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Abstract

We propose a novel VQA dataset, BloomVQA,

to facilitate comprehensive evaluation of large

vision-language models on comprehension

tasks. Unlike current benchmarks that often

focus on fact-based memorization and simple

reasoning tasks without theoretical grounding,

we collect multiple-choice samples based on

picture stories that reflect different levels of

comprehension, as laid out in Bloom’s Tax-

onomy, a classic framework for learning as-

sessment widely adopted in education research.

Our data maps to a novel hierarchical graph

representation which enables automatic data

augmentation and novel measures characteriz-

ing model consistency. We perform graded

evaluation and reliability analysis on recent

multi-modal models. In comparison to low-

level tasks, we observe decreased performance

on tasks requiring advanced comprehension

and cognitive skills with up to 38.0% drop in

VQA accuracy. In comparison to earlier mod-

els, GPT-4V demonstrates improved accuracy

over all comprehension levels and shows a ten-

dency of bypassing visual inputs especially for

higher-level tasks. Current models also show

consistency patterns misaligned with human

comprehension in various scenarios, demon-

strating the need for improvement based on

theoretically-grounded criteria. The dataset

can be accessed at https://huggingface.

co/datasets/ygong/BloomVQA.

1 Introduction

Recent advances of machine intelligence solutions

have demonstrated tremendous success in a wide

range of language and multi-modal tasks over di-

verse domains (Bommasani et al., 2021; Brown

et al., 2020; OpenAI, 2023; Liu et al., 2023b; Tou-

vron et al., 2023). With increasing popularity of

such solutions, how to systematically evaluate and
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Figure 1: Story graph: a hierarchical graph representa-

tion based on Bloom’s Taxonomy

analyze the models remains a key concern for confi-

dent application. Many recent efforts have focused

on probing the capabilities and risks of the models

based on different tasks, measures and perspec-

tives (Chang et al., 2023; Li et al., 2023a; Sawada

et al., 2023; Wang et al., 2023). For example, re-

cent studies have explored functionalities and limi-

tations of large language models (LLMs) from the

perspectives of cognitive science (Mahowald et al.,

2023) and semantic consistency (Sahu et al., 2022;

Schiappa et al., 2023).

In the context of Visual Question Answering

(VQA), several benchmarks target demonstration

of multi-modal reasoning and comprehension be-

yond mere memorization of low-level statistical

patterns in the data. For example, GQA (Hudson

and Manning, 2019) leverages scene graph repre-

sentations to construct VQA tasks describing rea-

soning based on relations of different entities in

single-frame images. Other datasets (Tapaswi et al.,

2016; Yagcioglu et al., 2018) leverage sequential

visual inputs to form evaluations addressing pro-

cedural tasks or story comprehension over longer

time horizons. However, little effort has been made

in curating datasets to support systematic evalua-
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Figure 2: Graded evaluation on BloomVQA data following Bloom’s Taxonomy (Armstrong, 2010). For VLP

models, the VQA accuracy decreases as the task level increases, while the QA accuracy using no visual inputs

remains low. For GPT-4V, the VQA accuracy greatly improves over all levels while the comparison to QA accuracy

suggests that the model tends to either bypass or even get confused by visual contents especially at high levels.

tion of multi-modal comprehension following a

theoretically-grounded definition of comprehen-

sion, leading to tasks describing only a limited

set of cognitive processes at relatively low levels.

Motivated by this challenge, we draw inspiration

from theories and methodologies developed by edu-

cation researchers on K-12 reading comprehension,

where comprehension tasks are graded based on

underlying cognitive processes involved following

a taxonomy named Bloom’s Taxonomy (Bloom

et al., 1956; Anderson et al., 2001).

In Bloom’s Taxonomy (Figure 2), handling of

knowledge is categorized into 6 levels from the

most basic (Level 1) to the most advanced (Level

6), including “remember,” “understand,” “apply,”

“analyze,” “evaluate” and “create.” For each level,

a group of cognitive skills are identified as required

to handle tasks at the corresponding level. For

example, the skill of differentiating is required to

achieve successful analysis (Level 4), while the

skill of critiquing is required to achieve successful

evaluation (Level 5). Following this taxonomy, we

propose BloomVQA dataset containing VQA tasks

categorized based on the level of cognitive skills

required. To support a wide range of tasks reflect-

ing basic and advanced comprehension, we collect

multiple-choice VQA samples with open-ended

questions and free-form answer choices based on

picture stories designed for early childhood ed-

ucation. Serving as an evaluation set for multi-

modal comprehension, BloomVQA contains 1200

core data samples collected from human annotators

based on 20 stories, categorized into 6 Bloom’s lev-

els. The core data samples are further augmented

based on the hierarchical structure of Bloom’s Tax-

onomy. Specifically, we generalize the concept of

scene graphs and propose a novel graph represen-

tation named the Story Graph (Figure 1). While

scene graphs focus on attributes and relations of

low-level entities mapped to knowledge mostly at

Level 1 in Bloom’s Taxonomy, to accommodate ad-

vanced tasks at higher Bloom’s levels, we consider

different events, each of which can presumably be

described by a separate scene graph, as the nodes

of a Story Graph. We consider edges describing

relations between pairs of events. In addition to

low-level relations (e.g., temporal relations), we

describe relations corresponding to underlying cog-

nitive processes (e.g., making inference, making

prediction) which link different events in reaching

an overall comprehension of the story. In this way,

given a VQA task constructed about one event, new

VQA tasks can be automatically constructed at a

combinatorial scale by traversing the underlying

Story Graph, as information recorded along the

path of traversal can be introduced as the context

in forming new VQA tasks.

BloomVQA can be used as a benchmark for

multi-modal comprehension engines including cur-

rent multi-modal LLMs (OpenAI, 2023; Liu et al.,

2023a; Zhu et al., 2023), as it enables system-

atic evaluation of model capabilities with quantita-

tive metrics characterizing its alignment to human

comprehension, which is an important aspect for

models to approach Artificial General Intelligence

(AGI) (Morris et al., 2023). First of all, with data

categorized based on Bloom’s levels, we can probe

models in a graded manner and examine model

behaviors on tasks posing different levels of chal-

lenges for human comprehension, especially in-

cluding tasks requiring high-level cognitive skills.

Furthermore, we propose novel metrics character-

izing the consistency of model performance follow-

ing the underlying hierarchy and examine intuitive

hypotheses mapping model behaviors to human

comprehension patterns. In this work, we examine
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the hypothesis that models succeed at more chal-

lenging tasks are less likely to fail at easy ones.

We also study how relevant knowledge, where the

relevancy can be defined based on the underlying

taxonomy, would affect model performance. For

example, lower-level knowledge which can be com-

prehended using basic cognitive skills (e.g., memo-

rizing "what is the name of the girl?") is unlikely

to have a big effect on solving tasks that require

more advanced cognitive skills (e.g., making in-

ference about "what would happen if the girl is

taking a flight rather than a train?"). In addition to

being accurate, being consistent and consequently

predictable is critical for models to be applied by

human users with confidence.

Using the proposed dataset and metrics, we con-

duct comprehensive evaluation of recent Vision-

Language Pre-training (VLP) models (Radford

et al., 2021; Li et al., 2022b, 2023b) and a state-

of-the-art multi-modal LLM (OpenAI, 2023). We

observe that for all three VLP models, the com-

prehension accuracy degrades for tasks requiring

higher-level cognitive skills, in comparison to tasks

requiring mere memorization of low-level details

that can be directly identified from either textual or

visual data. With zero-shot prompting experiments

using GPT-4V (OpenAI, 2023), we observe gener-

ally higher VQA accuracy over all levels. However,

there is also an increasing tendency for the model

to take shortcuts and bypass visual comprehension

when considering tasks requiring higher-level com-

prehension, as shown in Figure 2. Furthermore, via

consistency analysis, we observe that model behav-

iors deviate from human comprehension patterns

and intuitions at various scenarios. The results

demonstrate the need for examining and improving

current solutions based on theoretically-grounded

criteria of reasoning and comprehension. In sum-

mary, our core contributions include the following:

• We present a novel BloomVQA dataset for

systematic evaluation of multi-modal compre-

hension. The dataset is constructed based on

Bloom’s Taxonomy, a classic framework from

education research which provides categoriza-

tion of learning and comprehension.

• We propose the Story Graph, a novel hierar-

chical graph representation based on Bloom’s

Taxonomy for story comprehension which

enables meaningful data augmentation via

traversing the graph.

• We propose novel metrics based on the un-

derlying data hierarchy to examine the consis-

tency of model performance for multi-faceted

analysis on model reliability.

• We evaluate state-of-the-art models with our

proposed dataset and metrics. We show that

improvement of current solutions is needed

especially to address tasks reflecting higher-

level cognitive skills and to demonstrate con-

sistent and reliable comprehension.

2 Related Works

Bloom’s Taxonomy First established by Bloom

et al. (1956) and further revised by Anderson et al.

(2001), Bloom’s Taxonomy describes a framework

categorizing learning objectives based on levels

of complexity of underlying cognitive processes.

There are six major categories, each represented

by a set of skills and actions describing the corre-

sponding cognitive processes. Specifically, direct

recall of concrete facts and knowledge is consid-

ered as the basis (Level 1) of objectives requiring

higher-order reasoning and abstraction, from un-

derstanding and being able to explain (Level 2)

to creating and generating original works (Level

6). While Bloom’s Taxonomy has been widely

adopted in K-12 and college education as the guid-

ance for designing teaching instructions and as-

sessments (Thompson et al., 2008; Shuhidan et al.,

2009), limited effort has been made to transfer the

taxonomy to the machine learning domain as the

guidance for analyzing, assessing and improving

learning. Zhang et al. (2021) propose a learning-

based model for automatic classification of educa-

tion questions based on Bloom’s Taxonomy. Sahu

et al. (2021) use Bloom’s Taxonomy to form proxi-

mal clarifying contexts and study their impact on

language models. In this work, we propose a novel

VQA dataset to support hierarchical model assess-

ment guided by Bloom’s Taxonomy. Specifically,

we use the action verbs associated with different

Bloom’s levels to create templates for data collec-

tion. While it is noted in recent studies that using

the action verbs alone may not be sufficient in fully

describing the underlying learning process (Larsen

et al., 2022), the verbs provide us a concrete opera-

tional definition of the taxonomy as the guidance

for understanding a coarse trend of model perfor-

mance over data categorization.
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Visual Comprehension and Reasoning Moti-

vated by the multi-modal nature of human com-

prehension and communication (Alikhani et al.,

2023), many recent datasets seek to challenge VQA

models by tasks requiring reasoning in different

domains (Zakari et al., 2022; Garg et al., 2022;

Kafle et al., 2018, 2020). Several works introduce

tasks requiring understanding based on multiple

images. MovieQA (Tapaswi et al., 2016) dataset

contains large scale multiple-choice samples col-

lected for story comprehension based on video

clips. RecipeQA (Yagcioglu et al., 2018) is con-

structed based on recipes with procedural text and

image instructions to evaluate visual understanding

over events with temporal relations in the form of

clozing and ordering tasks. SlideVQA (Tanaka

et al., 2023) proposes data and tasks requiring

multi-hop reasoning over slide decks with multiple

pages. GQA (Hudson and Manning, 2019) lever-

ages Visual Genome annotations (Krishna et al.,

2017) to introduce tasks requiring reasoning with

respect to entity relations in scene graphs.

In comparison to existing data where categoriza-

tion is either based on the prefix of the question

or intuitive summary of the tasks, we provide prin-

cipled and theoretically-grounded categorization

based on Bloom’s Taxonomy. Furthermore, we

generalize the concept of scene graphs and propose

the Story Graph which integrates entity-level rela-

tions, temporal relations and relations defined by

the cognitive processes from Bloom’s Taxonomy,

enabling hierarchical data augmentation and com-

prehensive model evaluation with novel metrics.

3 BloomVQA Dataset

Data Collection We propose a novel dataset for

systematic assessment of multi-modal comprehen-

sion. We collect picture stories designed for ed-

ucating young children from two Creative Com-

mons (CC BY 4.0) resources (StoryWeaver; Book

Dash) which provide collections emphasizing an

Indian and an African cultural background respec-

tively. We manually select 20 stories with rela-

tively consistent artistic style, length (around 10-20

pages) and plot complexity so that tasks reflecting

different levels of human comprehension and re-

quiring different types of cognitive skills can be

meaningfully collected based on the content of the

stories. We filter out the stories with distorted artis-

tic styles as they can pose additional challenges to

both human annotators and learning models.

We provide a web-based UI (details included in

the Appendix) where an annotator is asked to read

through a picture story and then provide a set of

6 multiple-choice samples in English, each corre-

sponding to one level in Bloom’s Taxonomy. In

Bloom’s Taxonomy, each level of comprehension

is associated with a set of action verbs describ-

ing underlying cognitive processes and skills (e.g.,

"identify" for Level 1). We use the action verbs to

construct a set of more than 70 question templates

as our operational definition of Bloom’s Taxonomy.

For example, "How would you compare the <at-

tribute> of <character> at the beginning and the end

of the story?" is provided as a template based on the

Level 4 action verb "compare". More examples are

included in the Appendix. For each sample, we col-

lect one template-based question and 4 free-form

answers including 1 correct answer and 3 incorrect

answers from the same annotator.

We collect data samples via Amazon Mechani-

cal Turk (AMT) and manually review all inputs to

select data with proper reflection of the story and

the underlying Bloom’s level. For each story, we

collect 10 sets of reviewed inputs from different

annotators. To further reduce the bias in the dataset,

we enforce annotators to provide answer choices

with consistent lengths for the same question, with

a length difference fewer than 5 words.

Level Question Correct Incorrect

1 10.83±2.24 2.84±1.80 2.71±1.67

2 13.74±2.86 5.23±2.35 5.04±2.28

3 14.08±2.60 5.39±2.33 5.16±2.26

4 11.69±3.97 6.72±3.57 6.59±3.59

5 11.43±3.42 6.16±2.98 6.11±3.04

6 16.68±3.05 6.23±3.02 5.86±2.80

Table 1: Data statistics: average and standard deviation

of data length.

Detailed statistics about the data are shown in

Table 1. In contrast to VQA data considering

simple answers, we collect data with long free-

form answers especially for high-level comprehen-

sion tasks. Overall we collect a core set of 1200

multiple-choice samples, based on which we per-

form systematic data augmentation as described in

Sec 4. We demonstrate consistency analysis with a

set of 12k augmented samples.

We perform human baseline on proposed dataset

(1200 core VQA samples) with a small group of

adult reviewers. The human baseline reports an av-

erage accuracy of 89% with 2% standard deviation.
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This preliminary study provides insights on the cur-

rent gap between human and machine capabilities

(GPT-4V reports an average accuracy of 75.3% as

shown in Table 2) on the proposed dataset.

Story Graph Grounding VQA data to an estab-

lished taxonomy provides not only theory-based

categorization, but also guidance on systematic

probing and generation of the data. Based on

Bloom’s Taxonomy, we propose a hierarchical

graph representation for picture story data. Re-

ferred to as the Story Graph, this novel repre-

sentation naturally extends the concept of scene

graphs (Krishna et al., 2017). While scene graphs

focus on representing low-level information such

as geometric relations between local entities based

on individual images, in a Story Graph (Figure 1),

we represent different events in a single story as

the nodes and represent event-level relations as

the edges. In addition to low-level relations (e.g.,

temporal relations), we include a wide range of

higher-level relations (e.g., logical relations, causal

relations) corresponding to different levels of cog-

nitive skills specified in Bloom’s Taxonomy (e.g.,

making comparison, making inference). As shown

in Fig. 1, each of our templates correspond to one

type of the edges in the Story Graph describing a

particular cognitive skill. The type of edge is the

same for all instantiations of the template. For ex-

ample, the template "<Character><Action>, what

would you do to change this action? <Answer>"

always creates a Level 3 edge between two events,

each encoding Level 1 details such as the character

involved and the action taken. In this way, rich

and diverse knowledge about the story requiring

different levels of comprehension is organized in a

hierarchical manner. The benefits of the proposed

Story Graph are multi-fold. By traversing through

the underlying graph, we can achieve systematic

augmentation of VQA data following the taxon-

omy encoded in the graph. For example, given a

task about a base event, we can construct an aug-

mented question by incorporating knowledge about

each connected event as the context. This augmen-

tation not only expands the dataset combinatori-

ally, but also introduces novel metrics for assessing

the consistency of learning models. As context

information introduced in the augmentation is la-

beled with Bloom’s levels, consistency analysis on

how context knowledge requiring different levels

of comprehension would affect base tasks can be

performed to characterize model reliability.

4 Experimental Analysis

To demonstrate the multi-faceted assessment en-

abled by our framework, we perform zero-shot ex-

periments using three recent VLP models includ-

ing CLIP (Radford et al., 2021), BLIP (Li et al.,

2022b) and BLIP2 (Li et al., 2023b) with reported

implementations (Li et al., 2022a). We further per-

form zero-shot prompting-based experiments us-

ing the state-of-the-art GPT-4V (OpenAI, 2023).

The baseline models are proposed to demonstrate a

wide range of vision-language tasks probing multi-

modal comprehension. For CLIP experiments, we

use pretrained ViT-B-32 image transformer. For

BLIP and BLIP2 experiments, we use pretrained

models in the image-text matching (ITM) mode (Li

et al., 2023b). The models contain 583M and 188M

trainable parameters as reported in the original pa-

pers. We use one Nvidia Tesla V100 GPU for

experiments with VLP models.

Multiple-choice Accuracy We first evaluate the

models with our core dataset of 1200 multiple-

choice samples under two settings. In the first

setting, we perform the "Hasty Student" experi-

ment (Tapaswi et al., 2016) by predicting multiple-

choice answers solely based on the question text.

This baseline measures underlying biases, as high

accuracy indicates that the model is making up an-

swers effectively without reading the actual picture

stories. For experiments with three VLP models,

we extract text embeddings of the question q and

each answer candidate ai from the set of answer

choices {ai}
N=4

i=1
using the text encoder and exam-

ine cosine similarity between the question embed-

ding and each candidate answer embedding. We

select the answer corresponding to the largest QA

similarity as our prediction.

In the second setting, we perform the "Search-

ing Student" experiment (Tapaswi et al., 2016) by

predicting the multiple-choice answer based on the

cross-modal similarity defined as

l({vj}
K
j=1

, q, ai) = max
j

(g(q, vj) + g(ai, vj))

where g denotes the cosine similarity between nor-

malized embeddings extracted from the text input

(question q and answer candidate ai) and the im-

age frames in the picture story where {vj}
K
j=1

de-

notes a set of image frames from a story with K

pages and vj denotes the jth frame. We adopt

max pooling for aggregating the similarity scores

over image frames based on empirical performance
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of baselines. Other aggregation methods such as

average pooling are tested with only minor per-

formance differences noted. We select ai⋆ with

i⋆ = argmaxi l({vj}
K
j=1

, q, ai) as the model pre-

diction.

Model Consistency: Conditional Performance

Categorizing tasks based on Bloom’s Taxonomy en-

ables evaluation of the consistency of model perfor-

mance over tasks at different levels. As for humans,

being consistent on relevant tasks is an important

sign of comprehension on given subjects. In this

work, we examine an intuitive hypothesis: models

which succeed at more challenging tasks demon-

strating comprehensive cognitive skills should be

less likely to fail at easier ones requiring only ba-

sic skills. Let Xm and Xn denote a pair of VQA

tasks from the same story and the same annotator

at Bloom’s levels m and n respectively. We com-

pute the likelihood of having a model solving Xm

correctly given that the model is correct on Xn as

Pm,n =
1

|S|

|S|∑

s=1

1{âm,s = ām,s|ân,s = ān,s},

where |S| denote the total number of annotation

sets. â and ā denote the predicted answer and cor-

rect answer for a task respectively. If Pm,n with

m < n is higher than the unconditional accuracy

at level m, it suggests that the model performance

complies with the intuitive hypothesis. In other

words, for a model demonstrating consistent com-

prehension patterns resembling human behavior,

its probability of solving easier tasks from a lower

Bloom’s level m is expected to be high when the

model is correct on more comprehensive tasks from

a higher Bloom’s level n. Note that the formulation

of consistency as conditional performance can be

further expanded based on different hypotheses to

examine various forward and backward consistency

patterns (Chen et al., 2023).

Model Consistency: Augmentation Based on

the data augmentation strategy described in Sec. 3,

we propose another strategy for probing model con-

sistency by comparing its performance on visual

comprehension tasks with and without background

knowledge introduced. We consider the relevancy

of background knowledge to a given task to be as-

sociated with the node connection in an underlying

Story Graph constructed following Bloom’s Tax-

onomy. For a consistent model, its likelihood of

success on a task should only be improved when

relevant background information is provided and

should not be affected by irrelevant information.

Correspondingly, limited information from a lower-

level task is less likely to affect the model per-

formance on a higher-level task requiring compre-

hensive understanding of the story. While back-

ground information from a higher-level task in-

volving advanced cognitive skills and reasoning is

more likely to be useful for inferring the answer

of a lower-level task. For example, considering a

Level 3 base task ("If you are Nina’s father, what

would you do to change her mood?") which re-

quires distilling information from the story for prob-

lem solving, background information from a Level

1 context task ("What’s Nina’s father’s hair color?

Black.") is less likely to be helpful. Therefore, a

consistent model would have a similar performance

on the augmented task ("If you are Nina’s father,

who has black hair, what would you do to change

her mood?") given the same set of candidate an-

swers. Meanwhile, the background information

from a Level 4 context task ("Why is Nina sad? Be-

cause she misses friends.") is expected to facilitate

comprehension, leading to improved performance

on the augmented task ("Nina is sad because she

misses friends. If you are Nina’s father, what would

you do to change her mood?").

Given a context task Xn and a base task Xm

drawn from the core dataset at level n and m re-

spectively, we construct an augmented task Xm|n

by prepending the question qn and the correct an-

swer ān of the context task to the base question qm.

We keep answer choices of the base task am. For

experiments with three VLP models, we extend the

Searching Student formulation for the augmented

task by defining the cross-modal matching score

between each candidate answer choice am,i and the

picture story with frames {vj}
K
j=1

as

l({vj}
K
j=1

, qn, ān, qm, am,i) = maxj(g(qn, vj)

+g(ān, vj) + g(qm, vj) + g(am,i, vj)).

We select the answer corresponding to the high-

est score as the prediction for the augmented task.

While combinatorial augmentation can be achieved,

in this work, we examine a set of 12k augmented

samples considering Level 1 data of the same story

as the context task. Let Ybase denote the model

performance as a binary score for each base task

without augmentation. Let Yaug denote the model

performance as the average accuracy on the set

of augmented tasks constructed by incorporating
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low-level contexts. We compute consistency de-

fined as the average precision between two sets of

scores (Sahu et al., 2022): AP (Ybase, Yaug). This

metric quantifies the predictability of model per-

formance when probing the knowledge along the

underlying hierarchical graph.

Experiments using GPT-4V We perform

zero-shot prompting experiments using

the gpt-4-1106-preview model and the

gpt-4-vision-preview model. In comparison to

experiments using VLP models, we ask GPT-4V

model to make a prediction based on all images

in each story at once. We perform experiments on

the core dataset with 1200 samples and a set of

1200 augmented data constructed by considering

a random Level 1 context task from the same

story for each base sample from the core dataset.

We perform computation via OpenAI API. The

total computation corresponds to approximately

8M tokens. We use the following prompts

for multiple-choice evaluation. For each task,

we randomly order the candidate answers and

parse the output of LLM to compare the index

generated following “My chosen answer is” to

the ground-truth index of the correct answer. For

GPT-4 experiments, we use the prompt:

Choose the best answer based on the

question. End your response with ‘My

chosen answer is’ followed by your cho-

sen answer.

<Question>

<Candidate Answers>

For GPT-4V experiments, we use the prompt:

<Images>

Choose the best answer based on the

story in the images. End your response

with ‘My chosen answer is’ followed by

your chosen answer.

<Question>

<Candidate Answers>

With prompts specified above, we receive inde-

terminate answers for 5% and 2% of the samples in

QA-only and VQA experiments respectively. We

report the average performance on the rest of the

samples in Table 2-4.

CLIP BLIP BLIP2 GPT-4V

Level QA VQA QA VQA QA VQA QA VQA

1 31.0 54.5 26.5 60.5 33.5 66.5 47.5 66.5
2 27.5 42.0 33.0 48.5 34.5 47.0 59.5 74.0
3 30.5 32.5 28.0 26.5 24.0 29.5 72.0 78.5
4 22.5 33.5 24.5 36.0 22.0 37.5 68.5 78.5
5 23.0 31.5 29.5 30.0 26.0 28.5 68.5 77.5
6 31.5 32.0 27.0 32.5 31.0 28.5 78.5 77.0

Avg. 27.7 37.6 28.0 39.0 28.5 39.6 65.8 75.3

Table 2: Accuracy (%) on 1200 BloomVQA samples.

5 Results and Discussion

Multiple-choice Accuracy In Table 2, we

present graded evaluation on BloomVQA dataset

with three recent VLP models (Radford et al., 2021;

Li et al., 2022b, 2023b) and a latest multi-modal

LLM (OpenAI, 2023). We first compare the model

performance on the core set of 1200 samples con-

sidering text inputs only ("QA") and multi-modal

inputs ("VQA"). It is shown that all three VLP

models have consistently low performance over

different Bloom’s levels when making prediction

based on QA similarity solely. In fact, the average

performance is close to the random guess which

demonstrates that the proposed dataset serves as a

proper evaluation set for multi-modal data. In com-

parison to the QA baseline, all three VLP models

demonstrate improved performance when exploit-

ing multi-modal similarity for VQA prediction for

most Bloom’s levels. We have similar observation

for all three VLP models such that they achieve

higher accuracy for multi-modal comprehension

on lower-level tasks (level 1-2) in comparison to

higher-level tasks (level 3-6). For comparison be-

tween three VLP models, we observe that the recent

improved model (BLIP2) achieves the most gain in

low-level (Level 1) tasks while similar performance

is achieved by different models for higher-level

tasks. This observation supports our hypothesis

that VQA tasks corresponding to high-level human

comprehension are not adequately addressed by

current techniques, as existing datasets and models

have been focusing on tasks reflecting memoriza-

tion of low-level knowledge.

Model Consistency: Conditional Performance

In Table 3, we consider the 1200 core samples and

report model performance on tasks of a specific

Bloom’s level (m) conditional on correct predic-

tion on the task of the same story from the same

annotator at a different Bloom’s level (n). With

this set of results, we seek to compare the model

performance with human comprehension patterns.
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n \ m 1 2 3 4 5 6

1 100.0 43.1 31.2 32.1 32.1 33.0
2 55.9 100.0 38.1 34.5 36.9 36.9
3 52.3 49.2 100.0 32.3 30.8 41.5
4 52.2 43.3 31.3 100.0 35.8 34.3
5 55.6 49.2 31.8 38.1 100.0 31.8
6 56.2 48.4 42.2 35.9 31.3 100.0

(a) CLIP

n \ m 1 2 3 4 5 6

1 100.0 47.9 33.9 35.5 28.9 34.7
2 59.8 100.0 29.9 35.1 26.8 31.9
3 77.4 54.7 100.0 49.1 28.3 30.2
4 59.7 47.2 36.1 100.0 33.3 37.5
5 58.3 43.3 25.0 40.0 100.0 33.3
6 64.6 47.7 24.6 41.5 30.8 100.0

(b) BLIP

n \ m 1 2 3 4 5 6

1 100.0 50.9 27.3 40.9 37.3 27.3
2 56.0 100.0 26.0 37.0 40.0 29.0
3 56.6 49.1 100.0 37.7 37.7 24.5
4 62.5 51.4 27.8 100.0 41.7 36.1
5 56.2 54.8 27.4 41.1 100.0 24.7
6 52.6 50.9 22.8 45.6 31.6 100.0

(c) BLIP2

n \ m 1 2 3 4 5 6

1 100.0 75.9 81.2 82.7 78.9 76.7
2 68.2 100.0 78.4 79.1 79.1 80.4
3 68.8 73.9 100.0 80.9 80.3 76.4
4 70.1 74.5 80.9 100.0 78.3 79.0
5 67.7 75.5 81.3 79.4 100.0 73.6
6 66.2 77.3 77.9 80.5 74.0 100.0

(d) GPT-4V

Table 3: Model consistency: accuracy (%) at Level m when model succeeds at Level n.

CLIP BLIP BLIP2 GPT-4V

Level aug AP aug AP aug AP aug AP

1 51.3 95.1 55.5 97.5 59.5 99.1 85.0 66.0
2 38.4 96.2 43.9 91.5 44.5 93.8 93.5 74.3
3 28.8 90.0 28.3 85.5 29.8 89.4 81.5 77.1
4 33.8 85.7 32.6 86.9 35.2 88.7 90.0 77.4
5 32.7 91.0 31.1 91.6 32.2 91.3 88.0 77.8
6 29.6 92.1 31.0 94.7 28.5 85.3 84.5 78.0

Avg. 35.8 91.7 37.0 91.3 38.3 91.3 87.1 75.1

Table 4: Accuracy on augmented data and AP consis-

tency on data with and without augmentation (%).

We start with the hypothesis that comprehension

at a lower level is less likely to fail when compre-

hension at a higher level is already achieved, as

many lower-level comprehension skills are readily

required in solving higher-level tasks. We observe a

pattern in model performance aligned with this hy-

pothesis in some scenarios. For example, as shown

in Table 3a, Level 2 accuracy given success of

higher-level (Level 3-6) tasks are generally higher

than Level 2 accuracy given success of lower-level

(Level 1) tasks. However, this observation does not

hold across different Bloom’s levels and different

models. For example, as shown in Table 3c, Level

5 accuracy conditioned on success of higher-level

(Level 6) tasks is lower than Level 5 accuracy con-

ditional on success of lower-level tasks (Level 1-4).

The misalignment between model consistency pat-

terns and human comprehension patterns surfaces

the lack of grounding in model responses.

Model Consistency: Augmentation In Table 4,

we further compare the performance of different

models evaluated on VQA data samples with and

without augmentation. For core data samples at

each Bloom’s level, we augment the data by incor-

porating Level 1 knowledge about the same story

as the context for the original question ("aug"). We

further quantify the consistency of model perfor-

mance between data with and without augmenta-

tion using Average Precision ("AP") scores as de-

scribed in Section 4. Overall we observe that all

three VLP models have a similar consistency level

averaged over 6 different Bloom’s categories. The

high consistency scores indicate that model perfor-

mance can be perceived with confidence as low-

level distractions have small effect on the model

performance. Considering consistency measured

with base tasks at different Bloom’s levels, we ob-

serve that Level 3 and Level 4 base tasks tend to be

affected at a relatively greater scale by additional

context from Level 1. This observation serves an

example of model-specific comprehension patterns

disclosed by proposed consistency analysis.

Experimental Results using GPT-4V As shown

in Table 2, GPT-4V shows strong performance

across different Bloom’s levels. However, the com-

parison between text-only experiments using GPT-

4 ("QA") and multi-modal experiments using full

GPT-4V ("VQA") indicates that the high accuracy

of the model may stem from biases and hallucina-

tions. The model’s gain from incorporating visual

inputs decreases on tasks with increasing Bloom’s

levels, suggesting a tendency of the model to take

shortcuts especially for tasks requiring higher-level

comprehension. Specifically at Level 6, the model

performance degrades when visual data is intro-

duced. In comparison to VLP models, GPT-4V

handles visual inputs at story level. This may con-
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tribute to the difference in model performance. We

choose picture stories designed for young children

as they have simple plots suitable for demonstrating

various comprehension tasks without introducing

unnecessary complexity. However, with such data

there can potentially exist common-sense biases

especially for tasks at higher levels which require

more abstract comprehension, as the stories are of-

ten based on common sense. Therefore the higher

performance of GPT-4V in comparison to other

baselines can also be a sign that the model is better

at leveraging common sense. In this work, instead

of comparing models with respect to absolute ac-

curacy, we focus on examine whether the model

prediction is grounded to the visual data and the

consistency patterns of human comprehension.

In Table 3d, we show GPT-4V performance con-

ditional on successful prediction on tasks about the

same story at a different Bloom’s level. We observe

that the model consistency pattern deviates from

the hypothesis made based on human comprehen-

sion patterns in multiple cases. For example, Level

5 accuracy conditional on the success on higher-

level (Level 6) tasks is lower than Level 5 accuracy

conditional on the success on lower-level tasks

(Level 1-4). Furthermore, as shown in Table 4,

in comparison to the VLP models, GPT-4V has a

lower average precision score which corresponds

to lower consistency on data with and without aug-

mentation by introducing irrelevant information.

These observations suggest that, although GPT-4V

is demonstrating generally improved VQA accu-

racy in comparison to earlier models, it may still

fall short in demonstrating consistent comprehen-

sion following human intuitions.

6 Limitations

Constrained by the resources and availability of

creative commons data, we collect a relatively

small-scale dataset to serve as an evaluation set for

characterization of model performance based on a

theoretically-grounded taxonomy. While domain

gaps may exist when evaluating models pre-trained

with data from different domains, the focus of this

work is not to optimize VQA accuracy in the pic-

ture story domain. Instead, we focus on providing

insights on model behaviors over different types of

comprehension and measuring its consistency. Our

proposed hierarchical data representation and novel

consistency metrics are generalizable and compati-

ble with technologies such as prompting based data

generation using LLMs which opens the opportu-

nities for future research on scaling up the dataset.

We collect picture story data from two resources

emphasizing on Indian and African backgrounds

respectively. With such inputs, we encourage cross-

culture understanding. The utilization of stories

designed specifically for young children further

injects cultural neutrality, as the contents of the sto-

ries focus on core concepts appealing to children

universally and have low cultural complexity.

7 Conclusions

We present a novel dataset for systematic assess-

ment of multi-modal comprehension engines. In-

spired by Bloom’s Taxonomy from education re-

search, we collect multiple-choice samples based

on picture story data from creative commons re-

sources. Each sample is labeled with a cognitive

skill required in solving the multiple-choice task

and is associated with a specific level of comprehen-

sion from Bloom’s Taxonomy. We further propose

a novel hierarchical graph representation describ-

ing knowledge extracted from picture stories at dif-

ferent Bloom’s levels. The proposed Story Graph

naturally extends the concept of scene graphs and

maps data into the hierarchical taxonomy. We

demonstrate that automatic data augmentation can

be achieved by traversing through the underlying

graph. With the proposed dataset, we can not only

assess given models in a graded manner but also

characterize the models with respect to consistency

of their performance. The proposed data structure

and metrics pave the way for a wide range of in-

teresting future works, where hierarchical graph

representation can be used to guide systematic data

storage, retrieval and generation.
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A Appendix

A.1 Data Collection

We provide a web-based UI for data collection as

shown in Figure. A1. We recruit annotators in

the United States via Amazon Mechanical Turk.

While our tasks are complicated, we empirically

adjust our instructions, UI design and collection

protocols with iterations of data collection where

we increase the payment based on the quality of

the inputs. We report in Table A1 the examples

of templates constructed based on corresponding

cognitive skills from Bloom’s Taxonomy for the

data collection.

A.2 Example data

In Figure A.2, we show a complete picture story as

one example from BloomVQA. In Table A2, we

show a corresponding set of example questions and

answers from different Bloom’s levels collected

based on the story.
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Figure A1: We designed a Web-based UI with general instructions and detailed instructions at each Bloom’s level

provided to annotators without background expertise in the domain.

Figure A2: Example picture story: "Foxy joxy plays a trick"
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