous word is the,
then the part of the speech of the next word is noun.

Bayesians: The Bayesians use probabilistic models such as Bayesian
networks. All these methods are driven by Bayes’ rule, which describes
the probability of an event.

Analogizers: The analogizers’ methods are motivated by the obser-
vation that “you are what you resemble”. For example, a new email
is classified as spam because it uses content similar to other emails
previously classified as such.

It is beyond the goal of this book to explain these other tribes in detail.
For a more general description of machine learning, the interested reader
should look to other sources such as Domingos’ book, or Hal Daumé I1I’s
excellent Course in Machine Learning.®

Even from the connectionist tribe, we focus only on neural methods
that are relevant for fundamental language processing and which we
hope serve as a solid stepping stone towards research in NLP.? Other
important, more advanced topics are not discussed. These include: do-
main adaptation, reinforcement learning, dialog systems, and methods
that process multi-modal data such as text and images.

1.3 Deep Learning Is Not Perfect

While deep learning has pushed the performance of many machine learn-
ing applications beyond what we thought possible just ten years ago, it is
certainly not perfect. Gary Marcus and Ernest Davis provide a thought-
ful criticism of deep learning in their book, Rebooting AT (Marcus and
Davis, 2019). Their key arguments are:

8 http://ciml.info

9 Most of methods discussed in this book are certainly useful and commonly used
outside of NLP as well.

1.4 Mathematical Notations 7

Deep learning is opaque: While deep learning methods often learn
well, it is unclear what is learned, i.e., what the connections between
the network neurons encode. This is dangerous, as biases and bugs
may exist in the models learned, and they may be discovered only
too late, when these systems are deployed in important real-world
applications such as diagnosing medical patients, or self-driving cars.

Deep learning is brittle: It has been repeatedly shown both in the
machine learning literature and in actual applications that deep learn-
ing systems (and for that matter most other machine learning ap-
proaches) have difficulty adapting to new scenarios they have not seen
during training. For example, self-driving cars that were trained in reg-
ular traffic on US highways or large streets do not know how to react
to unexpected scenarios such as a firetruck stopped on a highway.9

Deep learning has no common sense: An illustrative example for
this limitation is that object recognition classifiers based on deep learn-
ing tend to confuse objects when they are rotated in three-dimensional
space, e.g., an overturned bus in the snow is confused with a snow
plow. This happens because deep learning systems lack the common-
sense knowledge that some object features are inherent properties of
the category itself regardless of the object position, e.g., a school bus
in the US usually has a yellow roof, while some features are just con-
tingent associations, e.g., snow tends to be present around snow plows.
(Most) humans naturally use common sense, which means that we do
generalize better to novel instances, especially when they are outliers.

All the issues raised by Marcus and Davis remain largely unsolved today.

1.4 Mathematical Notations

While we try to rely on plain language as much as possible in this book,
mathematical formalisms cannot (and should not) be avoided. Where
mathematical notations are necessary, we rely on the following conven-
tions:

o We use lowercase characters such as z to represent scalar values, which
will generally have integer or real values.

e We use bold lowercase characters such as x to represent arrays (or
vectors) of scalar values, and x; to indicate the scalar element at posi-
tion ¢ in this vector. Unless specified otherwise, we consider all vectors

10 https://wuw.teslarati.com/tesla-model-s-firetruck-crash-details/

Introduction

to be column vectors during operations such as multiplication, even
though we show them in text as horizontal. We use [x;y] to indicate
vector concatenation. For example, if x = (1,2) and y = (3,4), then
x;y] = (1,2,3,4).

We use bold uppercase characters such as X to indicate matrices of
scalar values. Similarly, z;; points to the scalar element in the matrix
at row ¢ and column j. x; indicates the vector corresponding to the
entire row ¢ in matrix X.

We collectively refer to matrices of arbitrary dimensions as tensors. By
and large, in this book tensors will have dimension 1 (i.e., vectors) or
2 (matrices). Occasionally, we will run into tensors with 3 dimensions.
A word with an arrow on top refers to the distributional representation
or embedding vector corresponding to that word. For example, quéen
indicates the embedding vector for the word queen.

2
The Perceptron

This chapter covers the perceptron, the simplest neural network archi-
tecture. In general, neural networks are machine learning architectures
loosely inspired by the structure of biological brains. The perceptron is
the simplest example of such architectures: it contains a single artificial
neuron.

The perceptron will form the building block for the more compli-
cated architectures discussed later in the book. However, rather than
starting directly with the discussion of this algorithm, we will start with
something simpler: a children’s book and some fundamental observations
about machine learning. From these, we will formalize our first machine
learning algorithm, the perceptron. In the following chapters, we will
improve upon the perceptron with logistic regression (Chapter 3), and
deeper feed forward neural networks (Chapter 5).

2.1 Machine Learning Is Easy

Machine learning is easy. To convince you of this, let us read a chil-
dren’s story (Donaldson and Scheffler, 2008). The story starts with a
little monkey that lost her mom in the jungle (Figure 2.1). Luckily, the
butterfly offers to help, and collects some information about the mother
from the little monkey (Figure 2.2). As a result, the butterfly leads the
monkey to an elephant. The monkey explains that her mom is neither
gray nor big, and does not have a trunk. Instead, her mom has a “tail
that coils around trees”. Their journey through the jungle continues un-
til, after many mistakes (e.g., snake, spider), the pair end up eventually
finding the monkey’s mom, and the family is happily reunited.

In addition to the exciting story that kept at least a toddler and

10 The Perceptron

Figure 2.1 A wonderful children’s book that introduces the fundamentals

of machine learning: Where’s My Mom, by Julia Donaldson and Axel
Scheffler (Donaldson and Scheffler, 2008).

Little monkey: “I’ve lost my mom!”

“Hush, little monkey, don’t you cry. I’ll help you find her,” said
butterfly. “Let’s have a think, How big is she?”

“She’s big!” said the monkey. “Bigger than me.”

”Bigger than you? Then I've seen your mom. Come, little mon-
key, come, come, come.”

“No, no, no! That’s an elephant.”

Figure 2.2 The butterfly tries to help the little monkey find her mom,
but fails initially (Donaldson and Scheffler, 2008).

this parent glued to its pages, this book introduces several fundamental
observations about (machine) learning.

First, objects are described by their properties, also known in ma-
chine learning terminology as features. For example, we know that sev-
eral features apply to the monkey mom: isBig, hasTail, hasColor,

2.1 Machine Learning Is Fasy 11

numberOfLimbs, etc. These features have values, which may be Boolean
(true or false), a discrete value from a fixed set, or a number. For ex-
ample, the values for the above features are: false, true, brown (out of
multiple possible colors), and 4. As we will see soon, it is preferable to
convert these values into numbers because most of the machine learning
can be reduced to numeric operations such as additions and multiplica-
tions. For this reason, Boolean features are converted to 0 for false, and
1 for true. Features that take discrete values are converted to Boolean
features by enumerating over the possible values in the set. For exam-
ple, the color feature is converted into a set of Boolean features such as
hasColorBrown with the value true (or 1), hasColorRed with the value
false (or 0), etc.

Second, objects are assigned a discrete label, which the learning algo-
rithm or classifier (the butterfly has this role in our story) will learn how
to assign to new objects. For example, in our story we have two labels:
isMyMom and isNotMyMom. When there are two labels to be assigned
such as in our story, we call the problem at hand a binary classification
problem. When there are more than two labels, the problem becomes a
multiclass classification task. Sometimes, the labels are continuous nu-
meric values, in which case the problem at hand is called a regression
task. An example of such a regression problem would be learning to fore-
cast the price of a house on the real estate market from its properties,
e.g., number of bedrooms, and year it was built. However, in NLP most
tasks are classification problems (we will see some simple ones in this
chapter, and more complex ones starting with Chapter 10).

To formalize what we know so far, we can organize the examples the
classifier has seen (also called a training dataset) into a matrix of features
X and a vector of labels y . Each example seen by the classifier takes a
row in X, with each of the features occupying a different column. Each y;
is the label of the corresponding example x;. Table 2.1 shows an example
of a possible matrix X and label vector y for three animals in our story.

The third observation is that a good learning algorithm aggregates
its decisions over multiple examples with different features. In our story
the butterfly learns that some features are positively associated with
the mom (i.e., she is likely to have them), while some are negatively
associated with her. For example, from the animals the butterfly sees
in the story, it learns that the mom is likely to have a tail, fur, and
four limbs, and she is not big, does not have a trunk, and her color is
not gray. We will see soon that this is exactly the intuition behind the
simplest neural network, the perceptron.

12 The Perceptron

Table 2.1 An example of a possible feature matriz X (left table) and a
label vector'y (right table) for three animals in our story: elephant,
snake, and monkey.

isBig hasTail hasTrunk hasColor numberOf

Brown Limbs Label
1 1 1 0 4 ::LsNotMyMom
isNotMyMom
0 1 0 0 0 isMyMom
0 1 0 1 4 Y

Lastly, learning algorithms produce incorrect classifications when not
exposed to sufficient data. This situation is called overfitting, and it is
more formally defined as the situation when an algorithm performs well
in training (e.g., once the butterfly sees the snake, it will reliably clas-
sify it as not the mom when it sees in the future), but poorly on unseen
data (e.g., knowing that the elephant is not the mom did not help much
with the classification of the snake). To detect overfitting early, machine
learning problems typically divide their data into three partitions: (a)
a training partition from which the classifier learns; (b) a development
partition that is used for the internal validation of the trained classi-
fier, i.e., if it performs poorly on this dataset, the classifier has likely
overfitted; and (c) a testing partition that is used only for the final, for-
mal evaluation. Machine learning developers typically alternate between
training (on the training partition) and validating what is being learned
(on the development partition) until acceptable performance is observed.
Once this is reached, the resulting classifier is evaluated (ideally once)
on the testing partition.

2.2 Use Case: Text Classification

In the remaining of this chapter, we will begin to leave the story of
the little monkey behind us, and change to a related NLP problem,
text classification, in which a classifier is trained to assign a label to a
text. This is an important and common NLP task. For example, email
providers use binary text classification to classify emails into spam or
not. Data mining companies use multiclass classification to detect how
customers feel about a product, e.g., like, dislike, or neutral. Search

2.8 Fvaluation Measures for Text Classification 13

engines use multiclass classification to detect the language a document
is written in before processing it.

Throughout the next few chapters, we will focus on text classification
for simplicity. We will consider only two labels for the next few chapters,
and we will generalize the algorithms discussed to multiclass classifica-
tion (i.e., more than two labels) in Chapter 6. After we discuss sequence
models (Chapter 10), we will introduce more complex NLP tasks such
as part-of-speech tagging and syntactic parsing.

For now, we will extract simple features from the texts to be classified.
That is, we will simply use the frequencies of words in a text as its
features. More formally, the matrix X, which stores the entire dataset,
will have as many columns as words in the vocabulary. Each cell z;;
corresponds to the number of times the word at column j occurs in the
example stored at row i. For example, the text This is a great great buy
will produce a feature corresponding to the word buy with value 1, one
for the word great with value 2, etc., while the features corresponding to
all the other words in the vocabulary that do not occur in this document
receive a value of 0. This feature design strategy is often referred to as
bag of words, because it ignores all the syntactic structure of the text,
and treats the text simply as a collection of independent words. We will
revisit this simplification in Chapter 10, where we will start to model
sequences of words.

2.3 Evaluation Measures for Text Classification

The simplest evaluation measure for text classification is accuracy, de-
fined as the proportion of evaluation examples that are correctly clas-
sified. For example, the accuracy of the hypothetical classifier shown
in Table 2.2 is 3/5 = 60% because the classifier was incorrect on two
examples (rows 2 and 4).

Using the four possible outcomes for binary classification summarized
in the matrix shown in Table 2.3, which is commonly referred to as a
confusion matrix, accuracy can be more formally defined as:

TP+TN
TP+ FN+ FP+TN

Accuracy = (2.1)

For example, for the classifier output shown in Table 2.2, TP = 2 (rows
1 and 5), TN =1 (row 3), FP =1 (row 4), and FN = 1 (row 2).
While accuracy is obviously useful, it is not always informative. In

14 The Perceptron

Table 2.2 Ezample output of a hypothetical classifier on five evaluation
examples and two labels: positive () and negative (—). The “Gold”
column indicates the correct labels for the five texts; the “Predicted”

column indicates the classifier’s predictions.

Gold Predicted

1+ +
2+ —
3 _ —
4 - -
5+ +

Table 2.3 Confusion matrix showing the four possible outcomes in
binary classification, where + indicates the positive label and —
indicates the negative label.

Classifier predicted + Classifier predicted —

Gold label is + True positive (TP) False negative (FN)
Gold label is — False positive (FP) True negative (TN)

problems where the two labels are heavily unbalanced, i.e., one is much
more frequent than the other, and we care more about the less frequent
label, a classifier that is not very useful may have a high accuracy score.
For example, assume we build a classifier that identifies high-urgency
Medicaid applications,! i.e., applications must be reviewed quickly due
to the patient’s medical condition. The vast majority of applications
are not high-urgency, which means they can be handled through the
usual review process. In this example, the positive class is assigned to
the high-urgency applications. If a classifier labels all applications as
negative (i.e., not high-urgency), its accuracy will be high because the
TN count dominates the accuracy score. For example, say that out of
1,000 applications only 1 is positive. Our classifier’s accuracy is then:

0999 — 0.999, or 99.9%. This high accuracy is obviously misleading

0+1+0+999
in any real-world application of the classifier.

1 Medicaid is a federal and state program in the United States that helps with
medical costs for some people with limited income and resources.

2.8 Fvaluation Measures for Text Classification 15

For such unbalanced scenarios, two other scores that focus on class
of interest (say, the positive class) are commonly used: precision and
recall. Precision (P) is the proportion of correct positive examples out
of all positives predicted by the classifier. Recall (R) is the proportion of
correct positive examples out of all positive examples in the evaluation
dataset. More formally:

TP
P= TP+ FP (2:2)
TP
TP+ FN (2:3)

For example, both the precision and recall of the above classifier are 0
because TP = 0 in its output. On the other hand, a classifier that pre-
dicts 2 positives, out of which only one is incorrect, will have a precision
of 1/2 = 0.5 and a recall of 1/1 = 1, which are clearly more informative
of the desired behavior.

Often it helps to summarize the performance of a classifier using a
single number. The F; score achieves this, as the harmonic mean of
precision and recall:

2PR

Fy = 2.4
'""P¥R (24)
For example, the F1 score for the previous example is: F} = 23%_??1 =

0.67. A reasonable question to ask here is why not use instead the sim-
pler arithmetic mean between precision and recall (£F£)
this overall score? The reason for choosing the more complicated har-

to generate

monic mean is that this formula is harder to game. For example, con-
sider a classifier that labels everything as positive. Clearly, this would
be useless in the above example of classifying high-urgency Medicaid
applications. This classifier would have a recall of 1 (because it did iden-
tify all the high-urgency applications), and a precision of approximately
0 (because everything else in the set of 1,000 applications is also la-
beled as high-urgency). The simpler arithmetic mean of the two scores
is approximately 0.5, which is an unreasonably high score for a classifier
that has zero usefulness in practice. In contrast, the F1 score of this
classifier is approximately 0, which is more indicative of the classifier’s
overall performance. In general, the F; score penalizes situations where
the precision and recall values are far apart from each other.
A more general form of the F1 score is:

16 The Perceptron

__PR__
(B°P)+ R
where (8 is a positive real value, which indicates that recall is 8 times

more important than precision. This generalized formula allows one to
compute a single overall score for situations when precision and recall are

Fs=(1+p% (2.5)

not treated equally. For example, in the high-urgency Medicaid example,
we may decide that recall is more important than precision. That is,
we are willing to inspect more incorrect candidates for high-urgency
processing as long as we do not miss the true positives. If we set § = 10
to indicate that we value recall as being 10 times more important than

precision, the classifier in the above example (P = 0.5 and R = 1) has
0.5x1
(100x0x.5)+1

to the classifier’s recall value (the important measure here) than the Fy

a Fg_yg score of: Fg_jg = 101 = 0.99, which is much closer
score.

We will revisit these measures in Chapter 3, where we will generalize
them to multiclass classification, i.e., to situations where the classifier
must produce more than two labels, and in Chapter 4, where we will
implement and evaluate multiple text classification algorithms.

2.4 The Perceptron

Now that we understand our first NLP task, text classification, let us
introduce our first classification algorithm, the perceptron. The percep-
tron was invented by McCulloch and Pitts (1943), and first implemented
by (Rosenblatt, 1958). Its aim was to mimic binary decisions made by a
single neuron. Figure 2.3 shows a depiction of a biological neuron,? and
Rosenblatt’s computational simplification, the perceptron. As the figure
suggests, the perceptron is the simplest possible artificial neural network.
We will generalize from this single-neuron architecture to networks with
an arbitrary number of neurons in Chapter 5.

The perceptron has one input for each feature of an example x, and
produces an output that corresponds to the label predicted for x. Impor-
tantly, the perceptron has a real-value weight vector w, with one weight
w; for each input connection i. Thus, the size of w is equal to the number
of features, or the number of columns in X. Further, the perceptron also

2 By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830

2.4 The Perceptron 17

Cell body

@ WZ @ decision

Figure 2.3 A depiction of a biological neuron, which captures input stim-
uli through its dendrites and produces an activation along its axon and
synaptic terminals (left), and its computational simplification, the per-
ceptron (right).

has a bias term, b, that is scalar (we will explain why this is needed later
in this section). The perceptron outputs a binary decision, let’s say Yes
or No (e.g., Yes, the text encoded in x contains a positive review for a
product, or No, the review is negative), based on the decision function
described in Algorithm 1. The w-x component of the decision function is
called the dot product of the vectors w and x. Formally, the dot product
of two vectors x and y is defined as:

X-y= Z TiYs (2.6)
i=1

where n indicates the size of the two vectors. In words, the dot product
of two vectors, x and y, is found by adding (¥), the values found by
multiplying each element of x with the corresponding value of y. In the
case of the perceptron, the dot product of x and w is the weighted sum
of the feature values in x, where each feature value z; is weighted by
w;. If this sum (offset by the bias term b, which we will discuss later) is
positive, then the decision is Yes. If it is negative, the decision is No.

Sidebar 2.1 The dot product in linear algebra

In linear algebra, the dot product of two vectors x and y is equivalent
to xTy, where T is the transpose operation. However, in this book we
rely on the dot product notation for simplicity.

Sidebar 2.2 The sign function in the perceptron

The decision function listed in Algorithm 1 is often shown as sign(w -

18 The Perceptron

Algorithm 1: The decision function of the perceptron.
if w-x+b>0 then
‘ return Yes
else
‘ return No

[N N

end

x + b), where the + sign is used to represent one class, and the — sign
the other.

There is an immediate parallel between this decision function and the
story of the little monkey. If we consider the Yes class to be isMyMom,
then we would like the weights of the features that belong to the mom
(e.g., hasColorBrown) to have positive values, so the dot product be-
tween w and the x vector corresponding to the mom turns out positive,
and the features specific to other animals (e.g., hasTrunk) to receive neg-
ative weights, so the corresponding decision is negative. Similarly, if the
task to be learned is review classification, we would like positive words
(e.g., good, great) to have positive weights in w, and negative words (e.g.,
bad, horrible) to have negative weights.

In general, we call the aggregation of a learning algorithm or classifier
and its learned parameters (w and b for the perceptron) a model. All
classifiers aim to learn these parameters to optimize their predictions
over the examples in the training dataset.

The key contribution of the perceptron is a simple algorithm that
learns these weights (and bias term) from the given training dataset. This
algorithm is summarized in Algorithm 2. Let us dissect this algorithm
next. The algorithm starts by initializing the weights and bias term
with 0s. Note that lines of pseudocode that assign values to a vector
such as line 1 in the algorithm (w = 0) assign this scalar value to all the
elements of the vector. For example, the operation in line 1 initializes
all the elements of the weight vector with zeros.

Lines 3 and 4 indicate that the learning algorithm may traverse the
training dataset more than once. As we will see in the following exam-
ple, sometimes this repeated exposure to training examples is necessary
to learn meaningful weights. Informally, we say that the algorithm con-
verged when there are no more changes to the weight vector (we will
define convergence more formally later in this section). In practice, on

2.4 The Perceptron 19

Algorithm 2: Perceptron learning algorithm.

1w=10
2b=0
3 while not converged do
4 for each training example x; in X do
5 d = decision(x;, w, b)
6 if d ==y, then
7 ‘ continue
8 else if y, == Yes and d == No then
9 b=b+1
10 W =W+ X;
11 else if y, == No and d == Yes then
12 b=b—-1
13 wW=Ww—X;
14 end
15 end

real-world tasks, it is possible that true convergence is not reached, so,
commonly, line 3 of the algorithm is written to limit the number of
traversals of the training dataset (or epochs) to a fixed number.

Line 5 applies the decision function in Algorithm 1 to the current
training example. Lines 6 and 7 indicate that the perceptron simply
skips over training examples that it already knows how to classify, i.e.,
its decision d is equal to the correct label y;. This is intuitive: if the
perceptron has already learned how to classify an example, there is lim-
ited benefit in learning it again. In fact, the opposite might happen: the
perceptron weights may become too tailored for the particular examples
seen in the training dataset, which will cause it to overfit. Lines 8 — 10
address the situation when the correct label of the current training ex-
ample x; is Yes, but the prediction according to the current weights and
bias is No. In this situation, we would intuitively want the weights and
bias to have higher values such that the overall dot product plus the bias
is more likely to be positive. To move towards this goal, the perceptron
simply adds the feature values in x; to the weight vector w, and adds 1 to
the bias. Similarly, when the perceptron makes an incorrect prediction
for the label No (lines 11 — 13), it decreases the value of the weights and
bias by subtracting x; from w, and subtracting 1 from b.

20 The Perceptron

Sidebar 2.3 Error driven learning

The class of algorithms such as the perceptron that focus on “hard”
examples in training, i.e., examples for which they make incorrect predic-
tions at a given point in time, are said to perform error driven learning.

Figure 2.4 shows an intuitive visualization of this learning process.3

In this figure, for simplicity, we are ignoring the bias term and assume
that the perceptron decision is driven solely by the dot product x - w.
Figure 2.4 (a) shows the weight vector w in a simple two-dimensional
space, which would correspond to a problem that is represented using
only two features.* In addition of w, the figure also shows the decision
boundary of the perceptron as a dashed line that is perpendicular on w.
The figure indicates that all the vectors that lie on the same side of the
decision boundary with w are assigned the label Yes, and all the vectors
on the other side receive the decision No. Vectors that lie exactly on the
decision boundary (i.e., their decision function has a value of 0) receive
the label No according to Algorithm 1. In the transition from (a) to (b),
the figure also shows that redrawing the boundary changes the decision
for x.

Why is the decision boundary line perpendicular on w, and why are
the labels so nicely assigned? To answer these questions, we need to
introduce a new formula that measures the cosine of the angle between
two vectors, cos:

X'y
cos(X,y) = +—— 2.7
0 9) = T @7

where ||x|| indicates the length of vector x, i.e., the distance between the
origin and the tip of the vector’s arrow, measured with a generalization of

Pythagoras’s theorem:® ||x|| = \/Zfil z?. The cosine similarity, which
ranges between —1 and 1, is widely used in the field of information
retrieval to measure the similarity of two vectors (Schiitze et al., 2008).
That is, two perfectly similar vectors will have an angle of 0° between

3 This visualization was first introduced by Schiitze et al. (2008).

4 This simplification is useful for visualization, but it is highly unrealistic for
real-world NLP applications, where the number of features is often proportional
with the size of a language’s vocabulary, i.e., it is often in the hundreds of
thousands.

Pythagoras’s theorem states that the square of the hypothenuse, ¢, of a right
triangle is equal to the sum of the squares of the other two sides, a and b, or,
equivalently: ¢ = v/a + b. In our context, c is the length of a vector with
coordinates a and b in a two-dimensional space.

2.4 The Perceptron 21

Figure 2.4 Visualization of the perceptron learning algorithm: (a) incor-
rect classification of the vector x with the label Yes, for a given weight
vector w; and (b) x lies on the correct side of the decision boundary after
x is added to w.

them, which has the largest possible cosine value of 1. Two “opposite”
vectors have an angle of 180° between them, which has a cosine of —1. We
will extensively use the cosine similarity formula starting with the next
chapter. But, for now, we will simply observe that the cosine similarity
value has the same sign with the dot product of the two vectors (because
the length of a vector is always positive). Because vectors on the same
side of the decision boundary with w have an angle with w in the interval
[—90°, 90°], the corresponding cosine (and, thus, dot product value) will
be positive, which yields a Yes decision. Similarly, vectors on the other
side of the decision boundary will receive a No decision.

Sidebar 2.4 Hyper planes and perceptron convergence

In a one-dimensional feature space, the decision boundary for the per-
ceptron is a dot. As shown in Figure 2.4, in a two-dimensional space, the
decision boundary is a line. In a three-dimensional space, the decision
boundary is a plane. In general, for a n-dimensional space, the decision
boundary of the perceptron is a hyper plane. Classifiers such as the per-
ceptron whose decision boundary is a hyper plane, i.e., it is driven by a
linear equation in w (see Algorithm 1), are called linear classifiers.

If such a hyper plane that separates the labels of the examples in the
training dataset exists, it is guaranteed that the perceptron will find it, or
will find another hyper plane with similar separating properties (Block,
1962; Novikoff, 1963). We say that the learning algorithm has converged

22 The Perceptron

Table 2.4 The feature matriz X (left table) and label vector y (right
table) for a review classification training dataset with three examples.

good excellent bad horrible boring Label
#1 1 1 1 0 0 Positive
#2 0 0 1 1 0 Negative
#3 0 0 1 0 1 Negative

when such a hyper plane is found, which means that all examples in the
training data are correctly classified.

Figure 2.4 (a) shows that, at that point in time, the training example
x with label Yes lies on the incorrect side of the decision boundary.
Figure 2.4 shows how the decision boundary is adjusted after x is added
to w (line 10 in Algorithm 2). After this adjustment, x is on the correct
side of the decision boundary.

To convince ourselves that the perceptron is indeed learning a mean-
ingful decision boundary, let us go trace the learning algorithm on a
slightly more realistic example. Table 2.4 shows the matrix X and label
vector y for a training dataset that contains three examples for a product
review classification task. In this example, we assume that our vocabu-
lary has only the five words shown in X, e.g., the first data point in this
dataset is a positive review that contains the words good, excellent, and
bad.

Table 2.5 traces the learning algorithm as it iterates through the train-
ing examples. For example, because the decision function produces the
incorrect decision for the first example (No), this example is added to w.
Similarly, the second example is subtracted from w. The third example
is correctly classified (barely), so no update is necessary. After just one
pass over this training dataset, also called an epoch, the perceptron has
converged. We will let the reader convince herself that all training ex-
amples are now correctly classified. The final weights indicate that the
perceptron has learned several useful things. First, it learned that good
and excellent are associated with the Yes class, and has assigned positive
weights to them. Second, it learned that bad is not to be trusted because
it appears in both positive and negative reviews, and, thus, it assigned
it a weight of 0. Lastly, it learned to assign a negative weight to horrible.

2.4 The Perceptron 23

Table 2.5 The perceptron learning process for the dataset shown in
Table 2.4, for one pass over the training data. Both w and b are
initialized with 0Os.

Example seen: #1

x-w+b=0

Decision = Negative

Update (add): w=(1,1,1,0,0), b=1

Example seen: #2

x-w+b=2

Decision = Positive

Update (subtract): w = (1,1,0,—1,0), b=0

Example seen: #3
x-w+b=0
Decision = Negative
Update: none

However, it is not perfect: it did not assign a non-zero weight to boring
because of the barely correct prediction made on example #3. There are
other bigger problems here. We discuss them in Section 2.7.

This example as well as Figure 2.4 seem to suggest that the perceptron
learns just fine without a bias term. So why do we need it? To convince
ourselves that the bias term is useful let us walk through another simple
example, shown in Table 2.6. The perceptron needs four epochs, i.e.,
four passes over this training dataset, to converge. The final parameters
are: w = (2) and b = —4. We encourage the reader to trace the learning
algorithm through this dataset on her own as well. These parameters
indicate that the hyper plane for this perceptron, which is a dot in this
one-dimensional feature space, is at 2 (because the final inequation for
the positive decision is 22 — 4 > 0). That is, in order to receive a Yes
decision, the feature of the corresponding example must have a value
> 2, i.e., the review must have at least three positive words. This is
intuitive, as the training dataset contains negative reviews that contain
one or two positive words. What this shows is that the bias term allows
the perceptron to shift its decision boundary away from the origin. It
is easy to see that, without a bias term, the perceptron would not be
able to learn anything meaningful, as the decision boundary will always
be in the origin. In practice, the bias term tends to be more useful
for problems that are modeled with few features. In real-world NLP

24 The Perceptron

Table 2.6 The feature matriz X (left table) and label vector y (right
table) for a review classification training dataset with four examples. In
this example, the only feature available is the total number of positive
words in a review.

Number of positive words Label

#1 1 Negative
#2 10 Positive
#3 2 Negative
#4 20 Positive

tasks that are high-dimensional, learning algorithms usually find good
decision boundaries even without a bias term (because there are many
more options to choose from).

Sidebar 2.5 Implementations of the bias term

Some machine learning software packages implement the bias term
as an additional feature in x that is always active, i.e., it has a value
of 1 for all examples in X. This simplifies the math a bit, i.e., instead
of computing x - w + b, we now have to compute just x - w. It is easy
to see that modeling the bias as an always-active feature has the same
functionality as the explicit bias term in Algorithm 2. In this book, we
will maintain an explicit bias term for clarity.

2.5 Voting Perceptron

As we saw in the previous examples, the perceptron learns well, but it
is not perfect. Often, a very simple strategy to improve the quality of
classifier is to use an ensemble model. One such ensemble strategy is to
vote between the decisions of multiple learning algorithms. For exam-
ple, Figure 2.5 shows a visualization of such a voting perceptron, which
aggregates two individual perceptrons by requiring that both classifiers
label an example as x before issuing the x label.

6 This example was adapted from Erwin Chan’s Ling 539 course at University of
Arizona.

2.5 Voting Perceptron 25

Figure 2.5 An example of a binary classification task, and a voting per-
ceptron that aggregates two imperfect perceptrons. The voting algorithm
classifies correctly all the data points by requiring two votes for the x
class to yield a x decision. The decision boundary of the voting percep-
tron is shown in red.

The figure highlights two important facts. First, the voting perceptron
performs better than either individual classifier. In general, ensemble
models that aggregate models that are sufficiently different from each
other tend to perform better than the individual (or base) classifiers
that are part of the ensemble (Dietterich, 2000). This observation holds
for people too! It has been repeatedly shown that crowds reach better
decisions than individuals. For example, in 1907, Sir Francis Galton has
observed that while no individual could correctly guess the weight of
an ox at a fair, averaging the weights predicted by all individuals came
within a pound or two of the real weight of the animal (Young, 2009).
Second, the voting perceptron is a non-linear classifier, i.e., its decision
boundary is no longer a line (or a hyper plane in n dimensions): in
Figure 2.5, the non-linear decision boundary for the voting perceptron
is shown with red lines.

While the voting approach is an easy way to produce a non-linear clas-
sifier that improves over the basic perceptron, it has drawbacks. First,
we need to produce several individual perceptron classifiers. This can be
achieved in at least two distinct ways. For example, instead of initializ-
ing the w and b parameters with Os (lines 1 and 2 in Algorithm 2), we
initialize them with random numbers (typically small numbers centered
around 0). For every different set of initial values in w and b, the result-

26 The Perceptron

ing perceptron will end up with a different decision boundary, and, thus,
a different classifier. The drawback of this strategy is that the training
procedure must be repeated for each individual perceptron. A second
strategy for producing multiple individual perceptron that avoids this
training overhead is to keep track of all ws and bs that are produced
during the training of a single perceptron. That is, before changing the
b and w parameters in Algorithm 2 (lines 9 and 12), we store the current
values (before the change) in a list. This means that at the end of the
training procedure, this list will contain as many individual perceptrons
as the number of updates performed in training. We can even sort these
individual classifiers by their perceived quality: the more iterations a
specific b and w combination “survived” in training, the better the qual-
ity of this classifier is likely to be. This indicator of quality can be used
to assign weights to the “votes” given to the individual classifiers, or
to filter out base models of low quality (e.g., remove all classifiers that
survived fewer than 10 training examples).

The second drawback of the voting perceptron is its runtime over-
head at evaluation time. When the voting perceptron is applied on a
new, unseen example, it must apply all its individual classifiers before
voting. Thus, the voting perceptron is N times slower than the individ-
ual perceptron, where N is the number of individual classifiers used. To
mitigate this drawback, we will need the average perceptron, discussed
next.

2.6 Average Perceptron

The average perceptron is a simplification of the voting perceptron we
discussed previously. The simplification consists in that, instead of keep-
ing track of all w and b parameters created during the perceptron up-
dates like the voting algorithm, these parameters are averaged into a
single model, say avgW and avgB. This algorithm, which is summa-
rized in Algorithm 3, has a constant runtime overhead for computing
the average model, i.e., the only additional overhead compared to the
regular perceptron are the additions in lines 12 — 14 and 18 — 20, and the
divisions in lines 25 and 26. Further, the additional memory overhead
is also constant, as it maintains a single extra weight vector (totalW)
and a single bias term (totalB) during training. After training, the av-
erage perceptron uses a decision function different from the one used

2.6 Average Perceptron 27

Algorithm 3: Average perceptron learning algorithm.

1w=0

2b=0

3 numbertotalOfUpdates = 0

4 totalW =0

5 totalB =0

6 while not converged do

7 for each training example x; in X do

8 d = decision(x;, w, b)

9 if d == y; then

10 continue

11 else if y; == Yes and d == No then
12 numberOfUpdates = numberOfUpdates + 1
13 totalW = totalW + w

14 totalB = totalB + b

15 W =W+ X;

16 b=b+1

17 else if y, == No and d == Yes then
18 numberOfUpdates = numberOfUpdates + 1
19 totalW = totalW + w

20 totalB = totalB + b

21 W=Ww—X;

22 b=b-1
23 end
24 end

25 avgB = totalB/numberOfUpdates
26 avgW = totalW /numberOfUpdates

during training. This function has a similar shape to the one listed in
Algorithm 1, but uses avgW and avgB instead.

Despite its simplicity, the average perceptron tends to perform well in
practice, usually outperforming the regular perceptron, and approaching
the performance of the voting perceptron. But why is the performance
of the average perceptron so good? After all, it remains a linear classifier
just like the regular perceptron, so it must have the same limitations.
The high-level explanation is that the average perceptron does a better
job than the regular perceptron at controlling for noise. Kahneman et al.
(2021) define noise as unwanted variability in decision making. Note that

28 The Perceptron

noise is a common occurrence in both human and machine decisions. For
example, Kahneman et al. (2021) report that judges assign more lenient
sentences if the outside weather is nice, or if their favorite football team
won their match the prior weekend. Clearly, these decisions should not
depend on such extraneous factors.

Similarly, in the machine learning space, the regular perceptron may
be exposed to such noisy, unreliable features during training. When
this happens, these features will receive weight values in the percep-
tron model (the w vector) that are all over the place, sometimes positive
and sometimes negative. All these values are averaged in the average
vector, and, thus, the average weight value for these unreliable features
will tend to be squished to (or close to) zero. The effect of this squishing
is that the decision function of the average perceptron will tend to not
rely on these features (because their contribution to the dot product in
the decision function will be minimal). This differs from the regular per-
ceptron, which does not benefit from this averaging process that reduces
the weights of unimportant features. In general, this process of squishing
the weights of features that are not important is called regularization.
We will see other regularization strategies in Chapter 6.

2.7 Drawbacks of the Perceptron

The perceptron algorithm and its variants are simple, easy to customize
for other tasks beyond text classification, and they perform fairly well
(especially in the voting and average form). However, they also have
important drawbacks. We discuss these drawbacks here, and we will
spend a good part of this book discussing solutions that address them.

The first obvious limitation of the perceptron is that, as discussed in
this chapter, it is a linear classifier. Yes, the voting perceptron removes
this constraint, but it comes at the cost of maintaining multiple indi-
vidual perceptrons. Ideally, we would like to have the ability to learn a
single classifier that captures a non-linear decision boundary. This abil-
ity is important, as many tasks require such a decision boundary. A
simple example of such a task was discussed by Minsky and Papert as
early as 1969: the perceptron cannot learn the XOR function (Minsky
and Papert, 1969). To remind ourselves, the XOR function takes two
binary variables, i.e., numbers that can take only one of two values: 0
(which stands for False) or 1 (or True), and outputs 1 when exactly
one of these values is 1, and 0 otherwise. A visualization of the XOR is

2.7 Drawbacks of the Perceptron 29

y
1T O
G———O—F%
0 1

Figure 2.6 Visualization of the XOR function operating over two vari-
ables, z and y. The dark circles indicate that the XOR output is 1; the
clear circles stand for 0.

shown in Figure 2.6. It is immediately obvious that there is no linear de-
cision boundary that separates the dark circles from the clear ones. More
importantly in our context, language is beautiful, complex, and ambigu-
ous, which means that, usually, we cannot model tasks that are driven
by language using methods of limited power such as linear classifiers.
We will address this important limitation in Chapter 5, where we will
introduce neural networks that can learn non-linear decision boundaries
by combining multiple layers of “neurons” into a single network.

A second more subtle but very important limitation of the perceptron
is that it has no “smooth” updates during training, i.e., its updates are
the same regardless of how incorrect the current model is. This is caused
by the decision function of the perceptron (Algorithm 1), which relies
solely on the sign of the dot product. That is, it does not matter how
large (or small) the value of the dot product is; when the sign is incorrect,
the update is the same: adding or subtracting the entire example x;
from the current weight vector (lines 10 and 13 in Algorithm 2). This
causes the perceptron to be a slow learner because it jumps around good
solutions. One University of Arizona student called this instability “Tony
Hawk-ing the data”.” On data that is linearly separable, the perceptron
will eventually converge (Novikoff, 1963). However, real-world datasets
do not come with this guarantee of linear separation, which means that
this “Tony Hawk-ing” situation may yield a perceptron that is far from
acceptable. What we would like to have is a classifier that updates its
model proportionally with the errors it makes: a small mistake causes

7 Tony Hawk is an American skateboarder, famous for his half-pipe skills. See:
https://en.wikipedia.org/wiki/Tony_Hawk.

30 The Perceptron

a small update, while a large one yields a large update. This is exactly
what the logistic regression does. We detail this in the next chapter.

The third drawback of the perceptron, as we covered it so far, is that it
relies on hand-crafted features that must be designed and implemented
by the machine learning developer. For example, in the text classifica-
tion use case introduced in Section 2.2, we mentioned that we rely on
features that are simply the words in each text to be classified. Unfortu-
nately, in real-world NLP applications feature design gets complicated
very quickly. For example, if the task to be learned is review classifica-
tion, we should probably capture negation. Certainly the phrase great
should be modeled differently than not great. Further, maybe we should
investigate the syntactic structure of the text to be classified. For exam-
ple, reviews typically contain multiple clauses, whose sentiment must be
composed into an overall classification for the entire review. For exam-
ple, the review The wait was long, but the food was fantastic. contains
two clauses: The wait was long and but the food was fantastic, each
one capturing a different sentiment, which must be assembled into an
overall sentiment towards the corresponding restaurant. Further, most
words in any language tend to be very infrequent (Zipf, 1932), which
means that a lot of the hard work we might invest in feature design
might not generalize enough. That is, suppose that the reviews included
in a review classification training dataset contain the word great but not
the word fantastic, a fairy similar word in this context. Then, any ML
algorithm that uses features that rely on explicit words will correctly
learn how to associate great with a specific sentiment, but will not know
what to do when they see the word fantastic. Chapter 8 addresses this
limitation. We will discuss methods to transform words into a numeri-
cal representation that captures (some) semantic knowledge. Under this
representation, similar words such as great and fantastic will have sim-
ilar forms, which will improve the generalization capability of our ML
algorithms.

Lastly, in this chapter we focused on text classification applications
such as review classification that require a simple ML classifier, which
produces a single binary label for an input text, e.g., positive vs. negative
review. However, many NLP applications require multiclass classification
(i.e., more than two labels), and, crucially, produce structured output.
For example, a part-of-speech tagger, which identifies which words are
nouns, verbs, etc., must produce the sequence of part of speech tags
for a given sentence. Similarly, a syntactic parser identifies syntactic
structures in a given sentence such as which phrase serves as subject for

2.8 Historical Background 31

a given verb. These structures are typically represented as trees. The
type of ML algorithms that produce structures rather than individual
labels are said to perform structured learning. We will begin discussing
structured learning in Chapter 10.

2.8 Historical Background

The perceptron was invented by McCulloch and Pitts in 1943 (McCul-
loch and Pitts, 1943). Frank Rosenblatt provided a first software im-
plementation in 1958 (Rosenblatt, 1958), and soon after, a hardware
implementation as the “Mark I Perceptron”, a machine built for image
recognition. The Mark I Perceptron now resides at the Smithsonian In-
stitution. Interestingly enough, at the time Rosenblatt was a research
psychologist at the Cornell Aeronautical Laboratory; Warren McCulloch
was a professor of psychiatry at the University of Illinois at Chicago,
while Walter Pitts was an unofficial student of mathematics, logic, and
biology. Computer science did not exist as a formal academic discipline
at the time. The first computer science department in the United States
was only to be established at Purdue University in 1962.

Following the development of the perceptron, Rosenblatt stated: “Sto-
ries about the creation of machines having human qualities have long
been a fascinating province in the realm of science fiction ..Yet we are
about to witness the birth of such a machine — a machine capable of per-
ceiving, recognizing and identifying its surroundings without any human
training or control” (Lefkowitz, 2019) Needless to say, such statements
were premature, especially considering the perceptron’s limitations as a
linear classifier, i.e., it cannot learn simple non-linear functions such as
the XOR (Minsky and Papert, 1969). This discrepancy between claims
and reality caused the first artificial intelligence “winter,” i.e., a pe-
riod of several decades during which government funding for Al was
drastically reduced. Some argue that Rosenblatt has been vindicated
by the tremendous empirical achievements of today’s neural networks
(Lefkowitz, 2019), while others have continued to argue that statements
such as Rosenblatt’s (and many other artificial intelligence researchers’)
continue to be disconnected from what today’s artificial intelligence can
actually do (Dreyfus, 1992; Marcus and Davis, 2019)

Nevertheless, regardless where one stands in this controversy, it is
clear that the perceptron and its variants (see next section) made a
tremendous contribution to machine learning and natural language pro-

32 The Perceptron

cessing, and paved the way for today’s deep learning field (as we will see
throughout the rest of this book).

2.9 References and Further Readings

The original perceptron papers where (McCulloch and Pitts, 1943) (the-
ory) and (Rosenblatt, 1958) (first implementation). Block (1962); Novikoff
(1963) demonstrated the convergence of the perceptron training algo-
rithm, i.e., if a hyper plane that separates the labels of the examples in
the training dataset exists, it is guaranteed that the perceptron will find
it, or will find another hyper plane with similar separating properties.
Minsky and Papert (1969) demonstrated the limitations of the per-
ceptron, i.e., that it cannot learn non-linear functions such as the XOR.
Despite its simplicity (or perhaps because of it), the perceptron has
been widely used and extended for various problems in machine learning
and natural language processing. For example, Duda et al. (1973) ex-
tended the original binary perceptron to multiclass classification. Cram-
mer and Singer (2003); Crammer et al. (2006) proposed a generalized
multiclass setting for the perceptron, and introduced several new train-
ing algorithms for it that have improved worst-case behavior. Collins
(2002) introduced a variant of the perceptron adapted for sequence
problems in natural language processing such as part-of-speech tagging.
Collins and Roark (2004) extended this algorithm for syntactic parsing.

2.10 Summary

This chapter presented the perceptron, one of the simplest machine
learning algorithms, which will serve as the building block for the neural
networks explored throughout the rest of the book. We also discussed a
couple of perceptron variants, starting with the voting perceptron, our
first exposure to a non-linear classifier. It was followed by the average
perceptron, which introduced regularization, i.e., reducing the impor-
tance of noisy information in the learned model.

3

Logistic Regression

As mentioned in the previous chapter, the perceptron does not perform
smooth updates during training, which may slow down learning, or cause
it to miss good solutions entirely in real-world situations. In this chapter,
we will discuss logistic regression (LR), a machine learning algorithm
that elegantly addresses this problem.

3.1 The Logistic Regression Decision Function and
Learning Algorithm

As we discussed, the lack of smooth updates in the training of the per-
ceptron is caused by its reliance on a discrete decision function driven
by the sign of the dot product. The first thing LR does is replace this
decision function with a new, continuous function, which is:

1

decision(x, w,b) = 1+ e—(wx+b)
e W-X

(3.1)

The H% function is known as the logistic function, hence the name of
the algorithm. The logistic function belongs to a larger class of functions
called sigmoid functions because they are characterized by an S-shaped
curve. Figure 3.1 shows the curve of the logistic function. In practice,
the name sigmoid (or o) is often used instead of logistic, which is why
the LR decision function is often summarized as: o(w-x+b). For brevity,
we will use the ¢ notation in our formulas as well.

Figure 3.1 shows that the logistic function has values that monotoni-
cally increase from 0 to 1. We will use this property to implement a bet-
ter learning algorithm, which has “soft” updates that are proportional

33

34 Logistic Regression

Figure 3.1 The logistic function.

to how incorrect the current model is. To do this, we first arbitrarily
associate one of the labels to be learned with the value 1, and the other
with 0. For example, for the review classification task, we (arbitrarily)
map the positive label to 1, and the negative label to 0. Intuitively, we
would like to learn a decision function that produces values close to 1
for the positive label, and values close to 0 for the negative one. The
difference between the value produced by the decision function and the
gold value for a training example will quantify the algorithm’s confusion
at a given stage in the learning process.

Algorithm 4 lists the LR learning process that captures the above
intuitions. We will discuss later in this chapter how this algorithm was
derived. For now, let us make sure that this algorithm does indeed do
what we promised.

Note that the only new variable in this algorithm is «, known as the
learning rate. The learning rate takes a positive value that adjusts up or
down the values used during the update. We will revisit this idea later
on in this chapter. For now, let us assume o = 1.

It is easy to see that, at the extreme (i.e., when the prediction is
perfectly correct or incorrect), this algorithm reduces to the perceptron
learning algorithm. For example, when the prediction is perfectly correct
(say y; = 1 for the class associated with 1), y; is equal to d, which
means that there is no weight or bias update in lines 6 and 7. This is
similar to the perceptron (lines 6 and 7 in Algorithm 2). Further, when a
prediction is perfectly incorrect, say, y; = 1 (Yes) when d = 0 (No), this
reduces to adding x; to w and 1 to b (similar to the perceptron update,

8.2 The Logistic Regression Cost Function 35

Algorithm 4: Logistic regression learning algorithm.

1w=10
b=20
while not converged do
for each training example x; in X do
d = decision(x;, w, b)
w=w+a(y; —d)x; // y, is the correct label for example

o ok W N

X;
b=b+aly,—d)
8 end

N

9 end

lines 8 — 10 in Algorithm 2). When y; = 0 when d = 1, the algorithm
reduces to subtracting x; from w and 1 from b (similar to lines 11 — 13
in Algorithm 2).

The interesting behavior occurs in the majority of the situations when
the LR decision is neither perfectly correct nor perfectly incorrect. In
these situations, the LR performs a soft update that is proportional with
how incorrect the current decision is, which is captured by y, —d. That is,
the more incorrect the decision is, the larger the update. This is exactly
what we would like a good learning algorithm to do.

Once the algorithm finishes training, we would like to use the learned
weights (w and b) to perform binary classification, e.g., classify a text
into a positive or negative review. For this, at prediction time we will
convert the LR decision into a discrete output using a threshold 7, com-
monly set to 0.5.1 That is, if decision(x, w,b) > 0.5 then the algorithm
outputs one class (say, positive review); otherwise it outputs the other
class.

3.2 The Logistic Regression Cost Function

The next three sections of this chapter focus on deriving the LR learning
algorithm shown in Algorithm 4. The reader who is averse to math,
or is satisfied with the learning algorithm and the intuition behind it,
L Other values for this threshold are possible. For example, for applications where

it is important to be conservative with predictions for class 1, 7 would take
values larger than 0.5.

36 Logistic Regression

may skip to Section 3.7. However, we encourage the reader to try to
stay with us through this derivation. These sections introduce important
concepts, i.e., cost functions and gradient descent, which are necessary
for a thorough understanding of the following chapters in this book. We
will provide pointers to additional reading, where more mathematical
background may be needed.

The first observation that will help us formalize the training process
for LR is that the LR decision function implements a conditional proba-
bility, i.e., the probability of generating a specific label given a training
example and the current weights. More formally, we can write:

p(y = 1x;w,b) = o(x; w,b) (3.2)

The left term of the above equation can be read as the probability of
generating a label y equal to 1, given a training example x and model
weights w and b (the vertical bar “|” in the conditional probability for-
mula should be read as “given”). Intuitively, this probability is an in-
dicator of confidence (the higher the better). That is, the probability
approaches 1 when the model is confident that the label for x is 1, and
0 when not. Similarly, the probability of y being 0 is:

p(y =0|x;w,b) =1 — o(x;w,b) (3.3)

These probabilities form a probability distribution, i.e., the sum of
probabilities over all possible labels equals 1. Note that while we aim
to minimize the use of probability theory in this section, some of it is
unavoidable. The reader who wants to brush up on probability theory
may consult other material on this topic such as (Griffiths, 2008).

To simplify notations, because we now know that we estimate la-
bel probabilities, we change the notation for the two probabilities to:
p(1]x; w,b) and p(0|x; w,b). Further, when it is obvious what the model
weights are, we will skip them and use simply p(1]x) and p(0|x). Lastly,
we generalize the above two formulas to work for any of the two possible
labels with the following formula:

p(ylx) = (0(x;w,0))Y(1 — o(x; w, b)) 7Y (3.4)

It is trivial to verify that this formula reduces to one of the two equations
above, for y =1 and y = 0.
Intuitively, we would like the LR training process to maximize the

8.2 The Logistic Regression Cost Function 37

probability of the correct labels in the entire training dataset. This prob-
ability is called the likelihood of the data (L), and is formalized as:

L(w,b) = p(y|X) (3.5)
= I p(yilxi)

where y is the vector containing all the correct labels for all training
examples, X is the matrix that contains the vectors of features for all
training examples, and m is the total number of examples in the training
dataset. Note that the derivation into the product of individual prob-
abilities is possible because we assume that the training examples are
independent of each other, and the joint probability of multiple indepen-
dent events is equal to the product of individual probabilities (Griffiths,
2008).

A common convention in machine learning is that instead of maxi-
mizing a function during learning, we instead aim to minimize a cost
or loss function? C, which captures the amount of errors in the model.
By definition, C' must return only positive values. That is, C' will return
large values when the model does not perform well, and is 0 when the
learned model is perfect. We write the logistic regression cost function
C in terms of likelihood L as:

C(w,b) = —log L(w,b) (3.7)

== (gilogo(xi;w,b) + (1 —y;) log(1 — o(xi;w, b)) (3.8)

=1

Equation 3.7 is often referred to as the negative log likelihood of the
data, a descriptive term that summarizes well the content of the equa-
tion. It is easy to see that C satisfies the constraints of a cost function,
which are:

e First, the cost function must always return positive values. In our case,
the logarithm of a number between 0 and 1 is negative; the negative

2 Formally, the loss function operates on a single training example, while the cost
function considers all examples in the training dataset. However, this
terminology has become more ambiguous in the literature. For this reason, we
will use “loss” and “cost” interchangeably in this book. For example, in the
theory chapters we prefer to use “cost” because we tend to apply to an entire
training set (or a partition of it). On the other hand, in the coding chapters we
will use “loss” more frequently because it matches PyTorch’s terminology.

38 Logistic Regression

sign in front of the sum turns the value of the sum into a positive
number.

e Second, the cost function returns large values when the model makes
many mistakes (i.e., the likelihood of the data is small), and ap-
proaches 0 when the model is correct (i.e., the likelihood approaches
1).

Thus, we can formalize the goal of the LR learning algorithm as min-
imizing the above cost function. Next we will discuss how we do this
efficiently.

3.3 Gradient Descent

The missing component that connects the cost function just introduced
with the LR training algorithm (Algorithm 4) is gradient descent. Gra-
dient descent is an iterative method that finds the parameters that min-
imize a given function. In our context, we will use gradient descent to
find the LR parameters (w and b) that minimize the cost function C.

However, for illustration purposes, let us take a step away from the
LR cost function and begin with a simpler example: let us assume we
would like to minimize the function f(x) = (x+1)% + 1, which is plotted
in Figure 3.2. Clearly, the smallest value this function takes is 1, which
is obtained when x = —1. Gradient descent finds this value by taking
advantage of the function slope, or derivative of f(z) with respect to z,
i.e., =L f(z). Note: if the reader needs a refresher of what function deriva-
tives are, and how to compute them, now is a good time to do so. Any
calculus textbook or even the Wikipedia page for function derivatives®
provide sufficient information for what we need in this book.

One important observation about the slope of a function is that it
indicates the function’s direction of change. That is, if the derivative is
negative, the function decreases; if it is positive, the function increases;
and if it is zero, we have reached a local minimum or maximum for
the function. Let us verify that is the case for our simple example. The
derivative of our function % ((z+1)2+1) is 2(z+ 1), which has negative

dx
values when © < —1, positive values when = > —1, and is 0 when
x = —1. Intuitively, gradient descent uses this observation to take small

steps towards the function’s minimum in the opposite direction indicated
by the slope. More formally, gradient descent starts by initializing x

3 https://en.wikipedia.org/wiki/Derivative

3.8 Gradient Descent 39

Figure 3.2 Plot of the function f(z) = (z +1)? + 1.

with some random value, e.g., x+ = —3, and then repeatedly subtracts
a quantity proportional to the derivative of z, until it converges, i.e.,
it reaches a derivative of 0 (or close enough so we can declare success).
That is, we repeatedly compute:

r=x— aif(:c) (3.9)

until convergence.

Sidebar 3.1 Partial derivative notation

In this book we use the Leibniz notation for derivatives. That is, % f
indicates the derivative of function f with respect to x, i.e., the amount
of change in f in response to an infinitesimal change in x. This notation
is equivalent to the Lagrange notation (sometimes attributed to Newton)

of f'(x).

« in the above equation is the same learning rate introduced before
in this chapter. Let us set a = 0.1 for this example. Thus, in the first
gradient descent iteration, x changes to x = —3—0.1x2(—-3+1) = —2.6.
In the second iteration, x becomes x = —2.6 —0.1 x 2(—2.6+1) = —2.28.
And so on, until, after approximately 30 iterations, x approaches —1.001,
a value practically identical to what we were looking for.

This simple example also highlights that the learning rate o must
be positive (so we don’t change the direction indicated by the slope),

40 Logistic Regression

and small (so we do not “Tony Hawk” the data). To demonstrate the
latter situation, consider the situation when a = 1. In this case, in
the first iteration x becomes 1, which means we already skipped over
the value that yields the function’s minimum (z = —1). Even worse,
in the second iteration, x goes back to —3, and we are now in danger
of entering an infinite loop! To mitigate this situation, o usually takes
small positive values, say, between 0.00001 and 0.1. In Chapter 6 we
will discuss other strategies to dynamically shrink the learning rate as
the learning advances, so we further reduce our chance of missing the
function’s minimum.

The gradient descent algorithm generalizes to functions with multi-
ple parameters: we simply update each parameter using its own partial
derivative of the function to be minimized. For example, consider a new
function that has two parameters, x1 and zo: f(x1,22) = (71 +1)? +
3xzo+ 1. For this function, in each gradient descent iteration, we perform
the following updates:

d
x1 =21 —a— f(x1,22) = 21 — 0.1(221 + 2)
d!L‘l

d
To = Tg — aEf(xl,xg) = x5 — 0.1(3)

or, in general, for a function f(x), we update each parameter x; using
the formula:

f(x) (3.10)

T =i — d.]jl

One obvious question that should arise at this moment is why are we
not simply solving the equation where the derivative equals 0, as we were
taught in calculus? For instance, for the first simple example we looked
at, f(z) = (z+1)%+1, zeroing the derivative yields immediately the exact
solution x = —1. While this approach works well for functions with a
single parameter or two, it becomes prohibitively expensive for functions
with four or more parameters. Machine learning in general falls in this
latter camp: it is very common that the functions we aim to minimize
have thousands (or even millions) of parameters. In contrast, as we will
see later, gradient descent provides a solution whose runtime is linear
in the number of parameters times the number of training examples.
Further, in some situations, training data is not available ahead of time,
but, instead, is provided sequentially, i.e., a few examples at a time.

3.8 Gradient Descent 41

Figure 3.3 Plot of the function f(z) = xsin(z)2 + 1.

This type of machine learning is called online learning. For example,
the reviews necessary to train a review classifier might not be available
ahead of time, but come in over time as buyers review products. Gradient
descent is well suited for online learning because it operates on one (or
a few) training examples at a time.

It is important to note that gradient descent is not perfect. It does
indeed work well for convex functions, i.e., functions that have exactly
one minimum and are differentiable at every point such as our simple
example, but it does not perform so well in more complex situations.
Consider for example the function shown in Figure 3.3.# This functions
has two minima (around z = 3 and @ = —2). Because gradient descent
is a “greedy
local knowledge without understanding the bigger picture, it may end

2

algorithm, i.e., it commits to a solution relying only on

up finding a minimum that is not the best. For example, if x is initialized
with 2.5, gradient descent will follow the negative slope at that position,
and end up discovering the minimum around x = 3, which is not the
best solution. However, despite this known limitation, gradient descent
works surprisingly well in practice.

Now that we have a general strategy for finding the parameters that
minimize a function, let us apply it to the problem we care about in this
chapter, that is, finding the parameters w and b that minimize the cost
function C(w,b) (Equation 3.8). A common source of confusion here is
that the parameters of C' are w and b, not x and y. For a given training

4 This example of a function with multiple minima taken from
https://en.wikipedia.org/wiki/Derivative.

42 Logistic Regression

example, x and y are known and constant. That is, we know the values of
the features and the label for each given example in training, and all we
have to do is compute w and b. Thus, the training process of LR reduces
to repeatedly updating each w; in w and b features by the corresponding
partial derivative of C"

w; = w; — a%C’(w, b) (3.11)
j
d
b=0b— a%C(w, b) (3.12)

Given a sufficient number of iterations and a learning rate a that is
not too large, w and b are guaranteed to converge to the optimal values
because the logistic regression cost function is convex.® However, one
problem with this approach is that computing the two partial deriva-
tives requires the inspection of all training examples (this is what the
summation in Equation 3.8 indicates), which means that the learning
algorithm would have to do many passes over the training dataset be-
fore any meaningful changes are observed. Because of this, in practice,
we do not compute C' over the whole training data, but over a small
number of examples at a time. This small group of examples is called a
ming batch. In the simplest case, the size of the mini batch is 1, i.e., we
update the w and b weights after seeing each individual example 4, using
a cost function computed for example i alone:®

Ci(w,b) = —(y; logo(x;;w,b) + (1 — y;) log(1l — o(x;;w,b))) (3.13)

This simplified form of gradient descent is called stochastic gradient
descent (SGD), where “stochastic” indicates that we work with a stochas-
tic approximation (or an estimate) of C. Building from the last three
equations above, we can write the logistic regression training algorithm
as shown in Algorithm 5. The reader will immediately see that this for-
mulation of the algorithm is similar to Algorithm 4, which we introduced
at the beginning of this chapter. In the next section, we will demonstrate
that these two algorithms are indeed equivalent, by computing the two

5 Demonstrating that the LR cost function is convex is beyond the scope of this

book. The interested reader may read other materials on this topic such as
http://mathgotchas.blogspot.com/2011/10/
why-is-error-function-minimized-in.html.

Technically, C; is a loss function because it applies to a single data point.
However, we will continue to use the term “cost function” for readability.

3.4 Deriving the Logistic Regression Update Rule 43

Algorithm 5: Logistic regression learning algorithm using
stochastic gradient descent.

1w=0
2b=0
3 while not converged do
4 for each training example x; in X do
5 for each w; in w do
6 w; = wj — aﬁj@;(w, b)
7 end
8 b="b—aiC;(w,b)
9 end
10 end

partial derivatives ﬁjC’i (w,b) and 4 C;(w,b). Importantly, the runtime
of this algorithm is linear in the number of parameters (lines 5 and 8)
times the number of training examples (line 4), which makes this algo-
rithm a practical solution for training on large datasets.

3.4 Deriving the Logistic Regression Update Rule

Here we will compute the partial derivative of the cost function C;(w, b)
of an individual example 7, with respect to each feature weight w; and
bias term b. For these operations we will rely on several rules to compute
the derivatives of a few necessary functions. These rules are listed in
Table 3.1.

Let us start with the derivative of C' with respect to one feature weight
wij:

4y, b) =

9 Cylogolxiw,b) — (1 — i) log(1 — o(xi; w, b))
dwj

dwj

Let us use o; to denote o(x;;w,b) below, for simplicity:

= d;l)j(_yi logo; — (1 —y;)log(1l —0y))

44 Logistic Regression

Pulling out the y; constants and then applying the chain rule on the two
logarithms:

d d d d
=—yi—logo;—o; — (1 —y;) 5 —log(l —0y) —(1 —
Yigor 10871 g0 (y)d(l_gl_) og(U)dwj(
After applying the derivative of the logarithm:
1 d 1 d
— (1 — s 1 — o
yzgi dwjo'z (yz)l s dwj(Uz)

After applying the chain rule on ﬁ(l —0;):
J

_ 41 d A+(1) 1 d .
o yZ(Ti dwjgz Yi 17(72' dwjgz
1 1 d
=(-yi—+(1-y)T——)7—0
(y0i+(y)ligi)dwja
_ yil—o)+ (A —yo; d
o 0'7;(170'1‘) dwj !
_oi—y d
o Ji(l—ol-) dwj ¢
After applying the chain rule on o;:
T — Yi d d
= ® (wex 4D
(= o) dw i 1 0) i, VXY

After the derivative of the logistic function and then canceling numerator
and denominator:

oi —Yi d
= —77 0 1- i) T &g b
O’i(l —O'i)g (7)de (W it)

~ (o, —yz-)dijw-xi)

Lastly, after applying the derivative of the dot product:

= (07 — yi)wij (3.14)

where z;; is the value of feature j in the feature vector x;.
Following a similar process, we can compute the derivative of C; with
respect to the bias term as:

a4
db db
(3.15)

Knowing that o; is equivalent with decision(x;, w, b), one can immedi-
ately see that applying Equation 3.15 in line 8 of Algorithm 5 transforms

Ci(w,b) = i(—yi log o (x3;w,b) — (1 — y;) log(1 — o(x43w,b))) = 03 — s

Table 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these
formulas, f and g are functions, a and b are constants, x is a variable.

Description Formula

Chain rule £ f(9(2) = 7 F(9(a) g(a)

Derivative of summation L(af(z) +bg())) = at f(z) + bLg(z)

Derivative of natural logarithm Llog(z) =2

Derivative of logistic Lo(z)=2(Hi,z) =— (1+elfz)2 (—e™®)=0o(z)(1 —o(x))
Derivative of dot product between dii (x-a)=ua;

vectors x and a with respect to x;

46 Logistic Regression

the update of the bias into the form used in Algorithm 4 (line 7). Sim-
ilarly, replacing the partial derivative in line 6 of Algorithm 5 with its
explicit form from Equation 3.14 yields an update equivalent with the
weight update used in Algorithm 4. The superficial difference between
the two algorithms is that Algorithm 5 updates each feature weight w;
explicitly, whereas Algorithm 4 updates all weights at once by updating
the entire vector w. Needless to say, these two forms are equivalent. We
prefer the explicit description in Algorithm 5 for clarity. But, in practice,
one is more likely to implement Algorithm 4 because vector operations
are efficiently implemented in most machine learning software libraries.

3.5 From Binary to Multiclass Classification

So far, we have discussed binary logistic regression, where we learned
a classifier for two labels (1 and 0), where the probability of predicting
label 1 is computed as: p(1|x;w,b) = o(x;w,b) and probability of label
0 is: p(Olx;w,b) = 1 — p(1|x; w,b) = 1 — o(x;w,b). However, there are
many text classification problems where two labels are not sufficient.
For example, we might decide to implement a movie review classifier
that produces five labels, to capture ratings on a five-star scale. To ac-
commodate this class of problems, we need to generalize the binary LR
algorithm to multiclass scenarios, where the labels to be learned may
take values from 1 to k, where k is the number of classes to be learned,
e.g., b in the previous example.

Figure 3.4 provides a graphical explanation of the multiclass LR. The
key observation is that now, instead of maintaining a single weight vec-
tor w and bias b, we maintain one such vector and bias term for each
class to be learned. Intuitively, this architecture is a merger of multiple
“neurons,” one for each class. This complicates our notations a bit: in-
stead of using a single index to identify positions in an input vector x or
in w, we now have to maintain two. That is, we will use w; to indicate
the weight vector for class ¢, w;; to point to the weight of the edge that
connects the input x; to the class ¢, and b; to indicate the bias term
for class i. The output of each “neuron” 7 in the figure produces a score
for label i, defined as the sum between the bias term of class i and the
dot product of the weight vector for class ¢ and the input vector. More
formally, if we use z; to indicate the score for label 7, then: z; = w;-x+b;.

Note that these scores are not probabilities: they are not bounded
between 0 and 1, and they will not sum up to 1. To turn them into

3.5 From Binary to Multiclass Classification 47

score for probability of
label 1 label 1
Z1 ”
score for = probability of
label 2 ©
abel £ label 2
Z2 &
[®]
wv
score for probability of
Iab;l k label k
k

Figure 3.4 Multiclass logistic regression.

probabilities, we are introducing a new function, called softmax, which
produces probability values for the k classes. For each class i, softmax
defines the corresponding probability as:

| (| eZi ewi~x+b,-
p(y = i|x; W, b) = p(i|lx; W,b) = = 3.16
()) Z?:l eZi Z?:l eWix+b; ()

where the W matrix stores all w weight vectors, i.e., row 7 in W stores
the weight vector w; for class i, and the b vector stores all bias values,
i.e., b; is the bias term for class i.

Clearly, the softmax function produces probabilities: (a) the exponent
function used guarantees that the softmax values are positives, and (b)
the denominator, which sums over all the k classes guarantees that the
resulting values are between 0 and 1, and sum up to 1. Further, with
just a bit of math, we can show that the softmax for two classes reduces
to the logistic function. Using the softmax formula, the probability of
class 1 in a two-class LR (using labels 1 and 0) is:

. _ o¥1xHby _ 1
p(1|x, W.b) = 00 fer i XhL . groxiho
ewl-x«i»bl +

(3.17)

_ 1
T e~ ((wi—wg)x+(b1—b0)) 41

Using a similar derivation, which we leave as an at-home exercise to the
curious reader, the probability of class 0 is:

48 Logistic Regression

w(-x+bg —((wq —wg)-x+(b1 —bg))
p(O|X;W,b) = ewo-x-fb0+ew1-x+b1 = ef((w1 —w0) X+ (b1 —b0)) 41
=1—p(1l|x; W,b) (3.18)

From these two equations, we can immediately see that the two formula-
tions of binary LR, i.e., logistic vs. softmax, are equivalent when we set
the parameters of the logistic to be equal to the the difference between
the parameters of class 1 and the parameters of class 0 in the softmax
formulation, or w = w; — wg, and b = b; — by, where w and b are the
logistic parameters in Equations 3.17 and 3.18.

The cost function for multiclass LR follows the same intuition and for-
malization as the one for binary LR. That is, during training we want to
maximize the probabilities of the correct labels assigned to training ex-
amples, or, equivalently, we want to minimize the negative log likelihood
of the data. Similarly to Equation 3.7, the cost function for multiclass
LR is defined as:

C(W,b) = —log L(W,b) = — > logp(yi|x;; W, b) (3.19)
=1

or, for a single training example i:
Ci(W,b) = —log p(yi|xi; W, b) (3.20)

where y; is the correct label for training example ¢, and x; is the fea-
ture vector for the same example. The probabilities in this cost function
are computed using the softmax formula, as in Equation 3.16. This cost
function, which generalizes the negative log likelihood cost function to
multiclass classification, is called cross entropy. Its form for binary clas-
sification is called binary cross entropy. Using Equations 3.17 and 3.18,
it is easy to show that in the case of binary logistic regression, Equa-
tion 3.19 is equivalent with our initial cost function from Equation 3.8.
These are probably the most commonly used cost function in NLP prob-
lems. We will see them a lot throughout the book.

The learning algorithm for multiclass LR stays almost the same as
Algorithm 5, with small changes to account for the different cost func-
tion and the larger number of parameters, i.e., we now update a matrix
W instead of a single vector w, and a vector b instead of the scalar b.
The adjusted algorithm is shown in Algorithm 6. We leave the compu-
tation of the derivatives used in Algorithm 6 as an at-home exercise for
the interested reader. However, as we will see in the next chapter, we
can now rely on automatic differentiation libraries such as PyTorch to

3.6 Fvaluation Measures for Multiclass Text Classification 49

Algorithm 6: Learning algorithm for multiclass logistic regres-
sion.

1 W=0

2b=0

3 while not converged do

4 for each training example x; in X do

5

6

for each w;, in W do
‘ Wik = Wik — aﬁ@(w, b)
7 end
8 for each b; in b do
9 | bj=b; —ag-Ci(W,b)
10 end .

11 end

12 end

Table 3.2 Ezample of a confusion matriz for three-class classification.
The dataset contains 1,000 data points, with 2 data points in class C'1,
100 in class C2, and 898 in class C3.

Classifier Classifier Classifier
predicted C'1 predicted C2 predicted C3
Gold label is C'1 1 1 0
Gold label is C2 10 80 10
Gold label is C3 1 7 890

compute these derivatives for us, so this exercise is not strictly needed
to implement multiclass LR.

3.6 Evaluation Measures for Multiclass Text
Classification

Now that we generalized our classifier to operate over an arbitrary num-
ber of classes, it is time to generalize the evaluation measures introduced
in Section 2.3 to multiclass problems as well. Throughout this section,
we will use as a walkthrough example a three-class version of the Med-

50 Logistic Regression

icaid application classification problem from Section 2.3. In this ver-
sion, our classifier has to assign each application to one of three classes,
where classes C'1 and C2 indicate the high- and medium-priority appli-
cations, and class C'3 indicate regular applications that do not need to
be rushed through the system. Same as before, most applications fall
under class C'3. Table 3.2 shows an example confusion matrix for this
problem for a hypothetical three-class classifier that operates over an
evaluation dataset that contains 1,000 applications.

The definition of accuracy remains essentially the same for multiclass
classification, i.e., accuracy is the ratio of data points classified correctly.
In general, the number of correctly classified points can be computed
by summing up the counts on the diagonal of the confusion matrix.
For example, for the confusion matrix shown in Table 3.2, accuracy is
14804890 _ 971

1,000 1,000
Similarly, the definitions of precision and recall for an individual class

¢, remain the same:

TP,
Po=——"° 3.21
TP, + FP, (3.21)

TP,
Ro=—""¢° 3.22
TP.+ FN, (3.22)

where T P, indicate the number of true positives for class ¢, F' P, indicate
the number of positives for class ¢, and F'N, indicate the number of false
negatives for the same class. However, because we now have more than
two rows and two columns in the confusion matrix, we have to do a bit
more additional math to compute the F'P. and F'N. counts. In general,
the number of false positives for a class ¢ is equal to the sum of the
counts in the column corresponding to class ¢, excluding the element
on the diagonal. The number of false negatives for a class ¢ is equal to
the sum of the counts in the corresponding row, excluding the element
on the diagonal. For example, for class C2 in the table, the number of
true positives is T Poo = 80, the number of false positives is F'Pgy =
1+ 7 = 8, and the number of false negatives is FNgo = 10 4+ 10 = 20.

Thus, the precision and recall for class C2 are: Poo = % =0.91, and
Reo = % = 0.80. We leave it as an at-home exercise to show that

Pc1=0.08, Rep = 0.5, Pog = 0.99, and Res = 0.99. From these values,
one can trivially compute the respective F scores per class.

The important discussion for multiclass classification is how to average
these sets of precision/recall scores into single values that will give us

3.6 Fvaluation Measures for Multiclass Text Classification 51

a quick understanding of the classifier’s performance. There are two
strategies to this end, both with advantages and disadvantages:

Macro averaging: Under this strategy we simply average all the in-
dividual precision/recall scores into a single value. For example, for
the above example, the macro precision score over all three classes is:

Poi+PeatPos — 0.0840.9140.99 — ()66, Similarly, the macro
3 <O)
Roi1+Ree2+Reos . 0.5040.804+0.99 __
s = - = 0.76. The

macro P =

recall score is: macro R =
macro F; score is the harmonic mean of the macro precision and recall
scores.

As discussed in Section 2.3, in many NLP tasks the labels are highly
unbalanced, and we commonly care less about the most frequent la-
bel. For example, here we may want to measure the performance of our
classifier on classes C'1 and C'2, which require rushed processing in the
Medicaid system. In such scenarios, the macro precision and recall scores
exclude the frequent class, e.g., C'3 in our case. Thus, the macro preci-
sion becomes: macro P = feitfea — 0081091 — (50, which is more
indicative of the fact that our classifier does not perform too well on the
two important classes in this example.

The advantage of the macro scores is that they treat all the classes we
are interested in as equal contributors to the overall score. But, depend-
ing on the task, this may also be a disadvantage. For example, in the
above example, the latter macro precision score of 0.50 hides the fact
that our classifier performs reasonably well on the C2 class (Pg2 = 0.91),
which is 100 times more frequent than C1 in the data!

Micro averaging: This strategy addresses the above disadvantage of
macro averaging, by computing overall precision, recall, and F scores
where each class contributes proportionally with its frequency in the
data. In particular, rather than averaging the individual precision/recall
scores, we compute them using the class counts directly. For example,
the micro precision and recall scores for the two classes of interest in the
above example, C'1 and C2, are:

TPc1+TPco

TPc1+T Pcoe+F Poi1+F Poa

_ 1480 _

= Trsorirss — 0-81 (3.23)
TPc1+TPc2

TPc1+TPoc2+FNci1+FNca

— 1+80 _

micro P =

micro R =

52 Logistic Regression

Similar to macro averaging, the micro Fy score is computed as the har-
monic mean of the micro precision and recall scores.

Note that in this example, the micro scores are considerably higher
than the corresponding macro scores because: (a) the classifier’s perfor-
mance on the more frequent C2 class is higher than the performance
on class C1, and (b) micro averaging assigns more importance to the
frequent classes, which, in this case, raises the micro precision and re-
call scores. The decision of which averaging strategy to use is problem
specific, and depends on the answer to the question: should all classes
be treated equally during scoring, or should they be weighted by their
frequency in the data? In the former case, the appropriate averaging is
macro; in the latter, micro.

3.7 Drawbacks of Logistic Regression

The logistic regression algorithm solves the lack of smooth updates in
the perceptron algorithm through its improved update functions on its
parameters. This seemingly small change has an important practical im-
pact: in most NLP applications, logistic regression tends to outperform
the perceptron.

However, the other drawbacks observed with the perceptron still hold.
Binary logistic regression is also a linear classifier because its deci-
sion boundary remains a hyperplane. It is tempting to say that the
above statement is not correct because the logistic is clearly a non-
linear function. However, the linearity of the binary LR classifier is easy
to prove with just a bit of math. Remember that the decision function
for the binary LR is: if > 0.5 we assign one label, and if
m < 0.5 we assign the other label. Thus, the decision boundary

1
1+e—(w~x+b)

is defined by the equation 5 = 0.5. From this we can easily de-

rive that e~ ("**%) =1, and —(w-x+b) = 0, where the latter is a linear
function on the parameters w and b. This observation generalizes to the
multiclass logistic regression introduced in Section 3.5. In the multiclass
scenario, the decision boundary between all classes consists of multi-
ple intersecting segments, each of which are fragments of a hyperplane.
Figure 3.5 shows an example of such a decision boundary for a 4-class

problem, where each data point is described by two features: z; and zo.”

7 This figure was generated by Clayton Morrison and is reproduced with
permission.

3.8 Historical Background 53

104

-4

10

|
w
o
w

X1

Figure 3.5 Example of a two-dimensional decision boundary for a 4-class
logistic regression classifier.

Clearly, forcing these segments to be linear reduces what the multiclass
logistic regression can learn.

Further, similar to the perceptron, the LR covered so far relies on
hand-crafted features, which, as discussed in the previous chapter, may
be cumbersome to generate and may generalize poorly. Lastly, logistic
regression also focuses on individual predictions rather than structured
learning. We will address all these limitations in the following chapters.
We will start by introducing non-linear classifiers in Chapter 5.

3.8 Historical Background

The logistic function was discovered twice (see (Cramer, 2002) for a
fascinating history). In brief, Pierre Frangois Verhulst introduced the
logistic function (with this name) in the 19th century in the context of
estimating population growth (Verhulst, 1838, 1845). Pearl and Reed
rediscovered the logistic function in a 1920 study of population growth
in the United States (Pear]l and Reed, 1920). They seemed to have been
unaware of Verhulst’s precedent. In a followup publication, Reed, who
was trained as a mathematician and biostatistician, applied the logistic
function to autocatalytic reactions (Reed and Berkson, 1929). Once the

54 Logistic Regression

repeated discovery was identified, Verhulst was rightfully credited for
both the formula and the name (Yule, 1925).

The gradient descent algorithm we used to train the logistic regression
classifier in this chapter was also discovered multiple times through his-
tory (Kelley, 1960; Dreyfus, 1990, 1962, inter alia). We will revisit this
history in Chapter 5, where we will introduce a generalization of this
algorithm to networks with an arbitrary number of neurons.

3.9 References and Further Readings

Because of its ubiquity, logistic regression is described in many statis-
tics and machine learning books and courses. The one that helped us
the most is Andrew Ng’s CS229 Machine Learning course at Stanford
University (Ng, 2019).

3.10 Summary

This chapter introduced logistic regression, which improves upon the
perceptron by performing soft updates during training, i.e., each pa-
rameter is updated based on its contribution to an incorrect decision.
We also extended the vanilla logistic regression, which was designed for
binary classification, to handle multiclass classification.

Through logistic regression, we introduced the concept of cost function
(i.e., the function we aim to minimize during training), and gradient
descent, the algorithm that implements this minimization procedure.

4

Implementing Text Classification Using
Perceptron and Logistic Regression

In the previous chapters we have discussed the theory behind the percep-
tron and logistic regression, including mathematical explanations of how
and why they are able to learn from examples. In this chapter we will
transition from math to code. Specifically, we will discuss how to imple-
ment these models in the Python programming language. All the code
that we will introduce throughout this book is available online as well:
http://clulab.github.io/gentlenlp/. The reader who is not famil-
iar with the Python programming language is encouraged to read first
Appendix A, for a brief introduction to the language, and Appendix B,
for a discussion on how computers encode and preprocess text. Once
done, please return here.

To get a better understanding of how these algorithms work under
the hood, we will start by implementing them from scratch. However,
as the book progresses, we will introduce some of the popular tools and
libraries that make Python the language of choice for machine learning,

e.g., PyTorch,! and Hugging Face’s transformers.?

The code for all the examples in the book is provided in the form of
Jupyter notebooks.? Important fragments of these notebooks will be pre-
sented in the implementation chapters so that the reader has the whole
picture just by reading the book. However, we strongly encourage you to
download the notebooks and execute them yourself. We also encourage
you to modify them to conduct your own experiments!

I https://pytorch.org
2 https://huggingface.co
3 https://jupyter.org/

95

56 Implementing Text Classification Using Perceptron and LR
4.1 Binary Classification

We begin this chapter with binary classification. That is, we aim to
train classifiers that assign one of two labels to a given text. As the
example for this task, we will train a review classifier using the the
Large Movie Review Dataset (Maas et al., 2011).* We tackle this task
by implementing first a binary perceptron classifier, followed by a binary
logistic regression one. We will implement the latter both from scratch
as well as using PyTorch, so the reader has a clearer understanding on
how PyTorch works “under the hood.”

4.1.1 Large Movie Review Dataset

This dataset contains movie reviews and their associated scores (between
1 and 10) as provided by IMDb.5 Maas et al. converted these scores to
binary labels by assigning each review a positive or negative label if the
review score was above 6 or below 5, respectively. Reviews with scores
5 and 6 were considered too neutral and thus excluded. We follow the
same protocol in this chapter.

The dataset is divided in two even partitions called train and test,
each containing 25,000 reviews. The dataset also provides additional
unlabeled reviews, but we will not use those here. Each partition con-
tains two directories called pos and neg where the positive and negative
examples are stored. Each review is stored in an independent text file,
whose name is composed of an id unique to the partition and the score
associated with the review, separated by an underscore. An example of
a positive and a negative review is shown in Table 4.1.

4.1.2 Bag-of-words Model

As discussed in Section 2.2, we will encode the text to classify as a bag
of words. That is, we encode each review as a list of numbers, with each
position in the list corresponding to a word in our vocabulary, and the
value stored in that position corresponding to the number of times the
word appears in the review. For example, say we want to encode the
following two reviews:

4 https://ai.stanford.edu/~amaas/data/sentiment/
5 https://www.imdb.com/

4.1 Binary Classification 57

Table 4.1 Two examples of movie reviews from IMDb. The first is a

positive review of the movie Puss in Boots (1988). The second is a

negative review of the movie Valentine (2001). These reviews can be
found at https://www. imdb. com/review/rw0606396/ and
https://www. imdb. com/review/rw0721861/, respectively.

Filename Score Binary Review Text
Label

train/pos/24_8.txt 8/10 Positive Although this was obviously a
low-budget production, the per-
formances and the songs in
this movie are worth seeing.
One of Walken’s few musical
roles to date. (he is a mar-
velous dancer and singer and
he demonstrates his acrobatic
skills as well - watch for the
cartwheel!) Also starring Ja-
son Connery. A great children’s
story and very likable charac-
ters.

train/neg/141_3.txt 3/10 Negative This stalk and slash turkey
manages to bring nothing new
to an increasingly stale genre.
A masked killer stalks young,
pert girls and slaughters them
in a variety of gruesome ways,
none of which are particularly
inventive. It’s not scary, it’s
not clever, and it’s not funny.
So what was the point of it?

Review 1: "I liked the movie. My friend liked it too."
Review 2: "I hated it. Would not recommend."

First, we need to create a vocabulary that maps each word to an id
that uniquely identifies it. Each of these numbers will be used as the
index in a list, so they must start at zero and grow by one for each word
in the vocabulary. For example, one possible vocabulary that encodes
the previous reviews is:

{'would': O,
'hated': 1,

[4]:

58 Implementing Text Classification Using Perceptron and LR

'my': 2,
'liked': 3,
'not': 4,
'it': b,

'movie': 6,
'recommend': 7,
'the': 8,

'I': 9,

'too': 10,
'friend': 11}

Using this mapping, we can encode the two reviews as follows:

Review 1: [0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 1, 1]
Review 2. [1, 1, 0, O, 1, 1, 0, 1, O, 1, O, O]

Note that the word liked (fourth position) in the first review has a
value of two. This is because this word appears twice in that review.

This is a small example with a vocabulary of only 12 terms. Of course,
the same process needs to be implemented for our whole training dataset.
For this purpose we will use scikit-learn’s CountVectorizer class.® Using
the CountVectorizer class simplifies things, allowing us to get started
quickly with a bag-of-words approach. However, note that it makes sev-
eral simplifying assumptions (e.g., text is lowercased, and punctuation
and single character tokens are removed). Some of these may not be
adequate to other tasks.

First, we need to obtain the filenames for the reviews in the training
set:

from glob import glob

pos_files
neg_files

glob('data/aclImdb/train/pos/*.txt"')
glob('data/aclImdb/train/neg/*.txt"')

print('number of positive reviews:', len(pos_files))
print ('number of negative reviews:', len(neg_files))

number of positive reviews: 12500
number of negative reviews: 12500

Once we have acquired the filenames for the training reviews, we need

6 https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html

4.1 Binary Classification 59

to read them using the CountVectorizer. In order for the CountVectorizer
to open and read the files for us, we make use of the input='filename'’
constructor parameter (otherwise it would expect the string content di-
rectly). The CountVectorizer provides three methods that will be use-
ful for us: a method called £it () that is used to acquire the vocabulary,
a method transform() that converts the text into the bag-of-words rep-
resentation, and a method fit_transform() that conveniently acquires
the vocabulary and transforms the data in a single step. The resulting
object is referred to as a document-term matriz, where each row corre-
sponds to a document, and each column corresponds to a term in the
vocabulary.

[5]: from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(input='filename')

doc_term_matrix = cv.fit_transform(pos_files + neg_files)
doc_term_matrix

. <25000x74849 sparse matrix of type '<class 'numpy.int64'>'
[5] P P Py
’ with 3445861 stored elements in Compressed Sparse Row format>

As the output above indicates, the resulting matrix has 25,000 rows
(one for each review), and 74,849 columns (one for each term). Also
you may note that this matrix is sparse, with 3,445,861 stored elements.
A regular matrix of shape 25,000 x 74,849 would have 1,871,225,000
elements. However, most of the elements in a document-term matrix
are zeros because only a few words from the vocabulary appear in each
document. A sparse matrix takes advantage of this fact by storing only
the non-zero cells in order to reduce the memory required to store it.
Thus, sparse matrices are convenient, especially when dealing with lots
of data. Nevertheless, to simplify the downstream code in this example,
we will convert it into a dense matrix, i.e., a regular two-dimensional
NumPy array.

[6]: X_train = doc_term_matrix.toarray()
X_train.shape

[6]: (25000, 74849)

Finally, we also need the labels of the reviews. We assign a label of
one to positive reviews, and a label of zero to negative ones. Note that
the first half of the reviews are positive and the second half are negative.

60 Implementing Text Classification Using Perceptron and LR

The label at the ith position of the y_train array corresponds to the
review encoded in the ith row of the X_train matrix.

[71: # training labels
y_pos = np.ones(len(pos_files))
y_neg = np.zeros(len(neg_files))
y_train = np.concatenate([y_pos, y_negl)
y_train

[7]. array(fi., 1., 1., .., 0., 0., 0.1)

4.1.3 Perceptron

Now that we have defined our task and the data processing pipeline, we
will implement a perceptron classifier that classifies the movie reviews as
positive or negative. The entire code discussed in this section is available
in the chap4_perceptron notebook. Recall from Section 2.4 that the
perceptron is composed of a weight vector w and a bias term b. These will
be represented as a NumPy array w of the same length as our document
vectors, and a variable b for the bias term. Both will be initialized with
ZEros.

[8]: n_examples, n_features = X_train.shape
w = np.zeros(n_features)
b=0

The parameters w and b are learned through the following algorithm,
which implements Algorithm 2 from Chapter 2:

[9]: n_epochs = 10

indices = np.arange(n_examples)
for epoch in range(10):
n_errors = 0
shuffle training examples
np.random.shuffle(indices)
traverse the training data
for i in tqdm(indices, desc=f'epoch {epoch+1}'):
x = X_train[i]
y_true = y_train[i]
the perceptron decision based on the current model
score = x Qw + b
y_pred = 1 if score > 0 else O
update the model is the prediction was tincorrect
if y_true == y_pred:
continue
elif y_true == 1 and y_pred == O:

4.1 Binary Classification 61

n_errors +=
elif y_true == 0 and y_pred ==

W=W- X
b=>b-1
n_errors += 1
if n_errors == 0:
break

There are a couple of details to point out. Line 3 of Algorithm 2
indicates that we need to repeat the training loop until convergence.
Theoretically, convergence is defined as predicting all training examples
correctly. This is an ambitious requirement, which is not always possible
in practice, so in this code we also include a stop condition if we reach a
maximum number of epochs. Another crucial difference between our im-
plementation here and the theoretical Algorithm 2, is that we randomize
the order in which the training examples are seen at the beginning of
each epoch. This simple (but highly recommended!) change is necessary
to avoid the introduction of spurious biases due to the arbitrary order
of the examples in the original training partition.” We accomplish this
by storing the indices corresponding to the X_train matrix rows in a
NumPy array, and shuffling these indices at the beginning of each epoch.
We shuffle the indices instead of the examples so that we can preserve
the mapping between examples and labels.

The training loop aligns closely with Algorithm 2. We start by iter-
ating over each example in our training data, storing the current ex-
ample in the variable x,® and its corresponding label in the variable
y_true. Next, we compute the perceptron decision function shown in
Algorithm 1. Note that NumPy (as well as PyTorch) uses Python’s @
operator to indicate vector or matrix multiplication, depending on its
operand types. Here we use it to calculate the dot product of the exam-
ple x and the weights w. To this we add the bias b to obtain the predicted
score, whose sign is used to assign a positive or negative predicted label.
If the prediction is correct, then no update is needed, and we can move
on to the next training example. However, if the prediction is incorrect,
then we need to adjust w and b, as described in Algorithm 2.

7 As an extreme example, consider a dataset where all the positive examples
appear first in the training partition. This would cause the perceptron to
artificially inflate the weights of the features that occur in these examples, a
situation from which the learning algorithm may struggle to recover.

We use typewriter font when we discuss variables in the code, to distinguish code
from the theoretical discussion in the other chapters.

[117:

[12]:

62 Implementing Text Classification Using Perceptron and LR

Sidebar 4.1 The tqdm function

This is our first exposure to the tqdm function. tqdm is a progress bar
that “make your loops show a smart progress meter.”” The name tqdm
comes from the Arabic word tagaddum which can mean “progress.” Using
tqdm is as simple as wrapping it around the collection to be traversed.

After training, we evaluate the model’s performance on the held-
out test partition. The test data is loaded similarly to the training
partition, but with one notable difference; we use CountVectorizer’s
transform() method instead of the fit_transform() method so that
the vocabulary is not adjusted for the test data. We won’t show here
the loading of the test partition since it is so similar to the code already
shown, but it is available in the Jupyter notebook that accompanies this
section.

Using the model to assign labels to all the test data is easily done in
one step — we simply multiply the entire test data document-term matrix
by the previously learned weights and add the bias. Scores greater than
zero indicate a positive review, and those less than zero are negative.

y_pred = (X_test @ w + b) > 0

At this point we can evaluate the classifier’s performance, which we
will do using precision, recall, and F1 scores for binary classification (de-
scribed in Section 2.3). For this purpose, we implement a function called
binary_classification_report that computes these metrics and re-
turns them as a dictionary:

def binary_classification_report(y_true, y_pred):
count true positives, false positives,
true negatives, and false negatives
tp = fp = tn = fn = 0
for gold, pred in zip(y_true, y_pred):
if pred == True:
if gold == True:

tp += 1

else:
fp += 1

else:

if gold == False:
tn += 1

else:
fn += 1

9 https://github.com/tqdm/tqdm

4.1 Binary Classification 63

calculate precision and recall
precision = tp / (tp + fp)
recall = tp / (tp + fn)
calculate f1 score
fscore = 2 * precision * recall / (precision + recall)
calculate accuracy
accuracy = (tp + tn) / len(y_true)
number of positive labels in y_true
support = sum(y_true)
return {
"precision": precision,
"recall": recall,
"fl-score": fscore,
"support": support,
"accuracy": accuracy,

}

We call this function to compare the predicted labels to the true labels,
and obtain the evaluation scores.

[13]: binary_classification_report(y_test, y_pred)

[13]: {'precision': 0.8288497891522466,
'recall': 0.912,
'fl-score': 0.8684390949950485,
'support': 12500.0,
'accuracy': 0.86184}

Our F1 score here is 86.8%, which is much higher than the baseline
that assigns labels randomly, which yields an F1 score of about 50%. This
is a good result, especially considering the simplicity of the perceptron!
In the next sections and chapters, we will discuss a battery of strategies
to considerably improve this performance.

4.1.4 Binary Logistic Regression from Scratch

Using the same task, dataset, and evaluation, we will now implement a
logistic regression classifier, as described in Algorithm 5 from Chapter 3.
To give the reader hands-on experience with the implementation of the
gradient calculations for logistic regression, we start by implementing it
from scratch using NumPy. All the code shown in this section is available
in the chap4_logistic_regression_numpy notebook.

In the perceptron implementation, we represented the weights and
the bias as two different variables. Here, however, we will use a different
approach that will allow us to unify them into a single vector variable.
Specifically, we take advantage of the similarity between the derivative

[71:

[7]:

[9]:

64 Implementing Text Classification Using Perceptron and LR

of the cost function with respect to the weights (Equation 3.14) and the
derivative of the cost with respect to the bias (Equation 3.15).

%C,’(w, b) = (07 — yi)wij (3.14 revisited)
d . .
%Ci (W,b) =0i—yi (3.15 revisited)

Note that the two derivative formulas are identical except that the for-
mer has a multiplication by x;;, while the latter does not. However,
since

0 —Yi = (Ui - yi)l

we can multiply the derivative of the cost with respect to the bias by one
without changing the semantics. This gives an opportunity for combining
the computations, doing them both in a single pass. The idea is that we
can treat the bias as a weight corresponding to a feature that always has
a value of one.

Make an array with a one for each row/data point
ones = np.ones(X_train.shape[0])

Concatenate these ones to existing feature vectors
X_train = np.column_stack((X_train, ones))
X_train.shape

(25000, 74850)

As can be seen above, we created a NumPy array of ones of the same
length as the number of examples in our training set (i.e., the number
of rows in the data matrix). Then we add this array as a new column to
the data matrix, using NumPy’s column_stack function.

Next, we need to initialize our model. This time we will use a single
NumPy array w of the same length as the number of columns in the data
matrix. The weight vector w is initialized randomly with values between
0 and 1:

n_examples, n_features = X_train.shape
w = np.random.random(n_features)

Before implementing the learning algorithm, we need an implementa-
tion of the logistic function. Recall that the logistic function is

1

= m (3 1 revisited)
e

o(x)

4.1 Binary Classification 65

This function can be easily implemented in NumPy as follows:

[10]: def logistic(x):
return 1 / (1 + np.exp(-x))

However, this naive implementation may produce the following warn-
ing during training:

RuntimeWarning: overflow encountered in exp
return 1 / (1 + np.exp(-x))

The term overflow indicates that the result of evaluating exp(-x) is
a number so large that it can’t be represented by a float (specifically,
we're using float64 numbers). We will avoid this issue by not calling
exp with values that will overflow. NumPy provides the function finfo
that can be consulted to find the limits of floating point numbers:

[11]: Bp.finfo(np.float64)

[11]: finfo(resolution=1e-15, min=-1.7976931348623157e+308,
max=1.7976931348623157e+308, dtype=float64)

The log of the largest floating point number is the largest number for
which exp() will not overflow, so we will use it as a threshold to filter
out problematic values:

[10]: max_float = np.finfo(np.float64).max

def logistic(x):
if -x > np.log(max_float):
return 0.0
return 1 / (1 + np.exp(-x))

We now have everything we need to implement Algorithm 4. The steps
to follow for each example are: (1) use the model to make a prediction,
(2) calculate the gradient of the loss function with respect to the model
parameters, and (3) update the model parameters using the gradient.
The size of the update is controlled by the learning rate.

[12]: learning rate = le-1
n_epochs = 10

indices = np.arange(n_examples)
for epoch in range(10):
randomize training examples
np.random. shuffle(indices)
for each training example

[14]:

[14]7:

66 Implementing Text Classification Using Perceptron and LR

for i in tqdm(indices, desc=f'epoch {epoch+1}'):
x = X_train[i]
y = y_train[i]
make decision
decision = x @ w
calculate derivative
deriv_cost = (logistic(decision) - y) * x
update weights
w = w - deriv_cost * learning_rate

Once the model has been trained, we evaluate it on the test dataset
using our binary_classification_report function from the previous
section. Loading and preprocessing the test dataset follows the same
steps as with the previous classifier. We omit the code for brevity. These
are the results:

y_pred = X_test @ w > 0O
binary_classification_report(y_test, y_pred)

{'precision': 0.8946762335016387,
'recall': 0.808,
'fl-score': 0.849131951742402,
'support': 12500.0,
'accuracy': 0.85644}

The performance is comparable with that of the perceptron. The dif-
ference in F1 scores between the two classifiers (84.9% here vs. 86.8%
for the perceptron) is not significant. Classifier parity is probably at-
tributable to the fact that the signal distinguishing the two classes be-
ing easy to learn and the simpler perceptron training algorithm being
sufficient in this case. Nevertheless, this task is useful in showing how to
implement the logistic regression model from scratch, i.e., by implement-
ing the gradient calculation and parameter updates manually. Next, we
will implement the same model again using PyTorch, highlighting how
this machine learning library simplifies the process.

4.1.5 Binary Logistic Regression Utilizing PyTorch

While it is fairly straightforward to compute the derivatives for logistic
regression and implement then directly in NumPy, this will not scale
well to arbitrary neural architectures. Fortunately, there are libraries
that automate the computation of the derivatives of the cost function
(assuming it is differentiable!) for any neural network, and use the re-
sulting gradients to perform gradient descent or other more sophisti-

[9]:

4.1 Binary Classification 67

cated optimization procedures. To this end, we will use the PyTorch
deep learning library'®. The corresponding notebook for this section is
chap4_logistic_regression_pytorch_bce.

Our model for logistic regression corresponds to PyTorch’s Linear
layer. When we instantiate this layer, we specify the size of the inputs
(the size of our vocabulary) and the size of the output, i.e., the number of
output neurons (which is one because we’re doing binary classification).
The loss function we use is the binary cross-entropy loss (see Chapter 3),
which is implemented as BCEWithLogitsLoss in PyTorch. In PyTorch,
the gradients obtained from the loss function are applied to the model
by an optimizer object, which implements and applies an optimization
algorithm. Here we will use the vanilla stochastic gradient descent opti-
mizer; we set its learning rate to 0.1. This is equivalent to the discussion
in Section 3.2.

Similarly to the manual implementation, the steps required to train
the model for a given training example are: (1) ensure the gradients are
set to zeros, (2) apply the model to obtain a prediction, (3) calculate
the loss, (4) compute the gradient of the loss by back-propagation, and
(5) update the model parameters.

import torch
from torch import nn
from torch import optim

Ir = le-1
n_epochs = 10

model = nn.Linear(n_features, 1)
loss_func = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(model.parameters(), lr=1r)

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32)

indices = np.arange(n_examples)
for epoch in range(10):
n_errors = 0
randomize training examples
np.random.shuffle(indices)
for each training example
for i in tqdm(indices, desc=f'epoch {epoch+1}'):
x = X_train[i]
y_true = y_train[i]
ensure gradients are set to zero

10 https://pytorch.org/

[13]:

[13]:

68 Implementing Text Classification Using Perceptron and LR

model.zero_grad()

make predictions

y_pred = model(x)

calculate loss

loss = loss_func(y_pred[0], y_true)

calculate gradients through back-propagation
loss.backward()

optimize model parameters

optimizer.step()

Recall that in our previous implementation everything was hardcoded:
applying the model, computing the gradients, and optimizing the model
parameters. Here, however, the implementation of the logistic regres-
sion is expressed at a higher level of abstraction. This means that we
are describing the logical steps without specifying a particular imple-
mentation. Instead, implementation details are the responsability of the
chosen model, loss function, and optimizer. Thus, we could even choose a
different model, loss function, and/or optimizer, and use the same train-
ing steps with little or no modification. This decoupling of the training
logic from the implementation details is one of the main advantages of
libraries such as PyTorch.

As shown in the code above, calling the model as a function, with the
feature vectors as inputs, produces the predicted scores. Once again, a
positive score corresponds to a positive label. When we evaluate this
implementation on the test dataset, we obtain results that are in line
with our previous models:

y_pred = model(X_test) > O
binary_classification_report(y_test, y_pred)

{'precision': 0.8908308222126561,
'recall': 0.82776,
'fl-score': 0.8581380883267676,
'support': 12500.0,
'accuracy': 0.86316}

Writing the perceptron and the logistic regression from scratch is a
good exercise, as it exposes us to the fundamentals of implementing
machine learning algorithms. However, this becomes cumbersome for
more complex neural architectures. For this reason, from this point on,
we will use PyTorch for all our coding examples.

4.2 Multiclass Classification 69
4.2 Multiclass Classification

So far, in this chapter we have discussed implementing binary classi-
fiers. Next, we will modify these binary classifiers to perform multiclass
classification, following the discussion in Section 3.5.

4.2.1 AG News Dataset

Before explaining the actual training/testing code, we have to choose
a new dataset that is suitable for multiclass classification. To this end,
we will use the AG News Classification Dataset (Zhang et al., 2015), a
subset of the larger AG corpus of news articles collected from thousands
of different news sources.!! The classification dataset consists of four
classes, and the data is equally balanced across all classes (30,000 articles
per class for train, and 1,900 articles per class for testing). The goal of
the task is to classify each article as one of the four classes: World,
Sports, Business, or Sci/Tech.

4.2.2 Preparing the Dataset

The AG News Dataset is distributed as two CSV files (one for training
and one for testing), each containing three columns: the class index, the
title, and the description. The dataset also provides a text file that maps
the above class indexes to more descriptive class labels.

Because of the tabular nature of the dataset, pandas, a Python library
for tabular data analysis,'?
ing it. To this end, our Jupyter notebook (chap4_multiclass_logistic_regression)
demonstrates the sequence of steps required to handle the data, as well
as model training and evaluation. First, we show how to load the CSV,
add column names, and inspect the result:

is a natural choice for loading and transform-

. | train_df = pd.read_csv('data/ag_news_csv/train.csv', header=None)
[2] P &
train_df.columns = ['class index', 'title', 'description']
train_df

M http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
12 https://pandas.pydata.org

[3]:

70 Implementing Text Classification Using Perceptron and LR

119995
119996
119997
119998
119999

class index

3
3
3
3
3

NONN

2

title

Wall St. Bears Claw Back Into the Black (Reuters)

Carlyle Looks Toward Commercial Aerospace (Reu...

Qil

and Economy Cloud Stocks' Outlook (Reuters)

Iraq Halts Oil Exports from Main Southern Pipe...

Qil prices soar to all-time record, posing new...

Pakistan's Musharraf Says Won't Quit as Army C...

120000 rows x 3 columns

description

Reuters - Short-sellers, Wall Street's dwindli...
Reuters - Private investment firm Carlyle Grou...
Reuters - Soaring crude prices plus worries\ab...
Reuters - Authorities have halted oil export\f...

AFP - Tearaway world oil prices, toppling reco...

KARACHI (Reuters) - Pakistani President Perve...

Renteria signing a top-shelf deal Red Sox general manager Theo Epstein acknowled.

Saban not going to Dolphins yet

The Miami Dolphins will put their courtship of...

Today's NFL games PITTSBURGH at NY GIANTS Time: 1:30 p.m. Line: ...

Nets get Carter from Raptors

INDIANAPOLIS -- All-Star Vince Carter was trad

Since the class labels themselves are in a separate file, we manually
add them to the pandas data structure (called dataframe in pandas’
terminology) to increase the interpretability of the data. We use the
class index column as a starting point, and use its map method to create
a new column with the corresponding labels (technically a new Series
object) that is added to the dataframe using its insert method, which
allows us to insert the column in a specific position. Note that the label
indices are one-based, so we subtract one to align them with their labels.

labels =

classes

ENENTEN

119995
119996
119997
119998
119999

open('data/ag_news_csv/classes.txt').read() .splitlines()

= train_df['class index'] .map(lambda i: labels[i-1])
train_df.insert (1,
train_df

class index

®w oW w w

NONONN

class
Business
Business
Business
Business

Business

World
Sports
Sports
Sports

Sports

120000 rows x 4 columns

'class', classes)

title

Wall St. Bears Claw Back Into the Black (Reuters)
Carlyle Looks Toward Commercial Aerospace (Reu...
Qil and Economy Cloud Stocks' Outlook (Reuters)
Iraq Halts Oil Exports from Main Southern Pipe...

Qil prices soar to all-time record, posing new...

Pakistan's Musharraf Says Won't Quit as Army C...
Renteria signing a top-shelf deal

Saban not going to Dolphins yet

Today's NFL games

Nets get Carter from Raptors

description

Reuters - Short-sellers, Wall Street's dwindli...
Reuters - Private investment firm Carlyle Grou...
Reuters - Soaring crude prices plus worries\ab..
Reuters - Authorities have halted oil export\f...

AFP - Tearaway world oil prices, toppling reco...

KARACHI (Reuters) - Pakistani President Perve..

Red Sox general manager Theo Epstein acknowled...
The Miami Dolphins will put their courtship of.

PITTSBURGH at NY GIANTS Time: 1:30 p.m. Line: ...

INDIANAPOLIS -- All-Star Vince Carter was trad...

Next we will preprocess the text. First we lowercase the title and
description, and then we concatenate them into a single string. Then we
remove some spurious backslashes from the text. Once this is done, the

[6]:

[7]:

4.2 Multiclass Classification 71

preprocessed text is added to the dataframe as a new column. Note that
pandas allows these steps to be applied to all rows simultaneously.

title = train_df['title'].str.lower()

-_ < 1 3 S 1
descr = train_df['description'].str.lower()
- < n n
text = title + + descr
< 1 1 - 1 1 1 1 -
train_df['text'] = text.str.replace('\\', , regex=False)
train_df
class 1es title description text
index
0 3 Business Wall St. Bears Claw Back Into the Black Reuters - Short-sellers, Wall Street's dwindli wall st. bears claw back into the black
(Reuters) (reute.
1 S TS Carlyle Looks Toward Commercial Reuters - Private investment firm Carlyle carlyle looks toward commercial
Aerospace (Reu. Grou. aerospace (reu
2 3 Business il and Economy Cloud Stocks’ Outlook Reuters - Soaring crude prices plus oil and economy cloud stocks' outlook
(Reuters) worries\ab. (reuters.
3 3 Business Iraq Halts Oil Exports from Main So;«lgzm Reuters - Authorities have hatted ol export, iraq halts oil exports from main son;llr;m
Oil prices soar to all-time record, posing AFP - Tearaway world oil prices, toppling oil prices soar to all-time record, posing
4 3 Business new. reco new.
Pakistan's Musharraf Says Won't Quit as KARACH]I (Reuters) - Pakistani President pakistan's musharraf says won't quit as
119995 1 World
Army C. Perve. army c.
G 2 @Es R e) Red Sox general manager Theo Epstein renteria signing a top-shelf deal red sox
acknowled gene.
119997 2 spors Saban not going to Dolphins yet The Miami Dolphins will put their counsohpr saban not going to dolphins yet the Z\;ﬁ)mw
G 2 spors Today's NFL games PTTSBURGH at NY GIANTS Time: 1 i?nz m. today's nfl games pittsburgh at ny ﬁ:ﬁgs
119999 2 Sports Nets get Carter from Raptors INDIANAPOLIS - All-Star Vince Carter was nets get carter from raptors indianapolis -

120000 rows x 5 columns

trad.

a

At this point, the text is ready to be tokenized. For this purpose we will
use NLTK’s word_tokenize function. This function can be applied to
the whole column at once using the pandas map function, which returns a
new column which we add to the dataframe. However, here we actually
use the progress_map function, which provides a visual progress bar.
This visual feedback is especially helpful for tasks that take more time
to complete.

from nltk.tokenize import word_tokenize

train_df['tokens'] =
train_df

train_df['text'].progress_map(word_tokenize)

[8]:

72

class

Implementing Text Classification Using Perceptron and LR

class class title description text tokens
o 3 Busness Wall St Bears Claw Back Into the Reuters - Short-sellers, Wall wall st. bears claw backintothe [wall, st, bears, claw, back,
Black (Reuters) Street's dwindii black (reute. into, the, blac.
Carlyle Looks Toward Commercial Reuters - Private investment firm carlyle looks toward commercial [carlyle, looks, toward,
1 3 Business
Aerospace (ReL. Carlyle Grou aerospace (reu commercial, aerospace.
R . Oil and Economy Cloud Stoks' ~ Reuters - Soaring orude prices plus il and economy cloud stocks' {oi, and, economy, cloud
usiness ‘
Outiook (Reuters) worries\ab. outlook (reuters stocks, ', outlook,
5 3 Business 1@ Halts Oil Exports rom Main Reuters - Authorities have halted iraq halts oil exports from main [ag, halts, of, exports, from,
Southern Pipe. ol exportf. southern pipe. main, solthe.
4 3 Busiess Ol Prices soarto allime record, AFP - Tearaway world oi prices, ol prices soar to allime record, [oil, prices, soar, to, all-time,
posing new toppling reco. posing new record, , p.
Pakistan's Musharraf Says Won't KARACH]I (Reuters) - Pakistani pakistan's musharraf says won't [pakistan, 's, musharraf, says,
119995 1 Word
Quitas Army C President Perve quitas army ¢ wo, n', qut,
Red Sox general manager Theo renteria signing a top-shelf deal [renteria, signing, a, top-shelf,
119996 2 Spois Renteria signing atop-shelf deal o Aopoaies M
The Miami Dolphins will put their ~ saban not going to dolphins yet [saban, not, going, to, dolphins,
119997 2 Sports Saban notgoing to Dolphins yet Sourtanip of e mim dol vet the, mi
. PITTSBURGH atNY GIANTS today's nfl games pittsburgh at ftoday, 's, nf, games,
WD 2 s WCEESNAL GRS Time: 1:30 p.m. Line: ny giants time pittsburgh, at, ny, gi
110998 2 spors Nets get Carter from Raptors 'NDIANAPOLIS — AlFStar Vince nets get carter from raptors [nefs, get, carter, from, raptors,
Carter was trad indianapolis - a indianapoli

120000 rows x 6 columns

From the tokens we just created, we then create a vocabulary for
our corpus. Here, we only keep the words that occur at least 10 times,
decreasing the memory needed and reducing the likelihood that our vo-
cabulary contains noisy tokens. Note that each row in the tokens column
contains a list of tokens. In order to create the vocabulary, we will need
to convert the Series of lists of tokens into a Series of tokens using
the explode() Pandas method. Then we will use the value_counts()
method to create a Series object in which the index are the tokens
and the values are the number of times they appear in the corpus. The
next step is removing the tokens with a count lower than our chosen
threshold. Finally, we create a list with the remaining tokens, as well as
a dictionary that maps tokens to token ids (i.e., the index of the token
in the list). We include in the vocabulary a special token [UNK] that will
be used as a placeholder for tokens that do not appear in our vocabulary
after the frequency pruning.

threshold = 10

tokens = train_df['tokens'].explode() .value_counts()
tokens = tokens[tokens > threshold]

id_to_token = ['[UNK]'] + tokens.index.tolist()
token_to_id = {w:i for i,w in enumerate(id_to_token)}
vocabulary_size = len(id_to_token)

print (f 'vocabulary size: {vocabulary_size:,}')

vocabulary size: 19,671

Using this vocabulary, we construct a feature vector for each news
article in the corpus. This feature vector will be encoded as a dictionary,
with keys corresponding to token ids, and values corresponding to the

4.2 Multiclass Classification

73

number of times the token appears in the article. As above, the feature
vectors will be stored as a new column in the dataframe.

[9], from collections import defaultdict

def make_features(tokens, unk_id=0):
vector = defaultdict(int)
for t in tokens:
i = token_to_id.get(t, unk_id)
vector[i] += 1
return vector

train_df['features'] = train_df['tokens'].progress_map(make_features)

train_df
class c1ass title description text
index

0 3 Business Wall St. Bears Claw Back Reuters - Short-sellers, Wall wall st. bears claw back

Into the Black (Reuters) Street's dwindli into the black (reute.
1 3 Business Commercal Acrogpace ReMers-Pivate investment FE 008 2U20S

P: firm Carlyle Grou P

(Reu (reu
2 3 Business Ol and Economy Cloud Reuters - Soaring crude il and economy cloud

Stocks' Outlook (Reuters) prices plus worries\ab. stocks' outlook (reuters.
. 3 Business f2d Hals Oil Exports from Reuters - Authorities have iraq hats oil exports from

Main Southern Pipe. halted oil export\f main southern pipe.
Oil prices soar to allime ~ AFP - Tearaway world ol oil prices soar to all-time

4 3 Business

record, posing new. prices, toppling reco. record, posing new.
119995 4 Worq Pakistan's Musharraf Says KARACHI (Reuters) - pakistan's musharraf says

Won't Quitas Army C... Pakistani President Perve won't quit as army c.
Renteria signing a top-shelf Red Sox general manager renteria signing a top-

LS 2 gEs deal Theo Epstein acknowled.. shelf deal red sox gene
saban ot going to

Saban not goingto The Miami Dolphins will put

119997 2 Spors Sobtineyet helr counehip of dolphins yet the e
PITTSBURGH at NY today's nfl games
119998 2 Spors Today's NFLgames GIANTS Time: 1:30 p.m pittsburgh at ny giants

Line: time.
Nets get Carter from INDIANAPOLIS -- All-Star nets get carter from

119999 2 Sports Raptors Vince Carter was trad... raptors indianapolis —

120000 rows x 7 columns

tokens

[wall, st, bears, claw,
back, into, the, blac.

[carlyle, looks, toward,
commercial, aerospace.

[oil, and, economy, cloud,
stocks, ', outiook,

[iraq, halts, oil, exports,
from, main, southe.

[oil, prices, soar, to, all-
time, record, ,, p.

[pakistan, 's, musharraf,
says, wo, n't, quit,

[renteria, signing, a, top-
shelf, deal, red, s.

[saban, not, going, to,
dolphins, yet, the, mi

[today, 's, nfl, games,
pittsburgh, at, ny, gi

[nets, get, carter, from,
raptors, indianapoli

features

{427:2,563: 1, 1607. 1,
15062: 1, 120: 1, 73,

{15999: 2, 1076: 1, 855
1, 1286: 1, 4251: 1,

{66:1,9:2,351: 2,
4565:1,158: 1, 116: 1,

{77:2,7380: 1,66: 3,
1787: 1, 32: 2, 900: 2.

{66: 2, 99: 2,4390: 1, 4.
2,3595: 1,149: 1,

{383:1,23:1,1626: 2,
91: 1, 1809: 1, 285:

{8428:2,2638: 1, 5: 4,
0:3,127:1,202: 3,

{7762: 2,68: 1,661: 1,
4:2,1439:2,703: 1

{106: 1,23:1,729: 1,
225:1,1586:1,22: 1

{2170: 2, 226: 1, 2402
2,32:1,2995: 2, 219,

The final preprocessing step is converting the features and the class
indices into PyTorch tensors. Recall that we need to subtract one from

the class indices to make them zero-based.

[10]: def make_dense(feats):
x = np.zeros(vocabulary_size)
for k,v in feats.items():
x[k] = v
return x

X_train = np.stack(train_df['features'].progress_map(make_dense))

y_train = train_df['class index'].to_numpy() - 1

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train)

At this point, the data is fully processed and we are ready to begin

training.

[11]:

74 Implementing Text Classification Using Perceptron and LR

4.2.3

The model itself is a single linear layer whose input size corresponds
to the size of our vocabulary, and its output size corresponds to the

number o

by default, so there is no need to handle that manually the way we did

Multiclass Logistic Regression Using PyTorch

f classes in our corpus. PyTorch’s Linear layer includes a bias

for our perceptron example.

from tor
from tor

hyperp
Ir = 1.0
n_epochs
n_exampl
n_feats

n_classe

inittalize the model,

model =

ch import nn
ch import optim

arameters

=5
es = X_train.shape[0]
= X_train.shape[1]

s = len(labels)

loss function, and optimizer
nn.Linear(n_feats, n_classes) .to(device)

loss_func = nn.CrossEntropyLoss()

optimize

train
indices
for epoc

r = optim.SGD(model.parameters(), lr=lr)

the model
= np.arange(n_examples)
h in range(n_epochs):

np.random.shuffle(indices)

for

The code for training this model (which implements Algorithm 6) is
almost identical to that of the binary logistic repression. However, since
we have to calculate a score for each of the four different classes, we need
to replace the previous BCEWithLogitsLoss with CrossEntropyLoss,
which applies a softmax over the scores to obtain probabilities for each

class.

i in tqdm(indices, desc=f'epoch {epoch+1}'):
clear gradients

model .zero_grad()

send datum to right device

x = X_train[i] .unsqueeze(0) .to(device)
y_true = y_train[i] .unsqueeze(0) .to(device)
predict label scores

y_pred = model(x)

compute loss

loss = loss_func(y_pred, y_true)

backpropagate

loss.backward()

optimize model parameters
optimizer.step()

[13]:

4.8 Summary 75

For each example, the model predicts 4 scores — one for each label.
The label with the highest score is selected using the argmax function.
We evaluate the predictions of our model for each class using scikit-
learn’s classification_report, which handles the results of multiclass
classification.

from sklearn.metrics import classification_report

set model to ewvaluation mode
model.eval ()

don't store gradients
with torch.no_grad():
X_test = X_test.to(device)
y_pred = torch.argmax(model(X_test), dim=1)
y_pred = y_pred.cpu() .numpy ()
print(classification_report(y_test, y_pred, target_names=labels))

precision recall fl-score support

World 0.94 0.82 0.88 1900

Sports 0.89 0.99 0.94 1900
Business 0.81 0.88 0.85 1900
Sci/Tech 0.89 0.83 0.86 1900
accuracy 0.88 7600
macro avg 0.88 0.88 0.88 7600
weighted avg 0.88 0.88 0.88 7600

4.3 Summary

In this chapter, we used movie review and news article classification to
illustrate the implementation of the previously described algorithms for
the binary perceptron, binary logistic regression, and multiclass logistic
regression. For the binary logistic regression, we made a direct compar-
ison between the lower-level NumPy implementation and a higher-level
version that made use of PyTorch.

We hope that through this series of exercises the reader has noted
several key takeaways. First, data preparation is important and should
be done thoughtfully. Certain tasks (e.g., text normalization or sentence
splitting) are going to be frequently needed if you continue with NLP, so
using or creating generic functions can be very helpful. However, what
works for one dataset and one language may not be suitable for another
scenario. For example, in our case, we selected different tokenizers for

76 Implementing Text Classification Using Perceptron and LR

each of our tasks to account for the different registers of English, as well
as removing diacritics during normalization.

Second, when it comes to implementing machine learning algorithms,
it is often easier to use a higher-level library such as PyTorch instead
of NumPy. For example, with the former, the gradients are calculated
by the library, whereas in NumPy we have to code them ourselves. This
becomes cumbersome quickly. For example, even the derivative of the
softmax is non-trivial.

Third, PyTorch imposes a training structure that remains largely the
same, regardless of what models are being trained. That is, at a high
level, the same steps are always required: clearing the current gradients,
predicting output scores for the provided inputs, calculating the loss, and
optimizing. These features make PyTorch a very powerful and convenient
deep learning library; we will continue to use it throughout the remainder
of the book to implement more complex neural architectures.

5

Feed Forward Neural Networks

So far we have explored classifiers with decision boundaries that are
linear, or, in the case of the multiclass logistic regression, a combina-
tion of linear segments. In this chapter, we will expand what we have
learned so far to classifiers that are capable of learning non-linear deci-
sion boundaries. The classifiers that we will discuss here are called feed
forward neural networks, and are a generalization of both logistic re-
gression and the perceptron to systems of multiple “neurons.” Without
going into the theory behind it, it has been shown that, under certain
conditions, these classifiers can approximate any function (Hornik, 1991;
Leshno et al., 1993). That is, they can learn decision boundaries of any
arbitrary shape. Intuitively, these complex decision boundaries are made
possible through a non-linear aggregation of several individual decision
boundaries (one per neuron). Figure 5.1 shows a very simple example of
a hypothetical situation where a non-linear decision boundary is needed
for a binary classifier.!

The good news is that we have already introduced the building blocks
of feed forward neural networks (FFNN): the individual neuron, and
the stochastic gradient descent algorithm. In this chapter, we are simply
combining these building blocks in slightly more complicated ways, but
without changing any of the fundamental operating principles.

7

78 Feed Forward Neural Networks

decision boundary
(

® °
([

[
([[

L

° (X
° o ©
(]

Figure 5.1 Decision boundary of a non-linear classifier.

I+1

W.
)
neuroniin Iaylerl hY neuron jin layer | + 1
withbiasb with bias b'*'

" : B . . +1
and activation a . and activation a

probability of
label 1

probability of
label 2
>

softmax

input intermediate output
layer layers layer

Figure 5.2 Fully-connected feed-forward neural network architecture.

5.1 Architecture of Feed Forward Neural Networks 79
5.1 Architecture of Feed Forward Neural Networks

Figure 5.2 shows the general architecture of FFNNs. As seen in the fig-
ure, FFNNs combine multiple layers of individual neurons, where each
neuron in a layer [is fully connected to all neurons in the next layer,
I + 1. Because of this, architectures such as the one in the figure are
often referred to as fully-connected FFNNs. This is not the only possi-
ble architecture for FFNNs: any arbitrary connections between neurons
are possible. However, because fully-connected networks are the most
common FFNN architecture seen in NLP, we will focus on these in this
chapter, and omit the fully-connected modifier from now on, for simplic-
ity.

Figure 5.2 shows that the neuron layers in a FFNN are grouped into
three categories. These are worth explaining in detail:

Input layer: Similar to the perceptron or logistic regression, the in-
put layer contains a vector x that describes one individual data point.
For example, for the review classification task, the input layer will be
populated with features extracted from an individual review such as the
presence (or count) of individual words. In Chapter 8 we will switch from
such hand-crafted features to numerical representations of text that cap-
ture some of the underlying semantics of language, and thus, are better
for learning. Importantly, the neural network is agnostic to the way the
representation of an input data point is created. All that matters for
now is that each input data point is summarized with a vector of real
values, x.

Intermediate layers: Unlike the perceptron and logistic regression,
FFNNs have an arbitrary number of intermediate layers. Each neuron
in an intermediate layer receives as inputs the outputs of the neurons in
the previous layer, and produces an output (or activation) that is sent
to all the neurons in the following layer. The activation of each neuron is
constructed similarly to logistic regression, as a non-linear function that
operates on the dot product of weights and inputs plus the bias term.
More formally, the activation a! of neuron i in layer [is calculated as:

L See this blog post for a visual explanation of non-linear decision boundaries in
neural networks: https://towardsdatascience.com/
a-visual-introduction-to-neural-networks-68586b0b733b.

80 Feed Forward Neural Networks

S
|

= FQ_whal) = f(wia Tt b)) = f(2) (5.1)

j=1

where k is the total number of neurons in the previous layer [— 1, wéj
are the weights learned by the current neuron (neuron 4 in layer 1), aé_l
is the activation of neuron j in the previous layer, and b! is the bias term
of the current neuron. For simplicity, we group all the weights wéj into
the vector wl, and all activations aé-fl into the vector a'~!. Thus, the
summation in the equation reduces to the dot product between the two
L. al=1. We further denote the sum between this dot product
and the bias term b as z!. Thus, 2! is the output of neuron i in layer
right before the activation function f is applied.

The function f is a non-linear function that takes 2! as its input. For
example, for the logistic regression neuron, f is the logistic function,
0. Many other non-linear functions are possible and commonly used in
neural networks. We will discuss several such functions, together with
their advantages and disadvantages in Chapter 6. What is important to
realize at this stage is that the aggregation of all these non-linear func-
tions gives neural networks the capability of learning non-linear decision
boundaries. A multi-layer FFNN with identity activation functions, i.e.,
where al = 2!, remains a linear classifier. As a simple example, consider
the neural network in Figure 5.3, which has one intermediate layer with
two neurons, and a single neuron in the output layer. Let us consider
that the activation function in each neuron is a “pass through” (or iden-
tity) function f(z) = x. The activation of the output neuron is then

computed as:

vectors: w

ay = wi al + wiyas + b (5.2)
= wiy (W} 21 +wihas + wiyrs +07) + wiy (whe1 + w3hTa + wisws + b3) + b
=z (w} i + wlhws)+
22 (W wly + wiywd,)+
z3(wi wis + wiywss)+
w} b7 + wiybs + b}
which is a linear function on the input variables z1, z2, and z3. It is
easy to show that this observation generalizes to any arbitrary FFNN,
as long as the neuron activation functions are linear.

5.1 Architecture of Feed Forward Neural Networks 81

layer 1
(input)

layer 2

(intermediate) layer 3

(output)

Figure 5.3 A feed-forward neural network with linear activation functions
is a linear classifier.

Output layer: Lastly, FFNNs have an output layer that produces
scores for the classes to be learned. Similar to the multiclass logistic re-
gression, these scores can be aggregated into a probability distribution
if the output layer includes a softmax function. However, the softmax
function is optional (hence the dashed lines in the figure). If softmax is
skipped, the class scores will not form a probability distribution, and
they may or may not be bounded to the [0, 1] interval depending on the
activation functions used in the final layer.

To distinguish between the final network layer and other intermediate
layers, we use uppercase L to indicate the final layer, and lowercase [to
identify an intermediate one. That is, 2% is the “raw” output of neuron
1 in the last layer, i.e., before the activation function is applied, and af
is the corresponding activation of the same neuron.

The values in the z” vector are often referred to as logits. In the case
of binary classification, the logits are usually normalized using sigmoid
activations. In the case of multiclass classification, the logits become the
input to a softmax function. We will see this terminology a lot in the
coding chapters because PyTorch relies on it.

Sidebar 5.1 Tensor notation for feed-forward neural networks

Very often, you will see the equations discussed so far in this chapter
summarized using tensor notation, that is, using vectors and matrices
instead of the explicit math we introduced above. For example, Equa-
tion 5.1 is commonly summarized as: a' = f(W'!-a!~! 4+ b'), where the
vectors a' and b! contain all activations and biases in layer [, and the
matrix W' contains all the weights that connect layer [— 1 to layer .
Thus, W! has as many columns as the size of a'~!, and as many rows

82 Feed Forward Neural Networks

as the size of a'. Sometimes, the order of W! and a'~lis flipped in the
equation: a' = f(a!~!- W' 4+bl). This does not really matter; one simply
has to be careful about the dimensions of W', which change in this case.

Operating with vectors and matrices, as shown in the above equation,
is beneficial. Not only is the math and the resulting code (see Chapter 7)
simpler, but we can take advantage of modern hardware, i.e., graphics
processing units (GPUs), which have been designed for efficient tensor
operations. We will discuss this more in the next chapter. However, in
this chapter we will continue with the explicit notations used before this
sidebar because they completely expose the underlying mathematical
operations.

The architecture shown in Figure 5.2 can be reduced to most of the
classifiers we introduced so far. For example:

Perceptron: The perceptron has no intermediate layers; has a single
neuron in the output layer with a “pass through” activation function:
f(z) = x; and no softmax.

Binary logistic regression: Binary LR is similar to the perceptron,
with the only difference that the activation function of its output
neuron is the logistic function: f = o.

Multiclass logistic regression: Multiclass LR has multiple neurons
in its output layer (one per class); their activation functions are the
“pass through” function, f(z) = x; and it has a softmax.

5.2 Learning Algorithm for Neural Networks

At a very high level, one can view a neural network as a complex ma-
chinery with many knobs, one for each neuron in the architecture. In
this analogy, the learning algorithm is the operating technician whose
job is to turn all the knobs to minimize the machine’s output, i.e., the
value of its cost function for each training example. If a neuron increases
the probability of an incorrect prediction, its knob will be turned down.
If a neuron increases the probability of a correct prediction, its knob will
be turned up.

We will implement this learning algorithm that applies to any neural
network with a generalization of the learning algorithm for multiclass
logistic regression (Algorithm 6). The first key difference is that the
parameters we are learning are no longer a single weight vector and a

5.2 Learning Algorithm for Neural Networks 83

Algorithm 7: Stochastic gradient descent algorithm for the
training of neural networks.

1 initialize parameters in ©
2 while not converged do
3 for each training example x; in X do

4 for each 0 in © do

5 0=0-— a%@-(@)
6 end

7 end

8 end

single bias term per class as in the multiclass LR. Instead, the neural
network parameters contain one weight vector and one bias term for
each neuron in an intermediate or final layer (see Figure 5.2). Because
the number of these neurons may potentially be large, let’s use a single
variable name, ©, to indicate the totality of parameters to be learned,
i.e., all the weights and biases. We will also use 6 to point to an individual
parameter (i.e., one single bias term or a single weight) in ©. Under these
notations we can generalize Algorithm 6 into Algorithm 7, which applies
to any neural network we will encounter in this book.2

Note that the key functionality remains exactly the same between
Algorithms 6 and 7: in each iteration, both algorithms update their pa-
rameters by subtracting the partial derivative of the cost from their
current values. As discussed, this guarantees that the cost function in-
crementally decreases towards some local minimum. This observation is
sufficient to understand how to implement the training algorithm for
a FFNN using a modern machine learning library that includes auto-
differentiation such as PyTorch. Thus, the impatient reader who wants
to get to programming examples as quickly as possible may skip the
remainder of this chapter and jump to the next one for code examples.
However, we encourage the reader to stick around for the next sections
in this chapter, where we will look “under the hood” of Algorithm 7 to
understand better how it operates.

2 We will revise this algorithm slightly in Chapter 6.

84 Feed Forward Neural Networks
5.3 The Equations of Back-propagation

The key equation in Algorithm 7 is in row 5, which requires the com-
putation of the partial derivative of the cost function for one training
example C;(0) with respect to all parameters in the network, i.e., all
edge weights and all bias terms. The intuition behind this algorithm is
identical to what we discussed in Chapter 3: each parameter is updated
proportionally to its contribution to the mistakes of the network.

While the formula in row 5 of Algorithm 7 looks mathematically sim-
ple, it is not intuitive: how are we to calculate the partial derivatives
for parameters associated with neurons that are not in the final layer,
and, thus, do not contribute directly to the cost function computation?
To achieve this, we will implement an algorithm that has two phases:
a forward phase, and a backward phase. In the forward phase, the al-
gorithm runs the neural network with its current parameters to make
a prediction on the given training example ¢. Using this prediction, we
then compute the value of the cost function for this training example,
C;(0©). Then, in the backward phase we incrementally propagate this
information backwards, i.e., from the final layer towards the first layer,
to compute the updates to the parameters in each layer. Because of this,
this algorithm is commonly called back-propagation, or, for people in a
hurry, backprop.

Let us formalize this informal description. To do this, we need to
introduce a couple of new notations. First, because in this section we will
use only one training example ¢ and refer to the same training parameters
O throughout, we will simplify C;(0) to C in all the equations below.
Second, and more importantly, we define the error of neuron i® in layer
l as the partial derivative of the cost function C' with respect to the
neuron’s output (2!):

P

¢ dzl

(5.3)

where 2! is the output of neuron i in layer [before the activation function
f is applied. Intuitively, the error of a neuron measures what impact
a small change in its output z has on the cost C. Or, if we view z
as a knob as in the previous analogy, the error indicates what impact
turning the knob has. The error of a neuron is a critical component
in backpropagation: we want to adjust the parameters of each neuron
3 Note that we are overloading the index i here. In Algorithm 7 we used it to

indicate a specific training example x;. Now we use it to indicate a specific
neuron.

5.8 The Equations of Back-propagation 85

Algorithm 8: The back-propagation algorithm that computes
parameter updates for a neural network.

1 compute the errors in the final layer L, 5{“, using the cost
function C' (Equation 5.4)

2 backward propagate the computation of errors in all upstream
layers (Equation 5.5)

3 compute the partial derivates of C for all parameters in a layer [,
dibéC and ﬁC, using the errors in the same layer, 6!

(Equations 5.6 and 5.7)

proportionally with the impact the neuron has on the cost function’s
value for this training example: the higher the impact, the bigger the
adjustment. Lastly, we use the index L to indicate the final layer of the
network, e.g., the layer right before the softmax in Figure 5.2. Thus, §*
indicates the error of neuron ¢ in the final layer.

Using these notations, we formalize the backpropagation algorithm
with the three steps listed in Algorithm 8. Step 1 computes the error of
neuron 7 in the final layer as the partial derivative of the cost function
C with respect to neuron i’s activation (aX) multiplied with the par-
tial derivative of the activation function f with respect to the neuron’s

(3
output (zF):

d d
5{4 = Cm—.LCdz—Lf(ziL) (5~4)

This equation may appear daunting at first glance (two partial deriva-
tives!), but it often reduces to an intuitive formula for given cost and
activation functions. As a simple example, consider the case of binary
classification, i.e., a single neuron in the final layer with a logistic acti-
vation, coupled with the mean squared error (MSE) cost function. We
will discuss the MSE cost in more detail in Chapter 6. For now, it is
sufficient to known that MSE is a simple cost function commonly used
for binary classification: C' = (y — a¥)?2, where y is the gold label for
the current training example, e.g., 0 or 1 assuming a logistic activa-
tion. That is, the MSE cost simply minimizes the difference between
the prediction of the network (i.e., the activation of its final neuron)
and the gold label. The derivative of the MSE cost with respect to the

86 Feed Forward Neural Networks

daLL = 2(al — y).* The derivative of the logistic
1
with respect to the neuron’s output is: dz%o(z{‘) = o(2F)(1 — a(zh))
1

neuron’s activation is:

(see Table 3.1). Thus, 6 in this simple example is computed as: §& =
20k —y)o(zh)(1 - 0(:5)) = 20(:F) — y)o(zF) (1 — o(1)). It s casy to
see that this error formula follows our knob analogy: when the activation
of the final neuron is close to the gold label y, which can take values of
0 or 1, the error approaches 0 because two of the terms in its product
are close to 0. In contrast, the error value is largest when the classifier is
“confused” between the two classes, i.e., its activation is 0.5. The same
can be observed for any (differentiable) cost and activation functions
(see next chapter for more examples).

Equation 5.4 is easy to prove using a direct application of the chain
rule:

d d
L _ L

k
d d

= (C—qak
dak dzLaZ

7 (3

where k iterates over all neurons in the last layer. Note that we need
to sum over all neurons in the final layer in the first line of the proof
because C theoretically depends on all activations in the final layer.
However, neuron ¢ impacts only its own activation, and, thus, we can
ignore all other activations (second line of the proof).

Equation 5.4 computes the errors in the last layer of the network. The
next back-propagation equation incrementally propagates the computa-
tion of errors into the upstream layers, i.e., the layers that are farther
to the left in Figure 5.2. That is, this equation computes the errors in a
layer [using the errors in the layer immediately downstream, [+ 1, as
follows:

d
0 =2 0wl T f =) (5.5)
k 2

where k iterates over all neurons in layer [+ 1.

We prove this equation by first applying the chain rule to introduce
the outputs of the downstream layer, szl, in the formula for the error
of neuron ¢ in layer [, and then taking advantage of the fact the outputs

in the downstream layer [4+ 1 depend on the activations in the previous

4 This is trivially derived by applying the chain rule.

5.8 The Equations of Back-propagation 87

neuron i in layer | neuron kin Iayer I +1
with bias b|I with bias b

and activation alI and actlvatlon a

layer| layerl+1

Figure 5.4 Visual helper for Equation 5.5.

layer [. More formally:

d d St
= Z dzl'HCdzl k
I+1 l+1
- 26 d l 2k
— Z l+1 Zwl-H l —|—bl+1)
k
1+1 l+1 l
- 26 d l a;)
_ Z(Sl+1w§€—l—1 i
d
= & tul o f(E)
k

ki dzzl.

where j iterates over all neurons in layer [. Similar to the previous proof,
we need to sum over all the neurons in layer I 4+ 1 (second line of the
proof) because the value of the cost function is impacted by all the
neurons in this layer. The rest of the proof follows from the fact that

88 Feed Forward Neural Networks

zlljl = Zj w@lag + bgjl. Figure 5.4 provides a quick visual helper to
navigate the indices used in this proof.

Using Equations 5.4 and 5.5 we can compute the errors of all neurons
in the network. Next we will use these errors to compute the partial
derivatives for all weights and bias terms in the network, which we need
for the stochastic gradient descent updates in Algorithm 7. First, we
compute the partial derivative of the cost with respect to a bias term
as:

d
—C =4 (5.6)
1

b !

The proof of this equation follows similar steps with the previous two

proofs, but here we iterate over neurons in the same layer [(so we can

access the error of neuron 7). Thus, we can ignore all neurons other than
neuron ¢, which depends on this bias term:

- 5@%4
= 55(%(; whyal 4 b))

where k iterates over all neurons in layer [, and h iterates over the
neurons in layer [— 1.

Similarly, we compute the partial derivative of the cost with respect
to the weight that connects neuron j in layer [— 1 with neuron ¢ in layer
l #ijC , as:

d
dw!.

)

C=da;'s (5.7)

The proof of this equation follows the same structure as the proof

5.8 The Equations of Back-propagation
J' Q==

B

Figure 5.5 Visualization of the vanishing gradient problem for the logistic
function: changes in z yield smaller and smaller changes in y at the two
ends of the function, which means that %o approaches zero in the two
extremes.

above:

39

where k iterates over all neurons in layer [, and h iterates over the

neurons in layer [— 1.

Equations 5.4 to 5.7 provide a formal framework to update the pa-
rameters of any neural network (weights and biases). They also highlight

several important observations:

(i) Implementing a basic feed forward neural network is not that compli-
cated. Equations 5.4 to 5.7 rely on only two derivatives: the derivative
of the activation function f, and the derivative of the cost function. In
theory, these could be hard-coded for the typical activation and cost
functions to be supported. The rest of the mathematical operations
needed to implement back-propagation are just additions and multi-
plications. However, in practice, there are some additional issues that

90

(i)

(iii)

In

Feed Forward Neural Networks

need to be addressed for a successful neural network implementation.
We will discuss these issues in Chapter 6.

Back-propagation is slow. As shown in the equations, updating the
network parameters requires a considerable number of multiplications.
For real-world neural networks that contain millions of parameters
this becomes a significant part of the training runtime. In the next
chapters we will discuss multiple strategies for speeding up the train-
ing process such as batching multiple training examples and multiple
operations together (e.g., updating all bias terms in a layer with a
single vector operation rather than several scalar updates as in the
equations). When these tensor operations are moved onto a graphics
processing unit (GPU), which has hardware support for parallel tensor
operations, they can be executed much faster.

Depending on the activation function, its partial derivative with re-
spect to model parameters may be too small, which slows down the
learning process. This happens because the equations to compute the
errors in the network layers (Equations 5.4 and 5.5) both depend on
this derivative. Multiplying this derivative repeatedly, as required by
the recursive process described in the two equations, may have the
unintended consequence of pushing some errors towards zero, which,
in turn, means that the network parameters will not be updated in
a meaningful way. This phenomenon is commonly called the “vanish-
ing gradient problem.” Figure 5.5 shows a visualization of this phe-
nomenon for the logistic activation function. The softmax function,
which generalizes the logistic function to multiclass classification, suf-
fers from the same problem. For this reason, other activations that
are more robust to this problem are commonly used in deep learning.
We will discuss some these in Chapter 6.

5.4 Drawbacks of Neural Networks (So Far)

this chapter we generalized logistic regression into multi-layered neu-

ral networks, which can learn nonlinear functions. This is a major ad-

va

ntage over LR, but it can be also be a drawback: because of their flex-

ibility, neural networks can “hallucinate” classifiers that fit the training
data well, but fail to generalize to previously unseen data (Domingos,

20

15). This process is called overfitting. We will discuss multiple strate-

gies to mitigate overfitting in Chapter 6.

In addition to overfitting, the training process of neural networks may

5.5 Historical Background 91

suffer from other problems. We discussed the vanishing gradient prob-
lem in the previous section. Another problem commonly observed when
training neural networks is the tendency to “Tony Hawk” the data, which
slows down convergence, or prevents it all together. Chapter 6 discusses
optimization algorithms that reduce this phenomenon.

Further, similar to the perceptron and LR, the neural networks cov-
ered so far continue to rely on hand-crafted features. We will address
this limitation in Chapter 8. Lastly, feed forward neural networks focus
on individual predictions rather than structured learning (i.e., where
multiple predictions such as the part-of-speech in a sentence are jointly
generated). We will start introducing structured prediction using neu-
ral networks in Chapter 10. This will open the door to other important
NLP applications such as part-of-speech tagging, named entity recogni-
tion, and syntactic parsing.

5.5 Historical Background

While the idea of neural networks was introduced by McCulloch and
Pitts (1943), their network did not learn. The first general-purpose
multi-layer neural network that could learn from data was proposed by
Ivakhnenko and Lapa (1966). However, they used a simpler (and more
limited) method to train it rather than the back-propagation algorithm
we discussed in this chapter. Back-propagation was co-discovered in the
early 1960s by Kelley (1960); Dreyfus (1962), and was formalized in the
modern form we covered here by Linnainmaa (1970) (in a Master’s the-
sis!). However, he did not connect back-propagation to the training of
neural networks. The first connection was made in the early 1980s by
Werbos (1982) and soon after by Rumelhart et al. (1985).

Thus, we have had an assembled puzzle that connected “deep” neural
networks to general-purpose training using back-propagation for almost
40 years now. So, why did it take so long for neural networks to achieve
the tremendous successes we see today? There are probably at least
four reasons for the slow start. First, the interest in (and funding for)
deep learning was negatively impacted by the “Al winter” we mentioned
in Chapter 2 (despite the fact that the drawbacks observed by Minsky
and Papert (1969) applied to the perceptron not to multi-layer neural
networks). Second, it took a series of “tricks” (discussed in the next
chapter) to bring stability to the training process of multi-layer net-
works. Third, neural networks tend to require more data to learn than

92 Feed Forward Neural Networks

other machine learning algorithms. Until such datasets became avail-
able in image and language processing, other algorithms such as the
support vector machines developed by Cortes and Vapnik (1995) domi-
nated. One research direction that mitigated the lack of large annotated
datasets was to pre-train neural networks using unsupervised algorithms.
This idea was first proposed by Schmidhuber (1992) for recurrent neu-
ral networks (which we will introduce in Chapter 10). Pre-training is
widely used today thanks to the advent of transformer networks, which
are more amenable to expensive pre-training due to their architecture
(see Chapters 12, 13, 14, 15, and 16). Lastly, deep learning was widely
adopted when general-purpose graphics processing units (GPU) became
available. General-purpose GPUs, which were originally developed for
graphics applications such as video games, provide hardware support
for parallel matrix operations, which speed up the training and infer-
ence of neural networks considerably. This was first observed by Raina
et al. (2009) and Ciresan et al. (2010), and then scaled up to a large
network by Krizhevsky et al. (2012).

5.6 References and Further Readings

For a comprehensive description of deep learning we recommend (Good-
fellow et al., 2016). We also found the online book of Nielsen (2019) to
be an approachable introduction to deep learning, more inline with the
scope of our book.

5.7 Summary

This chapter exposed us to feed forward neural networks that assemble
multiple “neurons” into arbitrary structures, in which each neuron is
itself a generalization of the perceptron and logistic regression we saw
in the previous chapters. Despite the more complicated structures pre-
sented, we showed that the key building blocks remain the same: the
network is trained by minimizing a cost function. This minimization is
implemented with back-propagation, which adapts the gradient descent
algorithm introduced in the previous chapter to multi-layer neural net-
works.

6

Best Practices in Deep Learning

The previous chapter introduced feed forward neural networks and demon-
strated that, theoretically, implementing the training procedure for an
arbitrary FFNN is relatively simple: Algorithm 7 describes the learning
algorithm that relies on stochastic gradient descent, and Algorithm 8
explains how the actual parameter updates are computed using back-
propagation. Unfortunately, as described in Section 5.4, neural net-
works trained this way suffer from several problems including stability
of the training process, i.e., slow convergence due to parameters jumping
around a good minimum, and overfitting.

In this chapter we will describe several practical solutions that mit-
igate these problems. In particular, we will discuss mini-batching and
more modern optimization algorithms to improve the robustness of gra-
dient descent, other activation functions that mitigate the vanishing gra-
dient problem, a generalization of cost functions from binary to multi-
class classification, techniques to reduce overfitting such as (a) regular-
ization, (b) dropout, (c) temporal averaging, and, lastly, methods to
initialize and normalize network parameters to increase our chances of
finding a better minimum of the cost function during training. Note
that most of these solutions are implemented in modern deep learning
libraries such as PyTorch. We will see them in action in the next chapter.

6.1 Mini-batching

Algorithm 7 updates the network parameters after each individual train-
ing example is seen. This means that the network changes its parameters
at the fastest rate possible, with gradients that may have high vari-
ance (due to training examples that may be very different). These rapid

93

94 Best Practices in Deep Learning

changes may cause the resulting network to exhibit large differences in
behavior (i.e., the network makes different predictions in response to the
same inputs) in short time. If you wish, stochastic gradient descent is a
training process that just had a triple espresso. Being highly caffeinated
has several advantages and disadvantages. The pluses of this strategy
are:

(i) In some cases, stochastic gradient descent converges to a good out-
come more quickly due to the rapid parameter updates. This usually
happens on easier problems, where the cost function has a minimum
that is easy to find and yields a good solution.

(ii) Stochastic gradient descent has the capacity to “jump out” of local
minima encountered during training due to the high variance in the
gradients corresponding to different training examples. That is, similar
to the function shown earlier in Figure 3.3, the cost functions used
by neural networks are not necessarily convex. At some point in the
training process, i.e., when only a subset of the training examples have
been seen, the learning process may converge to a poor minimum,
e.g., similar to the one in the right part of the function shown in
Figure 3.3. However, the following parameter updates, which can be
drastically different from the previous ones that led to the suboptimal
solution, increase the probability that the neural network leaves this
local minimum and continues training.

(iii) Last but not least, stochastic gradient descent is easy to implement
and has minimal memory requirements, i.e., only one training example
has to be kept in memory at a time.

The drawbacks of stochastic gradient descent are:

(i) The “jumping out” of suboptimal solutions advantage often trans-
lates into the disadvantage of slower convergence because the network
“jumps around” good solutions rather than settling on one.

(ii) Stochastic gradient descent is computationally expensive due to the
frequent updates of the network parameters. Further, these parameter
updates are hard to parallelize due to the sequential traversal of the
training examples.

The opposite of stochastic gradient descent is batch gradient descent,
which updates the network parameters only after all the training ex-
amples have been seen. That is, batch gradient descent still computes
the parameter gradients after each training example is processed, but
updates them only at the end of each epoch with the average of all

6.1 Mini-batching 95

Algorithm 9: Batch gradient descent algorithm.

1
2
3

© o N o s

10
11
12
13
14

initialize parameters in ©

while not converged do

for each 0 in © do

| grady =0

end

for each training example x; in X do
for each 6 in © do

| grady = grady + £C;(0)

end

end

for each 6 in © do

d
0 =0 — aBad
| X]

end

end

previously-computed gradients. The process is summarized in Algorithm 9.
In the algorithm, the variables grad, keep track of the sum of the par-
tial derivatives of C' with respect to 6 for each training example ¢, and
|X]| indicates the size of the training dataset X. If stochastic gradient
descent is a highly-caffeinated training process, batch gradient descent
had a calming beverage such as chamomile tea. The advantages and
disadvantages of this sedated training algorithm are opposite those of
stochastic gradient descent. That is, its main advantages are:

(i)

(i)

The average gradients used to update the network parameters tend
to be more stable than the individual gradients used in stochastic
gradient descent, and this often leads to convergence to better (local)
minima on some problems.

Batch gradient descent is more computationally efficient because of
the fewer updates of the network parameters. Further, batching is
better suited for parallel implementations. That is, the for loop in line
6 of Algorithm 9 can theoretically be executed in parallel because the
individual gradients are only used at the end of the loop.

And its disadvantages are:

(i)

Batch gradient descent may prematurely converge to a less-than-ideal

96 Best Practices in Deep Learning

Algorithm 10: Mini-batch gradient descent algorithm.

1
2
3

© ® N O v s

10
11
12
13
14
15
16

initialize parameters in ©
while not converged do
for each mini-batch M sampled from X do
for each 0 in © do
| grady =0
end
for each training example x; in M do
for each 0 in © do
’ grad, = grad, + %C’i(@)
end
end
for each 0 in © do

ad
0 =0— e
‘ M]

end

end
end

solution because its ability to “jump out” of an undesired local mini-
mum is reduced.

Despite the computational efficiency within an individual epoch, batch
gradient descent may take longer to train (i.e., more epochs) because
the network parameters are updated only once per epoch.

The implementation of batch gradient descent is more complicated
than that of stochastic gradient descent because it needs to keep track
of the sum of all gradients for each network parameter throughout an
epoch.

These two extreme strategies suggest that a middle ground may be

the best practical solution. This middle ground is called mini-batch gra-
dient descent. Similar to batch gradient descent, the mini-batch variant
updates the network parameters only after a batch is completed, but
its batches are smaller. For example, typical mini-batch sizes for many
NLP problems are 32 or 64 training examples. The mini-batch gradient
descent algorithm is described in Algorithm 10. Similar to Algorithm 9,
the variables grad, keep track of the sum of the partial derivatives of C
with respect to 6 for each training example ¢ in a given mini-batch M.
They are reset at the start of each mini-batch (lines 4 — 6), and are used

6.2 Other Optimization Algorithms 97

to update the parameter values after each mini-batch completes (lines 12
— 14). |M| indicates the number of training examples in the mini-batch
M.

On the spectrum of caffeinated beverages, mini-batch gradient de-
scent consumed a green tea, a beverage that provides just enough en-
ergy without the jitters that may be associated with large espressos.
More formally, the advantages of mini-batch gradient descent combine
the best traits of the previous two training algorithms:

(i) Mini-batch gradient descent tends to robustly identify good local min-
ima because it reduces the “jumping around” disadvantage of stochas-
tic gradient descent, while keeping some of its “jumping out” of un-
desired minima advantage.

(ii) Mini-batch gradient descent allows for efficient, parallel implementa-
tion within an individual mini-batch. We will show how this is done
in PyTorch in the next chapter.

The main disadvantages of mini-batch gradient descent are:

(i) Similar to batch gradient descent, its implementation is somewhat
more complicated than that of stochastic gradient descent due to the
additional bookkeeping necessary for each mini-batch.

(ii) More importantly, mini-batch gradient descent introduces a new hyper
parameter, i.e., a variable that needs to be tuned outside of the actual
training process: the size of the mini-batch. Unfortunately, the size of
the mini-batch tends to be specific to each task and dataset. Thus, the
developer must search for the best mini-batch size through an itera-
tive trial-and-error tuning process, where various sizes are used during
training, and the performance of the resulting model is evaluated on
a separate tuning (or development) partition of the data.

In the next section we describe other optimization algorithms that
further increase the stability of the training process.

6.2 Other Optimization Algorithms

Beyond mini-batching, several improvements have been proposed to in-
crease the robustness of gradient descent algorithms. The first one we
will discuss is momentum (Qian, 1999). Figure 6.1 provides a simple
real-world analogy for it: imagine two sleds going down a hill, and about
to encounter a ravine. Sled 1 starts right before the ravine, whereas sled

98 Best Practices in Deep Learning

{jed 2
\§5)|ed 1

Figure 6.1 Illustration of momentum: sled 1 is more likely to get stuck
in the ravine than sled 2, which starts farther up the hill, and carries
momentum when it enters the ravine.

2 starts further up the hill. Clearly, sled 1 is more likely to get stuck in
the ravine than sled 2, which carries more speed (or momentum) as it
enters the ravine, and is more likely to escape it. Sled 1 is the equivalent
of the previous mini-batch gradient algorithm, which is more likely to
get stuck in a local minimum (the ravine). Algorithm 10 shows that for
each mini-batch, i.e., step down the hill, we initialize each gradient, i.e.,
the speed at this moment, (line 5) with zero. That is, we forget about the
speed we had previously, and compute the current speed simply based
on the slope under our sled at this time. Gradient descent with momen-
tum fixes this by initializing the gradients with a fraction of the final
gradients computed for the previous mini-batch. That is, at time ¢, i.e.,
when the tth mini-batch is processed, line 5 in Algorithm 10 changes to:

gradj) = v gradj, ! (6.1)

where grad'éf1 is the gradient for # computed for the previous mini-
batch, and v is a hyper parameter with values between 0 and 1,! which
indicates how much of the previous momentum we want to preserve.

A variant of momentum, called Nesterov momentum (Nesterov, 1983),
builds upon this intuition by also changing line 9 of Algorithm 10. In
particular, Nesterov momentum does not compute the partial derivative
of the cost function, %Ci, using the actual parameters in ©. Instead, this
algorithm subtracts the momentum, i.e., a fraction of gradé_l, from each

1 Common values for 4 are around 0.9.

6.2 Other Optimization Algorithms 99

parameter 6 when computing C;. The intuition behind this operation is
that this allows the algorithm to “peak into the future,” by using values
that estimate the parameter values at time ¢+ 1. This is possible because
we know through the combination of the momentum initialization (dis-
cussed in the previous paragraph) and the actual update operation (line
13 in Algorithm 10) that the value of each parameter 6 at the end of this
mini-batch will be computed by subtracting a fraction of its correspond-
ing momentum from the old va<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>