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ABSTRACT

The acquisition of complex astronomical data is accelerating, especially with newer telescopes pro-
ducing ever more large-scale surveys. The increased quantity, complexity, and variety of astronomical
data demand a parallel increase in skill and sophistication in developing, deciding, and deploying statis-

tical methods. Understanding limitations and appreciating nuances in statistical and machine learning
methods and the reasoning behind them is essential for improving data-analytic proficiency and acu-
men. Aiming to facilitate such improvement in astronomy, we delineate cautionary tales in statistics

via six maxims, with examples drawn from the astronomical literature. Inspired by the significant
quality improvement in business and manufacturing processes by the routine adoption of Six Sigma,
we hope the routine reflection on these Six Maxims will improve the quality of both data analysis and
scientific findings in astronomy.

Keywords: Astrostatistcs (1882) – Astronomy Data Analysis (1858)

1. INTRODUCTION

Although data science aims to address the myriad
challenges arising from the entire life cycle of data (Wing
2019), there are a number of unique, or at least unusual,
characteristics of astronomical data that demarcate the
statistical challenges in astronomy and affect our ap-
proach to analyzing astronomical data. First, astronom-
ical observations are not obtained from designed exper-
iments in the traditional sense. There are no experi-
mental settings that the astrophysical researcher com-

pares by controlling conditions, such as treatment ver-

Corresponding author: Hyungsuk Tak (tak@psu.edu)

sus placebo. Consequently, observations are not exactly
repeatable in the sense that observational conditions,
instrumental properties, or the astrophysical phenom-
ena themselves are changing over time. For instance,
we cannot observe the same supernova explosion mul-
tiple times under different controlled conditions. Sec-
ond, calibration (e.g., of instruments) is a crucial step
of the observation process because it allows us to con-
nect the observed signals to the underlying physics (see,
e.g., Guainazzi et al. 2015). Unfortunately, calibration

is never exact and thus adds uncertainty to the final
analysis (e.g., Lee et al. 2011). Third, sparsity is in-
evitable even with big data, in a sense that researchers
are always interested in the most distant objects and the
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faintest signals which are studied using small subsets of
the full data. For instance, new classes of astronomical
phenomena are rarely first discovered as bright sources,
but are often among the most interesting scientifically.
Fourth, observed astronomical objects are at different
stages of their life cycles and evolve on different time
scales, all of which are much larger than we can ob-
serve. This characteristic can help us understand long
time scales via a population study, but homogeneity and
completeness of the data may become an issue. Finally,
measurement error uncertainties are heteroscedastic and
are often given as constants along with the data (Feigel-
son & Babu 1998; Feigelson et al. 2021).

Taken together, these unusual characteristics can lead
to challenges, especially when using off-the-shelf data-
analytic tools to analyze astronomical data (Siemigi-
nowska et al. 2019). This is because underlying assump-
tions of standard statistical methods do not typically
take account of these features. For example, even a sim-

ple linear regression model requires extra modeling as-
sumptions to account for selection effects and measure-
ment errors for astronomical data analysis (Kelly 2007).
Thus, it is important to check these underlying assump-

tions on a case-by-case basis to ensure sound astronom-
ical data analysis, especially when deploying methods
that were developed outside of astronomy.

It is worth pointing out an important distinction in the
jargon between the astronomical and statistical litera-
ture. A “model” in astrophysics refers to a parsimonious

mathematical representation of expected (or predicted)
signal from a physical process that generates emission
that is eventually detected via telescopes. This could be
the blackbody energy spectrum, or the pulse profile of a

pulsar, or the number density of a population of sources
in a globular cluster projected onto the sky, etc. In con-
trast, a “model” in statistics is a stochastic represen-

tation of the data-generating process that accounts for
discrepancies between the astrophysical model and the
data. This stochastic representation is indexed in that
it is specified up to a set of unknown model parameters
that are fit to the data. It reflects systemic adjustments
(including observational constraints and instrument ef-
fects), selection effects, stochastic components such as
Poisson and Gaussian errors, and anything else that ef-
fects the distribution of the data. To take a simple ex-
ample, the choice of the Poisson(g(θ)) model to repre-

sent photon counts forms a statistical model, whereas
the astrophysical model stipulates the functional form
of g(θ), e.g., g(θ) could be a power-law in energy E, i.e.,
norm × E−α, with model parameters θ = {norm, α}.
The physical model is designed to describe a physical
process without necessarily representing the stochastic

aspects of data generation that lead to uncertainty in
parameter estimation. Uncertainty quantification, on
the other hand, is at the heart of the statistical model
which aims to represent data and its variability as fully
as possible. A statistical model also describes the hier-
archical connections between the various processes that
translate incoming photons to observed electronic sig-
nals (e.g., van Dyk et al. 2001).

As an illustration of the particular difficulties in han-
dling astronomical data, consider the estimation of the
time delay between the multiple images of a strongly
gravitationally lensed time-varying source. In estimat-
ing the time delay between gravitationally lensed light
curves of Q0957+561 (Hainline et al. 2012), Tak et al.
(2018b) adopt a damped random walk statistical model
(also known as a continuous-time auto-regressive model
of order one or an Ornstein-Uhlenbeck process) as a data

generating process. This model reveals multiple modes
in the posterior distribution of the time delay parameter
as illustrated in the top panel of Figure 1. The height of

the mode near 400 days is much less than the mode near
1100 days. However, it turns out that the highest mode
near 1100 days is spurious, caused by model misspec-
ification. The modes near 1100 days disappear when

the astronomical model additionally incorporates poly-
nomial regression to account for the effect of microlens-
ing (Tak et al. 2017b) that is known to be present in the

data (Hainline et al. 2012); see the bottom panel of Fig-
ure 1. Consequently, the mode near 400 days becomes
prominent, in agreement with some previous analyses of

this quasar (Schild 1990; Shalyapin et al. 2008).
This example points out several important aspects in

astronomical data analysis. First, different model fits on
the same data can reveal completely different possibili-

ties, e.g., for the time delay of Q0957+561. All of these
possibilities are worth proper investigation in the con-
text of available scientific knowledge, in an attempt to

determine which are simply the result of model misspec-
ification and which are new scientific discoveries. Sec-
ond, blindly making inference based on the highest mode
of the posterior distribution or likelihood function (or
smallest loss function in machine learning methods) can
be misleading, as illustrated in the top panel of Figure 1.
Thus it is essential to check whether the model captures
important characteristics of the data sufficiently well be-
fore drawing any conclusions. Lastly, it is the story em-
bedded in the data that can provide insight for improved
modeling of physical phenomena, such as microlensing.
The better the statistical and astronomical models re-
flect the data, the better the quality of what the data
reveal to us.
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Figure 1. The posterior distributions obtained under two
different models for the time delay given the same data of
two gravitationally lensed light curves of Q0957+561 (Hain-
line et al. 2012). The model producing the posterior distri-
bution in the top panel does not account for the effect of
microlensing, producing multiple modes (Tak et al. 2018b),
even though the tiny mode near 400 days is of scientific in-
terest. The modes near 1100 days do not appear in the bot-
tom panel where the model additionally accounts for the mi-
crolensing effect via polynomial regression (Tak et al. 2017b).
It turns out that the modes near 1100 days in the top panel
are spurious caused by model mis-specification.

In what follows, we discuss several issues that arise
in astronomical data analyses in light of the unique or

unusual features of astronomical data. We formulate
our observations into the following six maxims, each of
which is in the sprint of George Box’s well-known apho-
rism “all models are wrong but some are useful” (Box
& Draper 1987):

1. All data have stories, but some are mistold.

2. All assumptions are meant to be helpful, but some
can be harmful.

3. All prior distributions are informative, even those
that are uniform.

4. All models can be given interpretations, but some
are more compelling.

5. All statistical tests have thresholds, but some are
mis-set.

6. All model checks consider variations of the data,

but some variants are more relevant than others.

While we believe that the statement of each of the max-
ims is new, the ideas that underlie them are not. Rather,
the maxims are merely concise statements that we hope
capture a sense of the reasoning that defines statistics
as a discipline and that is the culmination of the work
of generations of data-facing researchers. Our aim is to
encourage researchers to carefully consider their (possi-
bly implicit) modelling and statistical assumptions and
how these assumptions may affect scientific findings. We
hope that by keeping the maxims in mind as part of their
daily data-analysis routine, researchers will improve the
quality of both data modeling and scientific findings in
astronomy.

2. ALL DATA HAVE STORIES, BUT SOME ARE
MISTOLD.

In this section, we explain several issues in modeling

astronomical data, such as sampling mechanisms, selec-
tion effects, preprocessing, and calibration, and discuss
possible solutions to improve the quality of astronomical

data analysis.

2.1. Sampling mechanism

Statisticians typically assume that the data are mea-

surements of a statistical sample that is representative of
the larger class of objects under study. For example, we
might have a sample of white dwarf stars from the Milky
Way Galaxy and measure the metallicity of each or we

might have a sample of exoplanets and measure the mass
of each. Formally, statisticians may assume that we have
obtained a probability sample from the larger class or

population. (In a probability sample, all objects in the
population have a known non-zero probability of being
included in the sample.) Unfortunately, such a sample
is nearly impossible to obtain in astronomy. While it
is true that measurements of the properties of individ-
ual objects have become more accurate, this accuracy
does not translate into a more representative sample of

objects. In fact, none of the so-called all-sky surveys
have uniform coverage as they all provide preferential
or deeper coverage of specific parts of the sky. For ex-
ample, Sloan Digital Sky Survey (SDSS) is targeted at
the northern celestial hemisphere, the Rubin Observa-
tory has lower coverage in the northern hemisphere, and
space-based observatories like TESS and eROSITA have
deeper coverage towards the poles. Likewise, narrowly
focused pencil-beam surveys like the Hubble Deep Field
or Chandra Deep Field surveys have varying sensitivity

across the field of view due to the detector or telescope
responses.

Modeling such data without paying attention to the
exact nature of the sampling mechanism and how well
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they represent the population of interest can result in bi-
ased inferences (Kelly 2007, Section 5). Astronomers are
generally aware of adverse selection effects introduced
by the Eddington or Malmquist biases (Landy & Szalay
1992; Teerikorpi 2015), but we caution that the system-
atics of any survey or measurement must be carefully
considered on a case-by-case basis.

A well-known example occurs in Hubble (1929), where
systematically high peculiar velocities in the local Galac-
tic neighborhood initially led to a large overestimate of
the eponymous Hubble constant, H0. Indeed, the im-
portance of modeling systematic uncertainty is apparent
throughout the history of the measurement of H0. Fig-
ure 2 shows that early estimates, from the mid-to-late
twentieth century, were either around 50 km s−1 Mpc−1

denoted by the dashed horizontal line (e.g., Sandage &
Tammann 1975) or around 100 km s−1 Mpc−1 visual-
ized by a dotted horizontal line (e.g., de Vaucouleurs
& Bollinger 1979; de Vaucouleurs & Peters 1986). The

half length of each vertical bar around the point estimate
represents its 1σ uncertainty.

More recently, significant improvements in instrumen-
tation and techniques have led to better understand-

ing of the systematics involved and have narrowed the
range of the measured values of H0 further. However, a
statistically significant discrepancy remains among the

estimates, raising a question regarding the validity of
the standard cosmological model (Verde et al. 2019; Ef-
stathiou 2020; Riess et al. 2021). For example, Fig-

ure 3 (excerpted from Figure 1 of Beaton et al. (2016))
illustrates the tension between estimates of H0 from
the so-called late-Universe measurements calibrated by
the Cepheid distance scale (in blue), and early-Universe

measurements obtained by the cosmic microwave back-
ground (in red). Feeney et al. (2018) show that the
Bayesian evidence of the standard cosmological model

is about seven times smaller than that of an extended
cosmological model, that includes an additive deviation
from the standard cosmological model. The correspond-
ing Bayes factor between the two cosmological models
is 0.15 ± 0.01 given the Planck 2015 XIII data (Planck
Collaboration et al. 2016) and the distance-ladder data
of Riess et al. (2016) with extra supernova outliers being
considered.

The role of systematics is clear in recent work describ-
ing the tension among competing estimates of H0 ow-

ing to the extraordinary efforts of the astronomical and
cosmological communities to pin down H0. How does
a researcher with fewer resources recognize similar ef-
fects in their analysis and remedy them? We posit that
this requires an iterative process that implements correc-
tions and appropriately incorporates model complexity

Figure 2. A history of Hubble constant estimates made
between 1920 and 2008. The dashed horizontal line indi-
cates the H0 estimate at 50 km s−1 Mpc−1 and the dot-
ted horizontal line represents the estimate at 100 km s−1

Mpc−1. The half lengths of vertical bars around dots rep-
resent 1σ uncertainty. This figure is generated using the
estimates of H0 compiled by John P. Huchra from the lit-
erature as part of the NASA/HST Key Project on the
Extragalactic Distance Scale (https://lweb.cfa.harvard.edu/
∼dfabricant/huchra/hubble.plot.dat).

Figure 3. The tension between the early- and late-Universe
measurements of H0. The estimates in blue are computed
by standard candle method calibrated by Cepheid and those
in red are obtained by the cosmic microwave background
measurements under the standard cosmology (ΛCDM). This
figure is excerpted from Figure 1 of Beaton et al. (2016) by
permission of the AAS.

in follow-up analyses. Still, it is important to recog-
nize that any analysis remains vulnerable to imperfect
knowledge of the story behind its data.

2.2. Selection effect

In addition to non-uniform coverage, astronomical

data are often obtained intentionally and purposefully

https://lweb.cfa.harvard.edu/~dfabricant/huchra/hubble.plot.dat
https://lweb.cfa.harvard.edu/~dfabricant/huchra/hubble.plot.dat
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for specific research projects. When such astronomical
data become public through various archives, other re-
searchers may download them and use them as if they
were randomly and uniformly selected, possibly unaware
of the danger of selection effect in their sample. Like-
wise, when the contents of different surveys are exam-
ined together, their individual characteristics can af-
fect the overall interpretation in complex ways. This
is well-appreciated when different catalogs are matched
(e.g., Budavári & Szalay 2008; Rots et al. 2017a,b), but
less so when population studies are carried out. Cata-
log data are often used as training sets when applying
machine learning methods, even though such training
sets may not represent the population of interest well
due to the non-uniform coverage and selection effects
within the catalog. For example, the Chandra Source
Catalog (CSC; Evans et al. 2010) provides a selection
of fields, each observed for individual scientific reasons.
Such “samples of convenience” are not probabilistic and

not representative of the population, in contrast to flux-
limited all-sky surveys like the ROSAT All-Sky Survey
(RASS; Voges 1993; Voges et al. 1999; Boller et al. 2016).
An example of how to deal with these effects is provided

by Revsbech et al. (2017) and Autenrieth et al. (2024)
who reduce the effect of a biased training set in clas-
sifying Type Ia supernovae via stratification. It forms

training sets that are more representative of the corre-
sponding strata within the test set. Similarly, Izbicki
et al. (2017) propose a non-parametric density estima-

tor for photometric redshift that accounts for selection
bias in a non-representative training set by importance
reweighting of the training set.

2.3. Preprocessing

Most astronomical data are pre-processed via multi-
stage software pipelines specific to a given telescope.
As illustrated in Figure 4, in each stage of the pre-
processing hierarchy, one astronomer’s inference is
passed down to be used as an input by the next as-
tronomer. Another inference is then made with the pre-
vious inference being treated as the data. Unfortunately,
this pre-processing is often ignored even though the pre-
processing steps can reveal evidence of potential sys-
tematic errors. For example, in the case of solar flares
databases, precision of recorded flare intensities, com-
plex detection/missing characteristics, temperature ef-
fects, incompleteness in matched features may all cause
systematic errors in the data (Ryan et al. 2012; Aggar-

wal et al. 2018).
As another example, catalog data pre-processing is

performed via standard pipelines and assumptions. This
pre-processing procedure generally affects the catalog

quality and reliability; outliers may arise if measure-
ments are not performed in a consistent way; differ-
ent definitions of upper limits may cause an issue of
censoring; an incorrectly implemented pre-processing
procedure may introduce systematic error. Thus, it
is important to understand how the catalog quantities
are derived from the raw data through a chain of pre-
processing stages, especially when different catalogs are
compared or merged (Budavári & Szalay 2008). When-
ever possible, the statistical and systematic errors in-
troduced by the pre-processing procedure should be ac-
counted for within the overall statistical model as much
as possible (e.g., Portillo et al. 2017).

2.4. Calibration

Calibration is a foundational part of astronomical in-
ference, more so than in any other physical science.

While instrument calibration is indeed used extensively
in fields like experimental physics and geophysics, it is
of particularly critical importance in astronomy1. As-

tronomical data are for the most part obtained through
observations of remote sources, with physical quantities
inferred by transforming the observed signals from a de-
tector. Each telescope or focal plane instrument has

its own specific characteristics that affect this transfor-
mation, and considerable effort is put into determining
these, and tracking changes to them (see, e.g., Guainazzi

et al. 2015; Partridge et al. 2016; Payne et al. 2020).
Ground-based photometric optical astronomy still relies
on obtaining regular observations of “standard stars”

with similar airmass to the target being observed, so
even atmospheric variations must be adjusted for. High-

1 Note that the term “calibration” is interpreted differently in as-
tronomical, compared to statistical, literature. In astronomy,
it refers to the process of characterizing uncertainties and bias
corrections induced by instruments, enabling the translation of
measured signals into physically meaningful units. In statistical
literature, however, calibration generally refers to a process of
“inverse regression”, where measurements of dependent quanti-
ties are used to predict corresponding standard measurements,
mediated through a known model function. For example, if
a functional form Y = f(X) is learned using a training data
set, new measurements of a test data set Y0 are used to predict
X0 = f−1(Y0). This is mainly motivated by instrumental cal-
ibration in chemistry, where high-quality “standard” measure-
ments X are more time-consuming and expensive than “test”
measurements Y . The statistical literature includes theories and
methods for various linear, non-linear, multivariate, and dynamic
approaches to statistical calibration (Osborne 1991; Kubokawa &
Robert 1994; Brown 1994; Oman & Srivastava 1996; Rivers 2014;
Brown 2018). Methods are divided into those designed to han-
dle the case where both standard and test measurements have
appreciable error, known as comparative calibration (Kelly 2007;
Schafer & Purdy 1996) and methods where the standard mea-
surements are assumed to be perfect or nearly perfect, known as
absolute calibration.
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Figure 4. A diagram illustrating an example of a data reduction pipeline, excerpted with permission from Figure 2 of the
Rubin Observatory LSST Data Products Definitions Document (Jurić et al. 2023). Each of the numbered boxes expands into
another flow diagram. While the details in this figure are not important in the current context, it illustrates the complexity of
the data pre-processing.

energy astronomical telescopes construct and store de-
tailed tabular models of the response of a detector to
a monochromatic photon2, and every mission measures
and stores its sensitivity (also called effective area in
high-energy astronomy) as a function of photon wave-

length. As noted by Villanueva et al. (2021), the details
of calibration can have a dramatic impact on the quality
of the data.

2 See OGIP Calibration Memo CAL/GEN/92-002 and addendum
(https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/
memos/cal gen 92 002/cal gen 92 002.html,
https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/
memos/cal gen 92 002a/cal gen 92 002a.html)

It is important to understand, however, that the avail-
able calibration products are not perfect. They are the
result of measurements carried out in controlled condi-
tions, and thus include measurement errors, as well as
systematics that manifest themselves once the instru-
ments are deployed (often in harsh space environments
where the chances of radiation damage is high). Differ-
ences in calibration between different instruments must

be weighed when different data streams are considered
together. Where available, calibration uncertainty in-
formation must be folded in to the analysis (Lee et al.
2011; Xu et al. 2014). More recently, efforts have been
made to derive corrections to effective areas and to
source flux estimates based on simultaneous observa-

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002a/cal_gen_92_002a.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002a/cal_gen_92_002a.html
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tions of sources with different instruments even in the
absence of an absolute reference using multiplicative
shrinkage (see, for example, Chen et al. 2019a; Marshall
2021).

There is a common theme in these examples. Knowing
the story behind the data allows one to correct for po-
tential model mis-specification, while not knowing the
story may leave one oblivious to the same issue. Un-
derstanding their data, including limitations in the data
collection process and potential selection effect, enables
researchers to make appropriate corrections themselves.
In this way, being attentive to the story behind their
data enables researchers to make more reliable inferences
regarding their populations and sources of interest.

3. ALL ASSUMPTIONS ARE MEANT TO BE
HELPFUL, BUT SOME CAN BE HARMFUL.

Popular statistical models were developed for specific
purposes or motivated by particular problems. Some
well known models, such as Gaussian linear regression,

can be applicable in a wide variety of settings across
various disciplines including astronomy and astrophysics
with little difficulty. Another example is survival anal-

ysis which is one of the most popular data analyses in
bio-medical sciences. In fact, classical survival analysis
is not directly applicable to astronomical data because
censoring in astronomy is due to statistical measurement

errors rather than exactly measured failures. Nonethe-
less, it has been successfully applied to analyzing left-
or right-censored data caused by telescope sensitivity in

astronomy (Feigelson & Nelson 1985; Isobe et al. 1986).
However, the use of well-known models without care-

ful consideration of their assumptions must be discour-

aged because standard statistical models do not account
for unusual features of astronomical data or models.
Even the standard linear regression model has underly-
ing Gaussian assumption, while astronomical data may
deviate from Gaussianity with outlying observations,
low Poisson counts, background subtraction, error prop-
agation, binned data, and/or heavy-tailed and asymmet-
ric distributions.

As another example, standard statistical models, such
as linear regression or auto-regressive moving average

models, often assume that measurement errors are ho-
moscedastic and unknown. However, astronomical data
often come with one-sigma measurement-error uncer-
tainties that are heteroscedastic and are (assumed to
be) completely known (Feigelson et al. 2021). To model
these heteroscedastic measurement-error uncertainties,
community efforts have been made in various fields of

astronomy. Introducing errors in measurement to stan-

dard models is a popular idea in statistics (Fuller 1987).
The technique was later tailored to heteroscedastic mea-
surement errors in astronomical data in the contexts of
(but not limited to) linear regression (Akritas & Ber-
shady 1996; Kelly 2007; Andreon & Hurn 2013; Sereno
2016), damped random walk process (Kelly et al. 2009;
Hu & Tak 2020), continuous-time ARMA(p, q) process
(Kelly et al. 2014; Meyer et al. 2023), and astronomical
object classification (Bovy et al. 2011; Shy et al. 2022).

Checking the assumptions of popular models is often
facilitated by well-defined model checking procedures.
For example, checking model assumptions via residual
analysis is common in regression because it can provide
insight into possible improvement for the current model
fit. Tanaka et al. (1995) improve a poor continuum fit
of spectral data via subsequent residual analysis; Bulbul
et al. (2014) and Reeves et al. (2009) detect emission

lines and absorption lines via residuals; Mandel et al.
(2017) compare conventional and proposed models for
the color-magnitude relation of Type Ia supernova by

checking their Hubble residuals to see which model is
better supported by the data.

Residual analysis often provides hints that can be used

to improve model assumptions. For instance, when a
model for light curves such as a damped random-walk
model relies on a Gaussian measurement error assump-
tion (Kelly et al. 2009), a residual analysis may reveal

some evidence against the Gaussian assumption in the
presence of outliers. In an effort to improve residual
analysis, Tak et al. (2019) and Wang & Taylor (2022)

derive a heavy-tailed version of the damped random-
walk model that is still able to constrain the same model
parameters in a robust manner.

Besides standard model checking procedures, inves-

tigating the fitted model in light of the knowledge of
domain science is also crucial as it can reveal evidence
of potential model misspecification. For instance, the

sensitivity or dependence of model fits on the starting
values of optimizers or Monte Carlo samplers is not nec-
essarily an indication of a numerical problem. It could
instead point to a multi-modal outcome on a non-convex
surface of the parameter space, providing several distinct
model fits at different modes. Considering that a model
describes a data generation process, it also implies that
distinct sets of parameter values for a given model could
have generated the same observed data, even though
each set may not be equally likely to have generated the
observed data.

Alternatively, a multi-modal likelihood function may
indicate that the model is misspecified or is not elaborate

enough to describe the data, either of which can lead to
an unrelaible fit. Mode-based estimates, such as maxi-
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mum likelihood estimates and posterior modes, aim to
compute the parameter values corresponding to the par-
ticular model within the posited class that best matches
the data (under a criteria determined, e.g., by the like-
lihood or posterior). Even the best match within the
posited class of models, however, may not be very good if
the class is not sufficiently rich. Using the fully Bayesian
posterior distribution with a misspecified model can also
lead to unreliable results, as emphasized in Figure 1,
where multimodality disappears when we additionally
model microlensing. We emphasize that a well specified
model is key to any model-based method, and thus it is
critical for researchers to check the fit of their posited
model in light of domain science knowledge, instead of
blindly proceeding with the highest mode or other com-
puted summary as the best model fit.

Another popular estimation tool in astronomy is χ2-
minimization that is built on a Gaussian approximation
for the measurement error. For example, when the data

are binned3 Poisson counts, a Gaussian approximation
to the Poisson counts is required for χ2-minimization
(Cash 1979; Humphrey et al. 2009; Bonamente 2020).
Thus, it is important to understand the limitations that

might affect the validity or accuracy of this approxi-
mation. The method is often misused in the context
of astronomical data analysis, for example, when the

estimated variance of the approximate Gaussian distri-
bution is quite different from that of the observed (or
average) count, which contradicts the validity of Gaus-

sian approximation to Poisson counts (Feigelson & Babu
2012, Chapter 7.4). The approximation itself can be
quite misleading when the underlying Poisson assump-
tion is not appropriate, e.g., when the count data are

overdispersed. The approximation becomes less accu-
rate when counts of some bins are small. In this case,
merging adjacent small bins is one way to improve the

accuracy of the approximation while sacrificing the res-
olution of the data (Greenwood & Nikulin 1996).

Directly building a Poisson model for the counts with-
out using a Gaussian approximation is another possibil-
ity. (This has not always been well recognized among
astronomers (Hilbe 2014).) For example, Cash (1979)
proposes the so-called C-minimization technique, which
is operationally the same as finding the maximum like-
lihood estimate under a Poisson likelihood function.
Bonamente (2020) demonstrates that C-minimization

outperforms χ2-minimization with low-count data be-

3 We consider the case where the data are intrinsically binned.
When this is not the case, Feigelson & Babu (2012) suggest avoid-
ing issues of arbitrary binning by using cumulative distribution
function for maximum likelihood estimation.

cause the former does not involve a Gaussian approxi-
mation. Also, Kelly et al. (2012) adopt Bayesian hierar-
chical modeling in fitting spectral energy distributions
on flux data, instead of using χ2-minimization. Hier-
archical modeling also provides a mechanism for effec-
tively handling overdispersed data (Gelman et al. 2013;
Tak et al. 2017a). Another benefit that direct likelihood-
based modelling has over χ2-minimization is that it fa-
cilitates the use of information criteria for model selec-
tion, such as the Bayesian Information Criterion (Kass
& Raftery 1995), which depend directly on the likeli-
hood.

The central limit theorem is the basis for a Gaussian
approximation to Poisson counts and generally plays an
important role in statistical inference. It stipulates that
the distribution of the average of independent obser-
vations becomes more Gaussian as the number of ob-

servations approaches infinity. The theorem is the ba-
sis of many asymptotic results such as the asymptotic
normality of maximum likelihood estimates, the asymp-

totic χ2 distribution of the likelihood ratio test statistic
via Wilk’s theorem (Wilks 1938), and the “projection
method” for computing error bars (Avni 1976).

To be confident of the applicability of asymptotic re-
sults, researchers must check two things: the assump-
tions required for the results are met and the data set
they are analyzing is sufficiently large. First, all asymp-

totic results depend critically on their own sets of math-
ematical assumptions known as regularity conditions.
Even with an arbitrarily large data set, the central limit

theorem itself fails, for example, if the expected value
of the square of the averaged observations is not finite
(e.g., when averaging ratios) or if the number of pa-
rameters increases sufficiently quickly compared to the

sample size (e.g., as with instrument calibration Chen
et al. 2019b)). The likelihood ratio test that compares
the statistical evidence for two posited models is another

example where the regularity conditions play a key role.
This is because Wilk’s theorem only provides the asymp-
totic distribution of the likelihood ratio test statistic if,
among other conditions, the models being compared are
nested (i.e., one model is a special case of the other) and
the simpler model is not on the boundary of the parame-
ter space describing the more complex model. Protassov
et al. (2002) show that the latter condition fails when
testing for an added spectral emission line because an
emission line by definition cannot have a negative nor-
malization but the normalization is zero in the simpler
model (with no line).

Second, even if their regularity conditions are met,

asymptotic statistical methods are only reliable with
sufficiently large data sets. A likelihood function that
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exhibits multiple significant modes, for example, may
be evidence that either the model is misspecified (and
a regularity condition is not met) or the data set is not
sufficiently large for the asymptotic Gaussian properties
of the likelihood to have “kicked in”. In practice, it can
be difficult to know whether a data set is large enough.
Generally, the more fitted parameters, the more data
that are required. Goodness-of-fit tests are a particu-
lar challenge when the data size is small, because, in
effect they compare the posited model with a fully flex-
ible model, i.e., a model with a large number of fitted
parameters. The C-statistic4, for example, is often used
for goodness of fit tests in high-energy spectral analysis
(Kaastra 2017). If the C-statistic is applied to high-
resolution data with many narrow bins, its asymptotic
χ2 distribution is only guaranteed if the expected counts
are large in all bins. The alternative is to work with
fewer larger bins, but this sacrifices the resolution of the
data.

When there are insufficient data for asymptotic re-
sults, either Bayesian procedures or bootstrap-based
methods can be used with small data sets. Unfor-
tunately, both are computational more costly than

their asymptotic frequentist counterparts. Higher-order
asymptotics, which retain more terms in their functional
expansions, sometimes can show advantages in such sce-

narios. For example, Chen et al. (2024) obtain a compu-
tationally efficient and statistically precise procedure for
goodness-of-fit tests based on the C-statistic and higher-
order asymptotics. The method only involves calcula-

tion of moments and works even in low-count settings
where the Wilk’s theorem (χ2 asymptotics on likelihood
ratio tests) does not apply.

4. ALL PRIOR DISTRIBUTIONS ARE
INFORMATIVE, EVEN THOSE THAT ARE

UNIFORM.

Although Bayesian analysis has become popular in as-
tronomy (Pierson 2013; Eadie et al. 2023), it is difficult
to find an article that conducts a Bayesian analysis with-

4 The C-statistic is sometimes called the Cash statistic in recogni-
tion of Cash (1979) and is defined in different ways by different
authors. For example, it is often defined either as −2 times the
Poisson log-likelihood function (up to an additive constant, e.g.,
Eq. (5) of Cash 1979) or as −2 times the log of the likelihood
ratio comparing a specific Poisson model with a fully saturated
Poisson model (e.g., Eq. (1) of Humphrey et al. 2009). Both def-
initions are equivalent up to a constant adjustment. The latter is
a particular instance of the likelihood ratio test statistic, but with
only the alternative likelihood evaluated at its maximum likeli-
hood estimate. We use term C-statistic for the same likelihood
ratio test statistic, but follow the standard statistical convention
with both likelihoods being evaluated at their respective maxi-
mizers; see Section 7 for details.

out using uniform priors (often uniform on the logarith-
mic scale). One possible explanation for this popularity
may actually be a misunderstanding, namely a percep-
tion that the interpretation of Bayesian inference is more
straightforward than that of frequentist inference. For
example, one might think that a credible interval is a di-
rect statement about the unknown parameters given the
data, while confidence intervals need to be interpreted
under a hypothetical repeated sampling scenario of the
data. However, it is often forgotten that the interpreta-
tion of credible intervals hinges on the interpretation of
the prior distribution, which can be philosophically as
subtle as frequentist’s repeated sampling scenarios be-
cause prior distributions are chosen by researchers.

For instance, uniform priors are often assumed on a
logarithmic scale, that is, log(X) ∼ Unif(a, b), where a
and b are real-valued. One may be tempted to interpret

the resulting credible interval as if a non-informative
prior were used on the original scale, i.e., on X. A uni-
form prior on log(X), however, can be very informative

indeed on X, since it corresponds to a power-law prior
distribution on X (d log(x) = dx/x) that puts substan-
tial probability mass near the lower bound, ea. Thus,

the posterior distribution depends strongly on whether
a uniform prior is assumed on the original or logarith-
mic scale, and the resulting credible interval needs to be
interpreted accordingly. In general, it is a mathematical

fact that any prior distribution carries information to
be interpreted, as it must specify how likely one state is
relative to another; see Section 7 of Craiu et al. (2023)

for more discussion.
In some sense, uniform prior distributions and other

so-called “non-informative” prior distributions have less-
ened the burden of subjectivity and prior interpreta-

tion for astronomers, making the likelihood (i.e., the
data) a dominant source of the posterior variability. In
some cases, they also enable a Bayesian inference to be
conducted relatively easily for researchers who prefer a
Bayesian approach, e.g., to handle nuisance parameters
or for uncertainty quantification (Gelman et al. 2017),

even when the maximum likelihood estimate is nearly
identical to the maximum a posteriori estimate. More-
over, uniform prior distributions provide researchers a
way to incorporate scientific knowledge via their bound-
aries. In most articles, the bounds of uniform priors are
clarified to avoid potential posterior impropriety (Tak
et al. 2018a).

Even bounded uniform prior distributions, however,
must be used with care because the bounds are hard
bounds that completely exclude a portion of the param-

eter space. An issue may occur if the bounds partially or
completely exclude important regions of the parameter
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Figure 5. The posterior distribution of the time delay un-
der the microlensing model. The top panel is based on the
uniform(−1178.939, 1178.939) prior distribution for the time
delay parameter, while the bottom panel is based on the uni-
form(430, 1178.939) prior distribution. In the bottom panel,
the posterior mass accumulates near the lower bound, which
may be evidence of mis-specification of the prior distribu-
tion.

space a priori. For example, the top panel of Figure 5
magnifies the posterior distribution of the time delay
under the microlensing model, previously shown in the

second panel of Figure 1. The prior distribution for the
time delay adopted in Tak et al. (2017b) is the uniform
prior between −1178.939 and 1178.939 days, reflecting

the widest range of observation times in the analyzed
light curves. As an illustration, let us set up a different
lower bound of this uniform prior at 430 days, exclud-
ing the modal location at around 425 days. The bottom
panel of Figure 5 exhibits the resulting posterior distri-
bution of the time delay. The posterior mass accumu-
lates near the lower bound, as if the posterior mass in the
top panel were pushed from the left to the lower bound.
This is what happens when the hard bound of a uniform
prior zeros out the likelihood beyond the bound. The

likelihood cannot overcome this hard bound, regardless
of how large the data set is; even one trillion observa-
tions would not allow posterior probability beyond the
bound. (Lindley (1985) warns against assigning a prob-

ability of zero to events that are not logically impossible
in what is often referred to as Cromwell’s rule5.)

Substantial posterior probability that is accumulated
near the (hard) bounds of a uniform prior distribution
may be evidence of mis-specification of the bounded
prior distribution. In the astronomical literature, it is
not difficult to find examples with substantial poste-
rior mass near the bounds of uniform priors that are
set by researchers. This problem can often be identi-
fied by inspecting corner plots (pairwise scatter plots
with marginal histograms) in published articles, at least
when these plots are provided by the authors. A simu-
lated example similar to one we found in the literature
survey6 is shown in Figure 6. When a researchers iden-
tifies a boundary issue of this sort, it is critical that they
carefully investigate the sensitivity of their results to the
bounds of their uniform prior, paying particular atten-
tion to the robustness of their scientific conclusions to
the choice of bounds. Where there is a natural bound,
e.g., where a parameter such as a mass or age must be

non-negative or positive, we do not consider the accu-
mulation of posterior mass near this natural bound to
be an issue. Therefore, unless there is a strong scientific

justification, it is always better to set uniform bounds
wide enough not to influence the likelihood.

Besides the boundary issues of uniform priors, a blind

use of jointly uniform prior distributions can become
a highly informative choice, despite its seemingly non-
informative nature (Gelman 1996, p223). For exam-
ple, when model parameters are constrained such as

being in an increasing order (in astronomy, for exam-
ple, unknown breaking points in multiply broken power
laws), a jointly uniform prior on the parameters asymp-

totically dominates the likelihood function as the num-
ber of such model parameters increases. Gelman et al.
(2017) provide more examples where uniform prior dis-
tributions can result in inferences that do not make
sense. A jointly improper uniform prior can also be
problematic in high dimensions, even though it results
in a proper posterior distribution; Section 4.2 of Gel-
man et al. (2017) discusses a similar problem that arises
when independent Gaussian prior distributions are used
in high-dimensional parameter spaces.

5 The reference to Oliver Cromwell refers to a quotation of his: “I
beseech you [to] think it possible that you may be mistaken”.

6 For instance, a search for articles that include the word
‘Bayesian’, published in MNRAS in June 2024 yields 58 arti-
cles, of which 17 displayed corner plots; 7 of these plots showed
boundary issues.
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Figure 6. A simulation study where the posterior mass
accumulates near the boundary of a uniform prior distribu-
tion. The uniform prior distribution of the second parameter
is bounded between −0.2 and 0.2, and the posterior mass
clearly concentrates on the upper bound. In general, when
a uniform prior distribution is used, it is important to check
the sensitivity of the resulting posterior distribution to the
choice of hard bound on the prior, unless there is a specific
scientific justification for the choice of bound.

5. ALL MODELS CAN BE GIVEN
INTERPRETATIONS, BUT SOME ARE MORE

COMPELLING.

Understanding how the statistical/mathematical in-
terpretation of an empirical data analysis should im-
pact our understanding of astrophysical processes can

be challenging. We suggest that it is often best to start
with the physics and then consider whether the empir-
ical findings make sense in terms of the physics and/or
how we can make sense of them.

Kelly et al. (2009), for instance, carefully investigated
a sample of quasar light curves, relating two model pa-
rameters of a damped random walk process to physical
properties of a quasar. They show that the timescale
(short-term variability) of the fitted process is posi-
tively (negatively) correlated to both black hole mass
and luminosity. This empirical evidence on the rela-
tionships between the parameters of the mathemati-
cal model and astrophysical properties has since been

intensively investigated and is supported by many as-
tronomers (MacLeod et al. 2010; Koz lowski et al. 2010;
Kim et al. 2012; Andrae et al. 2013).

For more elaborate model interpretation, the commu-
nity has also investigated when this interpretation does
not hold. Mushotzky et al. (2011) and Zu et al. (2013)
show that the damped random-walk process is not suit-
able for explaining the stochastic variability of quasars
when the source variability is on a very short timescale.
Also, Graham et al. (2014), and Kasliwal et al. (2015)
warn that the process is too simple to explain all types
of stochastic variability of quasars. When the under-
lying true model is not the damped random walk pro-
cess, Koz lowski (2016) points out that the association
between the model parameters and physical properties
can be misleading as timescale estimates become biased.

This productive discussion has motivated astronomers
to consider the more general and flexible class of models
known as continuous-time auto-regressive moving aver-
age processes (Kelly et al. 2014). This class encompasses
a wide variety of stochastic processes and requires users
to select the orders of both the auto-regressive and the
moving average components of the model. The Akaike

information criterion (Akaike 1974) is a popular model
selection criteria that can be used to select these or-
ders (Kelly et al. 2014; Caceres et al. 2019), but may

not exhibit well calibrated statistical properties (e.g.,
Sutherland et al. 2023). Meyer et al. (2023) illustrate
an alternative strategy based on the Bayesian evidence.

This is well-grounded theoretically, but results should be
checked for sensitive to the choice of prior distribution.
Both strategies aim to identify an appropriate level of
model complexity and thus avoid both under- and over-

fitting.
Substantial community effort has also been devoted to

investigating the applicability and physical interpreta-

tion of the resulting power spectral densities via empir-
ical evidence (Moreno et al. 2019; Yu et al. 2022). This
class of models is promising as it can be extended to
model long-memory auto-correlations (Marquardt 2006;

Marquardt & James 2007), although its limited applica-
bility to stationary time series data remains.

This collective community effort is the key to building
time-tested models with widely accepted astrophysical
interpretations as it is crucial to demonstrate the em-
pirical evidence and effectively warn of cases where the

interpretation of the model parameters is fallible.

6. ALL STATISTICAL TESTS HAVE
THRESHOLDS, BUT SOME ARE MIS-SET.

Hypothesis testing compares two models for the same
data; the two models are called the null and the alterna-
tive hypotheses. In the standard frequentist setup, the
researcher specifies a test statistic with known (or ap-
proximately known) distribution under the null hypoth-
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esis. Inconsistency between the observed value of test
statistic (computed using the research data) and this
null distribution is viewed as evidence that the data is
unlikely to have arisen under the null model and thus as
evidence in favor of the alternative hypothesis. Incon-
sistency is typically measured with a p-value, the prob-
ability that a value of test statistic as extreme or more
extreme than the observed value would arise under the
null distribution. The principled usage of this paradigm
is crucial in various scientific fields because it is the pro-
cedure that provides data-driven evidence for a scientific
discovery or anomaly against well-established theories.
Unlike in biomedical research, hypothesis testing in as-
tronomy is less likely to suffer from common issues re-
garding p-values, such as a blind usage of “p-value <
0.05” or p-hacking, for example, collecting more data
until the p-value becomes smaller than 0.05 (Wasser-
stein & Lazar 2016). This is partly because astronomers
typically use more conservative thresholds for establish-

ing statistical significance, such as a 3σ level (Vallisneri
et al. 2023), making significance more difficult to achieve
by simple data manipulation7. This 3σ threshold corre-
sponds to type I error rate of α equal to 0.0027 (that is,

the probability of rejecting the null when it is correct)
for a two-sided test when a test statistic is distributed
as N(0, 1) under H0.

A common application of significance testing in as-
tronomy has been for the purpose of source detection.
A “3σ” detection usually implies that the ratio of the

estimated flux to its error is ≥ 3. It is worth noting that
this ties “detectability” to flux estimation. Newer meth-
ods like CIAO/wavdetect (Freeman et al. 2002) explic-
itly separate detection from flux estimation, carrying

out the former via a p-value threshold set based on the
estimated background alone. Such methods have more
power and improve the sensitivity of the detectors, en-

7 Early usage in astronomy tended to use the 2σ (5%) thresholds
(see discussion in Wall 1979). Higher thresholds have also been
adopted; e.g., the processing pipeline for the Einstein X-ray ob-
servatory used 4− 5σ thresholds (Harnden et al. 1984).

abling the detection of weaker sources8. Using only the
background also allows a statistically well-defined defi-
nition of an upper limit to the source flux, which can
be set as the source intensity that would be detectable
with a specified power (Kashyap et al. 2010).

One aspect that astronomers must keep in mind when
interpreting significance levels of multiple test statis-
tics, however, is how to control the family-wise error
rate (FWER). The FWER is defined as the probability
of committing at least one type I error (false-positive)
among m hypothesis tests, and is smaller than or equal
to 1 − (1 − αind)m. The notation αind denotes the com-
mon type I error rate used for each of the m individ-
ual hypothesis tests. A good example to illustrate the
FWER can be found in Abbott et al. (2016), where the
detection of the first gravitational wave is based on the
4.6σ and 5.1σ significance levels of two test statistics,

respectively. Clearly, each of the reported significance
levels is greater than the 3σ threshold. However, naively
comparing each reported significance level with the 3σ

threshold is equivalent to maintaining an FWER that is
less than or equal to 0.0054 (= 1− (1− 0.0027)2). That
is, the probability of committing at least one type I er-

ror in the two tests for the gravitational wave detection
is actually twice as large as the individual type I er-
ror rate. To ensure the FWER is less than or equal to
0.0027, as intended, the popular Bonferroni correction

(Armstrong 2014) sets the individual type I error rate to
be 0.00135 (= 0.0027/2), which requires comparing each
of the reported significance levels with a 3.2σ threshold,

not 3σ.
One possible issue with the Bonferroni method is that

it is rarely possible to reject a null hypothesis when the

number of hypothesis tests m is large. For example, to
ensure that the FWER is less than or equal to 0.0027
among 1,000 hypothesis tests, the individual type I error
rate must be 2.7 × 10−6, which is a threshold that may
be difficult for individual p-value to achieve. This can
lead to almost no rejection among the 1,000 hypothesis

8 Consider a case where the expected background under the source
is precisely estimated to be 0.9 counts. The detection threshold
is set to the count where the cumulative tail probability of the
Poisson distribution under the background only model drops be-
low the 3σ significance, i.e, the detection threshold is 5 counts.
The probability of observing 5 counts or more if there were no
source is 0.00234, less than the adopted threshold of p = 0.0027.
Thus if a count of five or more were observed the source would be
declared detected. In contrast, the signal-to-noise ratio based on
the estimated background-subtracted source strength and Gaus-
sian error propagation approximations (Gehrels 1986) can only
exceed 3 when > 15 counts are observed; the source would be
declared detected if and only if its flux can be estimated with a
sufficiently small uncertainty.
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tests. As such, the Bonferroni correction can be too
conservative for certain testing scenarios in astronomy,
for example, for compiling astronomical catalogs.

An alternative is to instead control the false discov-
ery rate (FDR, Benjamini & Hochberg 1995; Benjamini
2010). Unlike the FWER, the FDR ensures that the
expected proportion of false-positives among all of the
false- and true-positives is less than or equal to a pre-
set value. That is, controlling the FDR to be less than
or equal to 0.0027 means that the proportion of false-
positives (false discoveries) among all of the rejected null
hypotheses (discoveries) is less than or equal to 0.27%.

In practice, controlling the FDR results in a different
procedure for rejecting the null hypothesis. For exam-
ple, suppose we wish to ensure that the FDR is less
than or equal to 0.0027 among 1000 hypothesis tests.
We first sort the 1000 p-values in an increasing order,
p1, p2, . . . , p1000, where p1 is the smallest p-value and
p1000 is the largest. Next, we find the largest index

such that pi < (0.0027 × i)/1000. If this largest in-
dex were 55, for instance, then we would reject the null
hypotheses associated with the first 55 tests. Note that
the Bonferroni correction in this case is to reject the

null hypothesis in test i if pi < 0.0027/1000. Conse-
quently, the FDR results in more rejections (possibly
more false-positives, but also more true-positives) than

the FWER. This is a useful feature of FDR when the
number of tests m is large. Moreover, controlling FDR
is known to be more powerful than controlling FWER,

while the former comes with higher type I error rate
(more false-positives) (Shaffer 1995). A receiver oper-
ating characteristic (ROC) curve can be useful for in-
vestigating the balance between the false-positive and

true-positive rates obtained using different values of the
FDR (or FWER) threshold.

In Abbott et al. (2016) for the detection of the first

gravitational wave, the two p-values corresponding to
the reported 4.6σ and 5.1σ significance levels are 4.2 ×
10−6 and 3.4×10−7, respectively. (We assume that test
statistics are distributed as N(0, 1) under the null for
two-sided tests.) Therefore, the largest index satisfying
pi < (0.0027 × i)/2 is 2, leading to the rejection of the
null hypothesis in both tests. Even though both FDR
and FWER end up with the same rejection results in this
example, it is worth noting that the former is ensuring
that the FDR is less than or equal to 0.0027 while the

latter is controlling the FWER.

7. ALL MODEL CHECKS CONSIDER VARIATIONS
OF THE DATA, BUT SOME VARIANTS ARE

MORE RELEVANT THAN OTHERS.

The notion of replicate data or repeated experiments
is fundamental to frequentist statistical methods. In hy-
pothesis testing, for example, evidence is quantified by
(mathematically or numerically) computing the distri-
bution of the test statistic that would result if multiple
replicate data sets were generated under the null. In
Bayesian data analysis, on the other hand, the posterior
predictive distribution of additional data given the ob-
served data is used to generate replicate data sets. In
both cases, the replicate data represent the statistical
variability and possible range of a test/summary statis-
tic, and are used to quantify the expected deviation be-
tween the observed data and the null/posited model,
thus enabling researchers to quantify uncertainty.

At first blush generating replicates may seem to be
a well-stipulated proposition. In practice, however, re-
searchers must consider how the replicates should be

generated to be most comparable with their real data.
For example, a researcher may only wish to consider
replicate data with the same experimental conditions,

instrumental effects, exposure time, and sample size as
their real data. These are known quantities; varying
them among the replicate data sets can make our uncer-

tainty quantification less relevant for the actual uncer-
tainty we care about. Conditioning on these factors re-
duces the variability of the replicate data sets and makes
them more comparable with the real data. This in turn

reduces uncertainty, error bars on fitted parameters, and
the lengths of confidence intervals; similarly it increases
the statistical power to distinguish between the null and

the alternative in a hypothesis test.
Such considerations have led to the broad emphasis in

statistics on conditioning as much as feasible; see Sec-
tion 5.2 of Craiu et al. (2023) for a succinct overview.

It has also led statistical theorists to consider if there
is flexibility to condition on further attributes of the
data in order to further increase statistical power. In

a goodness-of-fit test, for example, the aim is to quan-
tify the deviation between the observed data and the
fitted model and to assess if it is greater than would be
expect under the null. It seems entirely appropriate in
this setting to only consider replicate data that have the
same fitted model as the real data, e.g., by conditioning
on the fitted model parameters9. Such a procedure is
expected to reduce variability among the replicates (as

9 Monte Carlo simulations in astronomy, for instance, obtain un-
certainties of unknown parameters by generating replicated data
sets given the maximum likelihood estimate computed on the
observed data, fitting the model on each replicate set again,
and quantifying the variations of the estimated parameters (e.g.,
Tewes et al. 2013).
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they all have the same fitted parameters), make them
more comparable with the real data, and increase statis-
tical power. In this case, p-values are typically obtained
via the parametric bootstrap (Efron 1985), where the
estimated parameters are used as the “ground truth pa-
rameter” when generating replicate data sets.

Roe & Woodroofe (1999) consider the specific exam-
ple of background contaminated Poisson counts. Let-
ting the observed count Y obs equal the sum of the un-
observed source, YS , and background YB counts, Roe
& Woodroofe (1999) make that astute observation that
while YB is unknown, it is bounded by Y obs, i.e., we
know YB ≤ Y obs. By considering only replicates data
with Y rep

B ≤ Y obs, Roe & Woodroofe (1999) devise more
coherent confidence intervals for the source intensity.

To give a concrete example of the advantage of condi-
tional goodness-of-fit tests, we consider a Poisson model,
where

Ni
indep∼ Poisson(si(θ)) (1)

is the count in bin i for i = 1, . . . , 10. The test compares
a uniform null model, where all of the bins have the same
expected count, λ, with the fully saturated alternative

model where each bin has its own expected count, si:

H0 : si(θ) = λ

Ha : si(θ) = si.

We use the C-statistic (Cash 1979; Kaastra 2017), de-
fined as minus twice the logarithm of the ratio of the
likelihood under the null and that under the alternative,
with both likelihoods evaluated at their respective max-

imum likelihood estimates. Specifically, the maximum
likelihood estimate under the null is λ̂ =

∑10
i=1 Ni/10

and under the alternative is ŝi = Ni. We consider two

null distributions for the C-statistic. The unconditional
null resamples data according to the Poisson(λ̂) distri-
bution. The conditional null, on the other hand, condi-
tions on the maximum likelihood estimate of λ which
is equivalent to conditioning on the the total count,∑n

i=1 Ni, resulting in resampling data from a multino-
mial distribution.

A simulation study demonstrates that the power of
this goodness-of-fit test (i.e., the probability of correctly
rejecting the null hypothesis) can increase by more than
30% when the significance level is set to 0.0027 (corre-
sponding to the typical 3σ threshold in astronomy); see
Appendix A for more details. Chen et al. (2024) pro-
vide a rigorous study of conditional and unconditional

goodness-of-fit tests based on the C-statistic, under
a general framework designed for realistic high-energy
spectral models.

8. CONCLUDING REMARKS

Astronomical data are now being produced at an un-
precedented rate and with increasing complexity, and
even more large-scale telescopes are expected to come
into operation soon. Even though the quantity and com-
plexity of modern astronomical data naturally demand
sophisticated statistical tools for various purposes, no
single all-purpose statistical tool exists that can be de-
ployed without careful consideration of its limitations
and underlying assumptions. Rather state-of-the-art
statistical methods require care, both in selecting an
appropriate method and applying it properly. In some
cases, existing methods do not suffice and new tech-
niques must be developed. All together, this means that
astronomers must be cognizant of the limitations and as-
sumptions of the statistical and machine learning tools
they employ, and must be cautious when using them.

We have proposed six statistical maxims to promote

statistically sound data analytic practices and to im-
prove the quality of scientific findings in astronomy. We
hope that researchers are able to easily check these max-

ims as part of their daily data analytic routines. These
maxims, however, are certainly not sufficient to solve
all possible problem that might arise from the myr-

iad of data types used in astronomical data analyses.
For example, as a reviewer pointed out, one may ques-
tion “whether our maxims, or any other broad-sweep
approaches towards reliability of statistical conclusions,

apply to machine learning methods that have either only
an algorithmic foundation or can be viewed as models
with vast number of parameters.”

Whereas several of our maxims are generally applica-
ble to any empirical studies, such as the first and second
maxims, we echo this reviewer’s call for someone to lead
‘Six Maxims for Applying Machine Learning to Astron-

omy.’ More broadly, we hope our work will encourage
experts in other components of the data life cycle, such
as data management and data visualization (see Wing
2019), to develop their own Six Maxims to benefit the
astronomy community, as it continuously improves its
ability to extract scientific value from complex astro-

nomical data.

ACKNOWLEDGMENTS

This work was conducted under the auspices of the
CHASC International Astrostatistics Center. CHASC
is supported by NSF grants DMS-18-11308, DMS-18-
11083, DMS-18-11661, DMS-21-13615, DMS-21-13397,
and DMS-21-13605; by the UK Engineering and Phys-
ical Sciences Research Council [EP/W015080/1]; and



Six Maxims for Sound Astronomical Data Analysis 15

by NASA APRA 80-NSSC21-K0285. We thank Eric
Feigelson for initiating discussion and for providing in-
sightful comments, which led to this work. We thank
CHASC members for many helpful discussions, the grad-
uate students who took the Stat 303 class at Har-
vard University in 2023 for reading and evaluating
an earlier version of the manuscript, and two anony-
mous referees for their thoughtful comments. HT ex-
tends deep appreciation to Jogesh Babu for sharing
his invaluable insights into the statistical challenges in
astronomy and for offering his helpful guidance dur-

ing the preparation of this manuscript. DvD’s work
was supported in part by a Marie Sk lodowska-Curie
RISE Grants (H2020-MSCA-RISE-2015-691164, H2020-
MSCA-RISE-2019-873089) provided by the European
Commission. VLK and AS acknowledge support from
NASA Contract NAS8-03060 to the Chandra X-ray
Center. KSM is supported by the European Union’s
Horizon 2020 research and innovation programme un-
der ERC Grant Agreement No. 101002652 and Marie
Sk lodowska-Curie Grant Agreement No. 873089. YC
acknowledges support from NASA 22-SWXC22 2-0005,
NASA 22-SWXC22 2-0015, and NSF PHY 2027555.

APPENDIX

A. A SIMULATION STUDY: CONDITIONAL VS
UNCONDITIONAL GOODNESS-OF-FIT TESTS

We conduct a simulation study to illustrate the advan-
tage of the conditional test in terms of statistical power
(i.e., the probability of correctly rejecting the null hy-
pothesis) against a particular alternative model, namely

the model in Eq. (1) with si(θ) varying linearly from 2 to
9 across the ten bins. We independently simulate 20,000
data sets under this alternative Poisson model. For each

simulation, we compute λ̂(j) for j = 1, 2, . . . , 20000, and
then simulate a further 5,000 data sets from each of (i)
the unconditional null distribution (Poisson with λ̂(j))

and (ii) the conditional null distribution (multinomial
with a total of 10 × λ̂(j) counts). This allows us to
numerically compute the p-value associated with the C-
statistics from each of the 20,000 simulated data sets,

and the power of the conditional and unconditional tests

as the proportion of these p-values that are less than
a given significance level (i.e., the probability of incor-
rectly rejecting the null).

The results are shown in Figure 7. The upper panel
illustrates that the power obtained from the conditional
test (denoted by the dashed curve) is uniformly greater

than that of the unconditional test (represented by the
solid curve). To emphasize this improvement, the per-
centage increase in power is displayed in the bottom

panel. Although the percentage improvement decreases
as the significance level increases, it remains at least
10% when the significance level is below 0.1. In partic-
ular, when the significance level is set to 0.0027 (cor-

responding to the typical 3σ threshold in astronomy),
denoted by the dot-dashed vertical line, the percentage
improvement from using the conditional null distribu-

tion exceeds 30%.
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