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As experiments continue to increase in size and scope, a fundamental challenge of subsequent analyses

is to recast the wealth of information into an intuitive and readily interpretable form. Often, each

measurement conveys only the relationship between a pair of entries, and it is difficult to integrate these

local interactions across a dataset to form a cohesive global picture. The classic localization problem tackles

this question, transforming local measurements into a global map that reveals the underlying structure of a

system. Here, we examine the more challenging bipartite localization problem, where pairwise distances

are available only for bipartite data comprising two classes of entries (such as antibody-virus interactions,

drug-cell potency, or user-rating profiles). We modify previous algorithms to solve bipartite localization

and examine how each method behaves in the presence of noise, outliers, and partially observed data. As a

proof of concept, we apply these algorithms to antibody-virus neutralization measurements to create a basis

set of antibody behaviors, formalize how potently inhibiting some viruses necessitates weakly inhibiting

other viruses, and quantify how often combinations of antibodies exhibit degenerate behavior.

DOI: 10.1103/PhysRevX.13.021002 Subject Areas: Biological Physics,

Computational Physics

I. INTRODUCTION

Given a country’s geographic map, it is straightforward

to determine the distance between any pair of cities. Yet,

posing this question in reverse (called classic localization or

the Euclidean distance geometry problem) is far more

challenging: given only the distances between some pairs of

cities, can we reconstruct the full geographic map [1]?

Across all scientific disciplines, the interactions between

vast numbers of entries are routinely measured, yet the

deeper relationships underlying these entries only become

apparent when recast into a global description of the

system [2]. For geographic maps, large tables of city-city

distances are less interpretable than a 2D map positioning

cities relative to one another.

To take another example from the field of human

perception, the similarity between pairs of colors reveals

that reds, greens, blues, and violets cluster together

[Fig. 1(a), left]. Yet by embedding these measurements

into 2D space (without any additional information about

the colors themselves), the colors naturally form into a

highly intuitive color wheel [Fig. 1(a), right]. This repre-

sentation greatly reduces the complexity of the system,

enabling us to hypothesize how new colors would be

perceived and predict trends in the data (e.g., that each color

has a maximally distant “complementary color” on the

opposite side of the wheel).

When systems have such a simple underlying structure,

we intuitively expect that a straightforward algorithm can

dissect the pairwise distances and recover the global

embedding. Indeed, for complete and noise-free data this

can be achieved in two steps: the first centering the

distances to reveal a matrix of inner products, and a second

step using the singular value decomposition (SVD) to

determine the coordinates (Appendix A 1) [4]. For noisy

or partially missing data, numeric minimization [5,6] and

semidefinite programming relaxations [7–10] have been

developed to drive nonlinear dimensionality reduction [9],

nuclear magnetic resonance spectroscopy [11,12], and

sensor network localization [6–8,10,13].

In this work, we consider a twist on this classical

problem that we call bipartite localization, where a

bipartite dataset consists of two classes of entries, and

interactions can only be measured between (and not within)

each class. Since previous methods are poorly suited to

handle bipartite data [14,15], we modify existing methods

and tailor them for bipartite localization. In particular, we

discuss two variants of the popular multidimensional
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scaling (MDS) algorithm—metric MDS and bipartite

MDS—as well as a semidefinite programming (SDP)

approach [8]. Each method has its own advantages: metric

MDS is the simplest and most flexible numerical frame-

work, bipartite MDS provides a nearly closed-form sol-

ution (up to an affine transform), and SDP uses a convex

relaxation that is harder to trap in local minima.

Bipartite datasets are ubiquitous in every scientific field,

making these embedding methods broadly applicable.

Examples include user-rating profiles such as the Netflix

challenge [16,17], graph clustering [18–20], the dimen-

sionality of facial expressions [21], the activity of protein

mutants [22], gene expression for different DNA promot-

ers [23], and the combinatorics of ligand signaling [24].

As a proof of principle, we apply these methods to the

pressing issue of antibody-virus interactions, where multi-

ple antibodies are assessed against panels of virus mutants

[Fig. 1(b)]. Unlike many previous efforts that either

exclusively visualized the viruses or the antibodies [25,26]

or required data to be normalized [27], we embed both

types of entries into a shared space that directly corre-

sponds to experimental measurements.

This article explores the underlying computational meth-

ods used to create low-dimensional bipartite embeddings,

focusing on the effects of noise, missing values, and large

outliers. A companion article [28] examines the biological

applications in the context of antibody-virus interactions,

quantifying the underlying trade-offs anddemonstrating how

an embedding provides a basis set of antibody behaviors that

can dissect the collective response from multiple antibodies.

By blending computer science and biophysics, these works

show how embeddings collapse the complexity of datasets

into a readily interpretable andquantitative frameworkwhere

key properties such as the potency, breadth, and degeneracy

of the antibody response can be rigorously explored.

A. Need for embedding algorithms

Before exploring the algorithms, we motivate the need

for such embeddings by describing several potential appli-

cations. To ground this discussion, we suppose the bipartite

classes represent antibodies and viruses (with distances

describing antibody-virus interactions), although these

applications generalize to any bipartite dataset.

First, an embedding combines datasets and predicts

unmeasured interactions. For example, we cannot directly

compare an antibody measured against viruses 1–6 with a

second antibody measured against viruses 7–12 [top two

rows in the Fig. 1(b) dataset]. Yet, by embedding both

antibodies, we predict their behavior against all viruses in

the dataset. Hence, embeddings not only represent a form

of matrix completion, but also quantify the similarity

between every mapped entity [29,30]. As a point of

reference, embedding algorithms assume a different under-

lying structure for a dataset than low-rank matrix com-

pletion, and the combination of the two may be more robust

than either algorithm alone (Appendix A 2).

Second, an embedding defines the intraclass distances

between any two viruses (or two antibodies), a quantity that

by definition cannot be directly measured through anti-

body-virus interactions. This intraclass distance describes

how differently any antibody can neutralize the two viruses

(i.e., essentially quantifying their cross-reactivity). In the

limit where two viruses lie on the same point, they are

neutralized identically by all antibodies; when the two

viruses lie far apart, their neutralization can greatly differ.

Third, the inferred virus-virus distances are crucial when

designing future experiments. Viruses that are close

together offer redundant information, whereas sampling

viruses that are spread out across the map can detect more

distinct antibody phenotypes.

Fourth, an embedding defines a basis set of behaviors,

which is essential for systems where no mechanistic models

exist. For example, there is a dearth of models that

enumerate the space of antibody behaviors [31–33], which

hinders theoretical exploration into features such as the

optimality or degeneracy of the antibody response (both of

which we address later in this work).

Finally, embeddings provide a fundamentally different

vantage to study a system, and this shift in perspective

could help uncover its underlying properties. For example,
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FIG. 1. Embedding monopartite or bipartite data in Euclidean

space. (a) The perceived similarity between colors recovers the

canonical color wheel. Data derived from Table 4.1 of Ref. [3],

with distance ¼ 1− (dissimilarities in table). (b) Embedding

antibody neutralization against strains of the influenza virus.

In this case, only antibody-virus distance can be measured

experimentally, and some distances are missing (tan). Viruses

are colored from lightest to darkest hues (oldest to more recent

strains; full data in Fig. 10 [Appendix A 8]).
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the complex sequence-to-function relationship of viral

proteins may be simpler to crack within a low-dimensional

embedding. Similarly, quantifying how the antibody

response changes with each viral exposure may be more

readily understood within the context of an embedding.

II. ALGORITHMS

We now develop the algorithms to transform pairwise

interactions into a global map of a system. In bipartite

embedding, we seek to recover the bipartite set of points

fx�i gmi¼1
; fy�jgnj¼1

⊂ Rd given the noisy distance matrix

D ∈ Rm×n of the form

Dij ¼ D�
ij þ ϵij; D�

ij ¼ kx�i − y�jk; ð1Þ

where distance is measured only between the fx�i g and

fy�jg. D�
ij represents the true distance that is perturbed with

independently and identically distributed random noise ϵij.

The goal is to use the noisy Dij with ði; jÞ ∈ E, where E

represents the subset of measured values, to find an

embedding fxigmi¼1
; fyjgnj¼1

that approximates the true

embedding fx�i g; fy�jg. In the following sections, we

describe three algorithms to tackle this problem.

A. Metric multidimensional scaling

Metric MDS consists of the straightforward numerical

approach where we randomly initialize each xi and yj, and
then apply numerical methods (e.g., gradient descent or

differential evolution) to match their coordinates as closely

as possible to the distance matrix. Through a simple

rearrangement of the problem statement, we define the

least-squares loss function for metric MDS,

min
fxigmi¼1

;fyjgnj¼1

X

ði;jÞ∈E
ðDij − kxi − yjkÞ2; ð2Þ

although we note that other loss functions can strongly

affect the embedding (Fig. 11 in Appendix A 8).

We note that approximate solution methods are neces-

sary because the distance geometry problem is NP hard. To

see this, note that embedding a cycle graph in 1D is

equivalent to the subset-sum problem, making it NP

complete [34]. Bipartite embedding in 1D includes the

embedding of an even length cycle, making it NP hard

as well.

B. Bipartite multidimensional scaling

While metric MDS is highly flexible and simple to

implement, it does not harness the underlying structure of

the bipartite data. In stark contrast, bipartite MDS provides

a nearly closed-form solution (up to an affine transform) for

noise-free and complete data. Although variants of the

classical monopartite problem have been developed to deal

with large datasets and noisy measurements [35], to our

knowledge this technique has not been extended to com-

plete bipartite data.

The key insight underlying classic MDS is that the

doubly centered squared-distance matrix is intimately

related to the inner products (Gram matrix) of the

embedded points. More precisely, we define the centering

matrix that subtracts the mean from any vector,

Jk ¼ Ik −
1

k
1k1

T
k ∈ Rk×k; ð3Þ

where Ik is the k × k identity matrix and 1k is the all-ones

vector of size k (with Jk1k ¼ 0). Consider the complete

noise-free bipartite graph,

ðD� ∘ D�Þij ¼ D�
ij
2 ¼ kx�i k2 þ ky�jk2 − 2ðx�i ÞTy�j ; ð4Þ

where ∘ denotes entrywise multiplication. Double

centering reveals the inner products of the embedding

X� ¼ ½x�
1
;…; x�m�T ∈ Rm×d and Y� ¼ ½y�

1
;…; y�n�T ∈ Rn×d

(Appendix A 5),

−
1

2
JmðD� ∘ D�ÞJn ¼ JmX

�ðY�ÞTJn ¼ X�ðY�ÞTJn; ð5Þ

where in the second equality we assume without loss of

generality that the points in X� are centered at the origin

(JmX
� ¼ X�).

The rank-d singular value decomposition of the

double-centered squared-distance matrix, UΣVT ¼
−

1

2
JmðD� ∘ D�ÞJn, determines the embedding of X� and

Y� up to linear transforms,

X� ¼ UΣAU; ð6Þ

Y� ¼ VAV þ 1ðtVÞT ; ð7Þ

Algorithm 1. Classical multidimensional scaling (bipartite

MDS).

Input

i Distance matrix D ∈ Rm×n

ii Dimension d of the embedding

Steps

1. Define a complete distance matrix D̃ equal toD at measured

values, with missing values filled in using the mean of all

observed entries in the same row and column

2. Compute the double-centered matrix,Q ¼ −
1

2
JmðD̃ ∘ D̃ÞJn

3. Compute the top d SVD, Q ¼ UΣVT

4. Set fxigmi¼1
¼ UΣAU and fyjgnj¼1

¼ VAV þ 1ðtVÞT for linear
transforms AU; AV ∈ Rd×d and translation vector tV ∈ Rd×1

(where AUA
T
V ¼ I). DetermineAU, AV , and tV by minimizing

the difference between Dij and kxi − yjk using nonconvex

numerical minimization or SDP (see Appendix A 5)
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for some matrices AU; AV ∈ Rd×d (satisfying AUA
T
V ¼ Id)

and a translation tV ∈ Rd between the centers of X� and Y�.
Lastly, AV and tV [together with AU ¼ ðAT

VÞ−1] are deter-

mined by utilizing the distance information kx�i − y�jk ¼
D�

ij and minimizing Eq. (2) using semidefinite program-

ming or numeric minimization (Appendix A 5).

In summary, this algorithm reduces the embedding

problem with ðmþ nÞd unknown variables into the simpler

problem of determining the d2 þ d unknown variables in

AV and tV , regardless of the size of D. This same approach

can be used for a noisy distance matrix D (Algorithm 1).

A caveat of this method is that missing values must be

initialized to compute the SVD, effectively adding noise to

the distance matrix. Yet the resulting solution may never-

theless approximate the true underlying structure of the

system. In the numerical experiments below, we show that

although bipartite MDS may yield a poor embedding when

a substantial fraction of values are missing, the embedding

becomes far more robust when the resulting coordinates are

subsequently used to initialize metric MDS (Fig. 12 in

Appendix A 8).

C. Semidefinite programming

Lastly, we investigate an intermediate algorithm that

harnesses the bipartite nature of the data to perform a more

robust numerical search. More precisely, by forming a

positive-semidefinite matrix, we can adapt the sensor

network localization SDP algorithm [8] and utilize efficient

conic solvers for bipartite embedding [36,37]. We define

the combined coordinates Z ¼ ðX
Y
Þ ∈ RðmþnÞ×d, where X, Y

store fxigmi¼1
; fyjgnj¼1

. We further define the inner product

matrix G ∈ RðmþnÞ×ðmþnÞ as

ZZT ¼
�

XXT XYT

YXT YYT

�

≡

�

G11 G12

GT
12

G22

�

≡ G; ð8Þ

so that the squared distance between xi and yj can be

entirely written in terms of the entries of G, namely,

kxi − yjk22 ¼ ðG11Þii − 2ðG12Þij þ ðG22Þjj: ð9Þ

Note that we can exactly recast the optimization over X and

Y in terms of an optimization over a positive-semidefinite

matrix G of rank d. The goal is then to minimize
P

ði;jÞ∈E jðG11Þii − 2ðG12Þij þ ðG22Þjj −D2
ijj in terms of G.

To this end, we introduce an extra error matrix

E ∈ Rm×n and minimize over the sum of errors:

minimize
G;E

X

ði;jÞ∈E
Eij

subject to E ≥ 0; G ≽ 0;

− Eij ≤ ðG11Þii − 2ðG12Þij þ ðG22Þjj −D2
ij ≤ Eij; ði; jÞ ∈ E;

X

n

j¼1

Gij ¼ 0; ∀ 1 ≤ j ≤ m: ð10Þ

The final constraint ensures that the X coordinates are

centered at the origin, removing their translational degree

of freedom. Note that to achieve this convex conic program,

we remove the nonconvex rankðGÞ ¼ d constraint, which

must now be added back. Thus, we apply a SVD to G of

rank d, G ¼ UΣVT . The resulting mþ n coordinates are

given by ðX
Y
Þ ¼ U

ffiffiffi

Σ

p
(Algorithm 2).

As with metric MDS, missing values are seamlessly

handled in SDP since the objective in Eq. (10) is restricted

to the measured distances. As shown in the following

sections, SDP often recovers a better embedding thanmetric

or bipartite MDS, especially when there are many missing

values. Note that we specifically choose a different loss

function for metric MDS [Eq. (2), optimized for systematic

noise] and SDP (
P

ði;jÞ∈E jkxi − yjk2 −D2
ijj, optimized to

handle outliers) in order to explore the diversity of embed-

ding behaviors. When analyzing datasets, it is worth trying

multiple loss functions to determine which one best char-

acterizes the system [Fig. 11(c) in Appendix A 8]. For

completeness, we note that bipartiteMDS is a nearly closed-

form method that does not explicitly use any loss function.

III. NUMERICAL EXPERIMENTS

We first assess the three embedding algorithms—metric

MDS, bipartite MDS, and SDP—using simulated data

with m ¼ 20 entries xi and n ¼ 20 entries yj (each

chosen uniformly on ½−1; 1� × ½−1; 1�). These points

Algorithm 2. Semidefinite programming.

Input

i Distance matrix D ∈ Rm×n

ii Dimension d of the embedding

Steps

1. Solve G ∈ RðmþnÞ×ðmþnÞ from Eq. (10)

2. Compute the top d SVD, G ¼ UΣUT . The embedded

coordinates fxig are given by the first m rows of UΣ
1=2

while fyjg are given by the final n rows
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generate the true distance matrix, which we then perturb

and use as the input matrix D. The accuracy of the

resulting embedding is calculated using the root-

mean-square error (RMSE) of Euclidean distances,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
P

m
i¼1

kxi − x�i k2 þ
P

n
j¼1

kyj − y�jk2Þ=ðmþ nÞ
q

, between

the estimated and true coordinates (once aligned via a rigid

transform).

A. Systematic noise and missing values

To generate the input matrix D, we perturb each entry of

the true distance matrix by adding a random value uniformly

chosen from ½−σ; σ� (x axis) andwithhold a fractionfmissing of

randomly selected entries (y axis) (see Fig. 2). Of the three

algorithms, SDP exhibits the most robust behavior in the

presence of missing values, and in the noise-free case along

the y axis it undergoes a phase transition from near-perfect

recovery when fmissing ≤ 0.6 to noisy recovery [Fig. 13(a) in

Appendix A 8]. In contrast, the error of bipartite MDS

increases nearly proportionally to fmissing, since eachmissing

value must be initialized as the row or column mean which

effectively perturbs the distance matrix. Metric MDS also

finds poorer embeddings with larger fmissing, as it occasion-

ally gets trapped in localminima (even in the low-noise limit).

When D is fully observed along the x axis, the error

increases approximately linearly with noise for all three

algorithms [RMSE ≈ σ=2, Fig. 13(b) in Appendix A 8],

althoughmetricMDS displays somewhat erratic behavior as

it may get stuck in local minima. The bottom panels in Fig. 2

show example embeddings in the intermediate regimes

when σ ¼ 0.1 and fmissing ¼ 0.6 (purple) or when σ ¼
0.6 and fmissing ¼ 0.1 (brown), with gray lines connecting

the true coordinates to their numerical approximations.

In terms of overall performance, the region of near-

perfect recovery is largest for SDP followed by bipartite

MDS and metric MDS (Fig. 2). One way to improve these

algorithms is to combine them, for example, by using SDP

or bipartite MDS to initialize the coordinates in metric

MDS. These combined algorithms substantially improve

embedding accuracy, allowing bipartite MDS to handle

missing values and extending the capability of SDP to

embed noisy measurements (Fig. 12 in Appendix A 8).

Finally, we note that even completely bipartite graphs are

not necessarily rigid, and hence multiple incongruent

embeddings may describe a dataset equally well.

Theoretically, it was shown that when there is no quadric

surface separating the two sets of points, then a bipartite

graph is universally rigid [14]; in other words, rigidity not

only depends on a graph’s connectivity, but also on the

resulting positions of the points. As a proxy for rigidity, we

can use the rank of the positive-semidefinite matrix G from

SDP (Fig. 9 in Appendix A 8).

B. Handling large outliers

and bounded measurements

In addition to noisy measurements, datasets may contain

outliers that distort an embedding. Bipartite MDS is highly

susceptible to large outliers, which can corrupt the largest

singular vectors of the squared-distancematrix [Fig. 3(a)]. In

contrast, SDP minimizes the sum of absolute (unsquared)

deviation [38], and such loss is far more robust against gross

corruptions. Metric MDS exhibits intermediate behavior,

although we note that the choice of loss function heavily

influences this behavior (Fig. 11 in Appendix A 8).

Lastly, we explore each algorithm’s tolerance to distances

given as upper or lower bounds, which can arise when an

experiment measures a value outside of its dynamic range.
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FIG. 2. Performance on a simulated dataset. Top: phase diagram of embedding error as a function of the elementwise noise σ of the

distance matrix and the fraction fmissing of missing entries for metric multidimensional scaling (metric MDS), bipartite multidimensional

scaling, and semidefinite programming (SDP). Error is computed as the average Euclidean distance between the numerical and true

coordinates (aligned using a rigid transform). Diagrams show the average of 10 runs, and the metric MDS results were smoothed

because its embedding accuracy was erratic. Bottom: examples of the embedding when σ ¼ 0.1 and fmissing ¼ 0.6 (purple box) as well

as σ ¼ 0.6 and fmissing ¼ 0.1 (brown box) for each method. Edges connect the numerical coordinates to the true embedding.
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Figure 3(b) shows the embedding from the same distance

matrix, now modified to represent 30% of measurements as

upper or lower bounds. In this complete and noise-free case,

both metric MDS and SDP can directly utilize these bounds

to generate near-perfect reconstructions. In contrast, bipar-

tite MDS cannot directly incorporate bounded data, and

hence we replace each bounded measurement by the bound

itself, which leads to worse reconstruction.

IV. ANALYSIS OF ANTIBODY-VIRUS

MEASUREMENTS

We next applied these embedding algorithms to an

influenza dataset where the neutralization from 27 stem

antibodies was measured against 49 viruses that circulated

between 1933 and 2019 (Fig. 10 in Appendix A 8) [28].

The following section describes how to transform these

experimental measurements into map distances and embed

these antibody-virus interactions. Subsequent sections

utilize this embedding to predict unmeasured interaction

and quantify the degeneracy of the antibody response. We

note that quantifying degeneracy would require thousands

of experiments, yet such tasks become computationally

tractable through these embeddings.

A. Transforming antibody-virus measurements

into distances

For each antibody-virus pair, the inhibitory concentra-

tion required to neutralize 50% of virus particles (IC50 in
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(highlighted in red). (b) Embedding a distance matrix where 30% of entries are replaced with upper or lower bounds (blue and purple).
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molar units) is measured, with lower values signifying a

more potent antibody [39]. IC50s ranges from 8.6 ×

10−11M (very strong neutralization) to >1.6 × 10−7M
(weak neutralization outside the range of the assay).

To briefly describe the biological context for this dataset,

each of the 27 antibodies targets the stem region of

hemagglutinin, one of the key surface proteins on the

influenza virus. This stem domain is highly conserved, and

antibodies targeting it can neutralize very diverse viruses;

for example, some antibodies measurably neutralize both

the H1N1 and H3N2 influenza subtypes, which is rarely

seen in antibodies targeting the head domain of this same

viral protein [40].

Yet, even these broadly neutralizing antibodies have

limits. Antibodies that potently neutralize H1N1 viruses

tend to weakly neutralize H3N2 strains (and vice versa),

while antibodies that neutralize all viruses tend to have

intermediate effectiveness. These trends hint that there is an

underlying trade-off between antibody potency (how much

a virus is neutralized) and breadth (how many diverse

viruses can be neutralized). Such patterns are difficult to

directly discern from a table of pairwise interactions, yet

they naturally emerge through an embedding.

Building off previous efforts [27,41], we first convert

these antibody-virus neutralization measurements into dis-

tances. Previously, ordinal MDS demonstrated that anti-

body-virus interactions should be log transformed to obtain

distances [42]. Antibodies typically have IC50s > 10−10M
(since selection does not act below this point [43,44]), and

hence we define antibody-virus distance as Dij ¼
log10ðIC50=10

−10MÞ [Fig. 4(a)]. As described previously,

a necessary condition for a Euclidean embedding is for the

antibody-virus interactions to satisfy a modified triangle

inequality (see Fig. S6 of Ref. [28]); indeed, we perform

400 000 tests of the triangle inequality on this dataset and

find that it is satisfied in 99.7% of cases given the twofold

error of the neutralization assay (with the remaining cases

likely caused by rarer-but-larger experimental errors).

We then apply all three embedding algorithms to create a

global map of the system. Since both the dimensionality

and the ground truth coordinates are not known, we assess

each algorithm through cross-validation by withholding
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FIG. 4. Mapping influenza antibody-virus interactions. (a) Experimentally measured distance matrix between 27 antibodies and 49

influenza viruses [39]. (b) The metric MDS embedding in 2D. (c) Tenfold cross-validation RMSE (calculated using the distance matrix).

(d) Example of 2D cross-validation for each method, demonstrating that metric MDS performs the best.
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10% of the antibody-virus measurements, creating an

embedding that predicts these withheld values, and then

computing the RMSE of the difference between the

predictions and measurements (repeating the process 10

times to minimize bias in the choice of withheld values).

Five antibodies and five viruses whose positions could not

be precisely fixed are removed from the dataset to ensure a

rigid solution (Appendix A 6).

None of the methods perform well in d ¼ 1 dimensions,

while metric MDS slightly outperforms SDP in all

higher dimensions. Both curves exhibit an “elbow” at

d ¼ 2, suggesting that a 2D landscape captures the under-

lying structure of the system [Fig. 4(c)], as has been

observed in other influenza datasets [27,41]. We note that

the 2D cross-validation RMSE is ≈0.5 [Fig. 4(d)], so that

withheld neutralization measurements are predicted within

100.5 ≈ threefold, comparable to the noise of the neutrali-

zation assay.

B. Designing optimal antibody cocktails

The resulting map provides a powerful way to computa-

tionally explore the efficacy of antibody combinations

[Fig. 4(b)]. For example, the H1N1 viruses (green) and

H3N2 viruses (blue) cluster together, as expected based on

their genetic similarity. Interestingly, the centers of these

clusters are ≈2.5 map units apart, demonstrating that while

antibodies can be highly potent against H1N1 or H3N2

viruses, no antibody in the panel could strongly neutralize

both subtypes.

Similar to the color wheel example in Fig. 1(a), the

antibody-virus embedding not only represents the entities

in this specific dataset, but also describes other potential

antibodies and viruses (presuming they conform to the

underlying structure of the embedding). For such entities,

the embedding serves as a discovery space to quantify and

constrain their behavior.

For example, within this framework we can design a

mixture of n antibodies that optimally neutralizes the 5

viruses at the top of the H1N1 cluster as well as the 5

viruses at the top of the H3N2 cluster as potently as

possible (Fig. 14 in Appendix A 8). This question lies at the

heart of ongoing efforts to find new broadly neutralizing

antibodies, yet few methods exist to predict or even

constrain antibody behavior. To that end, we use each

point on the map to describe a potential antibody whose

neutralization against each mapped virus is determined by

its map distance. This reduces the complex biological

problem of enumerating antibody behavior to a straightfor-

ward geometry problem.

The theoretical best n ¼ 1 antibody mixture against these

10 viruses is represented by the center of the smallest circle

that covers every virus [Fig. 14 in Appendix A 8, distance ≤

1.4 (IC50 ≤ 10−8.6M) for each virus]. For a mixture with

n ¼ 2 antibodies, the potency can dramatically improve by

using one H1N1-specific antibody and one H3N2-specific

antibody [distance ≤ 0.3 (IC50 ≤ 10−9.7M) for each virus].

This problem can be readily extended to mixtures with an

arbitrary n antibodies covering any set of mapped viruses.

Given the growing number of efforts to find broadly

neutralizing antibodies [45–48], it is essential to have some

framework to estimate the limits of antibody behavior. Such

estimations inform when the antibodies already discovered

are near the theoretical best behavior (and, hence, further

searching is less likely to lead to significant improvement) or

when there are alleged antibodies that could perform orders

of magnitude better than what we have currently seen [28].

C. Degeneracy of the antibody response

Another key unexplored feature of the antibody response

is its degeneracy: can the neutralization from a mixture of n
antibodies behave like a mixture with fewer antibodies?

For example, many vaccination regiments aim to elicit a

broadly neutralizing antibody that will be potent against

diverse viral strains. Yet, even if a postvaccination antibody

response is measured against a large array of viruses, it may

be impossible to determine whether its breadth is conferred

by a single antibody or is due to the collective action of

multiple antibodies. These questions hint at an underlying

gap in our knowledge, namely, quantifying when antibody

mixtures “unlock” fundamentally new behaviors that can-

not be achieved by any individual antibody. Moreover,

these topics are difficult to tackle experimentally, since the

low-throughput neutralization assay is time and resource

intensive.

Nevertheless, quantifying the degree of antibody degen-

eracy becomes tractable through an embedding. Such

analyses necessarily make the strong assumption that every

point on the map represents a viable antibody. Moreover,

there may be other antibody phenotypes (e.g., from highly

specific hemagglutinin head-targeting antibodies) that are

not represented by any point on the map; in essence, the

embedding serves to locally extrapolate antibody behavior

based on the specific interactions provided as input

[Fig. 4(a)]. Yet, with these caveats, we can explore how

often a mixture made within this space of antibodies can be

mimicked by a single antibody.

We describe an antibody mixture by n points in

Fig. 4(b), with the ith antibody neutralizing the jth virus

with an IC
ij
50

¼ 10−10þDij dictated by the map distance Dij

between the antibody and virus. Since all antibodies in our

panel bind to the same region of the hemagglutinin

stem [49–51], we treat their binding as competitive, so

only one antibody can bind to each hemagglutinin

monomer at a time. Thus, a mixture’s neutralization

against virus j is given by

ICmixture
50

¼
�

X

i

fi

IC
ij
50

�

−1

; ð11Þ
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where fi represents the fraction of antibody i in the

mixture (with
P

i fi ¼ 1). A diluted antibody with small

fi will effectively have a weaker (larger) IC50, which in

the embedding translates to an extra “distance handicap”

of log10 fi added to its distance from any virus. We note

that this binding model has been verified on antibody

mixtures from this specific panel [28] and on other

datasets [52,53]. For simplicity, we restrict ourselves to

equimolar n-antibody mixtures (fi ¼ 1=n).
Given a specific mixture (n random points on the map,

sampled near the H1N1 andH3N2 clusters), we quantify the

closest approximating single antibody (another point on the

map) by scanning through every possible location and

minimizing the average fold difference between the mix-

ture’s and antibody’s neutralization profiles across all

viruses. Figure 5(a) shows a mixture of two antibodies

(gray), one of which is potent against the blue H3N2 viruses

on the left of the map and the other potent against the green

H1N1 viruses, that behave nearly identically to a single

antibody (red) in the middle of the map.While a few viruses

are neutralized differently by the mixture and antibody

[vertical black lines, right-hand panel of Fig. 5(a)], on

average the antibody’s IC50s are within 1.6-fold of the

mixture’s values against these 50 diverse viruses. This

discrepancy is comparable to the ≈twofold error of the

assay, and, hence, given either neutralization profile, we

cannot determine whether it arises from an individual

antibody or a mixture.

Higher-order mixtures unlock more unique behaviors

that cannot be replicated by an individual antibody. For

example, not only does the four-antibody mixture in

Fig. 5(b) show a 3.6-fold difference from the nearest

approximating antibody, but the mixture’s measurements

are systematically lower across nearly all viruses. Thus,

neutralization profiles exhibiting such strong breath are

indicative of multiple antibodies.

To systematically explore degeneracy, we sample 100

antibody mixtures for each n (with 2 ≤ n ≤ 10) and find

the closest approximating single antibody. The resulting

distributions of the mean fold difference are shown in

Fig. 5(c). While two-antibody mixtures tend to resemble

individual antibodies, higher-order mixtures often exhibit

distinctive profiles with a hfold differencei > 2 to the

closest approximating antibody. By the time n ≥ 5 anti-

bodies are combined, the likelihood that they match any

single antibody becomes exceedingly rare.

V. DISCUSSION

Embedding algorithms fill a “hole” in our understanding

by transforming local pairwise interactions into a global

map. Such algorithms have been used to identify when a

new viral variant arises, quantify drug-protein interactions,

and distinguish between cell types [27,54,55]. Yet we

propose that such algorithms also provide the groundwork

for new theoretical studies such as quantifying antibody

degeneracy that only become possible when we reveal the

underlying structure of a system.

In the context of antibody-virus interactions, an embed-

ding provides a rigorous approach to extrapolate available

measurements. Each point describes a potential antibody,

and the entire map defines a basis set of antibody behaviors.

By coupling these data-driven results with a biophysical

model of how antibodies collectively act, we can model

higher-order mixtures and pave the way to study the

complex array of antibodies within each person. For

example, our degeneracy analysis compares a four-

antibody cocktail [one of ð27
4
Þ ≈ 18 000 possible mixtures

given our antibody panel] against all predicted single-

antibody behaviors. In doing so, we leverage the combina-

torics of antibody combinations to explore the vast space of

antibody mixtures.

Such analysis implicitly assumes that a dataset can be

rescalable into a lower dimension. This claim can be
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quantify their average fold difference to the nearest approximat-

ing antibody.
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verified through cross-validation, by using multiple com-

plementary approaches (e.g., embeddings, low-rank matrix

completion) to detect a simple underlying structure, or by

computing the rank of a matrix-complete dataset (for this

antibody dataset the top 3 singular values account for 90%

of the variance). We further note that multiple datasets

measuring the serum response (i.e., the array of antibodies

within an individual’s blood) found low-dimensional

signatures [27,41,56,57], and hence we expect the

response of individual antibodies should be similarly low

dimensional.

While metric MDS has been used to embed the inter-

actions between influenza viruses and serum [27,41], the

dataset we analyze in this paper contains individual

antibodies that all target the same site on the virus, namely,

the hemagglutinin stem. This distinction is important, since

embedding antibodies targeting multiple sites leads to

poorer cross-validation RMSE (Fig. 15), suggesting that

the structure of the neutralization landscape can differ for

each viral epitope, potentially necessitating a different

embedding for each site.

Although embedding via numerical minimization

(metric MDS) is flexible and straightforward to implement,

alternate methods that leverage the desired structure of the

data (bipartite MDS and SDP) may perform better in

certain regimes. Moreover, such techniques may scale

better for larger datasets, and hence can be used instead

of (or in combination with) metric MDS to yield fast, robust

embeddings. For any dataset, these methods can be

compared head to head through cross-validation on a

subset of data.

More work is needed to understand the limits of

these embeddings and quantify their predictive power.

A key aspect of such embeddings is their rigidity,

which determines whether entries can be precisely fixed

by the available data (Fig. 8) [14]. We hypothesize that

other universal rigidity criteria may exist for certain

bipartite graphs depending on their connectivity, where

low-rank matrix completion techniques can be lever-

aged to provide guarantees for exact recovery in SDP

approaches.

We are just beginning to scratch the surface on aspects of

the antibody response that can be probed with these

embeddings, from designing antibody cocktails to deter-

mining how the antibody response evolves on the map with

each viral exposure. As datasets continue to grow in size

and complexity, it becomes increasingly important to

quantitatively visualize interactions between entities.

Future datasets may require multilocalization, where

higher-order interactions (e.g., between a ligand and multi-

meric receptor [24]; antibodies, antigens, and cell recep-

tors [58]; or single-cell multiomics datasets [59]) are

embedded in a low-dimensional space.

For reproducibility, example codes for each algorithm

and the complete Mathematica code are available [60].
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APPENDIX:

In this appendix, we compare embedding and matrix

completion methods as well as describe the implementa-

tions of metric MDS, bipartite MDS, and SDP algorithms.

1. Solving the classical localization problem

for complete, noise-free data

Here, we present the well-known solution to the (monop-

artite) classical localization problem, where the noise-free

distances D ∈ Rn×n is provided between every pair of n
points in d dimensions. Our goal is to determine the

coordinates fxigni¼1
⊂ Rd such that Dij ¼ kxi − xjk.

Since an embedding always has a translational degree of

freedom, we assume without loss of generality that the

coordinates are centered around the origin,
P

n
i¼1

xi ¼ 0.

We define the combined coordinate matrix X ¼
½x1;…; xn�T ∈ Rn×d. Note that the entrywise squared-

distance matrix can be written as

D ∘ D ¼ diagðXXTÞ1Tn þ 1ndiagðXXTÞT − 2XXT ; ðA1Þ

where the first two terms on the right-hand side are outer

products.

The algorithm proceeds in two steps. First, we apply the

centering matrix Jn [Eq. (3)] from the left and right to row

center and column center the squared distances,

−
1

2
JnðD ∘ DÞJn ¼ XXT ; ðA2Þ

where we use the fact that Jn1n ¼ 0 and 1
T
nJn ¼ 0. This

transforms the distance matrix into a matrix of inner

products for the coordinates XXT .

The second step is to compute the SVD of the left-hand

side, UΣUT ¼ XXT , which will only have d nonzero

singular values. From this form, we can immediately read

out the solution X ¼ UΣ
1=2.

2. Comparing embedding algorithms

with matrix completion

In this section, we compare the embedding algorithms

used in this work with low-rank matrix completion algo-

rithms. One key difference between these approaches is that

an embedding projects entries into d dimensions where

map distance is related to each experimental measurement,
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whereas matrix completion searches for the smallest basis

set of behaviors whose linear combinations describe the

data. As a result, embedding techniques impose a limit on

how good an antibody can be against multiple viruses,

whereas matrix completion approaches always allow an

antibody to be maximally potent against all viruses

[Fig. 6(a)].

In addition, when embedding into d ¼ 2 dimensional

space, our SDP algorithm utilizes a rank-d Gram matrix G,
whereas matrix completion on antibody-virus data (analo-

gous to a distance matrix) would be at best rank dþ 2 with

perfect, noise-free data (see Table S1 of Ref. [61], ranks

ranged from 6 to 23). Thus, embeddings utilize a simpler

structure that requires fewer parameters. Moreover, the

computationally cheaper bipartite MDS (a spectral method

based on SVD) is in line with the latest trends in nonconvex

matrix completion [62] which are at best rank d.
However, it is hard to know a prioriwhich method will be

superior for a given dataset, yet it is easy to assess allmethods

through cross-validation. In cases where matrix completion

performs better than direct embedding, a dataset can first be

matrix completed and then embedded. Indeed, we found that

inferring the missing antibody-virus interactions using

matrix completion (cross-validation RMSE ¼ 0.34) outper-

forms any of the embedding techniques in 2D, yield

comparable results to 4D metric MDS [cross-validation

RMSE ¼ 0.37, Fig. 4(c)]. This suggests that matrix com-

pletion should first precomplete this dataset before an

embedding.

Hence, these algorithms should not just be explored

individually, but in combination. Initialization with matrix

completion offsets a key shortcoming of bipartite MDS,

namely, its inability to handle missing values. Figure 6(b)

demonstrates the resulting matrix completion followed by

metric MDS for the antibody-virus dataset we analyze in

this work, using a low-rank matrix completion algorithm

from Ref. [61]. For simplicity, we handle bounded values

by first replacing them by their bounded measurement,

matrix completing, transforming into map distance

(10þ log½IC50=1M�), and finally replacing all values
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or Antibody

Constrained to a point on the map,

other coordinates can rearrange
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FIG. 6. Differences between Euclidean embedding algorithms and low-rank matrix completion. (a) Embedding and matrix completion

algorithms assume different underlying structures, with the former constraining points to lie in Euclidean space where antibody-virus

distance (D) dictates each interaction, whereas the latter searches for the smallest basis set of behaviors whose linear combinations

describe all antibodies and viruses. With an embedding, a new entry is described by a point on the map; other entries may change

positions, although there is minimal rearrangement once there are many mapped entries. In contrast, matrix completion attempts to

characterize new antibodies as linear combinations of existing antibodies, but when this is not possible the basis set is expanded. As a

result, an embedding imposes strong limits on new antibody behavior (e.g., for the configuration shown, an antibody with the shortest

possible distance to all three viruses lies at the center of the hexagon, withD ¼ 1 to all three viruses), whereas matrix completion allows

an antibody to adopt the (unrealistic) case of extreme potency D ¼ 0 against every virus. Both methods are able to use a few

measurements from a new antibody or virus to predict the interactions with all other mapped entries. (b) For datasets where matrix

completion outperforms a direct embedding, we first matrix-complete any missing values and then embed the resulting complete data.

This procedure is shown for the antibody-virus dataset in Figs. 4(a) and 4(b).
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greater than 3.2 into bounded measurements. More sophis-

ticated algorithms can directly incorporate this bounded

information into the matrix completion step [63].

3. Handling missing values in the distance matrix

In metric MDS and SDP, missing values are automati-

cally ignored, since the sums in (2) and (10) are over the

measured distances ði; jÞ ∈ E. In other words, each mea-

sured edge constrains the embedding while unmeasured

edges are ignored. Bipartite MDS requires a complete

matrix to compute the SVD, and hence each missing entry

is first filled in using the mean of all nonmissing mea-

surements in its row and column.

4. Handling upper or lower bounds

in the distance matrix

Sometimes measurements are given as upper or lower

bounds on kxi − yjk (signifying weak or strong interactions
outside the dynamic range of the experiment).

For an upper bound kxi − yjk < bup in metric MDS, we

modify the relevant summand in the loss function to

ð1=1þ ecðbhigh−kxi−yjkÞÞðbhigh − kxi − yjkÞ2, where c > 0

is a positive constant (in this work, we choose c ¼ 10

based on the scale of the distance measurements).

The prefactor in the summand penalizes violations

of the bound while minimally increasing the loss

when the bound is satisfied. For a lower bound,

kxi − yjk > blow, we similarly modify the summand to

ð1=1þ e−cðblow−kxi−yjkÞÞðblow − kxi − yjkÞ2. Note that the

resulting cost function is nonconvex, which can prevent

numerical algorithms from finding a good minimizer.

When computing RMSE in the cross-validation analysis

[Figs. 4(c) and 4(d)], we add these same prefactors when

the measured distance is an upper or lower bound.

Bipartite MDS requires exact distance measurements to

compute a SVD, and hence we replace each bounded

measurement by the bound itself, which leads to poorer

embeddings.

In SDP, bounded values are handled by modifying the

second constraint in Eq. (10). For example, an upper bound

kxi − yjk < bup is enforced by the one-sided constraint

ðG11Þii − 2ðG12Þij þ ðG22Þjj − b2up < Eij. A lower bound

kxi − yjk > blow is enforced by the one-sided constraint

−Eij < ðG11Þii − 2ðG12Þij þ ðG22Þjj − b2low. The objective

remains the same, namely, to minimize the sum of

(positive) errors Eij between the embedding and distance

measurements.

5. Determining the affine transformation

in bipartite MDS

In this section, we provide some intuition for bipartite

MDS and describe in detail the final SDP step that

determines the affine transform between X and Y.

We begin by rewriting Eq. (4) as

D� ∘ D� ¼ diagðX�X�TÞ1Tn þ 1mdiagðY�Y�TÞT − 2X�TY�:

ðA3Þ

Because 1m; 1n lie in the null space of Jm, Jn, double
centering isolates the inner product term as in Eq. (5).

Using the rank-d SVD UΣVT ¼ −
1

2
JmðD� ∘ D�ÞJn, we

can rewrite Eq. (5) as

X�¼UΣ(VTðY�TJnÞ†); JnY
�¼V(ΣUTðX�TÞ†): ðA4Þ

where “†” denotes the pseudo-inverse. This reveals that the

embedding X�; Y� can be determined up to linear trans-

forms as in Eqs. (6) and (7).

As we describe in the main text, the final step of bipartite

MDS is to determine the affine transforms AU, AV

(satisfying AUA
T
V ¼ Id) and the translation tV , so that the

embeddings X�; Y� in Eqs. (6) and (7) match the distance

matrix. This can be done numerically either by minimizing

the loss function in Eq. (2) that optimally handles system-

atic noise or by minimizing the loss function of squared

distances,

min
fxigmi¼1

;fyjgnj¼1

X

ði;jÞ∈E
jD2

ij − kxi − yjk2j; ðA5Þ

that better handles outliers (Fig. 11).

Instead of numeric minimization, we can use semi-

definite programming to solve Eq. (A5) and prevent the

minimization from getting stuck at local minimum. To that

end, we construct the ð2dþ 1Þ × ð2dþ 1Þ Gram matrix,

G̃ ¼

0

B

@

− AU −

− AV −

− tTV −

1

C

A

0

B

@

j j j
AT
U AT

V tV

j j j

1

C

A
; ðA6Þ

with which we can express kxi − yjk2. Using Eqs. (6) and

(7), we can write

kxi − yjk2 ¼ UiΣAUA
T
UΣU

T
i þ VjAVA

T
VV

T
j þ tTVtV

− 2VjΣUi − 2UiΣAUtV þ 2VjAVtV ðA7Þ

in terms of the entries of G̃.
Define the minimization matrix γ ∈ Rm×n with

γij ¼ D2
ij − kxi − yjk2. To minimize the absolute value

of the γij, we use Schur’s complement condition, defining

the auxiliary matrix γ̃ ∈ Rm×n and using semidefinite

programming to solve
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minimize
G̃;γ̃

X

ði;jÞ∈E
γ̃ij

subject to G̃ ≽ 0;
�

γ̃ij γij

γij 1

�

≽ 0; ∀ 1 ≤ i ≤ m; 1 ≤ j ≤ n;

G̃dþ1∶2d;1∶d ¼ Id: ðA8Þ

We then use Cholesky decomposition to extract AU from

G̃1∶d;1∶d and determine AV ¼ G̃dþ1∶2d;dþ1∶2dAU as well as

tV ¼ G̃2dþ1;dþ1∶2dAU. The resulting embedding is given by

Eqs. (6) and (7).
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bipartite MDS. Left: reproducing Fig. 2 from the main text

(middle panel), where in each simulation AU and AV are

computed using the SDP approach via Eq. (A7). Right: numeri-

cally minimizing using Eq. (2) yields nearly identical results.
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FIG. 8. Creating a rigid embedding by removing unconstrained entries. (a) We create 76 embeddings (withholding each possible

antibody or virus) and analyze how tightly clustered each entry is across all embeddings. The five antibodies (02-1B02, 22-1B08,

55-1D06, 58-6F03, CR6261) and five viruses (H3N2 A/Moscow/10/1999, A/Indiana/10/2011, A/Switzerland/9715293/2013, A/Hong

Kong/4801/2014, A/Singapore/INFIMH-160019/2016) with the largest scatter are highlighted, with the average position of all

remaining entries shown with small opacity. (b) Cross-validation [as shown in Fig. 4(d)] using 2D embeddings on the full dataset.

(c) Cross-validation using 2D embeddings on the partial dataset with the 10 entries from (a) removed.
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Because of the rank relaxation in this SDP approach, we

note that the optimal affine transformations AU and AV are

determined in a higher-dimensional space. While the global

numeric minimizer of Eq. (A5) is in the SDP search space,

the global SDP minimizer may be different. In practice, we

find little difference between the two approaches (Fig. 7).

6. Assessing the rigidity of an embedding

To determine whether the antibody-virus embedding is

rigid (i.e., if the embedding is unique or if multiple incon-

gruent embeddings can describe this dataset), we remake the

embedding 76 times (once with each of the 27 antibodies or

49 viruses removed) using 2D metric MDS. These embed-

dings are aligned through rigid transforms, and the position

of each entry is compared across all embeddings.

While most entries are tightly constrained on the map

[with an average standard deviation of 0.14 map units in

either the x or y directions, comparable to experimental

error of log10ð2Þ ≈ 0.3], we find 5 viruses and 5 antibodies

whose position jumps by > 1 map unit in some embed-

dings [Fig. 8(a); removed entries named in caption], and

these entries are removed before carrying out the embed-

dings in Fig. 4.

We note that when using the full dataset, metric MDS

outperforms the bipartite MDS as well as SDP algorithms

[Fig. 8(b)], whereas removing these uncertain entries leads

to more rigid embeddings where metric MDS and SDP

have comparable cross-validation [with both outperforming

bipartite MDS, Fig. 8(c)]. This is consistent with the

tendency of SDP approaches to fail when there are multiple

possible solutions, suggesting that such rigidity analysis is

paramount for these structured approaches. We hypothesize

that the uniformly poor performance of bipartite MDS

arises from the many missing and bounded values in the

antibody-virus dataset, and hence that approach should be

reserved for nearly complete datasets with little to no

bounded measurements.

7. Numeric minimization in metric

multidimensional scaling

Multiple methods exist to solve the distance geometry

problem. One of the earliest methods uses stress majoriza-

tion which is based on gradient descent [64]. Homotopy

methods have also been proposed to tame the inherent

nonconvexity [65]. We also note that the distance geometry

problem arises in protein structural determination, where

simulated annealing approaches such as XPLOR-NIH are

commonly used [66].

For large graphs, local to global build-up approaches

have been developed [67–69] along with convex relaxation

approaches [70–72]. These methods often come with

theoretical guarantees that assume a statistical model for

the distance measurements. More recently, branch-and-

bound-type algorithms have also been applied to special-

ized instances of the distance geometry algorithm [73].

In our recent work, we observed that when some distance

measurements are grossly corrupted, global optimization

techniques such as simulated annealing or basin hopping

failed with multistart, although a more sophisticated convex

relaxation approach succeeded in almost all situations [74].

This robust behavior encourages us to examine the use of

convex optimization methods more broadly.

8. Notes on embedding antibody-virus data

Figure 10 shows the full antibody-virus data. Through

embedding, we predict the optimal neutralization profile of

a single antibody [Fig. 14(a)] or a two antibody mixture

[Fig. 14(b)], where smaller covering circles represent

exponentially stronger neutralization against the encom-

passed variants.

As noted in the main text, the choice of loss function can

affect the resulting embedding (Fig. 11). While SDP

exhibits the most robust behavior in the presence of noise

and missing values (Fig. 13), postprocessing with metric

MDS can yield better performance (Fig. 12). Note that with

SDP, we can approximate the rigidity of the system through

the rank of the positive-semidefinite matrix G (Fig. 9).
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FIG. 9. Creating a rigid embedding by removing unconstrained

entries. (a) We make 76 embeddings (withholding each possible

antibody or virus) and analyze how tightly clustered each entry is

across all embeddings. The five antibodies and five viruses with the

largest scatter are highlighted, with the average position of all

remaining entries shownwith small opacity. (b)Cross-validation [as

shown in Fig. 4(d)] using 2D embeddings on the full dataset.

(c) Cross-validation using 2D embeddings on the partial dataset

with the 10 entries from (a) removed.
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FIG. 10. Annotated influenza antibody-virus data from Creanga et al. [39]. (a) Neutralization measurements of 49 influenza viruses

against 27 antibodies targeting the hemagglutinin stem (gray) and 6 antibodies targeting hemagglutinin head (brown). The inhibitory

concentration of antibody needed to neutralize 50% of viruses (IC50, gray scale). Some antibody-virus interactions are not measured

(tan), and some antibodies exhibit weak neutralization (IC50 > 1.6 × 10−7M, light blue) outside the dynamic range of the assay. (b) The

same 2D metric MDS embedding [as in Fig. 4(b)] with the antibodies and viruses labeled.
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FIG. 11. Choice of loss function strongly influences metric MDS. We compare two loss functions for metric MDS. Left: mean squared

error between unsquared distances (shown in the main text). Right: mean absolute error between the squared distances. (a) Mean

absolute error handles the distance matrix with large outliers far better [see Fig. 3(a)]. (b) Large systematic noise is handled better by

mean squared error, since this represents the maximum likelihood estimator for approximately Gaussian error (see σ ¼ 1; fmissing ¼ 0

from Fig. 2). (c) Cross-validation for the influenza data in Fig. 4 is slightly lower for metric MDS with mean squared error for

embeddings with dimension ≥ 2.
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FIG. 12. Postprocessing an embedding with metric MDS. As in Fig. 2, data are simulated with elementwise noise σ and a fraction

fmissing of missing entries. The results of each embedding are used to initialize one additional metric MDS, which greatly improves its

accuracy. Error is computed as the average Euclidean distance between the numerical and actual coordinates (aligned using a rigid

transform). Example plots at the bottom show an embedding when σ ¼ 0.1 and fmissing ¼ 0.6 (purple box) as well as σ ¼ 0.6 and

fmissing ¼ 0.1 (brown box) for each method.
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In both panels,m ¼ n ¼ 20 and the error represents the RMSE of Euclidean distances between the estimated and true coordinates (once

aligned via a rigid transform).
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FIG. 14. Predicting optimal neutralization for any mapped viruses. Suppose we want to neutralize the five viruses at the tops of the

H1N1 and H3N2 clusters in Fig. 4(b) (H1N1 A/New York/638/1995, A/Beijing/262/1995, H1N1 A/New Caledonia/20/1999,

A/Canterbury/76/2000, A/New York/146/2000 and H3N2 A/Fujian/411/2002, A/California/07/2004, A/Indiana/10/2011, A/Texas/50/

2012, A/Perth/1008/2019). Using the points on the map to represent potential antibody neutralization profiles, we determine (a) the best

single antibody or (b) the best two-antibody mixture that would neutralize these viruses the most potently (with the smallest possible

distance between any virus and the nearest antibody). The solution is given by the nminimum covering circles for these viruses, with the

antibodies positioned at the centers of each circle. Figure is adapted from Ref. [28].
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FIG. 15. Embedding antibodies targeting one versus multiple viral epitopes. (a) Embedding the 27 antibodies [gray, shown in

Figs. 4(a) and 4(b)] targeting a single site on the influenza virus, namely, the hemagglutinin stem. (b) In addition to these stem

antibodies, we embed 6 additional antibodies (brown) targeting different sites on the hemagglutinin head. The cross-validation RMSE

(shown in the bottom right) is larger when including these head antibodies. Neutralization data for all antibodies are given in Fig. 10(a).
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