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Abstract

Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for
such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence
of point sources that may be superposed. We have developed a novel nonparametric event list segmentation
algorithm to divide up the field of view into distinct emission components. We use photon location data directly,
without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed
photon locations and then grow segments using a new adaptation of seeded region growing that we call Seeded
Region Growing on Graph, after which the overall method is named SRGonG. Starting with a set of seed locations,
this results in an oversegmented data set, which SRGonG then coalesces using a greedy algorithm where adjacent
segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. Using
SRGonG we are able to identify point-like and diffuse extended sources in the data with equal facility. We validate
SRGonG using simulations, demonstrating that it is capable of discerning irregularly shaped low-surface-
brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray
data. We demonstrate SRGonG’s use on the Chandra data of the Antennae galaxies and show that it segments the
complex structures appropriately.
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1. Introduction

A challenge often encountered in high-energy astronomical
analysis is that the images are photon starved and sparse, and
contain many “empty” pixels. Unlike photon-rich images
encountered at longer wavelengths, complex features in X-ray
and y-ray data are difficult to recognize, characterize, and
analyze. Working directly with Poisson-distributed photon
counts, while simultaneously separating out the contribution of
the background, is a difficult process, especially when trying to
detect faint nonuniform emission, or separating faint point
sources from larger-scale diffuse emission. Finding the
boundaries of extended structures is thus a challenging
problem. Such complex structures are common in high-energy
astronomical images and include, for example, shock fronts,
knots in supernova remnants, regions of diffuse emission in
galaxies, point sources embedded in diffuse emission or
conglomerates of point sources, entire galaxies or groups/
clusters of galaxies, jets, or star-forming regions, which appear
to be extended in the X-ray band even with intermediate-
resolution (<0’5) X-ray telescopes.

The analysis of extended X-ray sources is critical for several
areas of astrophysics. The spatial scales of extended emission
contain information regarding the physical processes that lead
to their formation, while their boundaries are often determined
by their physical environments. Therefore, identifying the
boundary of these regions in a data-driven, rather than a model-
driven, fashion is necessary for the scientifically valuable
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results. In such cases, a primary goal of the researcher is to
segment the image into regions with similar properties and to
analyze each segment individually.

Multiscale methods like wavelets (Starck et al. 2002) for
point-source detection have been efficiently implemented for
X-ray images (Freeman et al. 2002), and matched-filter
techniques have been successfully used to detect galaxy
clusters in ROSAT data (Vikhlinin et al. 1998), but extended
structures remain difficult to find and characterize in these low-
count Poisson data. Other techniques are generally optimized
for high signal-to-noise ratio (S/N) images: they apply
adaptive binning, or set S/N thresholds to smoothed images
with point sources removed (e.g., Sanders & Fabian 2001;
Sanders 2006); adapt methods developed for the analysis of
cosmic microwave background images (e.g., Bobin et al.
2016); limit themselves to restrictive assumptions like model-
ing a combination of point sources ((E)BASCS; Jones et al.
2015; Meyer et al. 2021), or require spectral model similarity
across the field of view (Picquenot et al. 2019, 2021).
Currently, most astronomical images with complex structures
that are processed for public display use some form of flux-
nonconserving adaptive smoothing (Ebeling et al. 2006). This
approach is inadequate for scientific analysis. Previous efforts
at extended-source detection using Voronoi tessellation
techniques have been limited by computational cost and the
imposition of global thresholding schemes (e.g., vtpdetect,
Ebeling & Wiedenmann 1993). Methods akin to seeded region
growing (see SrcExtractor, Bertin & Arnouts 1996;
NoiseChisel, Akhlaghi & Ichikawa 2015) and machine
learning (e.g., Morpheus, Hausen & Robertson 2020; Mask
R-CNN, Farias et al. 2020; galmask, Gondhalekar et al. 2022)
have been used for the identification of features in optical
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Table 1
Glossary of Variables and Notation
Notation Description
iid Independent and identically distributed
Z‘ Estimate of a generic parameter ¢
F Field of view, a bounded domain in R? that contains the observed photons
n Number of observed photons
X={x ..., x,} Observed location of the n photons, denoting their (sky) coordinates
K Number of segments within F
S ={S, ..., Sk} Partition of F, where S is the domain for segmented region k
Num(Sy) Number of photons observed in segment Sy
Area(Sy) Area of segment S
Mgeq Number of free parameters per segment
Ax) Poisson intensity at location x
A={\, ..., ¢} Collection of the Poisson intensities over each of the segments
A Total integrated intensity of A(x) over F
Vi Voronoi cell defined by photon i
Area(V) Area of Voronoi cell V,
X,Vi Voronoi estimator of the Poisson intensity across Voronoi cell i, with XV,- =1 / Area(V))
fX, n) Joint probability mass/density function of the observed number of photons and their locations
LK,S, A |X) Log-likelihood of the model®

['profile(Ks Sl X)
BIC(K)

Profile log-likelihood” obtained by replacing A in £(K, S, A| x) with its estimate by

Bayesian Information Criterion as a function of the number of segments, K

Mgria In seed specification, the number of grid points used in a regularly spaced grid

Mgraph Number of photons included in initial subgraph for each seed

Mo Number of nearest neighbors over which local maxima are searched for to specify seeds
mg Number of strata used during Voronoi-area-stratified sampling to specify seeds

Myorthr Minimum number of photons required for a Voronoi-area-derived seed to be accepted
Note.

# Notation is reversed, by convention, for £(b|a) compared to conditional probabilities; e.g., p(a|b) represents the probability of a given b.

images of galaxies. However, the Poisson nature and the
sparsity of the X-ray data requires statistically better targeted
methods.

Here we develop a new method that combines aspects of
Voronoi tessellation with region growing by using neighbor
similarity clustering. The method can be applied to X-ray data
and provides both separation between different structures in a
complex image and well-defined apertures to perform photo-
metry. We describe the statistical model that underlies the
method in Section 2 and the specific implementation details
including the computational methods in Section 3. We carry
out several simulations to test the limits of applicability of the
algorithm in Section 4 and apply it to Chandra data of
the Antennae galaxies in Section 5. We discuss how and when
the algorithm may be best used in Section 6 and summarize our
work in Section 7.

2. Statistical Methodology

We have developed a method that iteratively aggregates
contiguous sets of photons into distinct regions based on
similarity of their surface brightness. We employ a likelihood-
based method to obtain a piecewise constant estimate of the
surface brightness across the image; the likelihood function is
derived in Section 2.1. The method starts with the high-
resolution segmentation of the spatial distribution of the events
based on the Voronoi cells described in Section 2.2 and
combines segments by optimizing the Bayesian Information
Criterion (BIC) given in Section 2.3. Table 1 provides a
glossary of our notation.

2.1. Statistical Model

We consider an event list composed of n photons observed
in a bounded domain that defines the field of view, F C R2.
Ignoring instrumental pixelization, we model the set of sky
coordinates for the n photons,

X = {x,....,x,}, ey

via an inhomogeneous Poisson process with intensity function
A(x) = 0. The intensity function must be integrable over F, i.e.,
A= ff A(x)dx must be finite. For simplicity, we assume that
the intensity function is piecewise constant. In particular, we
assume we can partition F into K segments, denoted as
S = (S, ..., Sg), where the Poisson intensity is constant on
each S;. As S partitions F, the S; together cover F and each
pair is disjoint. For a given set of nonnegative intensities,

A={\;, ..., Ag}, we can then express the intensity function
as
K
Ax) =" Mls,(x), (2)
k=1

where 15, (x) is an indicator function that takes a value of 1 if
x € S and is otherwise 0.

A property of the inhomogeneous Poisson process is that the
number of photons, Num(Sy), recorded in segment S with area
Area(Sy) follows a Poisson distribution with mean

Area(Sy) - M :fs A@x)dx, fork=1,..,K, (3
k
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with A, > 0. Likewise, the total photon count is distributed as
n ~ Pois(A). Another property is that, given n, the sky
coordinates, x; are independent and identically distributed
(iid) with (normalized) probability density function A(x)/A
(e.g., Chiu et al. 2013). This means that x; are distinct—no two
photons can have the same recorded coordinates. (The discrete
nature of detectors means that occasionally, two photons are
recorded with identical coordinates. In this case, we add a very
small random scatter, ~107%) Our goal is to estimate the
number of segments, K, the segments, S, and their respective
intensities, .

Thus far, we have not discussed the sources or background.
If the field of view includes multiple separated sources, we
expect the piecewise constant intensity function to capture the
intensity peaks associated with point and extended sources.
Between these sources (or around a single source) is the
background region. If the background intensity is constant
across F and the source region(s) is/are isolated within the
field of view, we expect a single large segment representing
the background to encircle the source regions and to extend to
the boundary of F. If the background intensity varies slowly,
we might find several large segments that together comprise the
background region. In any case, there are segments associated
with background and with sources. We do not attempt to
classify the segments in this regard. Of course, if there is a
single large low-intensity segment encircling smaller higher-
intensity segments, it is easy enough to identify the background
with the large low-intensity segment.

We are particularly interested in the case where small-scale
point-like sources lie within a larger extended source as this is a
challenging task for existing methods. We do not distinguish
between extended or point sources, and in fact ignore the effect
of telescope’s point-spread function (PSF), assuming that it is
small compared to the size of the F. Our method is agnostic by
design to the sizes of individual structures and is thus capable
of isolating sources at all scales.

To derive the likelihood function, recall n ~ Pois(A) and
given n the x; iid A(x)/A. Thus, their joint probability mass/
density function under the inhomogeneous Poisson process is

S Xln) - f(n)
_ L F L exp(=MA
= 1T A - ==

f@, .., x,, n) =

= %'_A) H A(x;) 4)

i=1

and their log-likelihood function is given by

logf (X, n)

=S log A(x:) —f A(x)dx — logn!, (5)
i=1 F

LK, S, AX, n) =

where we write out A = ff A(x)dx. Replacing \(x) by the
piecewise constant expression given in Equation (2), we have

L(K, S, NX, n)

K
> Area(S) M\ — logn!.

K
Z Num(Sy)log Ay —
=1 =1
m(Sg)

(6)
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Recall that Num(S;) and Area(S;) denote the number of
photons in S; and the area of &, respectively. (When
Num(S;) = 0, the summand

Num(Sy)log A\,

is excluded from the first sum in Equation (6).)

We aim to maximize £ as a function of K, S, and A\ to obtain
their maximum likelihood estimates. For fixed K and S, L is
maximized as a function of A by

X = Num(Sy) /Area(Sy) fork = 1, ..., K. 7

Plugging X into £, we obtain the profile log-likelihood of K
and S, i.e.,

Lprofile(K’ S|X, n)

K
Z Num(Sy)log

k=1
Num(Sp) =0

( Num(Sy) ) _

-1 . 8
Area(Sy) " oen ®)

The same profile log-likelihood can be derived by modeling the
data as a mixture of uniform distributions. Allard & Fraley
(1997) considered a special case with a uniform background
with a contiguous extended source superposed.

To estimate S, we first deploy a (greedy) algorithm that finds
an optimal segmentation, S (K) = arg max Lpoie(K, ), for
fixed K, as described in Sections 2.2 and refined in Section 3. In
Section 2.3, we introduce a penalized version of Lie that we
maximize over K to obtain final estimates of the number of
segments, K, and thereby of the segments themselves, S (K).

2.2. Estimating S via Voronoi Tessellation

Obtaining estimates of the segments, S, requires us to
constrain the set of possible partitions. For any fixed K, for
example, we can make Lo arbitrarily large by including a
segment that is small enough to contain exactly one photon and
shrinking the segment’s area toward zero (as Area(S;) appears
in the denominator of Equation (8)). Similarly, any S; with
Num(S;) = 0 can have arbitrary shape as it does not contribute
to the profile likelihood. As we cannot estimate the intensity
function at a higher resolution than that of the data, we only
consider candidate segments that include at least one photon.

One way to constrain S is to only consider candidate
segments that consist of the Voronoi cells derived from the
Voronoi tessellation of the data, or the union of several
Voronoi cells. The Voronoi tessellation of the observed
photons uniquely partitions F into n convex cells, denoted as
V., i =1, ..., n, such that cell V, contains exactly one photon,
say x;, and consmts of all locations in F closer to photon x; than
to any other photon. These cells are called Voronoi cells, and x;
is called the nucleus of ). Figure 1 gives an example of the
Voronoi tessellation of 50 photons drawn from a normal
distribution truncated to the unit square. The photon locations
are plotted in the left panel and the Voronoi cells in the middle
panel. (We discuss the graph in the right panel in Section 3.1.)

To avoid unclosed Voronoi cells near the border of the field
of view, we restrict the tessellation to Voronoi cells whose
vertices are all in F. Based on the Voronoi tessellation,
Barr & Schoenberg (2010) introduced the Voronoi estimator
Xivi > =1 / Area(})) for any location x € V,. They show
that under certain conditions, the Voronoi estimator is
approximately unbiased for the Poisson intensity A(x), and its
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Figure 1. Illustration of tessellation and triangulation of points. Left panel: 50 points drawn randomly from a multivariate normal N (0.5, 0.227) are plotted as red dots,
where Z is a unit matrix. Middle panel: The Voronoi cells generated by these points are shown as cyan polygons surrounding each point. Right panel: The
corresponding graph of Delaunay triangulation is shown as green line segments connecting adjacent points.

sampling distribution is approximately the inverse Gamma
distribution.’

The algorithm that we propose to combine the Voronoi cells
to form the segments (by approximately maximizing £ profite for
each fixed K) is detailed in Section 3. When K is fixed in
advance, this algorithm can be used to estimate S. To fit K we
use the method in Section 2.3.

2.3. Estimating K via the Bayesian Information Criterion

Unfortunately, the number of sources, K, cannot be reason-
ably estimated by maximizing the profile likelihood, because
the likelihood in Equation (8) increases with K and is thus
maximized by K =n, i.e., with the full set of Voronoi cells.®
We avoid such overfitting by adding a term to Equation (8) that
suitably penalizes model complexity. In particular, we use the
so-called BIC, which has been shown to produce statistically
consistent results for many model selection problems. For the
current problem, the BIC is defined as

BIC(K) = —2Lprofite(K, S (K)|X, n) + Kmgeglogn, — (9)

where mg, is the number of free/independent parameters per
segment; thus mg..K is the total number of free parameters in
the model.” The BIC estimate for K is given by

K = arg min BIC(K). (10)

For fixed K, optimizing the BIC is equivalent to optimizing Epmme;
thus this estimate of S is equivalent to that described in Section 2.2.

Unfortunately, because we are using a nonparametric model,
Mgeg i not well-defined. Following Aue & Lee (2011), we set
Mye by approximating the model by a parametric one using an
assumed specific shape for the segments. When the segments are
close to ellipse-shaped, for example, we set mgz =6 to account
for the coordinates of the center, lengths of the two axes,

mx’“_" exp(—=), where x >0, a and b are th;: shape and rate parameters,
respectively, and T'( - ) denotes the Gamma function.

As n is fixed, maximizing Lypofile is equivalent to maximizing the sum in
Equation (8), which can be written as Y7, log A(x;), where A(x;) is the local
optimizer, Num(S) /Area(S), for the segment containing x;. Increasing the
number of segments allows for better local optimization of local fluctuations
and thus increases Lpofite. Of course, with too many segments, better fitting of
local fluctuations amounts to fitting noise, i.e., overfitting the data.

As the shape of the final segment is determined by the first K — 1 segments,
a more precise formulation of the total number of parameters in the model is
Mgeo(K — 1) + 1, where the intensity parameter of the final segment is
accounted for by the “+41.” The difference between this more precise
formulation and the one used in Equation (9) is (1 — mgeg)n, which does not
depend on any of the unknown parameters and thus does not affect estimation.

Sbu The proba{ih}j:) density function of an inverse Gamma distribution is

orientation, and intensity. When the segments are close to circular,
Mg 1s reduced to 4. Another possibility is to simply set 714, = 1
and the number of model parameters to the number of segments,
which to some extent reflects the overall model complexity
(Magnussen et al. 2006), but ignores the shapes of the segments.
While these parametric approximations allow us to assign a
reasonable value to m.s, the model itself remains nonparametric.
The BIC is closely related to the “fitness function” used in
the Bayesian block method (Scargle et al. 2013), where model
complexity is penalized via a geometric prior on the number of
sources, i.e., p(K) = PyyX, with ~ being a tuning parameter and
P, a normalization constant. Setting v = 1/n%"<: makes the
fitness function equivalent to the penalty term in the BIC.

3. Algorithm for Combining Voronoi Cells into Segments
3.1. SRGonG: Seeded Region Growing on Graph

Using the Voronoi cells as building blocks, we start by
proposing an algorithm to estimate the segments in S for fixed K.
The first step is to identify pairs or groups of Voronoi cells that
can potentially be combined. We accomplish this via the dual
graph of the Voronoi tessellation, known as the Delaunay
triangulation. This graph’s vertices are the centers of the Voronoi
cells, i.e., the photons, and its edges connect pairs of the adjacent
Voronoi cells. The right panel of Figure 1 depicts the
graph derived from the Voronoi cells in the middle panel. We
assign vertex x; the value of the Voronoi estimator, denoted by

Xl-]}i, i.e., an estimate of the intensity in Voronoi cell V. Using the
graph constructed by the Delaunay triangulation, the problem of
estimating the S; can be naturally translated to the problem of
graph segmentation, i.e., partitioning the graph into subgraphs
such that the Voronoi cells therein form a single segment, S;.
Thus, each subgraph/S; is formed by a set of vertices/photons
connected by a collection of edges in the full graph. As we
assume that the intensity function is a piecewise constant, all the

vertices in each subgraph should share similar values of X,-Vi.
Unfortunately, finding S to maximize Equation (8) for fixed K
remains an intractable combinatorial optimization problem even
when confined to combinations of Voronoi cells. A distinct
advantage of representing the problem as graph segmentation is
that we implicitly impose an additional constraint that each S; is a
subgraph. In this way, traditional image segmentation® methods
can be adapted and used to segment the graph. In particular, we

8 Image segmentation is the process of separating an image into a number of
regions such that each region is composed of connected pixels with similar
characteristics, such as similar pixel values.
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propose the seeded region growing (SRG) on graph (SRGonG)
method, which is similar to the original SRG method used for
images except that the concept of “neighbors” is determined by
the edges of the graph instead of neighboring pixels. The
original SRG is proposed in Adams & Bischof (1994) and is
extended to several variants to deal with more complicated
cases in Fan & Lee (2014). SRGonG starts by identifying,
either manually or automatically, a set of initial seeds from the
graph. Each seed can be a single vertex/photon or a seeding
subgraph, i.e., a set of connected vertices/photons.

For the moment, we present a simplified version of SRGonG
that requires a perfect set of seeds, i.e., a set with exactly one
seed in each S;. Recall that K is fixed; thus initially we assume
K seeds. The details of seed specification in more realistic
settings are described in Section 3.2 and the full version of
SRGonG (which requires an extra step to merge segments and
estimate K) is detailed in Section 3.3.

SRGonG grows the seeds into subgraphs by successively
adding neighboring vertices to them. In particular, at each
iteration, the method selects a pair that consists of a growing
subgraph, S, and one of its unassigned neighboring vertices, i,
such that

83, $) = [log X — log{Num(S)/Area(S)}|  (11)

is minimized. This criterion compares the logarithm of the
estimated intensities of the subgraph and the neighboring
vertex because Epmme, which we aim to optimize, combines the
segment-specific intensity estimates on the log scale. The
vertex in the pair with the smallest difference is added to
the corresponding subgraph. This process finishes when all the
vertices of the full graph are assigned to exactly one subgraph.
The Voronoi cells contained in the subgraphs give the final
segmentation of F, i.e., S (K), for prespecified K.

In practice, we save the index, i, of the neighboring Voronoi
cell that minimizes 6(i, S) for each growing subgraph, S, at
each iteration. This reduces the time complexity of the method
to be linear in terms of the number of photons.

3.2. Seed Specification

As SRGonG begins by building out regions starting from a
specified set of seeds, the number and location of the seeds are
important considerations. As discussed in Section 3.1, we
would ideally have exactly one seed within each &.
Unfortunately, this is not feasible in practice. A brute-force
solution is to overspecify the seed set to the extreme, by setting
every photon location to be a seed, and devising an algorithm
to merge the seeds into segments. However, merging such a
large seed set would be challenging in terms of both the
computational speed and statistical accuracy (see discussion in
Section 6.1). If the field being analyzed is known to have a
large number of point sources, or if the scientific question
requires focusing on point sources, then running a source
detection algorithm first to find all such sources and specifying
all of them as seeds will be helpful. Here we describe three
generic strategies to specify smaller initial seed sets. These
strategies still overspecify the set in that they use a larger
number of seeds than the expected number of segments (but
less so than setting each photon to be a seed). Thus, after
growing the seeds into subgraphs as described in Section 3.1,
we require a method to merge the resulting subgraphs into
segments; we describe our merging algorithm in Section 3.3.

Fan et al.

Regular grid: This method starts by overlaying a regular grid
of mgyq points onto the field of view, F. For each grid point,
we specify a seeding subgraph composed of the #1141 photons
closest to the grid point (in terms of the Euclidean distance).
We typically set mgyiq and mgpapn SO that their product is much
smaller than n to enable the seeded regions to grow. Conflicts
in the allocation of photons to seeding subgraphs (e.g., when a
single photon is among the mgp, closest to two or more grid
points) are broken by the order of assignment. The number,
Mgraph» Of the photons assigned to each seeding subgraph can be
increased to stabilize the initial estimates of the growing
subgraph intensities, especially when the contrast (i.e., the ratio
between the intensities of an extended source and the
background) is low. In practice, there is no universally best
choice for mgiq and mgraph, as their optimal values depend on
factors including the number of observed photons n and the
complexity and number of true astronomical sources. To ensure
a sufficient number of photons for the seeding subgraphs, we
require

n

Mgraph <
Mgrid

As it is possible for a seed to fall on the boundary between

two distinguishable segments and adversely affect subsequent

processing, we propose an additional seed-rejection step. In

particular, we compare the range of the Voronoi areas for each

photon Area(Vy) |ix=1, s Mggapn) of a seeding subgraph of size

Mgrapn With the expected empirical 20 confidence interval for a

homogeneous distribution of photons (Mgller 1994, Chapter
4.2), ie.,

1y, 038 (12)
As As

(Mgller 1994, Chapter 4.2), where

1 Mgraph

> Area(Vy) (13)

A Mgraph f—1

1

is the average of Voronoi areas for the photons in the seeding
subgraph. Thus, if the actual range of Voronoi areas Area();)
exceeds the expected empirical confidence interval, the seeding
subgraph is rejected.

Grid supplemented by local maxima: If the regular grid used
to generate the seeds is too sparse, some image structures may
not be captured in the segmentation. For example, if there is not
a grid point sufficiently near a point or extended source, the
source may be merged into the background or another source.
One remedy is to include additional seeds near the likely
locations of sources. Sources induce an elevated intensity over
small spatial scales. Thus, locations of high photon density are
likely associated with sources. We propose to identify vertices
that are local maxima of the graph constructed by the Delaunay

triangulation, in the sense that the vertex value (i.e., X,-M) is
greater than or equal to that of its closest k vertices (including
itself), where closeness is measured by the Euclidean distance.
For each local maxima we find in this way, we include a
seeding subgraph composed of its closest Mg, vertices
(including itself).

Voronoi-area-stratified sampling: More complex schemes,
designed to locate seeds over a broader range of surface



THE ASTRONOMICAL JOURNAL, 165:66 (15pp), 2023 February

brightness values, can also be devised. Methods such as Otsu’s
thresholding (Otsu 1979) can also be used to specify seeds or
seeding subgraphs for point-like or localized extended sources.
As we discuss in Section 6.1, the grid supplemented by the
local maxima is adequate to identify structures that exist at a
large variety of scales in astronomical data. Here, as an
example case, we describe a third method, which selects seeds
via stratified sampling of the photons, with strata determined by
the areas of the Voronoi cells, Area(})}). In particular, the
photons are divided into my strata bounded by equally spaced
quantiles of the distribution of Area())). The number of strata
depends on the sample size, but we typically use mg ~ 10-20.
Clumps of near-neighbor photons within each stratum are put
together (see the Appendix) into a set of labeled groups such
that spatially nearby photons within a given stratum are all
assigned the same label. If a given label is assigned to fewer
than myorme photons (typically myomme = 35), then the photons
with this label are discarded for the purpose of seed
specification; otherwise the central photon” among those with
each label is set as a seed. Subgraphs are then constructed for
each retained seed photon in the same manner as described in
Section 3.1.

Algorithm 1. Seeded Region Growing on Graph (SRGonG)

Data: Coordinates of observed photons x; = (x;;, x2;), i = 1, ..., n in field
of view F.
Result: Piecewise constant estimate of intensity function with a segmentation
of F into regions of constant intensity, S = (30, 8 ).
begin
1 Use Voronoi tessellation to obtain a graph whose vertices are the observed
photons with the Voronoi estimators X,Vi as their values.
2 Using a method in Section 3.2, specify the initial seeds for
subgraph growing.
3 Grow seeds into subgraphs that oversegment the entire graph:
while there are unassigned vertices do
Select a pair of a growing subgraph S and one of its neighboring vertices
i such that .
8(i, §) = |log X, — log{Num(S)/Area(S)}| is minimized.
Add the vertex in the pair with the smallest difference to the corresp-
onding subgraph.
4 Greedily merge subgraphs by minimizing the BIC at each merger to obtain
a nested sequence of segmentations.
5 Finally, set K and S to the values of the nesting level with the smallest
BIC. K is the final segmentation of F .

3.3. Subgraph Merging

Using one of the seed sets of Section 3.2 to grow subgraphs
as described in Section 3.1 leads to an oversegmented graph as
the number of seeds is invariably more than the predetermined
K or the K that optimizes the BIC. To merge the subgraphs into
segments, we propose a subgraph merging method that aims to
minimize the BIC. Similar ideas were used by Lee (2000) and
Peng et al. (2011) in image segmentation. In particular, the
subgraph merging method starts by computing the BIC for
the oversegmented graph and then iteratively selects two

o Consider the set, L, of photons with a given label. For each photon / € L, we
calculate d; = \/Area(V) + > ;; di, where dy is the Euclidean distance
between photons / and k. That photon in L with the smallest {d,} is flagged as
the central photon among the photons in L. This measure of centrality is better
than computing a centroid as it ensures that the seed is guaranteed to be
included inside the labeled region even when the region shape is complex, and
that the seed is unambiguously assigned to one of the photons.
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neighboring subgraphs, merges them, and recomputes the BIC.
The two merged subgraphs are selected so that their merger
gives the largest decrease (or the smallest increase) in the BIC
among all possible merges (of neighboring subgraphs). In this
sense, this is a greedy algorithm. We continue merging the
subgraph until all subgraphs are merged into the entire graph,
except when K is fixed, in which case we stop when K
segments remain. In this way, we obtain a sequence of nested
segmentations, {§(K), K =1, ..., n}, each with a BIC value.
Finally, we set K and S to the values of the nested level with
the smallest BIC.

At each iteration, we use an updating formula to speed the
computation of the BIC. Consider the graph segmentation
associated with K and the graph segmentation after merging
two of the subgraphs of S(K') and label the merged subgraphs i
and j, with 1 <i <j < K. This merger decreases the BIC by

ABICg ;j = BIC(K) — BIC(K — 1)

Num(S; ;) Area(S;)

Area(S; ;) Num(S))

Num(S; ;) Area(S))

Area(S; ;) Num(S))

+ mgeg logn, (14)

=2 Num(S))log

+ 2 Num(S))log

where iUj denotes the union of photons that belong to
subgraphs i and j. The complete procedure for SRGonG is
summarized in Algorithm 1.

4. Simulation Studies

Our simulation study is conducted assuming a hypothetical
instrument that produces fields of view, F, with two-
dimensional coordinates on the unit square. The simulations
are designed to assess the performance of SRGonG when
applied to fields of view of point-like sources embedded in
extended sources of different shapes, while varying the
exposure time (or equivalently, the overall counts in the field)
and the contrast between the different components. In all our
simulation settings, “point-like sources” are circular sources of
radius 0.025 and extended sources are of area ~0.2 relative to
the . We consider three “true images™: (a) four point-like
sources embedded within a circular extended source of radius
0.25 (covering an area 0.196 of the unit square), (b) three point-
like sources embedded within a polygonal zigzag-shaped
extended source comprising five squares of size 0.2 x 0.2
(total area of 0.2), and (c) three point-like sources embedded
within an arc-shaped extended source (a half-annular shape
with an inner radius of 0.2, an outer radius of 0.4, and a total
area of 0.189). We consider these three settings because point-
like sources embedded within a complex extended source are
commonly observed in astrophysical fields of view, as
illustrated in Section 5, and the extended sources mimic
typical astronomical shapes. Furthermore, the variety of shapes
and the contrasts considered are a stringent test of the
algorithm. Letting (3 denote the exposure time (in arbitrary
units) and o denote the contrast level between the different
components, for each simulated 7 we generated So counts for
each point-like source, 1050 counts for the extended source,
and 100005 counts in expectation for the background, with the
photons corresponding to each component distributed uni-
formly over the area allocated to it. In Figure 2, we have
adopted 0 =1 and o = 30, so in all cases, the point-like sources
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Figure 2. Simulation studies with various shapes of the extended source (with =1 and o = 30; see Section 4). Each row corresponds to one of the three image
shapes (circular, top row; polygonal zigzag, middle row; semi-annular, bottom row) considered. Left column: simulated photon locations for one simulation instance.
Middle column: The graph for the exemplar (first) simulation of the left column is shown (gray lines), and the true segment boundary is overlaid (solid green lines).
The initial seeds are marked for the 5 x 5 regular grid (black squares), local maxima (blue diamonds), and rejected seeds (red triangles). Right column: The segment
boundaries from 10 additional simulations (gray solid lines) are overlaid on the photons from the first simulation, which are marked as red for the extended source and

blue for the point-like sources.

have 30 photons, the extended shapes have 300 photons, and
the background has ~Poisson(1000) photons, all distributed
uniformly over their allocated areas, with ~200 background
counts under the area of the extended source. The contrast in
surface brightness between the extended source and the
background is thus ~1.5x, which is sufficiently large on the
scale of the extended sources that the presence of the extended
sources are clearly recognizable. However, it is clear from
inspection of Figure 2 that local fluctuations can be sufficiently
large as to make estimating the boundary of the extended
sources challenging.

The photons randomly generated for each of the settings are
shown for one case in the left column of Figure 2. The middle
column shows the shapes of the extended sources overlaid on
the corresponding Delauney triangulation for each of the
photons, as well as the seeds chosen for that case. The right
column shows the segmentation, with points colored blue and
the extended source colored red, for the simulation in the left
column; superposed in gray lines is the result of segmentations
from 10 additional simulations. The superpositions of the
segment boundary lines over the expected lines of the shapes of
both the point-like and the extended sources show that, while
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Figure 3. Demonstration of recovery of simulation parameters in segmentation.
The brightness of each segment recovered by SRGonG for all of the
simulations shown in Figure 2 is shown as the black histogram. The expected
brightness for each of the components (background, extended, point-like) and
the shapes of the extended sources (circle, polygonal zigzag, and semi-annular)
are marked as vertical lines with different line styles, as labeled. The
background and extended emission brightnesses are recovered well, but
because of the large contrast, the brightness of point-like objects shows a bias
(see text).

fluctuations are present in individual simulations, on average
the boundaries are picked out well. A detailed examination of
the locations of the boundaries and their uncertainties requires
modeling the boundaries, and we defer discussion to
follow-up work (J. Wang et al. 2022, in preparation). Here,
we demonstrate that the components are well recovered in all
cases. We show the distribution of the segment brightnesses
found for all the simulations for all three cases in Figure 3: the
components are clearly separated, with uncertainties of ~10%-—
15% on the expected brightness in each component. We find
that the brightness of the point-like component suffers from a
bias because of the tendency of the segment areas to
preferentially encroach on the much larger area of the
surrounding extended source, thus causing a downward shift
in the estimated brightness.

In our simulation design, in addition to varying the three
“true images,” we also vary the exposure time with 3 taking
values 0.5, 1, and 2, and the contrast with o taking values 10,
20, and 30. We simulate 500 fields of view under each of the 27
resulting simulation settings.'® Each of the 13,500 simulated
fields of view is analyzed with SRGonG, with initial seeds
specified following the “grid supplemented by local maxima”
method of Section 3.2. The regular grid used for seed
specification is 5 x 5, with a seed size of mgpn =35, and a
neighborhood size of k= 50 for finding the local maxima. As
the sources we are considering are simple, we set the BIC
parameter to be mg, = 4; when more complicated shapes are
expected, larger values of m., should be used.

The second and third columns of Figure 2 show the initial
seed specifications and segmentation results for the first of the
500 fields of view generated with =1 and o = 30. All point-
like sources are clearly identified. The fitted boundaries of the

10 The number of source counts was held fixed in all simulations, while the
number of background counts was generated as a Poisson with mean 100043 in
order to explore the effect of background fluctuations. Thus, the total counts in
a given data set are So + 1030 + Poisson(10000).
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extended sources are generally quite good, except for some
mild leakage for the arc-shaped extended source. In general, we
expect sources with longer perimeters per unit area'' to be
more challenging. This is because photons nearer the boundary
of a segment are more likely to be misclassified than are those
nearer the middle. Thus, more irregularly shaped sources, such
as the arc-shaped source in this simulation, are more
challenging, including SRGonG.

Furthermore, several of the initial seeds placed by the regular
grid happen to fall near the boundary of the arc-shaped source,
which can also jeopardize the performance of seed-based
methods.

We use a clustering verification metric, specifically the
adjusted Rand index (ARI; Hubert & Arabie 1985), to assess
the quality of the SRGonG segmentations. The Rand index (RI;
Rand 1971) quantifies how well a given segmentation matches
the ground truth segmentation. In particular, each pair of
photons is classified as either (a) being in the same fitted
segment and in the same ground truth segment, (b) being in
different fitted segments and in different ground truth
segments, or (c) not being in class (a) or (b). (For the ground
truth, the segments are the background, extended source, and
each point-like source.) The RI is defined to be the number of
photons pairs in class (a) or (b), relative to the total number of
photon pairs. Thus, a perfect match to the ground truth results
in RI=1. The ARI corrects the RI such that accidental
overlaps of segments due to chance are accounted for, yielding
values in the range —1 < ARI < + 1.

Figure 4 summarizes the ARI and the fitted value for the
number of segments, K for the 500 replicates under each of the
27 simulation setting. For each of the three true images, as
expected, the SRGonG segmentation improves as either the
exposure time or the contrast between the brightness of the
components increases. This is seen in the progression from the
top left panel to the bottom right panel of the right column of
plots in Figure 4: the method fails to identify the embedded
point sources when there are ~5 counts in each source, but
correctly identifies all components in >70% of the cases (80%
for the circular and polygonal cases) when there are 60 counts
in each point source. Similarly, the ARI increases to close to
one (i.e., perfect agreement between ground truth and SRGonG
segmentation, where the fitted number of segments equals the
true number of sources) as (3 and o increase.

5. Application to Antennae Galaxies

The Chandra observations of the Antennae galaxies provide
a good test case for the application of SRGonG. The X-ray data
(see Figure 5, top left panel) show complex structures. In
particular, the data reveal several point sources and extended
regions, with several clumps of diffuse emission of different
extent and surface brightness, along with a population of
unresolved point-like sources superposed. Some of the point
sources lie within the extended sources (e.g., in the extended
region at the bottom of the image), and some of the extended
sources are entangled with each other.

As a conservative scenario we used the first Chandra
observation of the Antennae galaxies obtained on 1999
December 1st (OBSID 315; Fabbiano et al. 2001). The

' A standard measure of shape irregularity is the “perimeter index” of Angel
et al. (2010), which is defined to be the perimeter of a circle of area equal to
that of the shape divided by the actual perimeter of the shape.
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Figure 4. Simulation studies for the various shapes of the extended source, different exposure times, (3, and different contrast ratios, o. Each point source has 3 - o
counts in a circle of radius 0.025; each diffuse extended source has 10 - 3 o counts spread uniformly over an area ~0.2; and there are 1000 - 3 counts in the
background, spread uniformly across F. The three rows correspond to the three extended-source shapes in the rows of Figure 2. Left column: box plots of the adjusted
Rand indices for 500 replicates under each simulation setting. Right column: histograms of the fitted number of sources K for the 500 replicates under each simulation

setting, where the true number of sources is highlighted in red.

observation was performed with the ACIS-S detector for a total
exposure of 72 ks. We process and screen the data (e.g., initial
calibrations, removal of strong background flares, selection of

good grades) as
CALDB v2.11). Again as a conservative scenario, we use the
full data set without any screening for events of very low or

in

Zezas et al.

(2022; CIAO V3.2,
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Figure 5. Representations of Antennae data. Top left: scatter plot of the photons from six Chandra observations of the Antennae galaxies carried out between 2001
December and 2002 November. The x-axis is normalized to range from O to 1, and the y-axis is normalized accordingly, by the same ratio, such that the data are
depicted in the form that is input to SRGonG. Top right: The Delaunay triangulation of the photons is shown, with each vertex marked by a point that is color coded by
the brightness determined as the reciprocal of the Voronoi area (see scale on the right). Bottom left: The seeding subgraphs for SRGonG via a regular grid, marked
with black squares, supplemented by the local maxima marked with blue diamonds. Seeds discarded due to a strong indication of being on the boundary of two
segments are marked as red triangles. Each subgraph is represented by one photon in the middle of the seeding subgraph. Bottom right: The SRGonG segmentation of
the Antennae galaxies data, with the red curves depicting the boundaries of the fitted segments. Three smaller fields of view are highlighted by black boxes, labeled

Regions 1-3, and magnified to show details in Figure 7.

high energies, which are dominated by the background. The
final data set we use consists of ~50,700 events within a
~3745 x 3!45 region around the galaxy (screening for events
in the generally used 0.5-8.0keV band would result in a
reduction of ~43% in the total number of counts).

Figure 5 shows different depictions of these data, with the
coordinates scaled linearly to the range [0, 1], as is assumed by
our implementation of SRGonG, and processed to show the
resulting Voronoi tessellation.

We apply SRGonG to these data in order to obtain
statistically meaningful nonparametric segmentations of the
different clumps of diffuse emission, as well as to separate
diffuse and point-like emission sources. We apply the Voronoi
tessellation to the photons and construct the graph of Delaunay
triangulation (see top right panel of Figure 5). We specify the
initial seeds for SRGonG via a regular grid supplemented by
the local maxima (see Section 3.2; shown in bottom left panel
of Figure 5). We start with a regular 9 x9 grid (ie.,
Mgrig = 81), the initial estimates of which are stabilized by

10

assigning the mgp,pn = 20 nearest photons to each seed; these
cover the large-scale variations in the data. The local maxima
are determined over a neighborhood size of k= 100. The 419
seeds that result from this process provide a sufficiently large
number to ensure that there is generally at least one seed in
each point-like or extended source or the background. As we
expect the segments of the extended sources to be more
irregularly shaped in the real data than in the simulation, we
choose a larger value of the BIC parameter, mgy, =6 (see
Equation (9)); this corresponds to assuming that each segment
has the complexity of an ellipse.

The results of SRGonG are shown in the bottom right panel
of Figure 5 (the regions outlined in black are discussed in more
detail in Section 6.1), showing the boundaries of the fitted
segments as thin red lines around the black dots depicting the
photons. SRGonG correctly segments areas with similar surface
brightness such that photons that correspond to these diffuse
components are grouped together. The photons that belong to
each of these segments can be trivially collected together for
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Figure 6. Fractional hardness ratios of counts in each of the SRGonG-determined segments of the Antennae data. The images show HRgy = ;;—Z (left) and

HRyy = H (right), where S, M, H are counts in the passbands 0.5-0.9 keV, 0.9-1.2 keV, and 1.2-2 keV, respectively. In both figures, redder colors indicate softer
spectra. The background is rendered in reddish pink in HRg;, and light green in HR 5.

further analysis, depending on the scientific question being
explored. For instance, in Figure 6, we show segment-wise
maps of the fractional hardness ratios HRgy, =
S—M)/S+M) and HRyyz =M — H)/(M + H), where S,
M, H are counts in PI channels [35:61] (~0.5:0.9 keV), [62:82]
(~0.9:1.2keV), and [83:135] (=1.2:2keV), respectively.
Notice that the maps clearly demonstrate that the diffuse
emission in the Antennae generally have softer spectra than the
point sources. Maps such as these can be used to identify the
extent of dust lanes in the Antennae system; e.g., the segments
at ~(0.4, 0.22), ~(0.3, 0.25), and ~(0.6, 0.75), which are
characterized by harder spectra than the surrounding segments,
a characteristic of increased absorption (see Zezas et al. 2006).
Furthermore, notice that the southern region (around Region 3
in the bottom left panel of Figure 5) is surrounded by a halo of
relatively soft X-ray emission, in agreement with the spectral
analysis of Baldi et al. (2006) who find emission from soft
~0.6 keV thermal emitting gas.

6. Discussion
6.1. Performance on the Antennae Data

Here we discuss the quality of the SRGonG segmentation of
the Antennae in greater detail. To begin with, we note that
SRGonG successfully identifies a number of point-like sources,
characterized by the presence of a large number of photons
within a small space. Several of these point-like sources are
superposed on extended diffuse emission and surrounded by
complex structures. Furthermore, unlike the case usually with
methods that use piecewise constant models, the point-like
sources are invariably defined by single segments and not
several concentric rings that approximate the typical profile of
the PSF where intensity increases from the wings inward to rise
to a peak at the core. However, such cases are not entirely
absent: see Figure 7, specifically the sources at ~(0.23, 0.57),
~(0.43, 0.54), and ~(0.31, 0.46) in Region 1; ~(0.67, 0.4) in
Region 2; and ~(0.49, 0.12) and ~(0.37, 0.07) in Region 3.

Further note that the segment boundaries are not smooth
because of the boundary being formed by the outermost
Voronoi cells. The photons that comprise the boundary are also
subject to stochasticity, due both to PSF-induced statistical
variations in photon arrival locations, as well as the greedy
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merging process. Visual inspection of the results suggests that
at the lowest surface brightness levels, fluctuations in the
counts could result in oversegmentation of what is usually
considered to be the background (e.g., the two large extended
regions along the left side of the bottom edge of F).
Nevertheless, the expanded views of the inset regions in
Figure 7 show that the segmentation correctly separates diffuse
emission structures at different spatial scales and surface
brightness levels. In particular, transitions in the spatial density
of photons across the boundaries are clearly discernible by eye,
such as those between segments B« C, B~ D, D E,
D < F, E «— F in Region 1; between segment B and segments
A, C,D,F, G, 1, ] in Region 2; and segment A and segments B,
C, D, G, and H as well as C +» F and C < D in Region 3. Some
transitions are too subtle to be visually recognizable (e.g.,
A — BinRegion1,B < Eand B < Hin Region2, and D < E
in Region 3) but are required due to the computed contrasts in
the counts per unit area. Conversely, the brightness transitions
across B« C <D in Region1, B~ C <K and B <~ 1 <L in
Region?2, and A«~+B—C, F—-C«+<D, and D~A <G, H
are apt demonstrations of the capability of SRGonG to perform
at the level of human visual acuity. Parametric modeling to
capture the spatial variations in such structures would be much
more difficult than the segmentations achieved here.

An important factor in obtaining a reliable segmentation is
the initial seed specification. It is worth establishing that the
scheme we propose generates a useful segmentation and does
not miss features. For this, we compare the SRGonG method
against a brute-force segmentation where every photon in the
data set is taken to be a seed, and the corresponding Voronoi
cells are merged using the BIC as described in Section 3.3. This
brute-force scheme is similar to Scargle’s (Scargle 2002)
method (but using the BIC instead of Bayes factors) in that it
eschews the SRG on graph step developed and described in
Section 3.1.

In Figure 8, we compare SRGonG-based segmentation (left
panel) against brute-force segmentation (right panel). Although
at first glance the two segmentations look similar, a closer
inspection reveals crucial differences. While the quality of the
identification of point-like sources does not differ significantly,
there are significant differences in the diffuse emission regions
that strongly favor the SRGonG segmentation. Notice that
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Figure 7. Magnified views of the three regions of the Antennae galaxies
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segment C of Region 1 from SRGonG (top panel of Figure 7)
is missing in the brute-force segmentation, and is effectively
subsumed into segment D, which in turn also subsumes
segment B. These changes are prima facie unsupported by
the visible variations in the surface density of photons.
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Similarly, we see that segment E is incorrectly extended, and
a different segment extends down into the middle of segment
D. Such cases are also seen in Region2 (middle panel of
Figure 7), where all of the complexity found as segments C,
D, and E are lost in the brute-force segmentation; and in
Region3 (bottom panel of Figure 7) where the clear
separation of segments A and B is lost in the brute-force
segmentation, as is the point-like source at ~(0.4, 0.15). In
summary, clear variations in the surface brightness are
recovered in the SRGonG segmentation, unlike in the brute-
force method. Using a smaller set of seeds improves the
robustness of the segmentation by avoiding the chaotic
development of early merging steps; errors in early stages
accumulate because of the greedy merging process. We
thus conclude that SRGonG is superior because of, and not
despite, the much smaller, but perceptively selected
number of seeds used to carry out the segmentation.'?

Although SRGonG is not designed as a point-source
detection method, it is instructive to see how it behaves in
the case of point-like sources. In Figure 9 we show point-
like sources can be identified in SRGonG (left panel)
compared to a wavelet-based method that is optimized to
detect point sources (right panel, wavdetect; Freeman
et al. 2002). Based on the typical size of the Chandra PSF,
we isolate all SRGonG segments that cover an area of
comparable or smaller size to the PSF'® and show them in
the left panel. (We emphasize that this is not a method to defect
point-like sources; while SRGonG segments with larger areas
than the PSF size can be flagged as extended, regions with
small areas cannot be definitively flagged as point sources, as
such segments can occur due to the layered segmentation of
extended sources or even due to statistical fluctuations in the
surface brightness of diffuse emission.) In the right panel, we
show all wavdetect-detected sources, superposed on a
counts image of the same field. As wavdetect is optimized
to find point sources in a variety of scales, it may also detect
more diffuse sources. Sources that are identified as extended
based on visual inspection and/or comparison with the PSF
profile (e.g., lack of a core, or PSF fitting for sources with more
than 100 counts; Zezas et al. 2002) are marked by red circles,
while point-like sources are marked by cyan circles. We note
that the SRGonG segmentation invariably marks as “point-like”
(based on the segment area criterion) the point sources that are
confirmed by the inspection process of Zezas et al. (2002) and
does not find the extended sources identified by wavdetect.
The latter are instead components of larger diffuse emission
segments. In this respect, although the SRGonG is not a point-
source detection algorithm, screening of the identified segments
based on the segment area, Area(S;), can be used to distinguish
extended regions from point-like sources.

'2 Just as Markov Chain Monte Carlo techniques rely on running multiple
chains and verifying consistency to gain confidence in the analysis results
(Gelman & Rubin 1992), we recommend that analyses that use SRGonG also
consider the sensitivity of the results to the adopted seed set. The schemes that
we recommend in Section 3.2 are adequate to handle most scenarios
encountered in astronomy, but are nonetheless characterized by several
runtime-specified parameters (Mgriq, Mgraphy Mans MR, Myorhr). WOrk  to
formalize this process via bootstrap analysis is ongoing (J. Wu 2022, private
communication).

13 We choose segments identified by areas Area(S;) < 0.0003 in normalized
coordinates, which corresponds to a circular area of radius ~1”6 on the sky,
comparable to the extent of the Chandra PSF.
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Figure 8. Segmentation of the photon list shown in Figure 5. Photons are color coded by the estimated intensity of their segment. Left panel: 55 fitted segments
obtained with SRGonG with seeds specified via a grid supplemented by local maxima. Right panel: 61 fitted segments obtained for brute-force segmentation, where all
photons are assumed to be seeds. The differences between these two segmentations are described in Section 6.1.

6.2. Advantages and Limitations of SRGonG

Our simulations (Section 4) and analysis of the Chandra
Antennae data set (Sections 5 and 6.1) illustrate SRGonG’s
strength in identifying sources at many different scales. The
method allows the identification of extended diffuse structures
in X-ray data regardless of their shape, i.e., no assumptions are
made about the morphology or the homogeneity of the sources.
Note that, while the blurring due to the shape of the PSF is not
explicitly modeled, this has negligible effect on any source
structure at scales larger than the size scale of the PSF. Thus,
we expect that useful results can be obtained even when the
PSF varies across the field of view, which can happen due to
several reasons (the quality of the telescope optics can degrade
away from the aim point; or fields are observed that have a
large diversity of soft and hard sources, each with significantly
different PSF shapes and sizes; or when complex combinations
of data sets, such as multiple observations carried out at
different angular offsets, are combined). At spatial scales larger
than the PSF size, we expect that results are not reliant on the
specific characteristics of the PSF.'*

Even when the photons are sparsely distributed, e.g., when
the observation is dominated by diffuse structures at low
surface brightness, and blurring due to the shape of the PSF is
not included, point sources that may exist in the field of view
can be identified due to the increased concentration of photons
at their locations. However, note that SRGonG is designed to
identify large-scale extended regions, so the focus and trade-
offs are different. Thus, weak point sources with low contrast
against the surrounding diffuse emission are likely to be
subsumed into the diffuse regions. However, because these are
by definition weak, they are unlikely to contribute significantly
to the brightness (or hardness) of the diffuse component. This
situation is effectively similar to the situation where the
detection sensitivity of a telescope is insufficient to resolve
apparently diffuse emission into its point-source population.
An additional issue to consider is the bias in the point-source

!4 Note that PSF size information may be incorporated into the analysis, e.g.,
by requiring that any segment that is found to have a smaller area than that of
the PSF be subsumed into a surrounding or adjacent segment. We do not use
such a criterion in this work, though such a strategy is demonstrated in
Figure 9.
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brightness demonstrated in Figure 3. This bias arises as area
fluctuations from small point sources are naturally bounded at
zero, but can extend into the area of the diffuse emission,
leading to a skewed error distribution. So point-source
intensities found by SRGonG should not be used directly but
must be reestimated using appropriate techniques (e.g., Primini
& Kashyap 2014). However, note that the bias demonstrated in
Figure 3 comes from point sources that do not have PSF wings;
in real sources where point sources are sharply peaked due to
the PSF, the area distribution bias works to the advantage of
SRGonG, incorporating more of the PSF wings into the point
source and reducing the resulting contamination of the diffuse
emission by strong point sources.

Unlike adaptive smoothing, source detection, or contouring
methods, SRGonG does not set S/N thresholds or rely on
thresholds of source significance to determine the presence or
extent of contiguous regions. Thus, even regions that may be
characterized by low surface brightness tend not to be
oversegmented. Conversely, as the uncertainty in the estimated
brightness is dependent on the number of photons that fall
within the segment, small variations in adjacent regions can be
more easily distinguished when the areas of the segments are
sufficiently large.

Also of note is that SRGonG works directly on photon lists,
the most basic form of high-energy X-ray and ~-ray data sets,
and the Poisson nature of the data is explicitly accounted for
during the merging process. While this can have detrimental
effects on the running time when the size of the data set is
large,” using the data at the highest available resolution avoids
the requirements to define artificial binning sizes.

Of greater concern is the dependence of SRGonG results on
the distribution of the initial seeds, especially for fields with
low contrast. This may result in unstable behavior because of
fluctuations in the local minima in the spatial intensity
distribution, leading to both false segmentation and false
merging. We caution that while the schemes we describe in
Section 3.2 are generally adequate and perform well (see, e.g.,
Section 6.1), as is typical with seeded-region-growing methods,

15 For illustration, the analysis of the Antennae data set, with 50,700 photons
and 491 seeds, takes 2240 s on a 2021 epoch 14” MacBook Pro with an Apple
Silicon M1 SOC.
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Figure 9. Identifying point-like sources in the event list data in Figure 5. Left panel: “Point-like” SRGonG segments selected to have a segment area <0.0003 (31 total
segments; 22 after concentric segments are merged). Right panel: sources detected with wavdetect (Zezas et al. 2002) overlaid on a full-band image of the Chandra
data (OBSID 315). The size of the field is 2!8 x 2!3. Red circles mark the detected sources that were shown to be inconsistent with Chandra’s PSF according to the
analysis of Zezas et al. (2002), while cyan circles mark the remaining sources (some of which may also be extended). The size of the circles corresponds to the optimal
wavdetect scale. Thicker solid circles indicate sources that are also identified by SRGonG; the remaining sources are indicated by the thinner dashed circles. The
cyan and orange numbers give the source counts measured by the customized aperture photometry of Zezas et al. (2002) and the SRGonG method, respectively (the
SRGonG-based counts are not background subtracted). Note that most strong point-like sources are identified as such by the SRGonG method, and in general there is

good agreement in the estimated source intensities.

the sensitivity of the segmentation to the adopted seed structure
must always be checked.

Future extensions of this method will include quantification
of the uncertainty of the segmentation resulting from the
stochastic nature of the data, which would be quantified in
terms of uncertainty on the number of segments, the outline of
the segments, and the corresponding source flux within each
segment. Other avenues to explore include different merging
procedures as substitutes for the greedy merge to address the
oversegmentation. The goal of such alternative merging
options would be to search more possible final segmentations
and make the algorithm more robust to seed initialization. Yet
another potential extension is to perform the analysis in three
dimensions, incorporating photon energy information. Cur-
rently spectral information can only be used by running the
code on passband filtered data.

7. Summary

We have developed an algorithm that provides a piecewise
constant segmentation of a photon event list that approximates
the spatial structure present in the data. Point-wise surface
brightnesses are initially estimated as the inverse of their
Voronoi cell areas and cells with similar brightnesses are
grouped together to grow segments. The seeds needed to grow
the segments can be initialized as regular grids, additionally
supplemented with local maxima, or set using more complex
processes by stratified sampling of Voronoi cell areas. The
process begins with a deliberate oversegmentation, and
neighboring segments are sequentially merged by maximizing
the BIC change. The resulting (greedy) segmentation generates
apertures on the sky plane that can be used to collect photons
and carry out further analysis in a way that removes manual
intervention in selecting regions of interest. We have explored
this method via both simulations and application to a complex
Chandra data set, and find that it consistently provides a good
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description of both point-like and extended diffuse regions of
arbitrary shapes.

We note that this is not a source detection method, but a
robust method for the definition of source regions, especially
for extended sources. In this way, it can be used to perform
photometry or spectroscopy on arbitrarily shaped extended
sources.

This method provides several advantages over other
commonly used methods for the analysis of extended sources
in high-energy photon data. Namely, it allows the identification
of sources at different scales even when they are embedded
within each other without imposing any restrictive assumptions
on the spatial distribution of the source photons or the source
intensity.
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Appendix
Nearest -neighbor Labeling

Here we describe the heuristic by which selected photons are
collected into groups characterized by their proximity (used in
the Voronoi-area-stratified sampling scheme for seed specifica-
tion; see Section 3.2). The photons considered in a given
stratum are defined by a small range of Voronoi areas, or
analogously, are located at similar contour levels if an image
were constructed from the photons. Thus, they are likely to be
sparsely distributed, but with clumps of photons surrounding
higher-intensity regions. The goal here is to group the clumped
photons that are near each other, without breaking up rings or
other complex shapes. We emphasize that this heuristic is a
quick but approximate preprocessing method to pick seeds for
the full-fledged SRGonG algorithm. We expect this heuristic to
be useful in situations where the astronomical data set is
characterized by sparsely distributed structures with a large
dynamic range in surface brightness.

We first determine an average characteristic length scale for
the ensemble of photons included in stratum Y, as

Ly = ZJl[max{Area(Vi)} + min{Area(Vi)}] .
2| ier ieT

This ensures that the length scale is typical of stratum Y. We
begin with an arbitrary photon from Y, assigning it a unique
group label, and recursively assign this group label to any
neighbor, i.e., any photon in stratum Y located within a
Euclidean distance of Ly from any photon assigned to this
group. The recursive labeling ends when no new neighbors are
present, and we move to another arbitrary as yet unlabeled
photon in Y, assign it a different label, and repeat the process.
We continue this labeling until all photons in Y are assigned
labels. For a case where the photons are placed uniformly on a
regular grid, this results in all the photons being aggregated into
one clump with one label. If there are multiple clumps
separated by >Ly, each clump will be assigned a separate label.
We eventually discard all clumps with fewer than mygn:
photons and do not use them to set a seed. The entire process is
repeated for each of the my strata.
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