Bridge Maintenance, Safety, Management, Digitalization and Sustainability —
Jensen, Frangopol & Schmidt (eds)

© 2024 The Author(s), ISBN 978-1-032-77040-6

Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Deep reinforcement learning-driven life-cycle management of
bridge and pavement systems

A. Bhattacharya, M. Saifullah & K.G. Papakonstantinou
Department of Civil & Environmental Engineering, The Pennsylvania State University, University Park,
PA, USA

ABSTRACT: Optimal management of bridge systems and related transportation infrastruc-
ture poses multi-faceted challenges, requiring adept inspection and maintenance policies at
both system and individual asset levels, to minimize life-cycle costs while considering various
operational, risk, and performance constraints. This demanding type of optimization prob-
lems entails, among others, high-dimensional aspects, describing multi-component systems,
long-planning horizons, diverse probabilistic and deterministic operational objectives and con-
straints, and inherent uncertainties associated with inspections and stochastic models. Effect-
ive coordination among individual component assets considering various inter-dependencies is
also essential to enable a true system-based optimal solution. In this work, this optimization
problem is formulated within the framework of Partially Observable Markov Decision Pro-
cesses (POMDPs) and constrained Multi-Agent Deep Reinforcement Learning (MARL).
POMDPs offer a principled mathematical approach for sequential decision-making under
uncertainty, incorporating Bayesian inference to address the observation/monitoring data
uncertainty, and can be suitably scaled to high-dimensional state and action spaces associated
with multi-component systems, exploiting the rich representational capacities of deep learning
and decentralized control settings of MARL. In this work, the recently developed DDMAC
deep reinforcement learning (DRL) algorithm (Deep Decentralized Multi-Agent Actor-Critic)
has been successfully deployed based on the Centralized Training and Decentralized Execu-
tion (CTDE) formulation. The efficacy and implementation aspects of the developed frame-
work are originally studied in this work based on two existing real-world transportation
networks in Virginia and Pennsylvania, USA, following all regulations imposed by the rele-
vant agencies, as well as their overall practices, in an effort to investigate the use of the sug-
gested framework in practical, actual settings. In both cases, DRL results significantly surpass
the ones related to current state-of-practice and state-of-the-art policies, providing further
support and insights toward the use of DRL-driven policies for infrastructure management.

1 INTRODUCTION

This work presents a multi-agent deep reinforcement learning framework tailored for the
inspection and maintenance (I&M) planning of extensive transportation and bridge networks.
This framework is methodically applied to two existing networks in Pennsylvania and Vir-
ginia, in the U.S., serving as practical, indicative, real-world case studies.

Significant computational challenges are encountered in managing multi-component infra-
structure systems. These challenges include, but are not limited to, the heterogeneity of different
asset classes, the extensive number of components, the presence of noisy data, limited availabil-
ity of resources, and diverse performance-based constraints. The existing optimization method-
ologies for I&M planning range from threshold-based strategies with risk-based principles to
decision tree analysis and renewal theory (Luque & Straub, 2019; Frangopol, et al., 1997). Des-
pite their merits, many of these solutions suffer from optimality-, scalability-, and uncertainty-
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induced complexities and are often not easily extendable to environments with constraints.
Stochastic optimal control approaches based on Partially Observable Markov Decision Pro-
cesses (POMDPs), e.g., in (Madanat, 1993; Papakonstantinou & Shinozuka, 2014) can sup-
port dynamic policies and noisy real-time observations in the decision-making framework,
but are often hard to scale to large systems with multiple components.

To address these limitations, we combine the principles of POMDPs with the advanced cap-
abilities of multi-agent Deep Reinforcement Learning (DRL), as explained in (Andriotis &
Papakonstantinou, 2019; Andriotis & Papakonstantinou, 2021) for the Deep Centralized
Multi-agent Actor-Critic (DCMAC) technique and its subsequent variant, the Deep Decen-
tralized Multi-agent Actor-Critic (DDMAC). These techniques are designed to manage the
complexities of decentralized execution and to efficiently navigate the vast parameter spaces,
typical in large-scale infrastructure systems. Lately, as a further development, DDMAC is
also shown under the paradigm of Centralized Training and Decentralized Execution (CTDE)
(Lyu, et al., 2021) in (Saifullah, et al., 2024), with decentralization at both the action and
information levels. This approach reduces the scalability involved complexities even further,
by providing only local observations to the actors.

In this paper, the DDMAC-CTDE framework is uniquely applied to analyze two separate,
existing, real-world transportation networks in Pennsylvania and Virginia, USA, and the resulting
policies are compared against the respective current state-of-practice/state-of-the-art. Both net-
works under consideration consist of a set of stochastically deteriorating bridge assets necessitat-
ing maintenance, considering various deterministic and stochastic resource and condition
constraints and targets, aligning closely with the actual methodologies and practices utilized by
the respective transportation agencies. The Virginia network also considers multiple asset classes,
i.e., pavement and bridge components, utilizing probabilistic deterioration models for the different
classes of assets (Saifullah, et al., 2024), and has also been mentioned in (Saifullah, et al., 2022).
In each case, results are compared with optimized Condition Based Maintenance policies (CBM)
and compatible variants of current I&M policies implemented by the Pennsylvania and Virginia
Department of Transportations (PennDOT and VDOT), respectively, with DDMAC-CTDE sig-
nificantly outperforming both the CBM and the current state-of-practice approaches.

2 BACKGROUND

2.1  Partially observable markov decision processes

The POMDP framework is defined by the 7 elements tuple consisting of S,4, P, Q, O, C, and y,
where S, A, and () are sets of states, actions, and observations, respectively, P is the model of state
transitions, O is the observation model, C is the cost function, and y is a discount factor. In
POMDPs the agent starts at a state s, at a time step ¢z, takes an action «,, receives a cost ¢, transi-
tions to the next state s,+; based on the transition model p(s.+1|s,, a,), and receives an observation,
0,+1 € Q based on the observation model, p(0,+1]s,+1, @,). Due to partial observability, the agent can
only form a belief b, about its condition state, where b, is a probability distribution over S. The
goal for the agent is to choose actions at each time step that minimize its expected future dis-
counted cumulative cost (Papakonstantinou & Shinozuka, 2014a; Papakonstantinou & Shino-
zuka, 2014b). Despite existing mathematical convergence guarantees, the traditional point-based
POMDP solvers do not scale adequately for large systems with multiple components. However,
neural network-based deep reinforcement learning methods can alleviate this curse of
dimensionality.

2.2 Deep reinforcement learning and DDMAC-CTDE

Within the context of infrastructure management, DDMAC, as developed in (Andriotis &
Papakonstantinou, 2021), provides an algorithm for system-level I&M optimal planning well-
suited for large multi-component systems. The framework also considers the presence of
constraints through state augmentation and Lagrange multipliers. DDMAC uses a sparse par-
ametrization of the actor-network without parameter sharing between agents (i.e., each
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component has its own actor network). For even larger systems, the DDMAC-CTDE formu-
lation (Saifullah, et al., 2024) can be used, allowing for even sparser actor parametrizations.
The policy, 7, and its gradient are then given as (Saifullah, et al., 2024):
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Figure 1. (a) Fitted gamma model for GCR. (b) Transition probabilities for multi-span bridges belong-
ing to PennDOT Family 1, with starting state 12.

3 ENVIRONMENT DESCRIPTION

3.1 Condition states and transitions

In the case of the Pennsylvania network, the POMDP environment is derived based on Penn-
DOT’s Bridge Asset Management System (BAMS) (PennDOT, 2022; PennDOT, 2021), focus-
ing only on bridge decks here as the primary deteriorating constituent of bridge assets. The
network considered for this study consists of 30 Family 1 multi-span bridge decks in District 8,
with General Condition Rating (GCR) as the indicator of bridge deck conditions, ranging from
0 to 9.99. A probabilistic non-stationary GCR model is developed based on the deterministic
deterioration model, as employed by PennDOT, as detailed in (Papakonstantinou, et al., 2024,
under prep.). A non-stationary gamma process is utilized, with its mean being in time equal to
the PennDOT model GCR values, and a suitable model variance. Figure 1a shows some repre-
sentative simulation results for multi-span bridges belonging to PennDOT Family 1. The solid
line represents the mean GCR and the red curve is the GCR model used by PennDOT.

To calculate the transition probabilities, the continuous GCR values are discretized into
15 states, with state 15 being GCR 29.5, state 14 being GCR € (9.5, 9.0], and so on until
state 1, which is a compound state for all the GCR values < 3.0, to accommodate Penn-
DOT’s prescribed maintenance recommendations. Fifty million Monte Carlo sequences
from the developed gamma process are simulated to obtain the transition probabilities for
a given bridge family and span type, appropriately smoothed over a time window of 5
years. Figure 1(b) indicatively shows some computed transition probabilities for the
Family 1 multi-span bridges.

In the case of the Virginia network, the Hampton Roads network is considered. It com-
prises 85 pavement (including interstate, primary, and secondary highways) and 11 bridge
components, with 6 Critical Condition Index (CCI) states and 5 International Roughness
Index (IRI) states used as condition indicators for pavements, and 7 GCR-based bridge states
(Saifullah, et al., 2022). A non-stationary CCI model is devised based on VDOT’s model
(Katicha, et al., 2016). More details on the condition state transition probabilities can be
found in (Saifullah, et al., 2024).
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3.2 Maintenance and inspections

In the Pennsylvania network, bridge deck maintenance follows PennDOT’s BAMS specifica-
tions, involving five specific maintenance actions: Do-Nothing, General Preservation, Epoxy
Overlay, Structural Overlay, and Deck Replacement, along with their respective costs (Penn-
DOT, 2022). All considered actions generally impact both the bridge deck condition state and
deterioration rate. Detailed descriptions of these actions are provided in (Papakonstantinou,
et al., 2024, under prep.). In this work, a high-fidelity inspection with 90% accuracy is
assumed, performed every two years, to adhere to PennDOT’s bridge assessment policies.

For the Virginia network, based on (VDOT, 2016), four different maintenance actions are
considered for pavements, i.e., Do-Nothing, Minor Repair, Major Repair, and Reconstruction.
Minor Repair (crack filling, moderate patching, etc.) can improve the CCI and IRI condition
states but does not affect their rate of deterioration. Major Repair can improve condition
states and also reduce their deterioration rate by 5 years. Reconstruction resets the pavement
to an intact condition. A detailed description of maintenance actions and their costs can be
found in (VDOT, 2016). Similarly, four maintenance actions are also considered for bridge
decks. These actions, the related transition probabilities, action durations and costs are
described in detail in (Saifullah, et al., 2024). Towards generality, inspection actions are also
optimized in this case and three inspection options are considered, characterized as unin-
formative, low-fidelity, and high-fidelity inspection techniques, respectively. The observation
probabilities for the corresponding inspections can also be seen in (Saifullah, et al., 2024).

3.3 Costs, risks, and constraints

For the Pennsylvania bridge network, the total cost is composed of the costs associated with
maintenance actions and risk. The risk cost depends on the current condition rating along
with the risk score (RS) associated with a bridge, as reported in BAMS. The risk score
describes the importance of a bridge, which is a function of deck area, annual average daily
traffic, truck traffic percent, detour length, scour rating, fracture criticality, and history of
flooding (PennDOT, 2022). The risk score-based cost, cgrs(f) at time ¢ is quantified here as:

N
crs(t) = > _(10 — GCR(1),)RS; (3)
i1
where GCR(?), is the GCR rating at time step ¢ for the i’ bridge, and N is the total number of
bridges considered. Inspections are not controlled in this case but are pre-assigned every two
years. Their costs are thus not considered in the total cost to be optimized. Therefore, the
total cost at time ¢ can be estimated as:

c(snar) = cm(sna) +  crs(se) (4)
maintenance cost  risk score cost

Table 1. Comparison of different solution schemes in terms of average (+/- 95% confidence
bounds) total cost and performance for the Pennsylvania network.

Objective & Constraints DDMAC-CTDE CBM policy BAMS policy
Total costs (million USD) 19.3779 20.5435 25.5061
(£0.0211) (+6.02%) (+32%)
(£0.0215) (£0.0116)
Poor Interstate (cap 5%) 0.5329 0.0245 0.00
(£ 0.0790) (£0.0162) (£ 0.00)
Poor NHS (cap 7%) 3.7489 6.4255 0.3237
(£0.1356) (£0.1923) (£ 0.0648)
Poor total (cap 10%) 8.3886 4.6769 12.3157
(£0.2325) (£ 0.1296) (£ 0.1293)
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Table 2. Comparison of different solution schemes in terms of average (+/- 95% confidence bounds)
total cost and performance for the Virginia network.

Objective & Constraints DDMAC-CTDE CBM policy  VDOT policy
Total costs (billion USD) 6.55 7.03 8.35
(£0.003) (+7.3%) (+27%)
(£0.004) (£0.008)
CCI<60 and IRI>2.2m/km for I-Hwy (%, cap 5%)  1.34 1.61 3.39
(£0.02) (£0.02) (£0.07)
CCI<35 of I-Hwy (%, cap 2%) 1.50 0.68 3.80
(£0.02) (£0.01) (£0.07)
CCI<60 for I and P-Hwy (%, cap 18%) 17.65 12.67 5.80
(£0.04) (£0.02) (£0.04)
IRI>2.2 m/km for I and P-Hwy (%, cap 15%) 15.40 11.49 15.65
(£0.04) (£0.04) (£0.07)
CCI<60 for S-Hwy (%, cap 35%) 33.00 28.18 37.86
(£0.08) (£0.04) (£0.13)
Bridges with GCR <4 (%, cap 10%) 8.33 8.79 15.85
(£0.05) (£0.06) (£0.15)

The Pennsylvania network in this study consists of 30 multi-span District 8 bridges belong-
ing to Family 1, including 3 Interstate NHS and 3 Non-Interstate NHS bridges. The con-
straints under consideration include a hard budget limit of 5.30 million, renewed every 5
years, and 3 performance targets: (1) for Interstate bridges the average deck area in poor con-
dition (GCR < 5.0) should be less than 5% over the decision horizon; (2) for NHS bridges
this target is 7%; and (3) across the entire network the average proportion of bridges in poor
condition state should not exceed 10%. These constraints are integrated into the DRL frame-
work as outlined in (Andriotis & Papakonstantinou, 2021; Saifullah, et al., 2024).
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Figure 2. (a) Total life cycle costs comparison of DDMAC-CTDE solution with CBM and PennDOT
policy baselines. (b) Comparison of the total cost and its constituents with CBM and PennDOT policy
baselines.

For the Virginia network, the total cost includes inspection, maintenance, traffic delay,
terminal costs, and bridge failure risks. Budget constraints with a S5-yearly budget of
1.3 billion USD, and six performance targets are used, with the latter sought to be satisfied in
an average sense over the decision horizon, based on FHWA and VDOT guidelines (Saifullah,
et al., 2024).

4 RESULTS

The networks have been trained using the DDMAC-CTDE architecture, with their existing
conditions as the initial condition states, an episodic length of 20 years, and considering
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a discount factor of y = 0.97. 5 maintenance actions per component are considered for the
Pennsylvania network, totaling ~10?! available actions for the entire network, and 10 inspec-
tion and maintenance actions per component are considered for the Virginia network, with
10%¢ total available actions for the system. The 5-yearly budgets used for both the Pennsylva-
nia and the Virginia networks follow the guidelines by the respective agencies.

To compare the DDMAC-CTDE solutions, two types of baselines are evaluated, i.e., (i)
a condition-based maintenance (CBM) policy, and (ii) policies following PennDOT/BAMS and
VDOT practices. The CBM policy is heuristically optimized, to identify the relevant thresholds,
based on the conditions of each component type. The details of CBM, BAMS, and VDOT
policies can be found in (Papakonstantinou, et al., 2024, under prep.; Saifullah, et al., 2024).

Figure 2(a) demonstrates DDMAC-CTDE performance over CBM and BAMS during its
training on the Pennsylvania network, with weights initialization in this case based on an
unlimited budget earlier trained case. Figure 2(b) showcases relevant histograms of total,
maintenance, and risk costs from 5,000 Monte Carlo policy realizations. DDMAC-CTDE
policy is 6.02% and 31.64% less expensive in total cost, in relation to the CBM and BAMS
policies, respectively, and it spends 120% less than BAMS and 23% less than CBM on main-
tenance. Table 1 presents further details on the average performance of the Pennsylvania net-
work over 5,000 Monte Carlo simulations, showcasing the total cost and the three constraints
related to poor bridge conditions percentages, together with their recommended targets.
Table 2 similarly compares six performance constraints and their targets for various pavement
types and bridges in the Virginia network, where I-, P-, and S-Hwy represent interstate, pri-
mary, and secondary highway components, respectively. Both Tables provide the estimated
values along with their 95% confidence bounds.

To better understand the converged DDMAC-CTDE policies, Figures 3 and 4 illustrate
instances of the Pennsylvania and Virginia networks, respectively. In Figure 3, the mainten-
ance policies for five randomly selected bridges in PA are shown over time, together with the
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Figure 3. Indicative realization of the learned DDMAC-CTDE policy for the PA transportation net-
work. Due to safety considerations by PennDOT, the true identities of the individual bridges are with-
held. The visualization here serves solely as an illustrative depiction of the network under consideration
and does not correspond to the actual bridges analyzed in this study.
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action effects on the belief states. Figure 3 also depicts variations in considered performance
constraints, their targets, the total system risk cost, and the utilized budget, with the total
available budget discounted for each five-year cycle. The figure indicates that performance
constraints are well-respected, on average over the decision period, and the budget remains
within limits throughout the entire horizon.

Similarly, Figure 4 represents a policy instance for the Virginia network, where there are 10
available control actions. The time variations of budget utilization, system risk, and six per-
formance constraints are also shown. The budget is always under its limit in this case as well,
and discounted for each five-year cycle. A pie chart representing the I&M cost distributions
for different asset types is additionally shown, with most funds spent on bridges in this case,
having also a failure risk associated with them. Among the pavements, primary highway pave-
ments utilize the most funds, as they represent the most components in this network.

5 CONCLUSIONS

Deep Decentralized Multi-Agent Actor Critic with Centralized Training and Decentralized
Execution (DDMAC-CTDE) solutions are evaluated in this work, for managing bridge and
bridge-pavement systems, related to two real-world networks in Pennsylvania and Virginia,
USA. Comparisons with the corresponding agency policies, i.e., PennDOT (BAMS) and
VDOT, respectively, and with optimized Condition-Based Maintenance (CBM) policies are
performed as well. The DDMAC-CTDE solution is shown to surpass the State DOT-based
baselines by 32% (for BAMS) and 27% (for VDOT) in terms of the total overall cost. CBM
policies for the two networks are also surpassed by 6.02% and 7.3%, respectively, while gener-
ally meeting all the specified performance targets. Overall, this work and results indicate the
applicability and effectiveness of our DRL framework for asset management of real-world
networks, characterized in their full complexity, and can set solid foundations for further
developments and implementations in the field, related to bridge networks and beyond.
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