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ABSTRACT: To preserve structural safety of deteriorating engineering systems through optimal
maintenance, it is imperative to efficiently integrate structural health information with decision-making
optimization frameworks. Although there may be abundance of available data, these are often uncertain
and incomplete. In addition, joint inspection and maintenance (I&M) optimization is inherently complex
due to high-dimensional state and action spaces, stochastic objectives, long planning horizons, and
various constraints, among others. As shown recently, these computational challenges can be effectively
addressed through optimization principles of Partially Observable Markov Decision Processes
(POMDPs) and constrained Deep Reinforcement Learning (DRL). The POMDP framework provides a
way of updating the decision-maker's perception about the system state by naturally incorporating the
Value of Information (Vol) in the optimality equations. As such, optimal observation-gathering actions
are those which guide maintenance decisions towards reduced life-cycle costs and risks. The role of Vol
in DRL-driven I&M has also been shown to be central to the formation of policy gradients, which are
necessary to obtain the optimal I&M plan with deep learning actor-critic architectures. Leveraging this
property, a recently devised DRL architecture is further examined in this work, consisting of fully
decoupled 'maintainer’ and 'inspector' actors, which allow for greater efficacy and interpretability in
multi-agent DRL settings. Several numerical analyses are carried out to assess the performance of the
relevant architectures on stochastic systems with a varying number of components, multiple
maintenance-inspection actions per component, and system-level failure risks.

1. INTRODUCTION with several challenges, including the curse of

Preserving the integrity and functionality of
rapidly deteriorating infrastructure requires life-
long inspection and maintenance (I&M) actions.
Inspecting the condition of structural components
during their operational life can effectively inform
appropriate maintenance decisions, but both 1&M
actions have associated costs that must be weighed
against risk implications and available resources.
The decision maker’s goal is thus to minimize the
total anticipated costs over the structural system
lifetime while adhering to certain performance
constraints. This defines an optimization problem

dimensionality of action and state spaces, the
uncertainty in collected data, and the presence of
multiple types of constraints.

Most existing I&M planning methods assume
independence among components and focus on
optimizing static or adaptive decision rules, built
upon performance threshold principles (Straub,
2004; Saydam & Frangopol, 2014; Bocchini &
Frangopol, 2011), and solved through direct policy
search or gradient-based and genetic algorithms.
These methods often provide suboptimal solutions,
are hard to scale in high-dimensional spaces, and
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may delimit the use of data in open-loop
workflows.

Stochastic optimal control methods have also
been deployed in I&M planning problems and
have demonstrated significant closed-loop control
capabilities for solving this optimization problem
under uncertain real-time observation (Madanat,
1993 ; Papakonstantinou & Shinozuka, 2014b;
Papakonstantinou, et al., 2018). For large-scale
multi-components systems with high-dimensional
state and action spaces, the I&M planning problem
is effectively addressed using a combination of
Partially Observable Markov Decision Processes
(POMDPs) and multi-agent Deep Reinforcement
Learning (DRL). The dynamic programming
principles of POMDPs allow for adaptive
reasoning under noisy data, as for example
demonstrated in (Papakonstantinou & Shinozuka,
2014a; Memarzadeh & Pozzi, 2015). Within the
POMDP framework, uncertain information can
update the decision-maker's perception about the
system state and the notion of Value of Information
(Vol) is proven to be intrinsically present in the
POMDP optimality equations (Andriotis, et al.,
2021). As a result, the POMDP I&M policies
provide the optimal observation-gathering actions,
maximizing the data benefits in terms of reduced
life-cycle costs.

The role of Vol within POMDP-DRL settings is
further analyzed to play an important role in the
formation of the gradients involved in training
actor-critic deep network architectures to obtain
the I&M policy, allowing us to decouple, in a
mathematically consistent way, the searched
policies to their maintenance and inspection
constituents. Leveraging this property, the recently
devised DRL architecture adopted here, exploits
the natural sequential structure of inspection-
maintenance actions, decomposing joint actors into
independent ‘maintainer’ and ‘inspector’ actors
(Andriotis & Papakonstantinou, 2022). Here, we
investigate the computational and interpretability
attributes of this approach in multi-agent DRL-
driven I&M optimization, particularly when
individual components have high action space
dimensionality due to combinations of inspection-
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maintenance choices. The inspector-maintainer
decomposition is applied to the family of deep
decentralized multi-agent actor-critic =~ DRL
architectures  developed in (Andriotis &
Papakonstantinou, 2019; Andriotis &
Papakonstantinou, 2021; Saifullah, et al., 2023) .
Several numerical analyses are finally carried out
and characteristics of the different architectures are
reported for stochastic systems with varying
number of components, multiple maintenance-
inspection actions per component, and various
system-level interactions and complexities.

2. BACKGROUND
A POMDP is comprised of several key
components, including S (a set of states), A= ArxAm
(a set of actions, where 4Ar and Aum are inspection
and maintenance sets, respectively.), P (a model of
transitions), © (a set of possible observations), O
(an observation model), C (a cost functions), and y
(a discount factor). In this framework, the
decision-maker (agent) begins at a specific
condition state, sy, at a given time step, . It takes an
action, a: = (ar, awm:), which comprises an
inspection (az) and maintenance (au,r), and incurs
a cost, ¢, before transitioning to the next state, s¢+1,
and receiving an observation, o+7 € , based on an
observation probability model, which depends on
the state of the system and the action at the current
step and is defined as a probability, p(os1|s=+1, ar).
Due to the partial observability, the agent can only
form a belief, b, about the condition state, which is
a probability distribution over the set of all possible
discrete states, S. To calculate the belief b:+i, a
Bayesian update is performed, i.e., b(si+1) =
p(se+ilor+1, ar, br), where probabilities b(s:), for all
st € S, form the belief vector b, of length |S],
(Papakonstantinou & Shinozuka, 2014a). The goal
of an agent is to minimize the expected future
discounted cumulative cost, defined by the value
function (Papakonstantinou & Shinozuka, 2014a).
The optimal value function is written as:
& (b[):minzé;b(st)c(s,,atﬁ
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Figure 1: Maintainer-Inspector architecture.

where c(s:;, a:) may have multiple parts, such as
maintenance cost cm(anm,:), inspection cost ci(ais),
and risk related cost cr(s:, am), among others, and
7 is the optimal policy. The value function can be
also expressed in terms of Vol, as shown in
(Andriotis, et al., 2021):

V7 (b,)= min {Zb(sz)(cM (@) +

“M,rEAM seS
t

cr(spay ))+rV (b )= @

ymax Vol , (a,’t)}

a; €4,
where Volzer denotes the net Value of Information
(Vol) associated with inspection action ar:

Vol,, (a;,)=V" (b )-
E,[V™ (b.)]-ci(a,)

where, B, [.]is an expectation over all possible
observations. In essence, Eq. (2) explains how,
when following a maintenance action (au,:) from
optimal policy 7", inspections (az:) are selected
based on the net value of information (Vol)
(Andriotis, et al., 2021).

3)

2.1. Multi-agent actor-critic DRL formulations
Multi-agent DRL is an effective approach to
solving POMDP problems for large-scale systems
in a decentralized way, where each agent in the
system learns to act optimally based on local and
global beliefs over the system state space. Actor-
critic architectures are widely used in deep
reinforcement learning, with actors and critics
parametrizing the policy and value functions,
respectively. Recently, the authors have developed
various multi-agent actor-critic algorithms to solve
POMDPs, including the Deep
Centralized/Decentralized Multi-agent  Actor-
Critic (DCMAC/DDMAC) in (Andriotis &
Papakonstantinou, 2019; Andriotis &
Papakonstantinou, 2021), and DDMAC with
centralized training with decentralized execution
(CTDE) method in (Saifullah, et al., 2023). These
actor-critic methods utilize offline training with
experience replay and belong to the general actor-
critic families that have shown capabilities of
discovering powerful strategies in immense state
spaces (Silver, et al., 2016; Mnih, et al., 2015) in
various domains, such as cooperative navigation,
resource allocation, and decentralized control.
POMDP problems under constraints can also be
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solved with DRL approaches, as shown in
(Andriotis & Papakonstantinou, 2021). The
generalized value function including a risk can be
given as:

V™ (b,)=max minE[ZT: 7' (c, +Ac AP, )

A20  rzell
“)
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where 4 is a Lagrange multiplier, cr is the failure
cost, Pr, is the failure probability up to time ¢, and
R, 1s a prescribed life-cycle risk tolerance. The

cr. can have two parts, an instantaneous failure cost
and a perpetual cost due to the continual disruption
if the component is not rebuilt. Several sources of
risks can also be considered, including failures of
individual components and system failure. Further
details on implementing POMDP-DRL with risk
and other constraints can be found in (Andriotis &
Papakonstantinou, 2021; Saifullah, et al., 2023).

In the actor-critic algorithms used here, the
value function is parameterized by the critic
network, with parameters 0

24 (B) =V (B; 9,,) )

The policy network is parameterized with 0"
for the i” component, and each component is
represented by a separate actor network:

72'(3 | f)) =1N_C[7z[ (a(i) |b,; BS))
i=1

In Egs. (5) and (6) b; is the belief vector for the i

component, b is the system’s belief (i.e., the
collection of all by); a is a vector of actions ¢, and
N is the total number of components. For concise
notation we are also using ()’ for (+) at #+1 time
step. The parameters of the critic network are
updated based on the gradient obtained from mean
squared error, and the policy network parameters
are updated based on the policy gradient theorem
(Sutton & Barto, 2018). Further details on
parameter updates and gradient estimations can be

(6)
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found in (Andriotis & Papakonstantinou, 2021;
Saifullah, et al., 2023).

3. MAINTAINER-INSPECTOR
ARCHITECTURE

Leveraging the inherent sequential nature of
maintenance and inspection actions, the recently
devised DRL architecture in (Andriotis &
Papakonstantinou, 2022) is further examined here.
This architecture decomposes the actor network
into fully decoupled, ‘maintainer’ and ‘inspector’
actors. The factored policy is then given as:

R Ne ‘ Ne N g
w(alB) =TT (e o)LL (" 190)

73, - maintenance policy

77 inspection policy

are maintenance and

inspection policies for the i component,
respectively. These policies can be parameterized

with parameters 0{) and 0!, correspondingly,

where 7z{) and 7"

and can be updated by gradients, as follows:
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where, b™ is a system’s belief after taking

. . (i) .
maintenance actions ay, b is a i component

belief after taking maintenance a!), warand wrare

M 2
importance sampling weights, A4y, ,, A7, are the

maintenance and inspection advantage functions,
respectively, and M is the experience replay
containing information of past transitions and
costs. The advantage functions take the form:
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From Eq. (12), it can be noticed that the inspection
advantage function can directly provide the net
value of Conditional Vol (CVol) at every time step

t, 1.e., CVolwet = A7, (f)a‘”,a,). The CVol, from

standard terminology in reliability literature is
defined as the difference between posterior and
prior expected life-cycle benefits of using certain
information (inspection/monitoring) at any time
step ¢, conditioned over the collected observations.

As shown in Eq. (2), the Vol is inherently used
in POMDPs to select optimal inspection actions.
This can also be applied in DRL settings by
parametrizing the maintenance policy and
choosing the inspections that maximize the net
Vol. However, due to computational challenges in
large-scale systems with multiple components, it is
generally difficult to estimate the net Vol. Instead,
by parametrizing the inspection network and using
the CVol to train the network parameters, the
optimal inspection behavior can be approximated
through gradient descent.

Figure 1 shows the discussed maintainer-
inspector  architecture, = where  individual
component beliefs are the input to the maintainer
network. The obtained maintenance actions
modify the system state and the agents’ beliefs.
These updated beliefs then become the inspector
actors’ input, which then suggest relevant
observation actions for the final update step. The
presented architecture is amenable to adding also
other deterministic constraints, such as budget
constraints, as considered in (Andriotis, et al.,
2023). The network parameters get updated after
each episode using the gradients mentioned in Egs.

(8)-(10).

4. ENVIRONMENT DETAILS
For our numerical experiments, a scalable multi-
component reliability block system is considered,
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Figure 2: 9-component system reliability block diagram

with 9- and 35-components. The 9-component
network is shown in Figure 2, where a 3x3x3 block
architecture is considered. All components have
identical deterioration, state, observation, and
action characteristics. They are described by 4
states  following non-stationary transitions,
including a 5™ failure state. The non-zero, non-
stationary transition probabilities for a service
horizon of 30 steps from (Andriotis &
Papakonstantinou, 2021) are used. In addition, the
considered failure probabilities are Pr= 0.0019 if
the component is in state 1 (intact), Pr= 0.0067 if
it is in state 2 (minor damage), Pr = 0.0115 if in
state 3 (major damage), and Pr = 0.0177 if the
component is in state 4 (severe damage). Similarly,
five 7-component blocks are considered for the 35-
component system, with the same characteristics
for each component.

Several maintenance and inspection actions
per component are considered to investigate the
characteristics of the decoupled architecture. The
complexity of the action space is varied in different
cases, with 5, 50, and 100 available actions per
component. This makes the joint space of system
actions at every step ranging from 5° to 107°, for
the 9-component system with 5 actions per
component and the 35-component system with 100
actions, respectively.

The 5-action case includes the combinations of
2 inspection actions (no-inspection and
inspection), 2 maintenance actions (do-nothing and
repair), and 1 rebuild action. The no-inspection
action does not provide any additional information,
while the inspection action follows an observation
probability model given in (Andriotis, et al., 2023).
The do-nothing action has no effect on the
component and the repair action reverses the
component's damage state by one condition
without modifying its deterioration rate. The
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rebuilding action restores the component to its
intact state. Additionally, we have cases with 50 (7
inspection x 7 maintenance+1 rebuild) and 100 (9
inspection x 11 maintenance + 1 rebuild) action
combinations used in this study. The maintenance
actions for these cases have probabilistic outcomes
with suitably chosen action transition probabilities.
The details are provided in (Andriotis, et al., 2023).

For the 5 actions case, the cost of rebuilding
Creb 1s 1.0, and repair and inspection action costs
are 7.5% and 1.5% of Crep, respectively. For 50 and
100 action combinations, Cres is 1.0, and the cost
of maintenance actions is linearly interpolated
from 0 to 42% of Crer, 42% being the highest
maintenance action cost. Similarly, inspection
action cost can be linearly interpolated from 0 to
10% of Cres, 10% being the highest inspection cost.
The cost of failure cr is taken as 2x and 7.5x of Cres
for perpetual and instantaneous costs, respectively,
in the case of component failure, and 5x and 10x
of the system rebuild cost for system-level failure.

5. RESULTS

The separate maintainer and inspector actors are
parameterized here for each component with
2x200 hidden layers; whereas the centralized critic
network parametrizes the value function with
2x500 hidden layers. The maintainer-inspector
decoupling architecture is applied to DDMAC with
decentralized information (CTDE specifications),
having the same characteristics for the actors and
critics’ hidden layers. All involved networks have
been trained with Keras with Tensorflow backend
version 1.5.0.

5.1. Policy evaluation and comparison

We compare the policies of all architectures for all
cases of 9 and 35-component systems with varying
number of actions per component, as discussed in
Section 4.2. All policies are trained for a maximum
of 10° episodes or until convergence, starting with
an intact state, taking y = 0.975. Table 2 shows the
relative performance of the two methods based on
the total life-cycle cost after convergence. As
observed, for smaller systems with low number of
actions per component, DDMAC-CTDE performs
almost the same and better than the Maintainer-
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Inspector (MI) DDMAC-CTDE. As the number of
actions grows, the MI architecture improves the
performance by 20% and 55%, for 9 and 35-
component systems respectively (with 100 actions
per component). DDMAC with CTDE performs
consistently better in the smaller action space case,
regardless of the number of components, and it
even performed better in the 9-component system
with 50 actions case. However, as the number of
components and actions increases, we see that the
MI architecture improves the DDMAC-CTDE for
both 9 and 35-component systems. Training insta-

Table 1: Comparison of different DRL methods in terms
of the mean total life-cycle cost expressed in Crep

Comp. | Methods 5 5.0 190
actions | actions | actions
9 DRLI1 11.62 | 10.86 10.85
DRL2 9.68 | 10.40 11.13
35 DRLI1 43.86 | 46.48 49.89
DRL2 | 38.73 | 48.44 80.55

DRL 1, and 2 represent maintainer-inspector, and DDMAC-CTDE architectures,
respectively. The mean life-cycle cost estimated via 2x10* simulations using the best
DRL network weights. The 95% confidence bounds for DRL1 (with increasing actions)
are [1.29, 1.49, 1.54] and [2.88, 3.18, 3.15] for 9- and 35-component systems,
respectively. Similarly, for DRL2 [1.21, 1.34, 6.40] and [2.35, 12.92, 21.15] are the
related confidence bounds.
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Figure 4: Life-cycle realization of the computed Maintainer-Inspector policy for the 9-component network
with 5 actions per component.

nces for the 9-component network with 5 and 100
actions per components are shown in Figures 3(a)
& (b), respectively. The episodes used in the
respective cases are 5x10° and 10°.

Figures 3(c) & (d) show the cost constituents
of the total cost (during simulation), that includes
inspection, maintenance, and risk, for the 9-
component network with 5 and 100 available
actions per component, respectively. It can be
observed that the MI DDMAC method is achieving
the lower life-cycle risk than the DDMAC-CTDE.
A policy realization is shown in Figure 4 to better
understand and interpret the behavior of the
converged policy for the MI architecture for the
case with 5 actions. The figure illustrates actions
generated by one realization of the policy and the
evolution of component belief states is shown with
contours. Figure 4 also displays the total risk
(including system and components risk) over time,
which is the only constraint considered here. The
red line shows the constraint level, and the blue
curve shows the system risk as it evolves in time.
As expected, the risk is minimal at the beginning
and increases with time, with downward jumps
mainly due to the maintenance activities.

As we observe in Figure 4, the inspection and

maintenance actions can be generally understood
based on the belief states evolution. For example,
the agents initially choose many do-nothing & no-
inspection actions since the belief states start at the
intact component conditions. As the conditions
gradually worsen, relevant interventions are
considered. The choice of rebuilding for
components 1 and 2 after failure is consistent with
the cost model. Similarly, for component 9, no
repair action is selected for most of its life-cycle,
as the component mostly remained in good
condition.

6. CONCLUSIONS

This paper examines an actor-critic Deep
Reinforcement Learning (DRL) approach for
various inspection and maintenance settings for
deteriorating multi-component systems. The
presented approach utilizes decoupled
maintenance and inspection actor networks,
conditioned on post-inspection and post-
maintenance beliefs, respectively. The inspection
policy network is trained based on the net
conditional Value of Information (Vol), to guide
the inspection choices. The proposed approach is
embedded in existing DRL techniques and
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illustrated for 9 and 35-component systems, with
varying number of actions per component. The
new architectural configuration is found to
improve baseline performance by significant
margins as the number of system actions and
components increases.
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