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Abstract

Recent advancements in equivariant deep models have shown promise in accurately predicting
atomic potentials and force fields in molecular dynamics simulations. Using spherical
harmonics (SH) and tensor products (TP), these equivariant networks gain enhanced physical
understanding, like symmetries and many-body interactions. Beyond encoding physical
insights, SH and TP are also crucial to represent equivariant polynomial functions. In this
work, we analyze the equivariant polynomial functions for the equivariant architecture, and
introduce a novel equivariant network, named PACE. The proposed PACE utilizes edge
booster and the Atomic Cluster Expansion (ACE) technique to approximate a greater number
of SE(3) × Sn equivariant polynomial functions with enhanced degrees. As experimented in
commonly used benchmarks, PACE demonstrates state-of-the-art performance in predicting
atomic energy and force fields, with robust generalization capability across various geometric
distributions under molecular dynamics (MD) across different temperature conditions. Our
code is publicly available as part of the AIRS library https://github.com/divelab/AIRS/.

1 Introduction

Deep learning has led to notable progress in computational quantum chemistry tasks, such as predicting
atomic potentials and force fields in molecular systems (Zhang et al., 2023). Fast and accurate prediction
of energy and force is desired, as it plays crucial roles in advanced applications such as material design
and drug discovery. However, it is insufficient to rely solely on learning from data, as there are physics
challenges that must be taken into consideration. For example, to better consider symmetries inherent in
3D molecular structures, equivariant graph neural networks (GNNs) have been developed in recent years.
By using equivariant features and equivariant operations, SE(3)-equivariant GNNs ensure equivariance of
permutation, translation and rotation. Thus, their internal features and predictions transform accordingly as
the molecule is rotated or translated. Existing equivariant GNNs can specialize in handling features with
either rotation order ℓ = 1 (Schütt et al., 2021; Jing et al., 2021; Satorras et al., 2021; Du et al., 2022; 2023;
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Thölke & Fabritiis, 2022) or higher rotation order ℓ > 1 (Thomas et al., 2018; Fuchs et al., 2020; Liao &
Smidt, 2023; Batzner et al., 2022; Batatia et al., 2022a;b; Unke et al., 2021a; Yu et al., 2023b; Li et al.,
2022), while invariant methods only consider rotation order ℓ = 0 (Schütt et al., 2017; Smith et al., 2017;
Chmiela et al., 2017; Zhang et al., 2018a;b; Schütt et al., 2018; Ying et al., 2021; Luo et al., 2023; Gasteiger
et al., 2020; Liu et al., 2022; Gasteiger et al., 2021). Generally, methods with higher rotation order exhibit
improved performance but at the cost of higher computational complexity. In addition to rotation order, some
equivariant methods (Musaelian et al., 2023; Batatia et al., 2022a;b) also consider many-body interactions in
their model design. These approaches follow traditional principles (Brown et al., 2004; Braams & Bowman,
2009) of decomposing the potential energy surface (PES) as a linear combination of body-ordered functions.
In contrast to standard message passing (Gilmer et al., 2017) that considers interactions between two atoms
in each message, many-body methods aim to incorporate the interactions of multiple atoms surrounding the
central node.

Interestingly, equivariant neural networks leveraging spherical harmonics as edge features can be interpreted
from another perspective of approximating equivariant polynomial functions. This stems from the ability of
spherical harmonics to represent both invariant and equivariant polynomial functions via tensor products.
Additionally, the tensor contraction operation introduced by Atomic Cluster Expansion (ACE) (Drautz, 2019;
Dusson et al., 2022; Kovács et al., 2021) broaden the model’s scope, covering a wider range of polynomial
functions. Thus, the primary aim of this work is to develop a model that exhibits enhanced expressiveness,
particularly for predicting atomic energy and force fields.

In the present study, we expand the scope of equivariant polynomial function analysis, transitioning from
point cloud networks to equivariant networks that aim to predict symmetric physical properties, such as
atomic energy. This analytical extension informs the development of our novel equivariant network, PACE.
Our proposed network effectively integrates an edge booster and many-body interactions through the ACE
technique, which demonstrates an advanced capacity for approximating SE(3)×Sn equivariant functions, with
higher polynomial degrees. Our method is termed PACE as it is based on polynomial function approximation
and ACE. To evaluate the efficacy of our approach, we assess our model on three molecular dynamics
simulation datasets, including rMD17, 3BPA and AcAc, and obtain consistent performance enhancements.
Notably, our model not only achieves state-of-the-art performance in energy and force predictions but also
exhibits strong generalization capabilities in geometric out-of-distribution settings under MD across different
temperatures.

2 Symmetries and Polynomial Functions

2.1 Symmetries

Incorporating physical symmetries into machine learning models is pivotal for tackling quantum chemistry
challenges. This is because numerous quantum properties of molecules inherently exhibit equivariance or
invariance to symmetry transformations. For instance, if we rotate a molecule in 3D space, forces acting
on atoms rotate accordingly while the total energy of the molecule remains invariant. Besides rotation, the
permutation of atoms within a molecule represents another type of symmetry. In such scenarios, the forces on
atoms obey permutation equivariance, while the molecular energy remains invariant to atomic permutations.
To summarize, atomic forces can be characterized as SE(3)-equivariant to rotational transformations and
Sn-equivariant to atomic permutations, reflecting the respective symmetry groups G associated with these
symmetry operations. Concurrently, molecular energy exhibits SE(3)-invariance and Sn-invariance.

Mathematically (Bronstein et al., 2021), given a group G and group action ∗, we say a function f mapping
from source domain Q to target domain Y is G-equivariant if f(g ∗ q) = g ∗ f(q), ∀q ∈ Q, ∀g ∈ G. Similarly,
if f(g ∗ q) = f(q) holds, we say f is G-invariant. Due to the intrinsic SE(3) and Sn equivariant and
invariant symmetries in quantum chemistry, it is natural to encode these symmetries directly into the model
architectures for effectively approximating the function f .
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2.2 Polynomial Functions in Equivariant GNNs

Building on this concept of learning a powerful invariant or equivariant function f , various equivariant networks
have been developed. These networks (Thomas et al., 2018; Batatia et al., 2022b; Yu et al., 2023b) are
designed for mapping 3D molecular structures to inherently symmetric properties, such as energy, force, and
the Hamiltonian matrix. Typically, these networks capture directions r̂ and distances r̄ by using real spherical
harmonics Y (r̂) combined with radial basis functions (rbf). Owing to their equivariance property, spherical
harmonics are advantageous for encoding geometric information and predicting the physical properties of
molecules.

It is noteworthy that spherical harmonics, as partially discussed in Dusson et al. (2022), can also serve as
proper features for representing SE(3) invariant and equivariant polynomial functions with the help of tensor
products. Here, we illustrate how spherical harmonics represent polynomial functions using a specific example.
We start with a polynomial function without SE(3) invariance and equivariance constrain. In this polynomial
function denoted as P D(x, y, z) : R3 → R

1, D is the highest degree of the polynomial terms, and r̂ = (x, y, z).
By observing Equations (1) to (3), we can find polynomial terms of P D(x, y, z) with D f 2 in Y ℓ=0, Y ℓ=1, and
Y ℓ=1 ¹ Y ℓ=1, where ¹ denotes tensor product, C is the coefficients of the spherical harmonics, and Y ℓ=1(r̂)⊗t

represents the tensor product of Y ℓ=1(r̂) with itself, repeated t times. That’s to say, the polynomial functions
P D≤2(x, y, z) can be represented as a linear combination of entries in Y ℓ=0, Y ℓ=1, and Y ℓ=1 ¹ Y ℓ=1.

Next, let’s consider the SE(3) equivariant polynomial function P
D≤2
SE(3)(x, y, z) : R

3 → R
K , and we use

P
D≤2
SE(3)[k] to denote the k-th output of this function, where 1 f k f K. Note that each output of this

function is still a polynomial function, which is denoted as P
D≤2
SE(3)[k] ∈ {P D(x, y, z)|D f 2}. Therefore,

there exists a linear function mapping from Y ℓ=0(r̂), Y ℓ=1(r̂), Y ℓ=1(r̂)⊗2 into P
D≤2
SE(3)[k](x, y, z), 1 f k f K,

which then comprise P
D≤2
SE(3)(x, y, z). Given that both the input features and polynomial functions are SE(3)

equivariant, the corresponding linear mapping also retains this equivariance. From this, we can conclude
that for any polynomial function P

D≤2
SE(3)(x, y, z), there exists an equivariant linear function mapping from

Y ℓ=0(r̂), Y ℓ=1(r̂), and Y ℓ=1(r̂)⊗2 into this function. This principle of linear universality is also discussed in
Dym & Maron (2020).

Y ℓ=0(r̂) = Cℓ=0 ·
[

1
]

(1)

Y ℓ=1(r̂) = Cl=1 ·





y

z

x



 (2)

Y ℓ=1(r̂) ¹ Y ℓ=1(r̂) = Y ℓ=1(r̂)⊗2 = Cl=1CT
l=1 ·





y2 yz yx

zy z2 zx

xy xz x2



 (3)

As previously elucidated, spherical harmonics and their tensor products provide a way to approximate
the polynomial functions, ensuring the preservation of SE(3)-equivariance. In existing equivariant graph
networks (Batzner et al., 2022; Batatia et al., 2022b; Liao & Smidt, 2023), spherical harmonics usually serve as
components of edge messages to provide SE(3) equivariant features. For Sn permutation equivariance, Graph
Neural Networks (GNNs)(Kipf & Welling, 2017; Veličković et al., 2018; Gao & Ji, 2019; Liu et al., 2020; Cai
et al., 2021; Chen et al., 2024) employ a message passing scheme to aggregate neighboring messages for each
central node. Therefore, by adhering to the aggregation of this message passing scheme, SE(3)-equivariant
features can successfully attain Sn equivariance. Specifically, edge messages are constructed using spherical
harmonics Y ℓ=1(r̂ij), leading to aggregated equivariant features that are analogous to

fxi
=

∑

j∈Ni

Y ℓ=1(r̂ij). (4)
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Equivariant GNNs like Anderson et al. (2019) and Batatia et al. (2022b) further implement architectures
akin to

f
′

xi
=

∑

j1∈Ni

Y ℓ=1(r̂ij1
) ¹

∑

j2∈Ni

Y ℓ=1(r̂ij2
), (5)

using tensor product within their update modules. Both the basic aggregated message fxi
and its updated

form f
′

xi
qualify as SE(3) × Sn equivariant polynomial functions with the highest degree D f 2. However,

they do not cover all SE(3) × Sn equivariant polynomial functions with the highest degree D. For example,

f̂xi
=

∑

j∈Ni

Y ℓ=1(r̂ij)⊗2, (6)

is also a SE(3)×Sn equivariant polynomial function with D = 2, but it is not covered by f
′

xi
as demonstrated

in appendix E. Therefore, developing a model architecture capable of covering a broader range of equivariant
polynomial functions is crucial for enhancing its expressiveness.

2.3 Atomic Energy with Local Environment for Equivariant Polynomial Functions

The approximation of polynomial functions in point cloud networks has been explored previously, as detailed
in Section 3.1 (Maron et al., 2019; Keriven & Peyré, 2019; Dym & Maron, 2020). In this series of analyses,
the architecture’s capacity to approximate invariant or equivariant polynomial functions is demonstrated,
using 3D coordinates (p1, p2, · · · , pn) as inputs. However, the analysis for equivariant networks in predicting
symmetric physical properties is still underexplored. In energy and force prediction tasks, atomic cluster
expansion (ACE) is a widely used technique for approximating atomic energy. ACE decomposes the total
energy Ei into a sum of individual atomic energies Ei for each atom i, and then uses local environments to
learn these atomic energies, formulated as

Ei(θi) =
∑

j

∑

v

c(1)
v ϕv (rij) +

1

2

∑

j1j2

∑

v1v2

c(2)
v1v2

ϕv1
(rij1

) ϕv2
(rij2

) +

1

3!

∑

j1j2j3

∑

v1v2v3

c(3)
v1v2v3

ϕv1
(rij1

) ϕv2
(rij2

) ϕv3
(rij3

)

+ · · · , (7)

where θi = (rij1
, · · · , rijN

) denotes N edges in the atomic environment, rij denotes edge direction and
distance from atom i to atom j, ϕ denotes the single edge basis function, and c represents the coefficients.
Therefore, in the context of approximating atomic energy, as opposed to their use in point cloud networks,
the polynomial function of node features fxi

here focuses on the N -edge system θi rather than on atomic
coordinates.

The research by Dym & Maron (2020) introduces the concept of D-spanning function sets to denote the
capability of covering SE(3) × Sn equivariant polynomial function with the highest degree D. Expanding
upon their work, a D-spanning function for approximating atomic energy within an N -bond system is defined
as

Q
(t)
K (θi) =

N∑

j1,j2,...,jK =1

r⊗t1

ij1
¹ r⊗t2

ij2
¹ . . . ¹ r⊗tK

ijK
, (8)

where K g D, and t = (t1, · · · , tK). Then, a D-spanning set is defined as

QD
K =

{

º ◦ Q
(t)
K (θi) | ∥t∥1 f D

}

, (9)

where º denotes an equivariant linear function mapping. In Appendix A.5, we provide the mathematical
definition of D-spanning, and elucidate the relationship between D-spanning function sets and the model’s
expressiveness.
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2.4 Motivation of PACE

Inspired by the goal of approximating SE(3) × Sn equivariant functions with full spanning and higher
polynomial degrees for the atomic energy based on the local atomic environment, in this work, we propose
an equivariant network PACE following the message passing scheme. To briefly summarize using the same
example from Equation (4), PACE incorporates a novel edge booster that leverages the tensor product of
spherical harmonics from r⊗t

ij , t f ℓmax to construct edge messages analogous to r⊗t
ij , t f ℓmax ∗ Nboost. Hence,

the aggregated equivariant features in PACE become

fxi
=

∑

j∈Ni

r⊗t
ij , t f ℓmax ∗ Nboost (10)

Then, PACE utilizes an update module with the symmetric contraction module from MACE to conduct
many-body interaction with correlation v and the corresponding equivariant polynomial function defined as

f̂xi
=

∑

j1,··· ,jv∈Ni

r⊗t1

ij1
¹ · · · ¹ r

⊗tvmax

ijvmax
︸ ︷︷ ︸

vmax times

t1, · · · , tv f ℓmax ∗ Nboost. (11)

Consequently, the updated equivariant features f̂xi
can effectively cover SE(3) × Sn equivariant functions

with formulation Equation (11) and achieve D-spanning with D = min{ℓmax ∗ Nboost, vmax}.

3 Related Works

3.1 Universality Analysis

Universality is a powerful property for neural networks that can approximate arbitrary functions. While Zaheer
et al. (2017); Maron et al. (2019); Keriven & Peyré (2019) study the universality of permutation invariant
networks, several works have recently studied the rotational equivariant networks. Dym & Maron (2020) takes
use of the proposed tensor representation to build D-spanning family and shows that Tensor Field Networks
(TFN) (Thomas et al., 2018) is proved to be a universal equivariant network capable of approximating arbitrary
equivariant functions defined on the point coordinates of point cloud data. Furthermore, GemNet (Gasteiger
et al., 2021) uses the conclusion in Dym & Maron (2020), and is proved to be a universal GNN with directed
edge embeddings and two-hop message passing.

3.2 Equivariant Graph Neural Networks

In recent years, equivariant graph neural networks have been developed for 3D molecular representation learn-
ing, as they are capable of effectively incorporating the symmetries required by the specific task (Ruddigkeit
et al., 2012; Chmiela et al., 2017; Yu et al., 2023a; Khrabrov et al., 2022). Existing equivariant 3D GNNs can
be broadly classified into two categories, depending on whether they utilize order ℓ = 1 equivariant features
or higher order ℓ > 1 equivariant features. Methods belonging to the first category (Satorras et al., 2021;
Schütt et al., 2021; Deng et al., 2021; Jing et al., 2021; Thölke & Fabritiis, 2022) achieve equivariance by
applying constrained operations on order 1 vectors, such as vector scaling, summation, linear transformation,
vector product, and scalar product. The second category of methods (Thomas et al., 2018; Fuchs et al., 2020;
Liao & Smidt, 2023; Batzner et al., 2022; Batatia et al., 2022a;b; Brandstetter et al., 2021) predominantly
employs tensor products (TP) to preserve higher-order equivariant features, with some works (Luo et al.,
2024) focusing on accelerating tensor product computations.

3.3 Atomic Cluster Expansion

Molecular potential and force field are crucial physical properties in molecular analysis. To approximate these
properties, the atomic cluster expansion (ACE) (Drautz, 2019; Kovács et al., 2021) is used to approximate
the atomic potential. Recently, several neural networks aiming to predict atomic potential and forces have
been developed to consider many-body interactions by incorporating ACE into their model architectures.
Specifically, BOTNet (Batatia et al., 2022a) takes multiple message passing layers to encode the many-body
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interaction and analyzes the body order for various message passing schemes. MACE (Batatia et al., 2022b)
takes generalized Clebsch-Golden coefficients to couple the aggregated message to incorporate higher-order
interactions. Allegro (Musaelian et al., 2023) uses a series of tensor product layers to calculate the equivariant
representations without using message passing, learning many-body interactions.

3.4 Comparison to Existing Works

A NequIP (Batzner et al., 2022) layer builds its message using the original spherical harmonics, and
its output irreducible representations can cover equivariant polynomials defined as

∑

j∈Ni
r⊗t

ij , t f
ℓmax, which can form a D-spanning family with the highest degree D = 1. For a MACE layer,

the output irreducible representations can cover the equivariant polynomials defined as Q
(t)
K=vmax

=
∑

j1,··· ,jvmax ∈Ni
r⊗t1

ij1
¹ · · · ¹ r

⊗tvmax

ijvmax
︸ ︷︷ ︸

vmax times

, t1, · · · , tvmax
f ℓmax. , which can form a D-spanning family with

degree D = max {ℓmax, vmax}. For the proposed PACE layer, the output irreducible representations cover

Q
(t)
K=vmax

=
∑

j1,··· ,jvmax ∈Ni
r⊗t1

ij1
¹ · · · ¹ r

⊗tvmax

ijvmax
︸ ︷︷ ︸

vmax times

, t1, · · · , tvmax
f ℓmax ∗ Nboost, spanning a D-spanning fam-

ily with D = max {ℓmax ∗ Nboost, vmax}, as explained in Section 2.4. During our experiments, we set ℓmax = 3
and vmax = 3 following previous work (Batatia et al., 2022b; Musaelian et al., 2023) for a fair comparsion.
Although both MACE and PACE can form a D-spanning family with D = 3, our PACE model can still
approximate a greater number of polynomial functions with D > 3 in this scenario. Moreover, by using
additional self-interactions, PACE needs fewer channels to approximate the same amount of positions in
D-spanning functions.

4 The Proposed PACE

The node features x0
i are initialized through a linear transformation applied to its atomic type. Edges

constructed based on cutoff distance have orientations r̂ij denoted by spherical harmonics Y ℓ(r̂ij), and
pairwise distances r̄ij embedded using a learnable radial basis function R. The proposed PACE comprises two
distinct message passing layers followed by an output layer. The illustration of PACE architecture is provided
in Figure 1. In this section, we will introduce the architecture of our proposed PACE model as well as the
corresponding equivariant polynomial functions from the perspective of irreducible representations. Detailed
information about the irreducible representations used in equivariant GNNs can be found in Appendix A.1.
As shown in Appendix B.1, the irreducible representations can also represent a D-spanning family.

Theorem 4.1. For any D-spanning function Q
(t)
K (θi) appeared in QD

K and for any position P = (p1, p2, · · · , pk)
in tensor representation, where pk ∈ R

3 denotes the element position, if there exists w1 and irreps1 such that

Q
(t)
K (θi)(P ) =

∑

ℓm wℓm
1 irrepsℓm

1 , and the set of irreps1 forms a D-spanning family.

Definition 4.2. If the set of irreps1 forms a D-spanning family Q
(t)
K (θi), we can say that the irreducible

representation irreps1 represents Q
(t)
K (θi).

4.1 The First Layer

Following the message passing neural network, the first step is to build edge messages from neighboring nodes
to the central node. As discussed in Section 2.4, the construction of these edge messages for node pairs in
equivariant neural networks generally requires a tensor product to combine edge spherical harmonics and
node features at each layer. Diverging from this conventional design, the first layer of PACE uses the edge
booster two consecutive tensor products, which means Nboost = 2, to construct the edge message as

m1
ij,1 = Y (r̂ij) ¹w1,ij

MLP(x0
i ∥ x0

j ), (12)

m1
ij,2 = Y (r̂ij) ¹w2,ij

m1
ij,1, (13)

where the learnable weights w1,ij and w2,ij applied to each tensor product are obtained by

w1,ij = MLP(R(r̄ij)), (14)
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Figure 1: An architecture overview of PACE. A: The first message passing layer. The initial node features x0
i

and x0
j are concatenated and transformed by an MLP. Then, a tensor product is applied to the transformed

node features and edge spherical harmonics Sphij with an RBF and MLP transformed edge distance as
learnable weights. Next, its output is further combined with Sphij using another tensor product, and the
weights involve the initial node features and edge distance. These operations in the yellow box comprise
the edge booster, aiming to enhance the model’s expressiveness. The obtained edge-boosted messages
are aggregated to form the atomic base. Then, an update module comprising a polynomial many-body
interaction module and a skip connection is used to update the features of central nodes. B: The second
message passing layer. A tensor product is applied to the edge message and updated node features that
are obtained from the first layer. The learnable weights of the tensor product are based on the initial node
features and distance of each neighboring pair. Then, edge messages are aggregated and node features are
updated similarly to those in the first layer. C: An example of 4-body interaction in ACE. We aim to fit∑

ϕv1
(rij1

) ¹
∑

ϕv2
(rij2

) ¹
∑

ϕv3
(rij3

) using Aiv1
¹ Aiv2

¹ Aiv3
, where {ϕ} denotes the atomic base in ACE.

D: Polynomial many-body interaction module. The atomic base Ai is fed to multiple self-interaction layers
separately to produce different Aiv. Then, tensor contraction is performed to produce ãi. E: Output. The
invariant part of node features produced by both layers are transformed and summed to predict the deviation
from the total molecular energy to its average.

w2,ij = MLP(R(r̄ij)) + MLP(x0
i ∥ x0

j ), (15)

considering the atomic types for node pairs and their pairwise distances. Then, we obtain the edge message
by concatenating these two together, denoted as

m1
ij = (m1

ij,1 ∥ m1
ij,2). (16)
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As shown in Appendix B.1, the edges features from spherical harmonics represent r¹t
ij , t f ℓmax, with ℓmax = 3.

Then the second tensor product increases it to r¹t
ij , t f Nboost ∗ ℓmax with Nboost = 2 using Lemma B.2.

After obtaining edge messages via the edge booster, we aggregate neighboring messages to the central node as

A1
i =

1

|N (i)|

∑

j∈N (i)

m1
ij , (17)

where |N (i)| is the number of neighbor nodes. Here, Ai is analogous to the atomic base of the central node in
the original ACE method (Drautz, 2019; Dusson et al., 2022; Kovács et al., 2021). Meanwhile, the equivariant
polynomial form of Ai is

∑

j∈Ni
r¹t

ij , t f 6.

Next, Ai is processed by a polynomial many-body interaction module to produce features ãi. The corresponding
equivariant polynomial form of ãi is Q

(t)
K=3(θi) =

∑

j1,j2,j3∈Ni
r¹t1

ij1
¹ r¹t2

ij2
¹ r¹t3

ij3
, t1, t2, t3 f 6 for P D(θi)

with D f 3 as shown in Appendix B.2.2. These features are then combined with the initial node features to
update for each node. Details of the polynomial many-body interaction module are described in Section 4.3,
and the design of the first layer is illustrated in Figure 1A.

4.2 The Second Layer

The second layer of PACE (Figure 1B) involves only one tensor product to construct the message. However,
unlike NeuquIP and MACE, which leverage the original edge spherical harmonics, we instead use the
edge-boosted message m1

ij obtained from the first layer. Specifically,

m2
ij = m1

ij ¹w3,ij
x1

j , (18)

where x1
i denotes the updated node features from the first layer and the learnable weights are

w3,ij = MLP(R(r̄ij)) + MLP(x0
i ∥ x0

j ). (19)

Next, messages are aggregated for the central nodes. Finally, another polynomial many-body interaction
module is applied to update node features. The L = 0 invariant features outputted by both layers are further
used for energy prediction.

4.3 Polynomial Many-Body Interaction Module

The polynomial many-body interaction module playing an important role in both PACE layers is proposed to
incorporate many-body interactions by mixing the atomic base Ai. As shown in Figure 1D, we first use vmax

different self-interactions to map the input atomic base Ai to different bases Aiv following

Aℓ
ivc′ =

{

W ℓ
vc′cAℓ

ic + b ℓ = 0

W ℓ
vc′cAℓ

ic ℓ > 0,
(20)

where ℓ is the rotation order of irreps, c is the channel index for Ai and c′ is the channel index for Ai. Then,
we use tensor contraction (Batatia et al., 2022b) with generalized Clebsch-Golden to fuse multiple atomic
bases. Tensor contraction is illustrated in Appendix A.4

As shown in Equation (25) in Appendix, in the case of two irreps, Clebsch-Gordan coefficients Cℓ3m3

ℓ1m1,ℓ2m2
are

used to maintain equivariance when fusing two irreps with rotation orders ℓ1 and ℓ2 to the output ℓ3, and
the triplet (ℓ1, ℓ2, ℓ3) is defined as a path. When fusing N irreps, the generalized Clebsch-Gordan coefficients
used to maintain the equivariance can be defined as

C
L[N ]M[N ]
ℓ1m1,...,ℓnmn

= CL2M2

ℓ1m1,ℓ2m2
CL3M3

L2M2,ℓ3m3
. . . CLN MN

LN−1MN−1,ℓN mN
, (21)

where L[N ] = (ℓ1, L2, · · · LN ) with |Li−1 − ℓi| f Li f |Li−1 + ℓi|, Li ∈ N, ∀i g 2, i ∈ N+, and the path is
shown as ¸[N ] = (ℓ1, ℓ2, L2, ℓ3, L3, · · · , ℓN−1, LN−1, ℓN , LN ). Then, the output irreps is contracted one by
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one to consider the coupled many-body interactions shown as

ãLN MN

i(v−1),Lv−1Mv−1

=
∑

ℓv

ℓv
∑

mv=−ℓv

Aiv,lvmv

∑

¸[v]

(

Wv,¸ ∗ C
L[v]M[v]
ℓ1m1,...,ℓvmv

+ ãLN MN

iv,LvMv

)

, (22)

where W is the path weight, ã is the intermediate irreps, and v ∈ N+ starts from N to 1 to incorporate
N-body interactions. Note that C = 1 and L0 = 0 when v = 1, and ã = 0 when v = N .

In contrast to MACE (Batatia et al., 2022b) applying tensor contraction to the atomic base Ai, our PACE
first takes multiple self-interactions to distinguish the atomic base from the same Ai to different Aiv for
different body orders before applying the contraction. According to Darby et al. (2023), the output of
tensor contraction in MACE is defined as the tensor decomposed product basis while the one obtained in
PACE is called tensor sketched product basis. Although Darby et al. (2023) has demonstrated that the
tensor-decomposed basis can consistently reconstruct the tensor-sketched basis with a factor of vmax times
channels, we implement the latter one in PACE to improve the model expressiveness without increasing the
number of channels.

4.4 Output

As illustrated in Figure 1E, to compute the total energy of the molecule, we extract and transform the
invariant part of node features produced by each PACE layer as

E = Ē +

N
∑

i=1

(MLP(x1
i,ℓm=00) + MLP(x2

i,ℓm=00)), (23)

where Ē is the averaged total energy of the training set, and N represents the number of atoms in a molecule.
Once the total energy is predicted, we then use fi = − ∂E

∂pi
to calculate the force acting on each atom, as it

ensures energy conservation.

4.5 Summary of Key Contributions

Edge Booster The first key contribution of our work is the edge booster, which is computed by Equa-
tions (12) to (16) and illustrated as the yellow-boxed operations in Figure 1A. Our edge booster leverages
consecutive tensor products on spherical harmonics which helps enhance an equivariant model’s ability
to approximate higher-degree polynomial functions. This idea is shown in Equation (10) and the overall
polynomial degree is shown in Appendix B.2.2. There might be various implementations to build an edge
booster following the idea of Equation (10). However, we choose to design our edge booster as described
by Equations (12) to (16) for two reasons. First, our edge-boosted message only considers spherical harmonics
and atomic types of nodes. Note that the computation of our edge booster does not involve node features
that are updated layer by layer. Such a design follows our motivation to create an independent edge booster
module that can produce an edge-boosted message to replace the original edge spherical harmonics used in
each layer. Based on this design, we only need to compute the edge booster once in the first layer and we can
reuse the edge-boosted message in all other layers. As shown in Figure 1A&B, the edge-boosted message m1

ij

is used in both layers. Hence, the design of our edge booster also considers computational costs. In summary,
the result of our edge booster can be used in each layer to help approximate more polynomial functions with
higher degree in an efficient manner. A detailed cost analysis of edge booster is provided in Appendix D.2.3.

Additional Self-interaction Layers The second enhancement comes from the additional self-interaction
layers used in the polynomial many-body interaction module. In Section 4.3, we use the tensor contraction
proposed in MACE (Batatia et al., 2022b) to approximate many-body interactions, but we apply additional
self-interactions (SI) to the atomic base Ai so that we use different inputs of the tensor contraction. In MACE,
the atomic base Ai is directly fed into the tensor contraction, while the atomic base Ai in our design is first
fed to multiple self-interaction layers separately to produce different atomic bases Aiv. The functionality
of these self-interactions is to increase the ability to approximate more positions in D-spanning functions.
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Table 1: Performance on the rMD17 dataset. Mean absolute errors (MAE) are reported for both energy
(E) and force (F) predictions, with meV and meV/Å as units, respectively. Bold numbers highlight the best
performance.

ACE FCHL GAP ANI GemNet (T/Q) NequIP BOTNet Allegro MACE Ours

Aspirin
E 6.1 6.2 17.7 16.6 - 2.3 2.3 2.3 2.2 1.7
F 17.9 20.9 44.9 40.6 9.5 8.2 8.3 7.3 6.6 5.8

Azobenzene
E 3.6 2.8 8.5 15.9 - 0.7 0.7 1.2 1.2 0.5
F 10.9 10.8 24.5 35.4 - 2.9 3.3 2.6 3.0 2.2

Benzene
E 0.04 0.35 0.75 3.3 - 0.04 0.03 0.4 0.4 0.02
F 0.5 2.6 6.0 10.0 0.5 0.3 0.3 0.2 0.3 0.2

Ethanol
E 1.2 0.9 3.5 2.5 - 0.4 0.4 0.4 0.4 0.3
F 7.3 6.2 18.1 13.4 3.6 2.8 3.2 2.1 2.1 1.8

Malonaldehyde
E 1.7 1.5 4.8 4.6 - 0.8 0.8 0.6 0.8 0.5
F 11.1 10.3 26.4 24.5 6.6 5.1 5.8 3.6 4.1 3.6

Naphthalene
E 0.9 1.2 3.8 11.3 - 0.9 0.2 0.2 0.5 0.2
F 5.1 6.5 16.5 29.2 1.9 1.3 1.8 0.9 1.6 0.9

Paracetamol
E 4.0 2.9 8.5 11.5 - 1.4 1.3 1.5 1.3 0.9
F 12.7 12.3 28.9 30.4 - 5.9 5.8 4.9 4.8 4.0

Salicylic acid
E 1.8 1.8 5.6 9.2 - 0.7 0.8 0.9 0.9 0.5
F 9.3 9.5 24.7 29.7 5.3 4.0 3.1 4.3 2.9 2.9

Toluene
E 1.1 1.7 4.0 7.7 - 0.3 0.3 0.4 0.5 0.2
F 6.5 8.8 17.8 24.3 2.2 1.6 1.9 1.8 1.5 1.1

Uracil
E 1.1 0.6 3.0 5.1 - 0.4 0.4 0.6 0.5 0.3
F 6.6 4.2 17.6 21.4 3.8 3.1 3.2 1.8 2.1 2.0

Specifically, to approximate n different positions in D-spanning function, PACE without SI needs vmaxn

channels, while PACE with SI only needs n channels. This is because the SI in the polynomial many-body
interaction module enables every single channel in PACE to approximate one position in D-spanning functions.
The corresponding proof is shown in Appendix B.2.2. The total number of self-interactions equals the max
correlation order vmax, where vmax corresponds to (body order − 1). In our implementations, we use three
self-interactions because the highest body order we consider in each layer is 4. Although vmaxn channels
without self-interactions can achieve the same expressiveness theoretically, we find adding these additional
self-interactions can significantly enhance the empirical performance.

5 Experiments

We conduct experiments on three molecular dynamics simulation datasets, the revised MD17 (rMD17), 3BPA
and AcAc datasets. The proposed PACE is trained using these datasets to predict both the invariant energy
of the entire molecule and the equivariant forces acting on individual atoms. Among our baselines (Kovács
et al., 2021; Christensen et al., 2020; Bartók et al., 2010; Smith et al., 2017; Gasteiger et al., 2021; Batzner
et al., 2022; Batatia et al., 2022a; Musaelian et al., 2023; Batatia et al., 2022b), NequIP, BOTNet, Allegro
and MACE are all equivariant graph neural networks (GNNs) with rotation order ℓ > 1. In particular,
BOTNet, Allegro, and MACE incorporate many-body interactions, while ACE is a parameterized physical
model that does not belong to the class of neural networks. Our experiments are implemented with PyTorch
1.11.0 (Paszke et al., 2019), PyTorch Geometric 2.1.0 (Fey & Lenssen, 2019), and e3nn 0.5.1 (Geiger & Smidt,
2022). In experiments, we train models on a single 11GB Nvidia GeForce RTX 2080Ti GPU and Intel Xeon
Gold 6248 CPU.

5.1 The rMD17 Dataset

Dataset. The rMD17 (Christensen & Von Lilienfeld, 2020) is a benchmark dataset that comprises ten
small organic molecular systems. Each molecule in the dataset is accompanied by 1000 3D structures, which
were generated through meticulously accurate ab initio molecular dynamic simulations employing density
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Table 2: Performance on the 3BPA dataset. Root-mean-square errors (RMSE) are reported for both energy
(E) and force (F) predictions, with meV and meV/Å as units, respectively. Standard deviations are calculated
over three runs with different seeds. Bold numbers highlight the best performance.

ACE NequIP BOTNet Allegro MACE Ours

300K
E 1.1 3.28 (0.12) 3.1 (0.13) 3.84 (0.10) 3.0 (0.2) 2.4 (0.1)
F 27.1 10.77 (0.28) 11.0 (0.14) 12.98 (0.20) 8.8 (0.3) 9.1 (0.1)

600K
E 24.0 11.16 (0.17) 11.5 (0.6) 12.07 (0.55) 9.7 (0.5) 7.9 (0.2)
F 64.3 26.37 (0.11) 26.7 (0.29) 29.11 (0.27) 21.8 (0.6) 21.4 (0.3)

1200K
E 85.3 38.52 (2.00) 39.1 (1.1) 42.57 (1.79) 29.8 (1.0) 29.6 (0.4)
F 187.0 76.18 (1.36) 81.1 (1.5) 82.96 (2.17) 62.0 (0.7) 60.7 (2.0)

Dihedral Slices
E - 23.3 - 16.3 (1.5) 7.9 (0.6) 7.6 (0.4)
F - 23.1 - 20.0 (1.2) 16.5 (1.7) 16.0 (0.5)

Table 3: Performance on the AcAc dataset. Root-mean-square errors (RMSE) are reported for both energy
(E) and force (F) predictions, with meV and meV/Å as units, respectively. Standard deviations are calculated
over three runs with different seeds. Bold numbers highlight the best performance.

BOTNet NequIP MACE Ours

300K
E 0.89 (0.0) 0.81 (0.04) 0.9 (0.03) 0.73 (0.02)
F 6.3 (0.0) 5.90 (0.38) 5.1 (0.1) 4.2 (0.1)

600K
E 6.2 (1.1) 6.04 (1.26) 4.6 (0.3) 3.8 (0.6)
F 29.8 (1.0) 27.8 (3.29) 22.4 (0.9) 16.9 (0.3)

functional theory (DFT). These structures capture the diverse conformational space of the molecules and are
valuable for studying their quantum properties.

Setup. In our experiments, we use officially provided random splits. Next, we use the same splitting seed as
MACE to further divide the training set into a training set comprising 950 structures and a validation set
comprising 50 structures. Then, we perform our evaluations on the test set with 1000 structures. Training
details are provided in Appendix C.2.

Results. Table 1 summarizes the performance of our proposed method in comparison to baselines on all ten
molecules in the rMD17 dataset. Mean absolute errors (MAE) are employed as the evaluation metric for
both energy and force predictions. It is worth noting that our PACE demonstrates state-of-art performance
in energy prediction across all molecules. Specifically, we achieved significant improvements of 33.3%, 33.3%
and 30.8% on Benzene, Toluene, and Paracetamol, respectively. In terms of force prediction, PACE achieves
state-of-the-art performance on nine out of the ten molecules, exhibiting substantial improvements of 26.7%,
16.7% and 15.4% on Toluene, Paracetamol, and Azobenzene, respectively. Besides, we attain the second-best
on Uracil. The comparison of algorithm efficiency and the affect from rotation order can be found in
Appendix D.2 and D.3.

5.2 The 3BPA & AcAc Datasets

Dataset. The 3BPA dataset (Kovács et al., 2021) is also generated through molecular dynamic simulations
employing Density Functional Theory (DFT). Unlike rMD17, this dataset is specifically focused on a single
flexible molecule, namely the 3BPA molecule. 3BPA is characterized by three freely rotating angles, which
primarily induce structural changes at varying temperatures. The AcAc dataset (Batatia et al., 2022a) is also
generated through molecular dynamic simulation using Density Functional Theory (DFT). Similar to 3BPA,
this dataset specifically focuses on a single flexible molecule, Acetylacetone. Given that many real-world
applications involve temperature fluctuations, evaluating a model’s robustness and extrapolation capabilities
under varying temperature conditions is crucial for predicting molecular behavior accurately. 3BPA and AcAc
datasets are frequently employed to assess a model’s out-of-distribution (OOD) generalization capability to
MD geometric distributions across different temperatures for the same molecule.
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Table 4: Results of ablation experiments. Compared to PACE, PACE (-EB) removes edge booster in the first
layer, and PACE (-SI) uses no additional self-interaction in the polynomial many-body interaction module.
Mean absolute errors (MAE) are reported for both energy (E) and force (F) predictions, with meV and meV/
Å as units, respectively. Bold numbers highlight the best performance.

AcAc 300K AcAc 600K

PACE
E 0.73 (0.02) 3.8 (0.6)
F 4.2 (0.1) 16.9 (0.3)

PACE (-EB)
E 0.84 (0.04) 3.8 (0.1)
F 4.9 (0.1) 18.0 (0.3)

PACE (-SI)
E 0.95 (0.01) 4.0 (0.2)
F 5.7 (0.1) 21.3 (1.0)

Setup. For both 3BPA and AcAc, We follow MACE to train our model using a training set consisting of
450 structures and a validation set comprising 50 structures. Both the training and validation sets were
sampled at 300K. Both 3BPA and AcAc have two test sets sampled at 300K and 600K. 3BPA has another
test set sampled at 1200K. Moreover, 3BPA has an additional test set, including optimized conformations
with dihedral slices, where two dihedral angles are fixed and the third angle varies from 0 to 360 degrees.
This test set probes regions of the potential energy surface (PES) that are distant from the training set. We
provide training details in Appendix C.2.

Results. Table 2 and Table 3 summarize the performance of our proposed method in the 3BPA and AcAc
datasets, respectively. Here, root-mean-square error (RMSE) is used as the evaluation metric. On 3BPA
dataset, the proposed PACE shows comparable performance to MACE, while outperforming other baseline
methods significantly. On AcAc dataset, our PACE demonstrates significant performance improvement from
all baselines. Moreover, we use the model trained on 3BPA to conduct molecular dynamic simulations and
the comparison of PACE-generated trajectories and the ground-truth trajectories is shown in Appendix D.1.

5.3 Ablation Studies

The first ablation study aims to demonstrate the effectiveness of the proposed edge booster, designed to
facilitate a higher polynomial degree. In this experiment, we remove the second tensor product, namely the
edge booster, from the first layer of PACE. As indicated in Table 4, this comparison reveals that the edge
booster, which enhances expressiveness, indeed imrpoves the model’s performance in force field prediction.

The second ablation study is for demonstrating the effectiveness of using different atomic bases Aiv for
different body orders in many-body interaction. In this experiment, we remove additional self-interaction
operations and directly use Ai in symmetric contraction in the polynomial many-body interaction module. The
comparison shown in Table 4 justifies that different atomic bases Aiv produced by additional self-interactions
can improve the expressiveness and model performance without increasing the number of channels.

6 Conclusion

In this work, we introduced PACE, a new equivariant network for atomic potential and force field predictions.
Our PACE is designed from two perspectives, increasing the ability to approximate more positions in D-
spanning functions, as well as expanding the space to cover a greater number of higher degree polynomial
equivariant functions. The integration of the edge booster and Atomic Cluster Expansion (ACE) technique
with additional self-interactions allows PACE to approximate SE(3) × Sn equivariant polynomial functions
with higher degrees, thereby improving the accuracy in prediction. The comprehensive experimental results
and analyses provide compelling evidence for the efficacy of the proposed PACE model. In the future, we aim
to advance the development of models capable of approximating polynomial functions of even higher degrees
while simultaneously maintaining high computational efficiency.
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A Background and Related Work

A.1 Spherical Harmonics and Irreducible Representation

To encode geometric information of molecules into SE(3)-equivariant features, spherical harmonics are used
for its equivariance property. Specifically, we use real spherical harmonic basis functions Y to encode an
orientation r̂ij between a node pair. If the molecule is rotated by a rotation matrix T in 3D coordinate
system, then we have:

qℓY ℓ(T r̂ij) = (Dℓ(T )qℓ)Y ℓ(r̂ij), (24)

where ℓ ∈ [0, L] is the degree, qℓ with size 2ℓ + 1 denotes coefficients of spherical harmonics, and the Wigner
D-matrix D

ℓ(T ) with size (2ℓ + 1) × (2ℓ + 1) specifies the corresponding rotation acting on coefficients
qℓ. In practice, equivariant features are often represented by irreducible representations (irreps), which
correspond to the coefficients of real spherical harmonics. Concretely, irreducible representations are formed
by the concatenation of multiple type-ℓ vectors, where ℓ ∈ [0, L]. More detailed explanation about irreducible
representations can be found in Liao & Smidt (2023).

A.2 Tensor Product

Equivariant networks using higher order ℓ > 1 equivariant features (Thomas et al., 2018; Fuchs et al., 2020;
Liao & Smidt, 2023; Batzner et al., 2022; Batatia et al., 2022a;b) predominantly employs tensor products
(TP) to preserve higher-order equivariant features. Tensor product operates on irreducible representations u

of rotation order ℓ1 and v of rotation order ℓ2, yielding a new irreducible representation of order ℓ3 as

(uℓ1 ¹ vℓ2)ℓ3

m3
=

ℓ1
∑

m1=−ℓ1

ℓ2
∑

m2=−ℓ2

C
(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)u

ℓ1

m1
vℓ2

m2
, (25)

where C denotes the Clebsch-Gordan (CG) coefficients (Griffiths & Schroeter, 2018) and m ∈ N denotes the
m-th element in the irreducible representation. Here, ℓ3 satisfies |ℓ1 − ℓ2| f ℓ3 f ℓ1 + ℓ2, and ℓ1, ℓ2, ℓ3 ∈ N.
High-order equivariant 3D GNNs commonly use tensor products on the irreducible representations of neighbor
nodes and edges to construct messages as

mℓo

ij =
∑

ℓi,ℓf

R(ℓi,ℓf )(r̄ij)Y ℓf (r̂ij) ¹ xℓi

j , (26)

where |ℓi − ℓf | f ℓo f ℓi + ℓf , xj denotes features of node j, and R is a learnable non-linear function that
takes the embedding of pairwise distance r̄ij as input.

A.3 Atomic Cluster Expansion

Molecular potential and force field are crucial physical properties in molecular analysis. To approximate these
properties, the atomic cluster expansion (ACE) (Drautz, 2019; Kovács et al., 2021) is used to approximate
the atomic potential denoted as

Ei(θi) =
∑

j

∑

v

c(1)
v ϕv (rij) +

1

2

∑

j1j2

∑

v1v2

c(2)
v1v2

ϕv1
(rij1

) ϕv2
(rij2

)

+
1

3!

∑

j1j2j3

∑

v1v2v3

c(3)
v1v2v3

ϕv1
(rij1

) ϕv2
(rij2

) ϕv3
(rij3

) + · · · , (27)

where θi = (rij1
, · · · , rijN

) denotes the N bonds in the atomic environment, ϕ is the single bond basis
function and c is the coefficients. The computational complexity of modeling many-body potential increases
exponentially with number of neighbors. To reduce the complexity, ACE further makes use of density trick
to calculate the atomic energy via atomic base Aiv =

∑

j ϕv(rij), which has a linear complexity with the
number of neighbors, denoted as

Ei(θi) =
∑

v

c(1)
v Aiv +

v1gv2
∑

v1v2

c(2)
v1v2

Aiv1
Aiv2

+

v1gv2gv3
∑

v1v2v3

c(3)
v1v2v3

Aiv1
Aiv2

Aiv3
+ · · · . (28)
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In this case, the computational complexity of modeling many-body interactions decreases to linear growth
with the number of neighbors. With the reduced linearly complexity, many equivariant networks are designed
to learn the many-body interactions. In these networks, spherical harmonic functions Y (r̂ij) combined with
radial functions R(r̄ij) are usually taken as the single bond basis function ϕv(rij). Then the aggregated atomic
bases Aiv, typically represented as equivariant irreducible representations in these networks, are combined
through tensor product operations to encode the many-body interactions while maintaining equivariance.
Note that v = 0, 1, 2, . . . distinguishes among different basis.

A.4 Tensor Contraction in Polynomial Many-Body Interaction Module

In the polynomial many-body interaction module of PACE, we apply tensor contraction to different atomic
bases for encoding the interaction of multiple nodes around the central node. The tensor contraction which
is originally proposed in (Batatia et al., 2022b). However, Figure 2 illustrates the computation of tensor
contraction described in Equation (22). This figure demonstrates an example of 4-body interactions with the
max correlation order vmax = 3, where different atomic bases Ai1, Ai2, Ai3 are fed as inputs. Intuitively, this
example is the computation similar to Ai1 ¹ Ai2 ¹ Ai3 + Ai1 ¹ Ai2 + Ai1, where Ai1 ¹ Ai2 ¹ Ai3 approximates
4-body interactions, Ai1 ¹ Ai2 approximates 3-body interactions, and Ai1 approximates 2-body interactions.
For easier understanding, this example only has 1 hidden channel, and only shows one output LM , that is
L3 = 0, M3 = 0. Generally, the complete final output irreducible representation is the concatenation of all
required L3M3.

Let’s delve deeper into the “contract weights” box and “contract features” box at the top of this figure. The
path ¸[3] here denotes a coupled path tuple (ℓ1, ℓ2, L2, ℓ3, L3). The purpose of using such coupled paths is for
computing consecutive tensor products as a whole instead of applying tensor products one by one. For each
path, there is a generalized CG coefficient matrix with shape of (ℓmax

2, ℓmax
2, ℓmax

2, ℓmax
2, 2 ∗ L3 + 1). Note

that L3 = 0 in this example. The top “contrast weights” box executes the first step to take a weighted sum
of the generalized CG matrices with learnable weights over the paths. Then, the “contract features” box
below applies a dot product on this summed generalized CG matrix and atomic base Ai3 along the dimension
denoted as ℓ3, m3. The output of this step is denoted as ãL3M3

i2,L2M2
. Then, ãL3M3

i2,L2M2
is further contracted

with Ai2 and Ai1 to obtain the final result with similar “contract features” operations. This flow considers
the 4-body interactions. To further consider 3-body and 2-body interactions, similar “contract weights”
operations are applied over ¸[2] and ¸[1]. Then, the results of contracted weights are added to ãL3M3

i2,L2M2
and

ãL3M3

i1,L1M1
(represented by arrows pointing from right to left). The summation of generalized CG and the

addition of contracted weights to ãLvMv

iv,LvMv
is for efficient computation of various paths and various body

order interactions simultaneously.

As mentioned this example is computing something similar to Ai1 ¹Ai2 ¹Ai3 +Ai1 ¹Ai2 +Ai1 for many-body
interactions. However, they are not exactly equivalent, because two tensor products in Ai1 ¹ Ai2 ¹ Ai3

consider the coupled path ¸ with generalized CG, which is beyond the original tensor product.

A.5 Defination

Definition A.1. (D-spanning). For D ∈ N+, let Ffeat be a subset of CG(R3×N , W N
feat). We say that Ffeat is

D-spanning, if there exist f1, · · · , fK ∈ Ffeat, such that every polynomial R3×N → R
N of degree D which is

invariant to translations and equivariant to permutations, can be written as p(X) =
∑K

k=1 Λ̂k (fk(X)), where
Λk : Wfeat → R are all linear functionals, and Λ̂k : Wfeat → R are the functions defined by element-wise
applications of Λk.

When discussing the expressiveness of equivariant networks, equivariant polynomial functions are commonly
used to analyze these networks (Dym & Maron, 2020; Segol & Lipman, 2019). According to Lemma 1 from
Dym & Maron (2020), any continuous G-equivariant function can be uniformly approximated on compact
sets by G-equivariant polynomials. Consequently, the ability of a model to approximate equivariant functions
increases with its capacity to cover more equivariant polynomials. In this context, a D-spanning family
refers to a set of functions that span the polynomial function space up to degree D. This implies that any
Snpermutation equivariant and rotation invariant polynomial function up to degree D can be represented as
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Figure 2: Illustration of tensor contraction in the polynomial many-body interaction module. In this figure,
it demonstrates an example of 4-body interactions with vmax = 3 and final L3 = 0, M3 = 0. Note that the
contract weights operation learns weighted summation over all paths ¸[v], where ¸[v] = (ℓ1, ℓ2, L2, · · · , ℓv, Lv).

a linear combination of elements within the D-spanning family. Therefore, networks that can encompass the
D-spanning family with a higher D exhibit greater expressiveness.
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B Theoretical Proof

B.1 Proof of Theorem 4.1

Proof. Since QD
K is a D-spanning family, then there exists f1, · · · , fK ∈ Q

(t)
K with ∥t∥1 f D, that each

polynomial function p with the highest degree no more than D can be represented as the linear combination
with linear pooling function Λ̂k on them

p =
∑

k

wk ∗ Λ̂k(fk) =
∑

k

wkΛ̂k(Q
(tk)
K (θi)) (29)

=
∑

k

wk

∑

P

W ∗
P Q

(tk)
K (θi)(P ), (30)

where P = (p1, p2, · · · , pK) is the position of the entry, and W ∗
P is the corresponding weight.

Since Q(tk)(θi)(P ) =
∑

ℓm wℓm
1 irrepsℓm

1 , the p can be represented as

p =
∑

k

wk

∑

P

W ∗
P

∑

ℓm

wℓm
1,tk,P irrepsℓm

1,tk,P =
∑

k

wk

∑

ℓmP

w∗ℓm
1,tk,P irrepsℓm

1,tk,P (31)

where the irrepsℓm
1,tk,P can be obtained by various channels and w∗ℓm

1,tk,P = wℓm
1,tk,P W ∗

P . Therefore, the set of
irreps1 is D-spanning.

B.2 Proof of D-spanning irreps in PACE

B.2.1 Lemmas

Lemma B.1. The linear combination of elements for spherical harmonics with radial basis function

Rℓ(r̄ij)Yℓ
m(r̂ij), where 0 f ℓ f ℓmax, ℓ ∈ N and −ℓ f m f ℓ, m ∈ Z, can represent any polynomial

function Pℓmax(rij).

Proof. When the radial basis function is set to Rℓ(r̄ij) = r̄ℓ
ij , ℓ ∈ N+, real spherical harmonics with radial

basis function Rℓ(r̄ij)Yℓ
m(r̂ij) represent homogeneous polynomials P(r̂ij) with degree ℓ. Moreover, by using

multi-layer perceptrons (MLPs) R0(r̄ij), it can approximate any polynomial with respect to the pairwise
distance r̄ij (Hornik, 1991; Hornik et al., 1989). We first define the space of homogeneous polynomials
Hn(R3), and space of harmonic homogeneous polynomials Yn(R3). When we constrain the function to be on
S

2, Yn ≡ Y(S2) and is composed of spherical harmonics. From the Lemma 4.1 in Atkinson & Han (2012), a
homogeneous polynomial p(x) ∈ Hn can be decomposed as p(x) = h(x)+|x|2q(x), where h ∈ Yn and q ∈ Hn−2

for n g 2. When considering polynomial functions constrained to S
2, we have p( x

|x| ) = h( x

|x| ) + q( x

|x| ), where
h is in the space spanned by spherical harmonics of degree n. The dimension of homogeneous polynomials is
(n+1)(n+2)

2 . For n = 1, the dimension of homogeneous polynomials space is 3, and the dimension of spherical
harmonics space is also 3. For n = 2, the dimension of homogeneous polynomial space is 6, and the dimension
of spherical harmonic space is 5. Then, with the constrain x2 + y2 + z2 = 1 denoting the input (x, y, z)
on S

2, which is independent with spherical harmonics Y ℓ=2(r̂). Therefore, homogeneous polynomials on
S

2 can be linear combination of spherical harmonics for n = 2. Thus, q( x

|x| ) can be expressed as a linear
combination of spherical harmonics when q ∈ Hn, n = 1, 2. Then, we can deduce that a homogeneous
polynomial function q( x

|x| ) can be represented as a linear combination of spherical harmonics in S
2. Since

a homogeneous polynomial function of degree n can be represented by q(x) = |x|nq( x
|x| ), where q ∈ Hn, it

can be represented by spherical harmonics with radial function to encode the distance. Above all, spherical
harmonics with radial basis Rℓ(r̄ij)Yℓ

m(r̂ij) can represent the polynomial function Pℓmax(rij).

Lemma B.2. If irreps1 can represent Qt1(θi), irreps2 can represent Qt2(θi) and their tensor product output

irreps3 can represent Q(t1,t2)(θi).
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Proof. With the aggregated node features with Qt1 =
∑

j1
r¹t1

ij for tensor representation format, and the
value at position P1 = (p11, · · · , piL) can be represented by linear combination of the elements in irreps1,
shown as

Qt1(P1) =
∑

ℓ1m1

wℓ1m1

1 irrepsℓ1m1

1 , (32)

When the tensor product of irreps1 and irreps2 is irreps3, the representation of irreps3 is denoted as

irrepsℓ3(ℓ1,ℓ2)m3

3 =
∑

m1m2

Cℓ3m3

ℓ1m1,ℓ2m2
irrepsℓ1m1

1 irrepsℓ2m2

2 (33)

When the Qt2(P2) can be linear combination of elements in irreps2, then

Q(t1,t2)(P1, P2) = (
∑

ℓ1m1

wℓ1m1

1 irrepsℓ1m1

1 )(
∑

ℓ2m2

wℓ2m2

2 irrepsℓ2m2

2 )

=
∑

ℓ1m1ℓ2m2

wℓ1m1

1 wℓ2m2

2 irreps1irreps2 (34)

Then when the linear combination of the irreps3 is shown as

Q
′(t1,t2)(P1, P2) =

∑

ℓ3(ℓ1,ℓ2)m3

w
ℓ3(ℓ1,ℓ2)m3

3 irrepsℓ3(ℓ1,ℓ2)m3

3

=
∑

ℓ3(ℓ1,ℓ2)m3

w
ℓ3(ℓ1,ℓ2)m3

3

∑

ℓ1m1ℓ2m2

Cℓ3m3

ℓ1m1,ℓ2m2
irrepsℓ1m1

1 irrepsℓ2m2

2

=
∑

ℓ1m1ℓ2m2

irrepsℓ1m1

1 irrepsℓ2m2

2

∑

l3(ℓ1,ℓ2)m3

Cℓ3m3

ℓ1m1,ℓ2m2
w

ℓ3(ℓ1,ℓ2)m3

3 (35)

When w
ℓ3(ℓ1,ℓ2)m3

3 =
∑

ℓ1m1,ℓ2m2
Cℓ3m3

ℓ1m1,ℓ2m2
wℓ1m1

1 wℓ2m2

2 , we have

∑

ℓ1m1,ℓ2m2

Cℓ3m3

ℓ1m1,ℓ2m2
w

ℓ3(ℓ1,ℓ2)m3

3

=
∑

ℓ1m1,ℓ2m2

Cℓ3m3

ℓ1m1,ℓ2m2

∑

ℓ3(ℓ1,ℓ2)m3

Cℓ3m3

ℓ1m1,ℓ2m2
wℓ1m1

1 wℓ2m2

2

=
∑

ℓ1m1,ℓ2m2

wℓ1m1

1 wℓ2m2

2

∑

ℓ3(ℓ1,ℓ2)m3

(

Cℓ3m3

ℓ1m1,ℓ2m2
Cℓ3m3

ℓ1m1,ℓ2m2

)

=
∑

ℓ1m1,ℓ2m2

wℓ1m1

1 wℓ2m2

2 (36)

Therefore,

Q
′(t1,t2)(P1, P2) =

∑

ℓ1m1,ℓ2m2

irrepsℓ1m1

1 irrepsℓ2m2

2

∑

ℓ1m1,ℓ2m2

wℓ1m1

1 wℓ2m2

2

=
∑

ℓ1m1,ℓ2m2

irrepsℓ1m1

1 irrepsℓ2m2

2 wℓ1m1

1 wℓ2m2

2

= Q(t1,t2)(P1, P2) (37)

Above all, the irreps3 can represent Q(t1,t2)(P1, P2).

B.2.2 Equivariant Polynomial Functions for Polynomial Symmetric Contraction

Considering tensor product, the path can be represented as ¸[2] = (ℓ1, ℓ2, L2), we have irreps1 and irreps2 to
represent Qt1(P1) and Qt2(P2) with ∥t1∥1 f v, ∥t2∥1 f v, respectively. Then with Lemma B.2, the output
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irreps can represent Q(t1,t2)(P1, P2). Note that there might be multiple channels for the same rotation order
L2, and we use L2(ℓ1, ℓ2) to distinguish them. Meanwhile, the weighted sum over these equivariant irreducible
representations can also achieve representativity.

For the path ¸[v] = (ℓ1, ℓ2, L2, · · · , ℓv, Lv), the irreps¸[v−1] can represent Q(t1,t2,··· ,tv−1), and the irrepsv can
represent Qtv .

irrepsL′

vMv

3 =
∑

Mv−1mv

CLvMv

L′

v−1
Mv−1,ℓvmv

irreps
L′

v−1
Mv−1

1 irrepsℓvmv

2 , (38)

where L′
v = Lv(¸[v − 1], ℓv) and L′

v−1 = Lv−1(¸[v − 2], ℓv−1). Then, in this case, we extend the proof of
Lemma B.2 and prove the

Q
′(t1,t2,tv)(P1, P2, · · ·Pv) =

∑

L′

vm3

w
L′

vMv

3 irrepsL′

vMv

3

=
∑

L′

vMv

w
L′

vMv

3

∑

L′

v−1
Mv,ℓvmv

Cℓ3m3

L′

v−1
Mv,ℓvmv

irreps
L′

v−1
Mv

1 irrepsℓvmv

2

=
∑

L′

v−1
Mvℓvmv

irreps
L′

v−1
Mv

1 irrepsℓvmv

2

∑

L′

v−1
Mv

C
L′

v−1
Mv

L′

v−1
Mv,ℓvmv

w
L′

vMv

3 (39)

Then we take w
L′

vMv

3 =
∑

ℓ1m1,ℓ2m2
CLvMv

L′

v−1
Mv−1,ℓvmv

w
L′

v−1
Mv−1

1 wℓvmv

2 , and with similar procedure to Equa-

tion (37), we can derive that

Q
′(t1,t2,··· ,tv)(P1, P2, · · ·Pv)

=
∑

L′

v−1
Mvℓvmv

w
L′

v−1
Mv−1

1 irreps
L′

v−1
Mv

1 wℓvmv

2 irrepsℓvmv

2

= Q(t1,t2,··· ,tv−1)(P1, P2, · · ·Pv−1)Qtv (Pv) (40)

Above all, the output of equivariant base can represent Q(t1,t2,··· ,tv)(θi) with ∥tj∥1 f v,∀j ∈ [v]. Since it can
select any (t1, t2, · · · , tv) within ∥(t1, t2, · · · , tv)∥1 f v, the constructed D-spanning family QD

K with K = v

and D = v. Then, the set of the output equivariant features is also a D-spanning family with D = v.

Specifically, in the update module in the first layer, it uses symmetric contraction with correlation order
vmax = 3. Since the aggregated messages follow the form Q

(t)
K=1 =

∑

j r¹t1

ij with t1 f ℓmax ∗ Nboost

with Nboost = 2 and vmax = 3. Then, the updated features after the symmetric contraction is Q
(t)
K=3 =

∑

j1,j2,j3∈Ni
r¹t1

ij1
¹ r¹t2

ij2
¹ r¹t3

ij3
, t1, t2, t3 f 6. Therefore, it covers all the possible t with ∥t∥ f 3, and then

represent the D-spanning set with D = 3.

C Implementation Details

C.1 Data Preprocessing

The raw data and splits for the rMD17 dataset are downloaded from https://figshare.com/articles/da

taset/Revised_MD17_dataset_rMD17_/12672038. The raw data is provided in Numpy .npz format, with
energies in units of kcal and forces in units of kcal/Å. We convert the units for energies and forces to eV and
eV/Å, and save the data in .xyz format. The 3BPA and AcAc datasets, already in .xyz format with energies
in eV and forces in eV/Å, are directly downloaded from https://github.com/davkovacs/BOTNet-dataset

s/tree/main.

Next, we extract nuclear charges, conformation coordinates, energies, and forces from the .xyz files and
encapsulate all this information into a PyTorch Geometric dataset. Subsequently, we perform another
pre-processing step to obtain one-hot encoding for each atom and construct a molecular graph using a radius
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cutoff. It is important to note that we train a separate model for each molecule. Consequently, the dimension
of the one-hot encoding for nodes depends on the total number of atomic types present in the molecule.

Following this, we compute several statistics of the dataset. First, we calculate the average energy using
the training set. Then, we determine the mean per-atom energy errors. Second, we calculate the standard
deviation of per-atom forces. Third, we compute the average number of neighboring nodes. The processed
training dataset, along with the pre-computed statistics, is then used to train our model. This pre-processing
workflow primarily follows the baseline method, MACE, without incorporating additional features.

C.2 Experiment Details

For all molecules in, we use 2 GNN layers with 256 hidden channels and ℓmax = 3. For multi-layer perceptions
(MLPs), SiLU is used as nonlinearity. During training, we train each model for 5000 epochs using a batch
size of 5 and a learning rate of 0.01. Besides, we use Adam-AMSGrad optimizer with default parameters of
´1 = 0.9, ´2 = 0.999, ϵ = 10−8, and without weight decay. Moreover, an exponential moving average with a
weight of 0.99 is used in training.

For rMD17, edges are built for pairwise distances within a radius cutoff. Edge features are initiated by
either Exponential Bernstein radial basis functions (Unke et al., 2021b) or bessel functions with a smoothed
polynomial cutoff (Gasteiger et al., 2020). Table 5 shows our options for molecules in rMD17 dataset. The
training loss considers both energy and force with a weight ratio of 9: 1000. In addition, we use a rotation
order of 3 for the hidden irreducible representations outputted by PACE’s polynomial many-body interaction
module. For both 3BPA and AcAc, edges are built using a radius cutoff of 5 Å, and edge features are initiated
with 4 Bessel basis functions. The ratio of energy and force in loss is 15:1000. Moreover, the rotation order of
the hidden irreducible representations is 2.

Table 5: Model architectural hyperparameters for rMD17.
Aspirin Azobenzene Benzene Ethanol Malonaldehyde Naphthalene Paracetamol Salicyclic acid Toluene Uracil

Edge embedding Bessel Bessel Bessel EBRadial EBRadial Bessel Bessel EBRadial Bessel Bessel
# of basis 6 4 8 20 12 8 4 10 8 4
Radius (Å) 5 5 5 5 6 5 5 5 5 6

C.3 Pseudocode of PACE

In this subsection, we provide pseudocode for implementing our PACE. The initial node features are embedded
based on atomic types, edge directions are encoded by spherical harmonics, and edge lengths are encoded by
radial basis functions. These node and edge features are then fed into the first message passing layer. In this
layer, an edge booster is first applied to produce boosted messages along the edges. These boosted messages
are then aggregated around the central node. Next, the aggregated message and initial node features are
processed by a polynomial many-body interaction module, followed by a skip connection with self-interaction
to update the node features. In the second message passing layer, a tensor product is applied to the updated
node features and the boosted messages obtained from the first layer to update edge messages. As in the first
layer, edge messages are aggregated and further processed by the polynomial many-body interaction module
to update the node features. Finally, the total energy and forces acting on atoms are calculated based on the
updated node features and atom coordinates.

The first key contribution of our method is the use of an edge booster to increase the number of the
higher-degree polynomial functions that our model can approximate. The edge booster is implemented in
the first PACE layer using two consecutive tensor products. Initially, a tensor product is applied to the
edge spherical harmonics and the initial node features to generate the boosted message with Nboost = 1.
Subsequently, another tensor product is applied to the edge spherical harmonics and the previously obtained
boosted message, resulting in a boosted message with Nboost = 2. The final boosted message is obtained by
concatenating these boosted messages with Nboost = 1 and Nboost = 2. This boosted message is used in both
PACE layers without repetitive computation, taking computational costs into consideration. The second key
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Figure 3: Illustration of radial distribution functions (RDF) of MD trajectories. Values are averaged over five
MD simulations with five initial molecular structures. The shell thickness dr = 0.05 is used.

contribution of our method is the incorporation of additional self-interactions in the polynomial many-body
interaction module. These self-interactions produce different atomic bases, which serve as inputs for symmetric
contraction. The function of these self-interactions is to enhance the model’s ability to approximate more
positions in D-spanning functions.

In our implementation, the MLP applied to invariant features consists of a 2-layer non-linear transformation
with SiLu activation. Detailed information about the tensor product and self-interaction applied to equivariant
features can be found in the TFN (Thomas et al., 2018) and e3nn (Geiger & Smidt, 2022) libraries. For a more
comprehensive explanation of the algorithm used for symmetric contraction, please refer to MACE (Batatia
et al., 2022b).

D Additional Analysis

D.1 Molecular Dynamic Simulation

To further assess the ability of PACE to simulate realistic structures and dynamics, we conduct Molecular
Dynamics (MD) simulations on the 3BPA dataset using PACE. These simulations are implemented with the
Langevin dynamics provided by the ASE library, using 1000 timesteps with 1 fs for each timestep. We randomly
select an initial structure from the testing set to generate MD trajectories with PACE. Correspondingly,
we extract the ground truth MD trajectory, starting from the same initial structure, from the testing set.
The total radial distribution functions (RDF) of the ground truth MD trajectories and PACE-generated
MD trajectories are visualized in Figure 3. The results of the MD simulations further affirm that our PACE
model not only achieves state-of-the-art (SOTA) performance in force field prediction but also holds practical
value in realistic simulations.

D.2 Algorithm Efficiency

D.2.1 Time Complexity of PACE

Table 6 shows the time complexity for several key components of existing equivariant model architectures. In
this table, C is the number of channels, L is the maximum rotation order of the equivariant features, and v

denotes the correlation order. Our PACE model requires three tensor products (TPs) to obtain the edge
features and two polynomial many-body interaction modules on the aggregated node features. Each tensor
product has a time complexity of O(CL6). Compared to the many-body interaction module used in MACE
with a time complexity of O(C2L + CL4v+2), our polynomial many-body interaction module has a time
complexity of O(NCL6 + ECL4v+2), where N denotes the number of nodes, E denotes the number of edges.
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Algorithm 1 Code sketch of PACE network. The PACE architecture comprises embedding layers, two
distinct message passing (MPNN) layers, and an output layer. The proposed edge booster is integrated into
the first MPNN layer to generate the boosted edge message m1

ij . In the polynomial many-body interaction
module, we utilize additional self-interactions to produce different atomic bases Aiv.

Require: Zi, |N (i)|, pi, r̂ij , r̄ij , Ē ▷ One-hot encoding of node by atomic types Zi, the number of neighbor
nodes |N (i)|, node positions pi, edge orientation vector r̂ij , edge distance r̄ij , the averaged total energy of
the training set Ē.

function PolynomialManyBodyInteraction(Ai, x0
i )

Ai1 ← SelfInteraction(Ai)) ▷ Different atomic bases
Ai2 ← SelfInteraction(Ai))
Ai3 ← SelfInteraction(Ai))
ã← SymmetricContraction(Ai1, Ai2, Ai3, x0

i )
return ã

end function

function MPNNLayer_1(Sphij , rbfij , x0
i , x0

j )
w1,ij ← MLP(rbfij)
w2,ij ← MLP(rbfij) + MLP(x0

i ∥ x0
j )

m1
ij,1 ← Sphij ¹w1,ij

MLP(x0
i ∥ x0

j ) ▷ Boosted message with Nboost = 1.
m1

ij,2 ← Sphij ¹w2,ij
m1

ij,1 ▷ Boosted message with Nboost = 2

m1
ij ← (m1

ij,1 ∥m1
ij,2) ▷ Concatenated boosted message

A1
i ←

1
|N (i)|

∑

j∈N (i) m1
ij ▷ Aggregated message

ã1
i ← PolynomialManyBodyInteraction(A1

i , x0
i )

x1
i ← ã1

i + SelfInteraction(x0
i ) ▷ Skip connection

return x1
i , m1

ij

end function

function MPNNLayer_2(m1
ij , rbfij , x0

i , x0
j , x1

i , x1
j )

w3,ij ← MLP(rbfij) + MLP(x0
i ∥ x0

j )

m2
ij ←m1

ij ¹w3,ij
x1

j , ▷ Tensor product
A2

i ←
1

|N (i)|

∑

j∈N (i) m2
ij ▷ Aggregated message

ã2
i ← PolynomialManyBodyInteraction(A2

i , x0
i )

x2
i ← ã2

i + SelfInteraction(x1
i ) ▷ Skip connection

return x2
i

end function

x0
i ← NodeEmbedding(Zi) ▷ Embedding of node via atomic type

Sphij ← SphericalHarmonicEmbedding(r̂ij) ▷ Embedding of edge orientation
rbfij ← RadialBasisEmbedding(r̄ij) ▷ Embedding of edge length
x1

i , m1
ij ←MPNNLayer_1(Sphij , rbfij , x0

i , x0
j )

x2
i ←MPNNLayer_2(m1

ij , rbfij , x0
i , x0

j , x1
i , x1

j )

E ← Ē +
∑N

i=1(MLP(x1
i,ℓm=00) + MLP(x2

i,ℓm=00)) ▷ Molecule-level energy
fi = − ∂E

∂pi
▷ Atom-level force

D.2.2 Training Time and Memory of PACE

Table 7 presents a comparative analysis of training time and memory consumption between our proposed
PACE method and the baseline methods. Results are reported in seconds per epoch and MB as units. A
consistent batch size of 5 is used for each method, with average times calculated over 10 epochs, where
validation occurs once every 2 epochs. In these experiments, Allegro is configured with 5 layers and a rotation
order of 3, and NequIP with 3 layers and a rotation order of 3. MACE is configured with 2 layers and a
rotation order of 2. PACE is configured as reported in Appendix C.2. The results show that compared to
MACE, PACE offers enhanced expressiveness and superior performance, albeit with a justifiable increase in
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Table 6: Time complexity of components used in equivariant model architectures. Here, C is the number of
channels, L is the maximum rotation order of the equivariant features, and v denotes the correlation order.

Model component Time Complexity

Self-interaction O(C2L)
Tensor product O(CL6)
Polynomial many-body Interaction O(vC2L + CL4v+2)
MACE many-body interaction O(C2L + CL4v+2)

Table 7: Training time and memory consumption, with sec/epoch and MB as units, respectively.

NequIP Allegro MACE Ours

Paracetamol
Training time 130 50.3 29.5 45
Memory 3511 10211 3239 4406

Toluene
Training time 110 35.8 23.5 35
Memory 3507 3595 2540 3394

computational costs. In contrast to NequIP and Allegro, PACE stands out for its combined advantages in
both performance and efficiency.

D.2.3 Cost Analysis of Edge Booster

As summarized in Section 4.5, the proposed edge booster (EB) module enhances our PACE model’s ability
to approximate higher-degree polynomial functions. Instead of integrating the EB module into each PACE
layer, we employ it solely in the first layer of our PACE network. The edge-boosted message generated by
the EB is then utilized to replace the original spherical harmonics in every PACE layer. Moreover, the EB
module only takes spherical harmonics and atomic types of nodes as inputs without considering the updated
node features. This design choice aims to minimize the computational cost associated with approximating
more higher-degree polynomial functions. Accordingly, in Table 8 we provide a quantitative analysis of the
computational cost incurred by our edge booster.

This analysis of runtime and memory consumption is conducted using the AcAc dataset. Results are reported
in seconds per epoch and megabytes (MB). A batch size of 5 is used, and the average time is calculated over
10 epochs, with validation occurring once every 2 epochs. Our PACE model comprises 2 layers. In the first
experiment, we remove the EB module and use the original spherical harmonics for tensor products in both
PACE layers. The second experiment employs the EB module only in the first layer, which corresponds to
the architecture of our PACE. In the third experiment, we add an additional EB module in the second layer.
Here, the second-layer EB module uses the updated node features output by the first layer, instead of the
node embeddings based on atomic types. The results demonstrate that the EB module with two consecutive
tensor product operations is computationally expensive. Compared to incorporating the EB module into
both layers, the design of using only one EB module in the first layer, and without considering updated node
features, can efficiently reduce the time and memory cost by 30.5% and 9.7%, respectively.

D.3 Rotation Order

As described in Appendix C.2, for the rMD17 dataset, PACE utilizes a rotation order of 3 for the hidden
irreducible representations outputted by its polynomial many-body interaction module, contrasting with
MACE’s use of a rotation order of 2 for encoding many-body interactions. Hence, we conduct further
experiments to determine if the enhanced performance of PACE is solely due to this increased rotation order.
The results in Table 9 indicate that while the higher rotation order of hidden representations does contribute
to improved model performance, it is not the sole factor in PACE’s superior performance.
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Table 8: Analysis of computational cost introduced by the edge booster (EB) module on the AcAc dataset.
Training time and memory consumption are reported with sec/epoch and MB as units, respectively.

No EB EB in first layer EB in both layers

Training time 12.1 17.8 25.6
Memory 2080 3076 3408

Table 9: Results of experiments on rotation order of hidden irreducible representation of polynomial many-
body interaction module. PACE uses ℓmax = 3 for rMD17 dataset. Mean absolute errors (MAE) are reported
for both energy (E) and force (F) predictions, with meV and meV/ Å as units, respectively. Bold numbers
highlight the best performance.

Ethanol Toluene

PACE
E 0.3 0.2

F 1.8 1.1

PACE (hidden ℓmax = 2)
E 0.3 0.2

F 2.1 1.1

D.4 Hyperparameter Exploration

In this subsection, we conduct experiments on the AcAc dataset to investigate our model’s sensitivity
to different hyperparameter settings. Figure 4 presents the performance curves corresponding to various
hyperparameter choices. From top to bottom, the results pertain to four hyperparameters: radius cutoff,
number of channels, number of radial basis functions (RBFs), and maximum rotation order. Each data point
represents the average performance over three runs with different random seeds.

It is widely believed that the radius cutoff can impact model performance, as it determines the connectivity
within the 3D molecular graph. Our results indicate that a cutoff of approximately 4-5 Å yields the best
performance for our model. Next, the results in the second row indicate that the model performance remains
relatively stable with the number of channels ranging from 100 to 300. Having too few channels reduces the
model’s capacity, while having too many channels does not provide additional benefits. The results in the
third row demonstrate that the model’s performance remains relatively stable, with optimal performance
occurring when using around 4 radial basis functions. Using too few RBFs will reduce the impact of edge
distance. In contrast, the last row shows that the maximum rotation order for spherical harmonics and
irreducible representations has a significant impact on model performance, which is consistent with trends
observed in previous studies (Batzner et al., 2022; Batatia et al., 2022b). However, it is important to note
that higher rotation orders introduce greater computational costs. Consequently, existing models typically
use a maximum rotation order of three. The experimental results shown in Figure 4 demonstrate that our
PACE model exhibits reasonable stability and robustness to variations in hyperparameter choices.

E Examples

Considering |Ni| = 2, ri,j=1 = (x1, y1, z1) and ri,j=2 = (x2, y2, z2), then

f̂xi
=

∑

j∈Ni

Y ℓ=1(r̂ij)¹2 = Cl=1CT
l=1





y2
1 + y2

2 y1z1 + y2z2 y1x1 + y2x2

z1y1 + z2y2 z2
1 + z2

2 z1x1 + z2x2

z1y1 + z2y2 x1z1 + x2z2 x2
1 + x2

2



 , (41)

f
′

xi
=

∑

j1∈Ni

Y ℓ=1(r̂ij1
)¹

∑

j2∈Ni

Y ℓ=1(r̂ij2
) = Cl=1CT

l=1 ·





y1 + y2

z1 + z2

x1 + x2



¹





y1 + y2

z1 + z2

x1 + x2



 . (42)

For f̂xi
, it has element y2

1 + y2
2 , while f

′

xi
only contains elements like y2

1 + y2
2 + 2y1y2. Thus, f̂xi

can not be
represented as a linear combination of elements in f

′

xi
.
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Figure 4: Exploration of hyperparameter space.
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