
Published in Transactions on Machine Learning Research (01/2024)

Empowering GNNs via Edge-Aware Weisfeiler-Leman Algo-

rithm

Meng Liu mengliu@tamu.edu

Department of Computer Science & Engineering

Texas A&M University

Haiyang Yu haiyang@tamu.edu

Department of Computer Science & Engineering

Texas A&M University

Shuiwang Ji sji@tamu.edu

Department of Computer Science & Engineering

Texas A&M University

Reviewed on OpenReview: https: // openreview. net/ forum? id= VDy6LgErFM

Abstract

Message passing graph neural networks (GNNs) are known to have their expressiveness
upper-bounded by 1-dimensional Weisfeiler-Leman (1-WL) algorithm. To achieve more
powerful GNNs, existing attempts either require ad hoc features, or involve operations that
incur high time and space complexities. In this work, we propose a general and provably
powerful GNN framework that preserves the scalability of the message passing scheme. In
particular, we first propose to empower 1-WL for graph isomorphism test by considering
edges among neighbors, giving rise to NC-1-WL. The expressiveness of NC-1-WL is shown
to be strictly above 1-WL and below 3-WL theoretically. Further, we propose the NC-GNN
framework as a differentiable neural version of NC-1-WL. Our simple implementation of
NC-GNN is provably as powerful as NC-1-WL. Experiments demonstrate that our NC-GNN
performs effectively and efficiently on various benchmarks.

1 Introduction

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008) have been demonstrated to be
effective for various graph tasks. In general, modern GNNs employ a message passing paradigm where the
representation of each node is recursively updated by aggregating representations from its neighbors (Atwood
& Towsley, 2016; Li et al., 2016; Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018; Xu et al.,
2019; Gilmer et al., 2017). Such message passing GNNs, however, have been shown to be at most as powerful
as the 1-dimensional Weisfeiler-Leman (1-WL) algorithm (Weisfeiler & Lehman, 1968) in distinguishing
non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019). Thus, message passing GNNs cannot distinguish
some simple graphs and detect certain important structural concepts (Chen et al., 2020; Arvind et al., 2020).

The recent efforts to improve the expressiveness of message passing Graph Neural Networks (GNNs) have
been focused on high-dimensional WL algorithms (e.g., Morris et al. (2019); Maron et al. (2019)), exploiting
subgraph information (e.g., Bodnar et al. (2021a); Zhang & Li (2021)), or adding more distinguishable
features (e.g., Murphy et al. (2019); Bouritsas et al. (2022)). As thoroughly discussed in Section 5 and
Appendix B, these existing methods either rely on handcrafted/predefined/domain-specific features, or require
high computational cost and memory budget. In contrast, this work aims to develop a general GNN

framework with provably expressive power, while maintaining the scalability of the message

passing scheme.

1

Published in Transactions on Machine Learning Research (01/2024)

In particular, we first propose an extension of the 1-WL algorithm, namely NC-1-WL, where NC stands for
neighbor communication. To be more specific, we incorporate the information of which two neighbors are
communicating (i.e., connected) into the graph isomorphism test algorithm. To achieve this, we mathematically
model the edges among neighbors as a multiset of multisets, in which each edge is represented as a multiset of
two elements. We show theoretically that the expressiveness of our NC-1-WL in distinguishing non-isomorphic
graphs is strictly above 1-WL and below 3-WL. Further, based on NC-1-WL, we introduce the NC-GNN
framework, a general and differentiable neural version of NC-1-WL. We provide a simple implementation of
NC-GNN that is proved to be as powerful as NC-1-WL. Compared to existing expressive GNNs, our NC-GNN
is a general, provably powerful, and, more importantly, scalable framework.

We thoroughly evaluate the performance of our NC-GNN on graph classification and node classification tasks.
Our NC-GNN consistently outperforms GIN, which is as powerful as 1-WL, by significant margins on various
benchmarks. Remarkably, NC-GNN achieves an impressive absolute margin of 12.0 over GIN in terms of
test accuracy on the CLUSTER dataset. Furthermore, NC-GNN performs competitively and often achieves
better results, compared to existing expressive GNNs, while being more efficient.

2 Preliminaries

We start by introducing notations. We represent an undirected graph as G = (V,E,X), where V is the set
of nodes and E ¦ V × V denotes the set of edges. We represent an edge {v, u} ∈ E by (v, u) or (u, v) for
simplicity. X = [x1, · · · ,xn]T ∈ R

n×d is the node feature matrix, where n = |V | is the number of nodes and
xv ∈ R

d represents the d-dimensional feature of node v. Nv = {u ∈ V |(v, u) ∈ E} is the set of neighboring
nodes of node v. A multiset is denoted as {{· · · }} and formally defined as follows.

Definition 1 (Multiset). A multiset is a generalized concept of set allowing repeating elements. A multiset
X can be formally represented by a 2-tuple as X = (SX ,mX), where SX is the underlying set formed by the
distinct elements in the multiset and mX : SX → Z

+ gives the multiplicity (i.e., the number of occurrences)
of the elements. If the elements in the multiset are generally drawn from a set X (i.e., SX ¦ X), then X is
the universe of X and we denote it as X ¦ X for ease of notation.

Message passing GNNs. Modern GNNs usually follow a message passing scheme to learn node representa-
tions in graphs (Gilmer et al., 2017). To be specific, the representation of each node is updated iteratively by
aggregating the multiset of representations formed by its neighbors. In general, the ℓ-th layer of a message
passing GNN can be expressed as

a(ℓ)
v = faggregate

(ℓ)
(

{{h(ℓ−1)
u |u ∈ Nv}}

)

, h(ℓ)
v = fupdate

(ℓ)
(

h(ℓ−1)
v ,a(ℓ)

v

)

. (1)

faggregate
(ℓ) and fupdate

(ℓ) are the parameterized functions of the ℓ-th layer. h
(ℓ)
v is the representation of node

v at the ℓ-th layer and h
(0)
v can be initialized as xv. After employing L such layers, the final representation

h
(L)
v can be used for prediction tasks on each node v. For graph-level problems, a graph representation hG

can be obtained by applying a readout function as,

hG = f readout

(

{{h(L)
v |v ∈ V }}

)

. (2)

Definition 2 (Isomorphism). Two graphs G = (V,E,X) and H = (P, F,Y) are isomorphic, denoted as
G ≃ H, if there exists a bijective mapping g : V → P such that xv = yg(v),∀v ∈ V and (v, u) ∈ E iff
(g(v), g(u)) ∈ F . Graph isomorphism is still an open problem without a known polynomial-time solution.

Weisfeiler-Leman algorithm. The Weisfeiler-Leman algorithm (Weisfeiler & Lehman, 1968) provides a
hierarchy for the graph isomorphism testing problem. Its 1-dimensional form (a.k.a., 1-WL or color refinement)
is a heuristic method that can efficiently distinguish a broad class of non-isomorphic graphs (Babai & Kucera,

1979). 1-WL assigns a color c
(0)
v to each node v according to its initial label (or feature)1 and then iteratively

refines the colors until convergence, where the subsets of nodes with the same colors can not be further

1If there are no initial features or labels, 1-WL assigns the same color to all the nodes in the graph.

2

Published in Transactions on Machine Learning Research (01/2024)

Figure 1: (a) Several example pairs of non-isomorphic graphs, partially adapted from Sato (2020), that cannot
be distinguished by 1-WL. Colors represent initial node labels or features. Our NC-1-WL can distinguish
them. (b) A comparison between the executions of 1-WL and NC-1-WL on two non-isomorphic graphs.

split to different color groups. In particular, at each iteration ℓ, it aggregates the colors of nodes and their
neighborhoods, which are represented as multisets, and hashes the aggregated results into unique new colors
(i.e., injectively). Formally,

c(ℓ)
v ← Hash

(

c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}
)

. (3)

1-WL decides two graphs to be non-isomorphic once the colorings between these two graphs differ at some
iteration. Instead of coloring each node, k-WL generalizes 1-WL by coloring each k-tuple of nodes and thus
needs to refine the colors for nk tuples. The details of k-WL are provided in Algorithm 2, Appendix A.2. It
is known that 1-WL is as powerful as 2-WL in terms of distinguishing non-isomorphic graphs (Cai et al.,
1992; Grohe & Otto, 2015; Grohe, 2017). Moreover, for k g 2, (k + 1)-WL is strictly more powerful than
k-WL2 (Grohe & Otto, 2015). More details of the WL algorithms are given in Cai et al. (1992); Grohe (2017);
Sato (2020); Morris et al. (2021).

Given the similarity between message passing GNNs and 1-WL (i.e. Eq. (1) vs. Eq. (3)), message passing
GNNs can be viewed as a differentiable neural version of 1-WL. In fact, the expressiveness of message passing
Graph Neural Networks (GNNs) is known to be upper-bounded by 1-WL (Xu et al., 2019; Morris et al.,
2019), and message passing GNNs can achieve the same expressiveness as 1-WL if the aggregate, update, and
readout functions are injective, which corresponds to the GIN model (Xu et al., 2019). In other words, if two
non-isomorphic graphs cannot be distinguished by 1-WL, then message passing GNNs must yield the same
embedding for them. Importantly, such expressive power is not sufficient to distinguish some common graphs
and cannot capture certain basic structural information such as triangles (Chen et al., 2020; Arvind et al.,
2020), which play significant roles in certain tasks, such as tasks over social networks. Several examples that
cannot be distinguished by 1-WL or message passing GNNs are shown in Figure 1 (a).

3 The NC-1-WL Algorithm

In this section, we propose the NC-1-WL algorithm, which extends the 1-WL algorithm by taking the edges
among neighbors into consideration. With such a simple but non-trivial extension, NC-1-WL is proved to be
strictly more powerful than 1-WL and less powerful than 3-WL, while preserving the efficiency of 1-WL.

As shown in Eq. (3) and (1), 1-WL and message passing GNNs consider neighbors of each node as a multiset
of representations. Here, we move one step forward by further treating edges among neighbors as a multiset,

2There are two families of WL algorithms; they are k-WL and k-FWL (Folklore WL). They both consider coloring k-tuples
and their difference lies in how to aggregate colors from neighboring k-tuples. It is known that (k − 1)-FWL is as powerful as
k-WL for k ≥ 3 (Grohe & Otto, 2015; Grohe, 2017; Maron et al., 2019). To avoid ambiguity, in this work, we only involve k-WL.

3

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1 NC-1-WL vs. 1-WL for graph isomorphism test

Input: Two graphs G = (V,E,X) and H = (P, F,Y)

c
(0)
v ← Hash(xv),∀v ∈ V

d
(0)
p ← Hash(yp),∀p ∈ P

repeat (ℓ = 1, 2, · · ·)

if {{c
(ℓ−1)
v |v ∈ V }} ̸= {{d

(ℓ−1)
p |p ∈ P}} then

return G ̸≃ H
end if

for v ∈ V do

c
(ℓ)
v ← Hash

(

c
(ℓ−1)
v , {{c

(ℓ−1)
u |u ∈ Nv}}, {{{{c

(ℓ−1)
u1

, c
(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)

end for

for p ∈ P do

d
(ℓ)
p ← Hash

(

d
(ℓ−1)
p , {{d

(ℓ−1)
q |q ∈ Np}}, {{{{d

(ℓ−1)
q1

, d
(ℓ−1)
q2

}}|q1, q2 ∈ Np, (q1, q2) ∈ F}}
)

end for

until convergence
return G ≃ H

where each element is also a multiset corresponding to an edge. We formally define a multiset of multisets as
follows.

Definition 3 (Multiset of multisets). A multiset of multisets, denoted by W , is a multiset where each element
is also a multiset. In this work, we only need to consider that each element in W is a multiset formed by
2 elements. Following our definition of multiset, if these 2 elements are generally drawn from a set X , the
universe of W is the set W = {{{w1, w2}}|w1, w2 ∈ X}. We can formally represent W = (SW ,mW), where
the underlying set SW ¦ W and mW : SW → Z

+ gives the multiplicity. Similarly, we have W ¦ W.

Particularly, our NC-1-WL considers modeling edges among neighbors as a multiset of multisets and extends
1-WL (i.e., Eq. (3)) to

c(ℓ)
v ← Hash

(

c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c
(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
︸ ︷︷ ︸

A multiset of multisets

)

. (4)

As 1-WL, our NC-1-WL determines two graphs to be non-isomorphic as long as the colorings of these two
graphs are different at some iteration. We summarize the overall process of NC-1-WL in Algorithm 1, where
the difference with 1-WL is underlined.

Importantly, our NC-1-WL is more powerful than 1-WL in distinguishing non-isomorphic graphs. Several
examples that cannot be distinguished by 1-WL are shown in Figure 1 (a). Our NC-1-WL can distinguish
them easily. An example of executions is demonstrated in Figure 1 (b). We rigorously characterize the
expressiveness of NC-1-WL by the following theorems. The proofs are given in Appendix A.1 and A.2.

Theorem 1. NC-1-WL is strictly more powerful than 1-WL in distinguishing non-isomorphic graphs.

Theorem 2. NC-1-WL is strictly less powerful than 3-WL in distinguishing non-isomorphic graphs.

Although NC-1-WL is less powerful than 3-WL, it is much more efficient. 3-WL has to refine the color of
each 3-tuple, resulting in n3 refinement steps in each iteration. In contrast, as 1-WL, NC-1-WL only needs
to color each node, which corresponds to n refinement steps in each iteration. Thus, the superiority of our
NC-1-WL lies in improving the expressiveness over 1-WL, while being efficient as 1-WL.

Note that our NC-1-WL differs from the concept of Subgraph-1-WL (Zhao et al., 2022), which ideally
generalizes 1-WL from mapping the neighborhood to mapping the subgraph rooted at each node. Specifically,

the refinement step in Subgraph-1-WL is c
(ℓ)
v ← Hash

(
G[N k

v]
)
, where G[N k

v] is the subgraph induced by the
k-hop neighbors of node v. However, it requires an injective hash function for subgraphs, which is essentially
as hard as the graph isomorphism problem and cannot be achieved. In contrast, our NC-1-WL does not aim

4

Published in Transactions on Machine Learning Research (01/2024)

to injectively map the neighborhood subgraph. Instead, we enhance 1-WL by mathematically modeling the
edges among neighbors as a multiset of multisets. Then, injectively mapping such multiset of multisets in
NC-1-WL is naturally satisfied.

4 The NC-GNN Framework

In this section, we propose the NC-GNN framework as a differentiable neural version of NC-1-WL. Further, we
establish an instance of NC-GNN that is provably as powerful as NC-1-WL in distinguishing non-isomorphic
graphs.

Differing from previous message passing GNNs as Eq. (1), NC-GNN further considers the edges among
neighbors as NC-1-WL. One layer of the NC-GNN framework can be formulated as

c(ℓ)
v = f communicate

(ℓ)
(

{{{{h(ℓ−1)
u1

,h(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)

,

a(ℓ)
v = faggregate

(ℓ)
(

{{h(ℓ−1)
u |u ∈ Nv}}

)

,

h(ℓ)
v = fupdate

(ℓ)
(

h(ℓ−1)
v ,a(ℓ)

v , c(ℓ)
v

)

.

(5)

f communicate
(ℓ) is the parameterized function operating on multisets of multisets. The following theorem

establishes the conditions under which our NC-GNN can be as powerful as NC-1-WL.

Theorem 3. Let M : G → R
d be an NC-GNN model with a sufficient number of layers following Eq. (5). M

is as powerful as NC-1-WL in distinguishing non-isomorphic graphs if the following conditions hold: (1) At
each layer ℓ, fcommunicate

(ℓ), faggregate
(ℓ), and fupdate

(ℓ) are injective. (2) The final readout function f readout

is injective.

The proof is provided in Appendix A.3. One may wonder what advantages NC-GNN has over NC-1-WL.
Note that NC-1-WL only yields different colors to distinguish nodes according to their neighbors and edges
among neighbors. These colors, however, do not represent any similarity information and are essentially
one-hot encodings. In contrast, NC-GNN, a neural generalization of NC-1-WL, aims at representing nodes in
the embedding space. Thus, an NC-GNN model satisfying Theorem 3 can not only distinguish nodes but
also learn to map nodes with certain structural similarities to similar embeddings, based on the supervision
from the on-hand task. This has the same philosophy as the relationship between message passing GNN and
1-WL (Xu et al., 2019).

There could exist many ways to implement the communicate, aggregate, and update functions in the NC-GNN
framework. Here, following the NC-GNN framework, we provide a simple architecture, that provably satisfies
Theorem 3 and thus has the same expressive power as NC-1-WL. To achieve this, we generalize the prior
results of parameterizing universal functions over sets (Zaheer et al., 2017) and multisets (Xu et al., 2019)
to consider both multisets and multisets of multisets. Such non-trivial generalization is formalized in the
following lemmas. The proofs are available in Appendix A.4 and A.5. As Xu et al. (2019), we assume that
the node feature space is countable.

Lemma 4. Assume X is countable. There exist two functions f1 and f2 so that h(X,W) =
∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct pair of (X,W), where X ¦ X is a multiset

with a bounded cardinality and W ¦ W = {{{w1, w2}}|w1, w2 ∈ X} is a multiset of multisets with a
bounded cardinality. Moreover, any function g on (X,W) can be decomposed as g(X,W) = ϕ

(∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2))
)

for some function ϕ.

Lemma 5. Assume X is countable. There exist two functions f1 and f2 so that for infinitely many choices
of ϵ, including all irrational numbers, h(c,X,W) = (1 + ϵ)f1(c) +

∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) +

f1(w2)) is unique for any distinct 3-tuple of (c,X,W), where c ∈ X , X ¦ X is a multiset with a bounded
cardinality, and W ¦ W = {{{w1, w2}}|w1, w2 ∈ X} is a multiset of multisets with a bounded cardinality.
Moreover, any function g on (c,X,W) can be decomposed as g(c,X,W) = φ

(
(1 + ϵ)f1(c) +

∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2))
)

for some function φ.

5

Published in Transactions on Machine Learning Research (01/2024)

We can use multi-layer perceptrons (MLPs) to model and learn f1, f2, and φ in Lemma 5, since MLPs
are universal approximators (Hornik et al., 1989; Hornik, 1991). To be specific, we use an MLP to model

the compositional function f
(ℓ+1)
1 ◦ φ(ℓ) and another MLP to model f

(ℓ)
2 for ℓ = 1, 2, · · · , L. At the first

layer, we do not need f
(1)
1 if the input features are one-hot encodings, since there exists a function f

(1)
2 that

can preserve the injectivity (See Appendix A.5 for details). Overall, one layer of our architecture can be
formulated as

h(ℓ)
v = MLP

(ℓ)
1

((
1 + ϵ(ℓ)

)
h(ℓ−1)

v +
∑

u∈Nv

h(ℓ−1)
u +

∑

u1,u2∈Nv

(u1,u2)∈E

MLP
(ℓ)
2

(
h(ℓ−1)

u1
+ h(ℓ−1)

u2

)

︸ ︷︷ ︸

The difference with GIN

)

, (6)

where ϵ(ℓ) is a learnable scalar parameter. According to Lemma 5 and Theorem 3, this simple architecture,
plus an injective readout function, has the same expressive power as NC-1-WL. Note that this architecture
follows the GIN model (Xu et al., 2019) closely. The fundamental difference between our model and GIN is
highlighted in Eq. (6), which is also our key contribution. Note that if there do not exist any edges among
neighbors for all nodes in a graph (i.e., no triangles), the third term in Eq. (6) will be zero for all nodes, and
the model will reduce to the GIN model.

Complexity. Suppose a graph has n nodes and m edges. Message passing GNNs, such as GIN, require
O(n) memory and have O(nd) time complexity, where d is the maximum degree of nodes. For each node,
we define #MessageNC as the number of edges existing among neighbors of the node. An NC-GNN model
as Eq (6) has O(n(d+ t)) time complexity, where t denotes the maximum #MessageNC of nodes. Suppose
there are totally T triangles in the graph, in addition to n node representations, we need to further store
3T representations as the input of MLP2. If 3T > m, we can alternatively store (hu1

+ hu2
) for each edge

(u1, u2) ∈ E. Thus, the memory complexity is O(n + min(m, 3T)). Hence, compared to message passing
GNNs, our NC-GNN has a bounded memory overhead and preserves the time efficiency. Note that in typical
sparse or moderately dense graphs, which are common in many real-world datasets, t is generally small.
However, in the worst-case scenario of increasingly dense graphs, it is possible that t is approaching n2, while
d is approaching n. Thus, in the worst case, NC-GNN has a higher order of time complexity compared to
GIN. Despite this, it is crucial to emphasize that even in this worst-case scenario, NC-GNN maintains better
efficiency than other high-expressivity GNN models, such as subgraph GNNs. More detailed comparisons are
in Section 5 and Appendix B. Overall, compared to many existing expressive GNNs, NC-GNN offers a more
favorable balance between expressiveness and scalability.

5 Related Work

The most straightforward idea to enhance the expressiveness of message passing GNNs is to mimic the k-WL
(k g 3) algorithms (Morris et al., 2019; 2020b; Maron et al., 2019; Chen et al., 2019). For example, Morris
et al. (2019) proposes 1-2-3-GNN according to the set-based 3-WL, which is more powerful than 1-WL and
less powerful than the tuple-based 3-WL. It requires O(n3) memory since representations corresponding to
all sets of 3 nodes need to be stored. Moreover, without considering the sparsity of the graph, it has O(n4)
time complexity since each set aggregates messages from n neighboring sets. Maron et al. (2019) develops
PPGN based on high order invariant GNNs (Maron et al., 2018) and 2-FWL, which has the same power as
3-WL. Thereby, PPGN achieves the same power as 3-WL with O(n2) memory and O(n3) time complexity.
Nonetheless, the computational and memory costs of these expressive models are still too high to scale to
large graphs.

Another relevant line of research for improving GNNs is to exploit subgraph information (Frasca et al.,
2022). Bodnar et al. (2021b;a) perform message passing on high-order substructures of graphs, such as
simplicial and cellular complexes. Its preprocessing and message passing step are computationally expensive.
GraphSNN (Wijesinghe & Wang, 2022) defines the overlaps between the subgraphs of each node and
its neighbors, and then incorporates such overlap information into the message passing scheme by using
handcrafted structural coefficients. ESAN (Bevilacqua et al., 2022) employs an equivariant framework to
learn from a bag of subgraphs of the graph. Subgraph GNNs Zeng et al. (2021); Sandfelder et al. (2021);

6

Published in Transactions on Machine Learning Research (01/2024)

Zhang & Li (2021); Zhao et al. (2022) apply GNNs to the neighborhood subgraph of each node. For
example, NGNN (Zhang & Li, 2021) and GNN-AK (Zhao et al., 2022) first apply a base GNN to encode the
neighborhood subgraph information of each node and then employ another GNN on the subgraph-encoded
representations. Besides, the recently proposed KP-GNN (Feng et al., 2022) focuses on aggregating information
from K-hop neighbors of nodes and analyzing its expressive power. It is worth noting that many expressive
GNNs, including our proposed NC-GNN, GraphSNN, subgraph GNNs, and KP-GNN, share a common
observation that considering more informative structures, i.e., subgraphs, than rooted subtree would enhance
the expressive power. Importantly, the key difference lies in how such advanced structures are effectively and
efficiently incorporated into deep learning operations. More detailed comparisons to GraphSNN, subgraph
GNNs, and KP-GNN are included in Appendix B.

Due to the high memory and time complexity, most of the above methods are usually evaluated on graph-level
tasks over small graphs, such as molecular graphs, and can hardly be applied to large graphs like social
networks. Compared to these works, our approach differs fundamentally by proposing a general (i.e., without
ad hoc features) and provably powerful GNN framework that preserves the scalability of regular message
passing in terms of computational time and memory requirement. Overall, NC-GNN achieves a sweet spot
between expressivity and scalability.

There are several other heuristic methods proposed to strengthen GNNs by adding identity-aware infor-
mation (Murphy et al., 2019; Vignac et al., 2020; You et al., 2021), random features (Abboud et al., 2021;
Dasoulas et al., 2021; Sato et al., 2021), predefined structural features (Monti et al., 2018; Li et al., 2020;
Rossi et al., 2020; Bouritsas et al., 2022) to nodes, or randomly drop node (Papp et al., 2021). Another
direction is to improve GNNs in terms of the generalization ability (Puny et al., 2020). These works improve
GNNs from perspectives orthogonal to ours and thus could be used as techniques to further augment our
NC-GNN. In addition, PNA (Corso et al., 2020) applies multiple aggregators to enhance the performance of
GNN. Most recently, Morris et al. (2022); Qian et al. (2022); Zhang et al. (2023b); Wang et al. (2023); Zhang
et al. (2023a) propose several new hierarchies, which are more fine-grained than the WL hierarchy, for the
GNN expressivity problem. For a deeper understanding of expressive GNNs, we recommend referring to the
recent surveys (Sato, 2020; Morris et al., 2021; Jegelka, 2022).

6 Experiments

In this section, we evaluate the effectiveness of the proposed NC-GNN model on real benchmarks. In
particular, we consider widely used datasets from TUDatasets (Morris et al., 2020a), Open Graph Benchmark
(OGB) (Hu et al., 2020), and GNN Benchmark (Dwivedi et al., 2020). These datasets are from various
domains and cover different tasks over graphs, including graph classification and node classification. Thus,
they can provide a comprehensive evaluation of our method. Note that certain datasets in these benchmarks,
such as MUTAG, PTC, and NCI1, do not have many edges among neighbors (i.e., Avg. #MessageNC

< 0.2). In this case, our NC-GNN model will almost reduce to the GIN model and thus perform nearly the
same as GIN, as shown in Appendix C.1. Hence, we omit such datasets in our main section. All the used
datasets and their statistics, including Avg. #MessageNC, are summarized in Table 8, Appendix C.2. Our
implementation is based on the PyG library (Fey & Lenssen, 2019). The detailed model configurations and
training hyperparameters of NC-GNN on each dataset are summarized in Table 9, Appendix C.3.

Baselines. We mainly compare NC-GNN with the following three lines of baselines. (1) GIN. As highlighted
in Eq. (6), NC-GNN closely follows the GIN model and the fundamental difference is that NC-GNN
further considers modeling edges among neighbors. Hence, comparing to GIN can directly demonstrate the
effectiveness of including such information in our NC-GNN, which is the core contribution of our theoretical
result. We highlight our results if they achieve improvements over GIN. (2) Subgraph-based GNNs.
As described in Section 5, our NC-GNN and subgraph-based GNNs share the idea of exploiting subgraph
information but differ in how to effectively and efficiently incorporate such structures. Thus, we consider
two recent subgraph-based GNNs, including GraphSNN (Wijesinghe & Wang, 2022) and GNN-AK (Zhao
et al., 2022), into comparison. (3) Other expressive GNNs. We further include several other expressive
GNNs, including SIN (Bodnar et al., 2021b), CIN (Bodnar et al., 2021a), RingGNN (Chen et al., 2019) and
PPGN (Maron et al., 2019). While our goal is to provide a comprehensive comparison, it is challenging to

7

Published in Transactions on Machine Learning Research (01/2024)

Table 1: Results (%) on TUDatasets. The top three results on each dataset are highlighted as first, second,
and third. We also highlight the cells of NC-GNN results if they are better than GIN.

Dataset GIN GraphSNN GNN-AK SIN CIN PPGN NC-GNN

COLLAB 80.2±1.9 - - - - 81.4±1.4 82.5±1.2

PROTEINS 76.2±2.8 76.8±2.5 77.1±5.7 76.5±3.4 77.0±4.3 77.2±4.7 76.5±4.4

IMDB-B 75.1±5.1 77.9±3.6 75.0±4.2 75.6±3.2 75.6±3.7 73.0±5.8 75.2±4.5

IMDB-M 52.3±2.8 - - 52.5±3.0 52.7±3.1 50.5±3.6 52.5±3.2

include all baselines on every dataset. Additionally, certain baselines may encounter scalability issues when
applied to large datasets.

TUDatasets. Following GIN (Xu et al., 2019), we conduct experiments on four graph classification datasets
where graphs have many edges among neighbors from TUDatasets (Morris et al., 2020a). We use the same
number of layers as GIN and report the 10-fold cross-validation accuracy following the protocol as (Xu et al.,
2019) for a fair comparison.

As presented in Table 1, we can observe that our NC-GNN outperforms GIN on all datasets consistently.
Moreover, NC-GNN performs competitively with other methods that aim to improve the expressiveness
of GNN. The consistent improvements over GIN show that modeling edges among neighbors in NC-GNN
is practically effective. Notably, NC-GNN achieves an obvious improvement margin of 2.3 on COLLAB.
This result can be intuitively justified by observing the considerably larger Avg. #MessageNC on COLLAB
compared to other datasets, as shown in Table 8, Appendix C.2. In this case, NC-GNN can use such
informative edges existing among neighbors to boost the performance.

Table 2: Results (%) on ogbg-ppa.

Model # Param Test Acc.

GIN 1836942 68.92±1.00

GIN + 3-cycle count feature - 70.58±0.64

GraphSNN - 70.66±1.65

NC-GNN 1754445 71.94±0.43

Open Graph Benchmark. We further perform exper-
iments on the large-scale dataset ogbg-ppa (Hu et al.,
2020), which has over 150K graphs and is known as a
more convincing testbed than TUDatasets. The graphs
in ogbg-ppa are extracted from the protein-protein asso-
ciation networks of different species. Since we have one
more MLP than GIN at each layer, one may wonder if our
improvements are brought by the larger number of learnable parameters, instead of our claimed expressiveness.
Thus, here we compare with GIN under the same parameter budget. Specifically, we use the same number of
layers as GIN to ensure the same receptive field and tune the hidden dimension to obtain an NC-GNN model
that has a similar number of learnable parameters as GIN. More detailed setups are included in Appendix C.4.
In addition to GIN, we further construct a baseline which is a GIN model with 3-cycle counts included as
additional node features. We also include GraphSNN in the comparison. Results over 10 random runs are
reported. Note that other subgraph GNN models cannot scale to such a large-scale dataset. For example,
NGNN (Zhang & Li, 2021), as pointed out in its paper, does not scale to such a dataset with a large average
node degree due to copying a rooted subgraph for each node to the GPU memory.

As reported in Table 2, our NC-GNN model outperforms GIN by an obvious absolute margin of 3.02.
Note that the only difference between NC-GNN and GIN is that edges among neighbors are modeled and
considered in NC-GNN. Thus, the obvious improvements over GIN can demonstrate that our NC-GNN not
only has theoretically provable expressiveness but also achieves good empirical performance on real-world
tasks. Furthermore, NC-GNN performs better than using 3-cycle count as features and GraphSNN, which
demonstrates that, as detailed in Appendix B.1 and B.2, it is effective in NC-GNN to model edges among
neighbors by feature interactions, instead of simply counting 3-cycles as features or using predefined coefficients
as GraphSNN.

GNN Benchmark. In addition to graph classification tasks, we further experiment with node classification
tasks on two datasets, PATTERN and CLUSTER, from GNN Benchmark (Dwivedi et al., 2020). PATTERN
and CLUSTER respectively contain 14K and 12K graphs generated from Stochastic Block Models (Abbe,
2017), a widely used mathematical modeling method for studying communities in social networks. The task
on these two datasets is to classify nodes in each graph. To be specific, on PATTERN, the goal is to determine

8

Published in Transactions on Machine Learning Research (01/2024)

Table 3: Results (%) on GNN Benchmark.

PATTERN CLUSTER
Model # Layers # Param Test Acc. # Param Test Acc.

GIN 4 100884 85.590±0.011 103544 58.384±0.236

16 508574 85.387±0.136 517570 64.716±1.553

RingGNN 2 105206 86.245±0.013 104746 42.418±20.063

2 504766 86.244±0.025 524202 22.340±0.000

8 505749 Diverged 514380 Diverged
PPGN 3 103572 85.661±0.353 105552 57.130±6.539

3 502872 85.341±0.207 507252 55.489±7.863

8 581716 Diverged 586788 Diverged

NC-GNN 4 106756 86.627±0.017 107320 69.335±0.357

4 506512 86.732±0.007 508428 69.838±0.135

16 506512 86.607±0.119 508428 76.718±0.071

∆↑ 1.142 ↑ 12.002 ↑

Table 4: Comparison of real training time per epoch.

Dataset PROTEINS COLLAB IMDB-B IMDB-M PATTERN CLUSTER

Avg. #MessageNC 2.1 5016.2 59.5 70.6 3440.1 1301.5

GIN 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
PPGN 8.9× 1.1× 4.3× 4.6× 19.8× 23.3×
NC-GNN 1.4× 1.3× 1.2× 1.2× 6.0× 4.6×

if a node belongs to specific predetermined subgraph patterns. On CLUSTER, we aim at categorizing each
node to its belonging community. The details of the construction of these datasets are available in (Dwivedi
et al., 2020). We compare with GIN, and two methods that mimic 3-WL; those are PPGN and RingGNN.
The comparison with subgraph GNNs on these datasets will be presented later in a more comprehensive
Table 5. To ensure a fair comparison, we follow Dwivedi et al. (2020) to compare different methods under two
budgets of learnable parameters, 100K and 500K, by tuning the number of layers and the hidden dimensions.
Average results over 4 random runs are reported in Table 3. On each dataset, we also present the absolute
improvement margin of our NC-GNN over GIN, denoted as ∆↑, by comparing their corresponding best result.

We observe that our NC-GNN obtains significant improvements over GIN. To be specific, NC-GNN remarkably
outperforms GIN by an absolute margin of 1.142 and 12.002 on PATTERN and CLUSTER, respectively. This
further strongly demonstrates the effectiveness of modeling the information of edges among neighbors, which
aligns with our theoretical results. Notably, NC-GNN obtains outstanding performance on CLUSTER. Since
the task of CLUSTER is to identify communities, we reasonably justify that considering which neighbors are
connected is significant for inferring communities. Thus, we believe that our NC-GNN can serve as a robust
foundational method for tasks involving social network graphs. Moreover, NC-GNN achieves much better
empirical performance than RingGNN and PPGN, although they theoretically mimic 3-WL. It is observed
that these 3-WL based methods are difficult to train and thus have fluctuating performance (Dwivedi et al.,
2020). In contrast, our NC-GNN is easier to train since it preserves the locality of message passing, thereby
being more practically effective.

Time analysis. In Table 4, we compare the real training time of models on various datasets, including
PROTEINS, COLLAB, IMDB-B, IMDB-M, PATTERN, and CLUSTER. Specifically, we show the increased
training time of NC-GNN and PGNN, compared to the training time of GIN. We can observe that our
NC-GNN is indeed more efficient than PPGN. Compared to GIN, the increment of the real running time of
NC-GNN largely depends on the number of edges among neighbors. For example, the time consumption of
NC-GNN is similar to GIN on PROTEINS and IMDB-B, since the Avg. #MessageNC is considerably smaller
than that in PATTERN and CLUSTER. Overall, this comparison demonstrates that, compared to GIN, the

9

Published in Transactions on Machine Learning Research (01/2024)

Table 5: A thorough comparison between NC-GNN and GIN-AK+ on PATTERN and CLUSTER.
Datasets Methods # Layers # Param Test Acc.↑ Time/epoch³ Total Time³ GPU Memory³ MACS ³ Inference Time³

PATTERN
GIN-AK+ 4 601134 86.836±0.007 77.50s 0.67h 31434MB 176.45G 32.19s
K-subgraph SAT 4 633586 86.845±0.022 40.73s 1.66h 17705MB 0.03G 5.91s
NC-GNN 4 552096 86.717±0.069 42.52s 0.55h 15625MB 1.14G 12.03s

CLUSTER
GIN-AK+ 16 602586 76.502±0.210 148.98s 1.42h 32142MB 110.52G 27.16s
K-subgraph SAT 16 555718 77.416±0.269 74.09s 3.69h 21691MB 0.02G 4.75s
NC-GNN 16 562948 76.992±0.063 48.87s 0.68h 22386MB 0.84G 5.18s

scaling behavior of NC-GNN remains within a reasonable range, particularly when considering the additional
expressiveness it provides.

Thorough comparison with subgraph GNNs and subgraph-aware transformer. Given that subgraph
GNNs are also exploiting neighborhood subgraph information, we further perform a comprehensive empirical
comparison with subgraph GNNs, specifically, GIN-AK+ (Zhao et al., 2022), a representative subgraph GNN
model. In addition, we include a graph transformer method into comparison, which can position our work
within the broader landscape of recent advances in the field. We acknowledge it is hard to compare with
various graph transformers (Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Ying et al., 2021; Chen et al.,
2022; Hussain et al., 2022; Ma et al., 2023) due to different architectures and various techniques, such as
positional encodings. Here, we include the K-subgraph SAT model (Chen et al., 2022) into our comparison,
which can utilize a message passing GNN for subgraph encoding before applying global attention modules.
This method aligns with our emphasis on exploiting subgraph information and allows us to compare NC-GNN
with a state-of-the-art graph transformer method. For each experiment, we run it four times and report the
average results for test accuracy, training time per epoch, total time consumed to achieve the best epoch,
and GPU memory consumption while keeping the same batch size. In order to compare the computational
cost, we use a metric MACS to calculate the average multiply-accumulate operations for each graph in the
test set. Lower MACS value typically indicates faster inference. The results are summarized in Table 5.
Three models achieve comparable accuracies. Overall, compared to GIN-AK+, NC-GNN is more efficient in
training, including training time per epoch and total training time. In addition, we use less GPU memory
since we do not have to update node representations for all the nodes in the expanded subgraphs. More
importantly, the MACS overhead of GIN-AK+ is 100x more than our NC-GNN. Since NC-GNN calculates
each node representation from the original graph instead of the expanded subgraphs, it can save huge MACS
overhead during the forward procedure. Thus, NC-GNN takes less time during inference. In comparison
with K-subgraph SAT, NC-GNN demonstrates a reduced training time. Note that graph transformer models,
like K-subgraph SAT, often require an additional warm-up stage to reach optimal performance levels. This
aspect contributes to the overall longer training duration for such models. NC-GNN has similar memory
consumption as K-subgraph SAT since there are many edges among neighbors in these two datasets, as shown
in Table 8, Appendix C.2. K-subgraph SAT exhibits slightly better efficiency during inference. This could
be due to the inherent architectural differences and optimization techniques employed in graph transformer
models.

To further compare to subgraph-based GNNs, we experiment on the graph substructure counting task since
it is not only an intuitive measurement for expressive power (Chen et al., 2020) but also is quite relevant to
practical tasks in biology and social networks. On counting triangles, our NC-GNN outperforms GIN-AK+

with a lower MAE of 0.0081 as opposed to 0.0123. Details are in Appendix C.5.

7 Conclusions

In this work, we first present NC-1-WL as a more powerful graph isomorphism test algorithm than 1-WL, by
considering the edges among neighbors. Built on our proposed NC-1-WL, we develop NC-GNN, a general,
provably powerful, and scalable framework for graph representation learning. In addition to theoretical
expressiveness, we empirically demonstrate that NC-GNN achieves outstanding performance on various real
benchmarks. Given its simplicity, efficiency, and effectiveness, we anticipate that NC-GNN will become an
important base model for learning from graphs, especially social network graphs.

10

Published in Transactions on Machine Learning Research (01/2024)

Acknowledgments

This work was supported in part by National Science Foundation grant IIS-2006861 and National Institutes
of Health grant U01AG070112.

References

Emmanuel Abbe. Community detection and stochastic block models: recent developments. The Journal of
Machine Learning Research, 18(1):6446–6531, 2017.

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power of graph
neural networks with random node initialization. In IJCAI, 2021.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman invariance:
Subgraph counts and related graph properties. Journal of Computer and System Sciences, 113:42–59, 2020.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in neural information
processing systems, 29, 2016.

László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979), pp. 39–46. IEEE, 1979.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Bal-
amurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In
International Conference on Learning Representations, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael
Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural Information Processing
Systems, 34:2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and Michael
Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks. In International
Conference on Machine Learning, pp. 1026–1037. PMLR, 2021b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph
identification. Combinatorica, 12(4):389–410, 1992.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR, 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns. Advances in neural information processing systems, 32,
2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substructures?
Advances in neural information processing systems, 33:10383–10395, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, 33:13260–13271, 2020.

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural networks
for node disambiguation. In Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 2126–2132, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699, 2020.

11

Published in Transactions on Machine Learning Research (01/2024)

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Bench-
marking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop message
passing graph neural networks. Advances in Neural Information Processing Systems, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding and extending
subgraph gnns by rethinking their symmetries. Advances in Neural Information Processing Systems, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In Proceedings of the 34th international conference on machine learning,
pp. 1263–1272, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729–734.
IEEE, 2005.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic Logic, 80(3):
797–844, 2015.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning Representations,
2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural
Information Processing Systems, 2020.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as a
replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 655–665, 2022.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv preprint
arXiv:2204.07697, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34:
21618–21629, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more
powerful neural networks for graph representation learning. Advances in Neural Information Processing
Systems, 33:4465–4478, 2020.

12

Published in Transactions on Machine Learning Research (01/2024)

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In
International Conference on Learning Representations, 2016.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip Torr,
and Ser-Nam Lim. Graph inductive biases in transformers without message passing. arXiv preprint
arXiv:2305.17589, 2023.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
In International Conference on Learning Representations, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks.
Advances in neural information processing systems, 32, 2019.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolutional network
for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pp. 225–228. IEEE, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020a. URL www.graphlearning.io.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards scalable
higher-order graph embeddings. Advances in Neural Information Processing Systems, 33:21824–21840,
2020b.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias
Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. arXiv preprint
arXiv:2112.09992, 2021.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-aware
permutation-equivariant graph networks. arXiv preprint arXiv:2203.13913, 2022.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for graph
representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR, 2019.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks. Neural
Networks, 130:195–205, 2020.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: random dropouts
increase the expressiveness of graph neural networks. Advances in Neural Information Processing Systems,
34:21997–22009, 2021.

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks generalization.
arXiv preprint arXiv:2006.07846, 2020.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered subgraph
aggregation networks. Advances in Neural Information Processing Systems, 35:21030–21045, 2022.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. Ego-gnns: Exploiting ego structures in graph
neural networks. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8523–8527. IEEE, 2021.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078,
2020.

13

Published in Transactions on Machine Learning Research (01/2024)

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks. In
Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 333–341. SIAM, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representation, 2018.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph neural
networks with structural message-passing. Advances in Neural Information Processing Systems, 33:
14143–14155, 2020.

Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan. N-WL: A new
hierarchy of expressivity for graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023.

Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural networks go beyond weisfeiler-
lehman?". In International Conference on Learning Representations, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10737–10745, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor
Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural networks. Advances
in Neural Information Processing Systems, 34, 2021.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy for
subgraph gnns via subgraph weisfeiler-lehman tests. arXiv preprint arXiv:2302.07090, 2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via graph
biconnectivity. In The Eleventh International Conference on Learning Representations, 2023b.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN with
local structure awareness. In International Conference on Learning Representations, 2022.

14

Published in Transactions on Machine Learning Research (01/2024)

A Proofs of Theorems and Lemmas

A.1 Proof of Theorem 1

Theorem 1. NC-1-WL is strictly more powerful than 1-WL in distinguishing non-isomorphic graphs.

Proof. To prove that NC-1-WL is strictly more powerful than 1-WL, we prove the correctness of the following
two statements. (1) If two graphs are determined to be isomorphic by NC-1-WL, then they must be
indistinguishable by 1-WL as well. (2) There exist at least two non-isomorphic graphs that cannot be
distinguished by 1-WL but can be distinguished by NC-1-WL.

(1) Assume two graphs G = (V,E,X) and H = (P, F,Y) cannot be distinguished
by NC-1-WL. Then, according to Algorithm 1, at any iteration ℓ = 1, 2, · · · , we

have
{{(

c
(ℓ−1)
v , {{c

(ℓ−1)
u |u ∈ Nv}}, {{{{c

(ℓ−1)
u1

, c
(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)

|v ∈ V
}}

=
{{(

d
(ℓ−1)
p , {{d

(ℓ−1)
q |q ∈ Np}}, {{{{d

(ℓ−1)
q1

, d
(ℓ−1)
q2

}}|q1, q2 ∈ Np, (q1, q2) ∈ F}}
)

|p ∈ P
}}

. This naturally

implies that, at any iteration ℓ = 1, 2, · · · , we have
{{(

c
(ℓ−1)
v , {{c

(ℓ−1)
u |u ∈ Nv}}

)

|v ∈ V
}}

=
{{(

d
(ℓ−1)
p , {{d

(ℓ−1)
q |q ∈ Np}}

)

|p ∈ P
}}

. This indicates that 1-WL cannot distinguish graph G and

graph H as well.

(2) In Figure 1 (a), we provide several pairs as examples to show that there exist such non-isomorphic graphs
that can be distinguished by NC-1-WL but cannot be distinguished by 1-WL.

A.2 Proof of Theorem 2

Theorem 2. NC-1-WL is strictly less powerful than 3-WL in distinguishing non-isomorphic graphs.

Proof. To prove that NC-1-WL is strictly less powerful than 3-WL, we prove the correctness of the following two
statements. (1) If two graphs are determined to be isomorphic by 3-WL, then they must be indistinguishable
by NC-1-WL as well. (2) There exist at least two non-isomorphic graphs that cannot be distinguished by
NC-1-WL but can be distinguished by 3-WL.

We first describe the details of k-WL in Algorithm 2, following Sato (2020). k-WL aims at coloring
each k-tuple of nodes, denoted as v ∈ V k. The i-th neighborhood of each tuple v = (v1, v2, · · · , vk) is
defined as Nv,i = {(v1, · · · , vi−1, s, vi+1, · · · , vk)|s ∈ V }. Similarly, The i-th neighborhood of each tuple
p = (p1, p2, · · · , pk) is defined as Np,i = {(p1, · · · , pi−1, t, pi+1, · · · , pk)|t ∈ P}. The initial color of each
tuple v is determined by the isomorphic type of the subgraph induced by the tuple, i.e., G[v]. (See Sato
(2020) for details). Note that the nodes in G[v] are ordered based on their orders in the tuple v. Thus,
Hash(G[v]) = Hash(H[p]) iff (a) xvi

= ypi
for i = 1, 2, · · · , k and (b) (vi, vj) ∈ E iff (pi, pj) ∈ F .

(1) Assume two graphs G = (V,E,X) and H = (P, F,Y) are determined to be isomorphic by 3-WL.
G and H have the same number of nodes3, denoted as n. Then, according to Algorithm 2, we have

{{c
(0)
v |v ∈ V k}} = {{d

(0)
p |p ∈ P k}}. There always exists an injective mapping g : V → P such that c

(0)
v = d

(0)
g(v)

(i.e., Hash(G[v]) = Hash(H[g(v)])), ∀v ∈ V k. Here, we directly apply g to a tuple v for ease of notation,
which means g(v) = g((v1, v2, v3)) = (g(v1), g(v2), g(v3)). Without losing generality, we assume g maps vj to
pj for j = 1, 2, · · · , n. Then, we can obtain the following results.

(a) We can consider the tuples v = (vj , vj , vj),∀vj ∈ V . Given c
(0)
v = d

(0)
g(v), we can derive xvj

= ypj
,∀vj ∈ V .

(b) We further consider the tuples v = (vj , vj , vr),∀vj ∈ V . According to c
(0)
v = d

(0)
g(v), we have xvr

= ypr
.

We can also have pr ∈ Npj
iff vr ∈ Nvj

(Otherwise, c
(0)
v ̸= d

(0)
g(v)).

3Two graphs with different numbers of nodes can be easily distinguished by comparing the multisets of node colors, given

that the cardinalities of the two multisets are different.

15

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 2 k-WL for graph isomorphism test

Input: Two graphs G = (V,E,X) and H = (P, F,Y)

c
(0)
v ← Hash(G[v]),∀v ∈ V k

d
(0)
p ← Hash(H[p]),∀p ∈ P k

repeat (ℓ = 1, 2, · · ·)

if {{c
(ℓ−1)
v |v ∈ V k}} ̸= {{d

(ℓ−1)
p |v ∈ P k}} then

return G ̸≃ H
end if

for v ∈ V k do

c
(ℓ)
v,i = {{c

(ℓ−1)
u |u ∈ Nv,i}}, for i = 1, 2, · · · , k

c
(ℓ)
v ← Hash

(

c
(ℓ−1)
v , c

(ℓ)
v,1, c

(ℓ)
v,2, · · · , c

(ℓ)
v,k

)

end for

for p ∈ P k do

d
(ℓ)
p,i = {{d

(ℓ−1)
q |q ∈ Np,i}}, for i = 1, 2, · · · , k

d
(ℓ)
p ← Hash

(

d
(ℓ−1)
p , d

(ℓ)
p,1, d

(ℓ)
p,2, · · · , d

(ℓ)
p,k

)

end for

until convergence
return G ≃ H

Figure 2: Two graphs, adapted from Sato (2020), that cannot be distinguished by NC-1-WL but can be
distinguished by 3-WL.

(c) At last, we consider the tuples v = (vj , vr, vw),∀vj ∈ V . Similarly, based on c
(0)
v = d

(0)
g(v), we can obtain

xvr
= ypr

and xvw
= ypw

. Also, we can have pr, pw ∈ Npj
iff vr, vw ∈ Nvj

, and (pr, pw) ∈ F iff (vr, vw) ∈ E.

Now, we consider performing NC-1-WL (Algorithm 1) on these two graphs G = (V,E,X) and H = (P, F,Y)
to color each node v ∈ V and p ∈ P . We have the same injective mapping g : V → P as above. Based on (a),

we have xv = yg(v),∀v ∈ V , which indicates c
(0)
v = d

(0)
g(v),∀v ∈ V in the NC-1-WL coloring process. Similarly,

according to (b) and (c), we have {{c
(0)
u |u ∈ Nv}} = {{d

(0)
q |q ∈ Ng(v)}},∀v ∈ V and {{{{c

(0)
u1
, c

(0)
u2
}}|u1, u2 ∈

Nv, (u1, u2) ∈ E}} = {{{{d
(0)
q1
, d

(0)
q2
}}|q1, q2 ∈ Ng(v), (q1, q2) ∈ F}},∀v ∈ V , respectively. Therefore, with initial

colors satisfying such conditions, NC-1-WL cannot distinguish G and H since c
(l−1)
v = d

(l−1)
g(v) ,∀v ∈ V always

holds for ℓ = 1, 2, · · · . In other words, {{c
(ℓ−1)
v |v ∈ V }} = {{d

(ℓ−1)
p |p ∈ P}} always holds no matter how many

iterations (i.e., ℓ) we apply.

(2) In Figure 2, we provide two non-isomorphic graphs that can be distinguished by 3-WL but cannot be
distinguished by NC-1-WL. For these two graphs, our NC-1-WL reduces to 1-WL since there do not exist
any neighbors that are communicating.

A.3 Proof of Theorem 3

Theorem 3. Let M : G → R
d be an NC-GNN model with a sufficient number of layers following Eq. (5). M

is as powerful as NC-1-WL in distinguishing non-isomorphic graphs if the following conditions hold: (1) At
each layer ℓ, fcommunicate

(ℓ), faggregate
(ℓ), and fupdate

(ℓ) are injective. (2) The final readout function f readout

is injective.

16

Published in Transactions on Machine Learning Research (01/2024)

Proof. We prove the theorem by showing that an NC-GNN model that satisfies the conditions can yield
different embeddings for any two graphs that are determined to be non-isomorphic by NC-1-WL. We denote
such model as M. Assume two graphs G1 = (V1, E1,X1) and G2 = (V2, E2,X2) are determined to be
non-isomorphic by NC-1-WL at iteration L. Given that f readout of M can injectively map different multisets
of node features into different embeddings, we only need to demonstrate that M, with a sufficient number of
layers, can map G1 and G2 to different multisets of node features.

To achieve this, following Xu et al. (2019), we show that, for any iteration ℓ, there always exists an injective

function φ such that h
(ℓ)
v = φ(c

(ℓ)
v), where h

(ℓ)
v is the node representation given by the model M and c

(ℓ)
v is

the color produced by NC-1-WL. We will show this by induction. Note that here v represents a general node
that can be a node in G1 or G2.

Let ϕ denote the injective hash function used in NC-1-WL. For ℓ = 0, we have c
(0)
v = ϕ(xv) and h

(0)
v = xv.

Thus, φ could be ϕ−1 for ℓ = 0. Suppose there exists an injective function φ such that h
(ℓ−1)
v = φ(c

(ℓ−1)
v),∀v ∈

V1∪V2, we show that there also exists such an injective function for iteration ℓ. According to Eq. (5), we have

h(ℓ)
v = fupdate

(ℓ)
(

h(ℓ−1)
v , faggregate

(ℓ)
(

{{h(ℓ−1)
u |u ∈ Nv}}

)

,

f communicate
(ℓ)

(

{{{{h(ℓ−1)
u1

,h(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
))

.
(7)

According to h
(ℓ−1)
v = φ(c

(ℓ−1)
v), we further have

h(ℓ)
v = fupdate

(ℓ)
(

φ(c(ℓ−1)
v), faggregate

(ℓ)
(

{{φ(c(ℓ−1)
u)|u ∈ Nv}}

)

,

f communicate
(ℓ)

(

{{{{φ(c(ℓ−1)
u1

), φ(c(ℓ−1)
u2

)}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
))

,
(8)

where f communicate
(ℓ), faggregate

(ℓ), fupdate
(ℓ), and φ are all injective functions. Since the composition of

injective functions is also injective, there must exist some injective function È such that

h(ℓ)
v = È

(

c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c
(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)

. (9)

Then, we can obtain

h(ℓ)
v = È

(

ϕ−1
(

ϕ
(

c(ℓ−1)
v , {{c(ℓ−1)

u |u ∈ Nv}}, {{{{c
(ℓ−1)
u1

, c(ℓ−1)
u2

}}|u1, u2 ∈ Nv, (u1, u2) ∈ E}}
)))

,

= È
(

ϕ−1
(

c(ℓ)
v

))

.
(10)

Then, φ = È ◦ ϕ−1 is an injective function such that h
(ℓ)
v = φ(c

(ℓ)
v),∀v ∈ V1 ∪ V2.

Therefore, it is proved that for any iteration ℓ, there always exists an injective function φ such that

h
(ℓ)
v = φ(c

(ℓ)
v). Since NC-1-WL determines G1 and G2 to be non-isomorphic at iteration L, we have

{{c
(L)
v |v ∈ V1}} ≠ {{c

(L)
v |v ∈ V2}}. As proved above, we also have {{h

(L)
v |v ∈ V1}} = {{φ(c

(L)
v)|v ∈ V1}},

{{h
(L)
v |v ∈ V2}} = {{φ(c

(L)
v)|v ∈ V2}}, and φ is injective. Hence, the multisets of node features produced by

M for G1 and G2 are also different, i.e., {{h
(L)
v |v ∈ V1}} ̸= {{h

(L)
v |v ∈ V2}}, which indicates that the NC-GNN

model M can also distinguish G1 and G2.

A.4 Proof of Lemma 4

Lemma 4. Assume X is countable. There exist two functions f1 and f2 so that h(X,W) =
∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2)) is unique for any distinct pair of (X,W), where X ¦ X is a multiset

with a bounded cardinality and W ¦ W = {{{w1, w2}}|w1, w2 ∈ X} is a multiset of multisets with a
bounded cardinality. Moreover, any function g on (X,W) can be decomposed as g(X,W) = ϕ

(
∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2))
)

for some function ϕ.

17

Published in Transactions on Machine Learning Research (01/2024)

Proof. To prove this Lemma, we need the following fact, which is also used by Xu et al. (2019).

Fact 1. Assume X is countable. h(X) =
∑

x∈X N−Z(x) is unique for any multiset X ¦ X of bounded
cardinality, where the mapping Z : X → N is an injection from x ∈ X to natural numbers and N ∈ N satisfies
N > |X| for all X.

To prove the correctness of this fact, we show that X can be uniquely obtained from the value of h(X).
Following the notations in our main texts, we formally denote X = (SX ,mX), where SX is the underlying set
of X and mX : SX → Z

+ gives the multiplicity of the elements in SX . Hence, we need to uniquely determine
the elements in SX and their corresponding multiplicities, using the value of h(X). Let {x1, x2, · · · , xn}
denote the countable set X (n could go infinitely). Without losing generality, we assume Z maps x1 → 0,
x2 → 1, etc.. Then we can compute (q, r) = h(X) divmod N−0, where q is the quotient and r is the remainder.
If q = 0, we can conclude x1 is not in SX . If q > 0, then x1 is in SX and q gives the multiplicity of x1.
Afterwards, we use the remainder r to replace h(X) and compute (q, r) = h(X) divmod N−1, and the results
can be used to infer if x2 is in SX and its multiplicity. We can do this recursively until r = 0. Note that X
has a bounded cardinality and N ∈ N satisfies N > |X| for all X. Otherwise, Fact 1 will not hold. Here we
provide an example to show the correctness of Fact 1. Let a multiset X = {{x1, x3, x3}} and Z injectively
maps the elements in X to natural numbers, thus obtaining a multiset {{0, 2, 2}}. Let N = 4. We have
h(X) =

∑

x∈X N−Z(x) = 4−0 + 4−2 + 4−2 = 9/8. Next, following our description above, we show how we
can infer X by the value of h(X). First, according to 9/8 divmod 4−0 = (1, 1/8), we can conclude that there

is one x1 in X. Then, with 1/8 divmod 4−1 = (0, 1/8), we can infer that x2 is not in X. Finally, we have

1/8 divmod 4−2 = (2, 0), which indicates that there are two x3 in X. We can stop the process since the
remainder reaches 0.

Let us go back to the proof of Lemma 4. Since X is countable, W = {{{w1, w2}}|w1, w2 ∈ X} is also
countable. Because both X and W have bounded cardinalities, we can find an number N ∈ N such that
N > max(|X|+ |W |, 2) for all (X,W) pairs. Let Z1 : X → Nodd be an injection from x ∈ X to odd natural
numbers. We consider f1 = N−Z1(x). For ease of notation, we let È({{w1, w2}}) = f1(w1)+f1(w2). According
to Fact 1, È({{w1, w2}}) is unique for any {{w1, w2}} ∈ W. We define the set Y = {È({{w1, w2}})|w1, w2 ∈ X}.
Thus, Y is also countable as W. We consider Z2 : Y → Neven be an injection from y ∈ Y to even natural
numbers and f2 = N−Z2(y). Then, the resulting h(X,W) =

∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2))

is an injective function on (X,W). In other words, we can uniquely determine (X,W) from the value of
h(X,W). To be specific, from the value of h(X,W), we can infer the histograms of natural numbers as we
show in Fact 1. Then, we can uniquely obtain X (i.e., its underlying set Sx and multiplicities.) based on the
odd natural numbers. According to the even natural numbers, we can infer {{È({{w1, w2}})|{{w1, w2}} ∈W}}.
Further, since È({{w1, w2}}) is injective, we can uniquely obtain W .

For any function g on (X,W), we can construct a function ϕ such that ϕ
(

h(X,W)
)

= g(X,W). This is
always achievable since h(X,W) is injective.

A.5 Proof of Lemma 5

Lemma 5. Assume X is countable. There exist two functions f1 and f2 so that for infinitely many choices
of ϵ, including all irrational numbers, h(c,X,W) = (1 + ϵ)f1(c) +

∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) +

f1(w2)) is unique for any distinct 3-tuple of (c,X,W), where c ∈ X , X ¦ X is a multiset with a bounded
cardinality, and W ¦ W = {{{w1, w2}}|w1, w2 ∈ X} is a multiset of multisets with a bounded cardinality.
Moreover, any function g on (c,X,W) can be decomposed as g(c,X,W) = φ

(

(1 + ϵ)f1(c) +
∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) + f1(w2))
)

for some function φ.

Proof. We consider the same functions f1 = N−Z1(x) and f2 = N−Z2(y) as in our proof for Lemma 4. We
prove this lemma by showing that, if ϵ is an irrational number, h(c,X,W) ̸= h(c′, X ′,W ′) holds for any
(c,X,W) ̸= (c′, X ′,W ′). We need to consider the following two cases.

(1) If c = c′ but (X,W) ̸= (X ′,W ′), according to Lemma 4, we have
∑

x∈X f1(x) +
∑

{{w1,w2}}∈W f2(f1(w1) +

f1(w2)) ̸=
∑

x∈X′ f1(x)+
∑

{{w1,w2}}∈W ′ f2(f1(w1)+f1(w2)). Thus, we can obtain h(c,X,W) ̸= h(c′, X ′,W ′).

18

Published in Transactions on Machine Learning Research (01/2024)

(2) If c ≠ c′, we show h(c,X,W) ̸= h(c′, X ′,W ′) by contradiction. Assume h(c,X,W) = h(c′, X ′,W ′), we
have

(1 + ϵ)f1(c) +
∑

x∈X

f1(x) +
∑

{{w1,w2}}∈W

f2(f1(w1) + f1(w2)) =

(1 + ϵ)f1(c′) +
∑

x∈X′

f1(x) +
∑

{{w1,w2}}∈W ′

f2(f1(w1) + f1(w2)).
(11)

This can be rewritten as

ϵ(f1(c)− f1(c′)) =
(

f1(c′) +
∑

x∈X′

f1(x) +
∑

{{w1,w2}}∈W ′

f2(f1(w1) + f1(w2))
)

−
(

f1(c) +
∑

x∈X

f1(x) +
∑

{{w1,w2}}∈W

f2(f1(w1) + f1(w2))
)

.
(12)

Since f1(c)− f1(c′) ̸= 0 and it is rational, given ϵ is irrational, we can conclude that L.H.S. of Eq. (12) is
irrational. R.H.S. of Eq. (12), however, is rational. This reaches a contradiction. Thus, if c ̸= c′, we have
h(c,X,W) ̸= h(c′, X ′,W ′).

For any function g on (c,X,W), we can construct a function φ such that φ
(

h(c,X,W)
)

= g(c,X,W). This
is always achievable since h(c,X,W) is injective.

Further justification for the first layer. If the input features x ∈ X are one-hot encodings, f1 is not
necessary and thus can be removed. In other words, we can show as follows that there exists an f2 such that
h′(c,X,W) = (1 + ϵ)c+

∑

x∈X x+
∑

{{w1,w2}}∈W f2(w1 + w2) is unique for any distinct 3-tuple of (c,X,W).

Note that
∑

x∈X x is injective if input features are one-hot encodings, and the value of
∑

x∈X x must be
composed of integers. In addition, È′({{w1, w2}}) = w1 + w2 is also injective. Similarly, We define the set
Y ′ = {È′({{w1, w2}})|w1, w2 ∈ X}. We consider Z2 : Y ′ → N be an injection from y ∈ Y ′ to natural numbers
and f2 = N−Z2(y), whereN > |W | for allW . Then h′(c,X,W) = (1+ϵ)c+

∑

x∈X x+
∑

{{w1,w2}}∈W f2(w1+w2)

is injective, since
∑

{{w1,w2}}∈W f2(w1 +w2) is unique for any W and is a number ∈ (0, 1), thus differing from

the integer-valued
∑

x∈X x. This is why we do not need another MLP to model f
(1)
1 in Eq. (6).

B More Comparisons with Related Work

B.1 NC-GNN vs. Counting 3-Cycles

Since our NC-GNN depends on the existence of 3-cycles in the graph, a natural question is how our NC-GNN
compares to the ability to count 3-cycles. Here, we theoretically prove that NC-GNN has the ability to count
3-cycles, but not limited (not just equivalent) to that. To achieve this, we show that our NC-GNN (1) has
the ability to count 3-cycles and (2) goes beyond just counting 3-cycles (i.e., has the ability to capture
patterns that 3-cycles counting cannot). Let’s first prove (1). According to the conclusion from Theorem 3
and Lemma 5, the f communicate in our implemented NC-GNN (Eq. (6)) is injective, thus different W (the
multiset of multisets used to denote the edges among neighbors), will lead to distinct outputs. Given that the
number of 3-cycles in corresponds to the cardinality of W , the 3-cycle counting ability can be included since
different cardinalities can be captured by NC-GNN due to the proven injectivity. To prove (2), we can give
an example that NC-GNN can differentiate but 3-cycle counting cannot. Assume node v has four neighbors
i, j, p, q, and two cases W1 = {{{{vi, vj}}, {{vi, vp}}}} and W2 = {{{{vi, vj}}, {{vp, vq}}}}. By solely relying on
3-cycle counting, both scenarios appear identical as both contribute two 3-cycles. In comparison, NC-GNN
can differentiate them thanks to the injectivity. Essentially, NC-GNN not only captures the cardinality of
W (which is equivalent to counting 3-cycles), but also capture the interaction among neighbors (i.e., the
elements in the multiset W). More importantly, during training, such interactions are captured via feature
interactions in the embedding space and can be learned according to the supervised task at hand.

We empirically verify this in Section 6. As shown in Table 2, NC-GNN exhibits an obvious performance
improvement over simple 3-cycle counting.

19

Published in Transactions on Machine Learning Research (01/2024)

B.2 NC-GNN vs. GraphSNN

Compared to GraphSNN (Wijesinghe & Wang, 2022), NC-GNN incorporates edges among neighbors in a
more general and flexible way, enabling it to capture and model the interactions associated with these edges
based on the learning task. To be specific, in GraphSNN, handcrafted structural coefficients are defined to
encode overlap subgraphs between neighbors. As defined in Eq. (4) in the GraphSNN paper, the structural
coefficient for a specific overlap subgraph is determined by the number of nodes and edges in the overlap
subgraph. Such coefficients are handcrafted. Moreover, two different overlap subgraphs with the same number
of nodes and edges would have the same structural coefficients, which is less discriminative. In comparison,
we mathematically model the edges among neighbors as a multiset of multisets, and such interactions are
modeled by feature interactions in the embedding space and can be learned according to the supervised task
on hand. Therefore, our model is more general and flexible.

We note that many other expressive GNNs, as well as our NC-GNN, are proved to have expressive power
between 1-WL and 3-WL in terms of distinguishing non-isomorphic graphs, but what exact additional power
they obtain and how they compare to each other remains unclear and challenging in the community. Having
said this, here, we can informally prove that our NC-GNN is more powerful (or not weaker) than GraphSNN.

GraphSNN proposes that overlap-isomorphism lies in between neighborhood subgraph isomorphism and
neighborhood subtree isomorphism. However, GraphSNN does not fully solve the local overlap-isomorphism
problem. Instead, GraphSNN encodes the overlap subgraph between neighbors with handcrafted structural
coefficients. As defined in Eq. (4) in the GraphSNN paper, the structural coefficient for a specific overlap
subgraph is determined by the number of nodes and edges in the overlap subgraph. This will lead to the
situation that two different overlap subgraphs with the same number of nodes and edges would have the same
structural coefficients. In this case, GraphSNN will produce the same structural coefficients. In contrast,
our NC-GNN can differentiate these two different overlap subgraphs by capturing the fact that the edges
are connecting different nodes in the two overlap subgraphs. This is because of our proved injectivity in
Lemma 4 and 5. Because of such injectivity, NC-GNN can tell from the representation which two neighbors
are connected (i.e., fcommunicate in Eq. (5) is injective).

B.3 NC-GNN vs. Subgraph GNNs

Compared to subgraph GNNs such as NGNN (Zhang & Li, 2021) and GNN-AK (Zhao et al., 2022), our
NC-GNN is more efficient in terms of time and memory complexity. Subgraph GNNs use a base GNN to
encode the neighborhood subgraph of each node and then employ an outer GNN on the subgraph-encoded
representations. They need to perform message passing for all nodes in n subgraphs. Note that it is also
needed to store many more node representations than regular message passing since the same node in different
neighborhood subgraphs has different representations. Thus, the memory complexity is O(ns) and the time
complexity is O(nds), where s is the maximum number of nodes in the considered k-hop neighborhood
subgraph. Note that s grows exponentially with the depths of the neighborhood subgraph, thus limiting
the scalability. In contrast, our NC-GNN preserves the locality of regular message passing. We still update
representations for n nodes in the original graph as regular message passing, instead of all nodes in n
subgraphs.

Since the structure considered in NC-GNN for each node form a one-hop subgraph, we further compare our
NC-GNN to subgraph GNNs when using the one-hop ego network as the subgraph to encode. Here, we
describe the exact time and memory consuming (without big O notations) to explain further why NC-GNN
is more efficient than subgraph GNNs in time and memory even when only one-hop subgraphs are used in
subgraph GNNs. Let us take NGNN with one-hop ego networks as an example.

Time. Let us consider the computational time for obtaining only one node representation. Suppose the node
has d neighbors, and there are t edges among the d neighbors. Hence, in the one-hop ego subgraph of this
node, there are (d+ t) edges in total. Let us only consider the time consumed by the inner GNN module
of NGNN and suppose the inner GNN has only one layer of message passing. (This is the simplest NGNN
model and the practical model could have more layers of message passing.) Note that the message passing in
the inner GNN is performed for all (d+ 1) nodes. In other words, each edge in the one-hop ego subgraph

20

Published in Transactions on Machine Learning Research (01/2024)

corresponds to two message-passing computations (for the two ending nodes connected by the edge). Hence,
the exact time complexity is 2(d+ t) for NGNN to obtain the representation for this node.

For our NC-GNN, the message passing is only performed for the center node. We aggregate the messages
from d neighbors and t edges among neighbors. So the exact time is (d+ t). Hence, our NC-GNN only needs
half of the time required by (the most efficient version of) NGNN.

Memory. For a graph, NC-GNN needs to store (n+min(m, 3T)) representations, where m is the number
of edges and T is the total number of triangles in the graph. We have a multiplier 3 because each triangle
has three edges and their corresponding representations need to be saved for MLP2 as in Eq. (6). If 3T > m,
we can alternatively save all (hv + hu) for any edge (v, u). This is why our additional memory requirement
compared to regular message GNN is min(m, 3T).

In comparison, in addition to n node representations, NGNN needs to save 2m additional representations.
To be specific, for each edge (v, u), it has to save the representation of node u in v’s subgraph and the
representation of node v in u’s subgraph. Hence, NGNN needs to store (n+ 2m) representations totally.

Therefore, NGNN need to save ((n+ 2m)− (n+min(m, 3T))), which is g m, more representations than our
NC-GNN. The number of edges m is usually larger than n, which accounts for a large proportion of the total
memory cost.

B.4 NC-GNN vs. KP-GNN

NC-GNN and KP-GNN passing share the insight of exploiting subgraph information. However, NC-GNN is
distinct from such k-hop message passing (Nikolentzos et al., 2020; Feng et al., 2022). The key differences are
following. First, the KP-GNN work mainly focuses on formulating the k-hop message passing framework and
analyzing its expressive power. In contrast, we dedicate to the consideration of edges among neighbors, leading
to the effective and efficient NC-GNN. Second, the KP-GNN model considers the subgraph information by
encoding the number of peripheral edges, while we are modeling the communication among neighbors. In
other words, we incorporate feature interaction among neighbors (i.e., the 3rd term in Eq. (6)). With our
dedicatedly designed model, our proof of expressivity is totally different from this existing work. Last, in
addition to the neural models, we also propose the NC-1-WL as a deterministic algorithm for the graph
isomorphism problem, which has not been considered by this existing work.

B.5 Time Complexity Comparison with Related Work

We compare our NC-GNN with several representative expressive GNNs in Table 6. Our NC-GNN achieves a
better balance between expressivity and scalability.

Table 6: Comparison of expressive GNNs. d is the maximum degree of nodes. T is the number of triangles in
the graph. t is the maximum #MessageNC of nodes. s is the maximum number of nodes in the neighborhood
subgraphs, which grows exponentially with the subgraph depth. It is unknown how the expressiveness upper
bound of NGNN compares to 3-WL.

Method Memory Time Expressiveness upper bound Scale to large graphs

GIN O(n) O(nd) 1-WL 6

1-2-3-GNN O(n3) O(n4) 1-WL ∼ 3-WL -
PPGN O(n2) O(n3) 3-WL -
NGNN O(ns) O(nds) 1-WL ∼ Unknown -

NC-GNN (ours) O(n+ min(m, 3T)) O(n(d+ t)) 1-WL ∼ 3-WL 6

21

Published in Transactions on Machine Learning Research (01/2024)

Table 7: Results (%) on MUTAG, PTC, and NCI1.

Dataset Avg. #MessageNC GIN NC-GNN

MUTAG 0 89.4±5.6 90.6±5.6

PTC 0.005 64.6±7.0 64.4±5.6

NCI1 0.005 82.7±1.7 82.5±1.9

C Experimental Details

C.1 Comparison on MUTAG, PTC, and NCI1

Graphs in certain datasets do not have many edges among neighbors (i.e., Avg. #MessageNC < 0.2). In this
case, our NC-GNN model will almost reduce to the GIN model and thus perform nearly the same as GIN.
Here, in Table 7, we provide the empirical results on MUTAG, PTC, and NCI1 as examples. As anticipated,
the results confirm that NC-GNN performs similarly (with statistical variance) as GIN in scenarios where
graphs have sparse connections among neighbors. This is aligned with the theoretical expectations, given that
the key innovation of NC-GNN, i.e., the modeling of edges among neighbors, does not have much opportunity
to contribute to expressiveness in such graphs.

C.2 Dataset Statistics

The dataset statistics in shown in Table 8.

Table 8: Dataset Statistics. Avg. #MessageNC denotes the average #MessageNC per node.
Dataset Task Domain #Graphs Avg. #Nodes Avg. #Edges Avg. #MessageNC

COLLAB Graph classification Social network 5000 74.5 4915.6 5016.2
PROTEINS Graph classification Bioinformatics network 1113 39.1 145.6 2.1
IMDB-B Graph classification Social network 1000 19.7 96.5 59.5
IMDB-M Graph classification Social network 1500 13 131.8 70.6

ogbg-ppa Graph classification Bioinformatics network 78200/45100/34800 243.4 2266.1 179.3

PATTERN Node classification Social network 10000/2000/2000 118.9 6079.8 3440.1
CLUSTER Node classification Social network 10000/1000/1000 117.2 4303.8 1301.5

C.3 Model Configurations and Training Hyperparameters

For efficiency, we do not tune the model configurations and training hyperparameters for NC-GNN extensively.
Since our NC-GNN model is a natural extension of GIN, we usually use the model configurations and tuned
hyperparameters of GIN from the community as the starting point for NC-GNN and then perform a grid
search for the following hyperparameters according to the validation results.

For the model architecture, we tune the following configurations; those are (1) the number of layers, (2)
the number of hidden dimensions, (3) using the jumping knowledge (JK) technique or not, and (4) using a
residual connection or not. To ensure a fair comparison, we only consider employing techniques (3) and (4)
on the datasets where the baseline GIN model also uses them.

In terms of training, we consider tuning the following hyperparameters. those are (1) the initial learning rate,
(2) the step size of learning rate decay, (3) the multiplicative factor of learning rate decay, (4) the batch size,
(5) the dropout rate, and (6) the total number of epochs.

The selected model configurations and training hyperparameters for all datasets are summarized in Table 9.
For each dataset from GNN Benchmark, we have several NC-GNN models under different parameter budgets,
as described in Section 6. Accordingly, we list the configurations and hyperparameters for all of these models
for reproducibility.

22

Published in Transactions on Machine Learning Research (01/2024)

Table 9: The selected model configurations and training hyperparameters of NC-GNN on all datasets.

Dataset COLLAB PROTEINS IMDB-B IMDB-M ogbg-ppa PATTERN CLUSTER

Layers 5 5 5 5 5 4/4/16 4/4/16
Hidden Dim. 64 64 64 32 300 70/154/78 70/154/78
JK 6 6 6 6 - 6 6

Residual Con. - - - - - - -

Initial LR 0.005 0.001 0.001 0.005 0.01 0.001 0.001
Step size of LR 20 50 50 50 30 20 20
Mul. fac. of LR 0.5 0.5 0.5 0.5 0.1 0.5 0.5
Batch size 256 32 32 128 32 32 32
Dropout rate 0.5 0 0.5 0.5 0.5 0/0.1/0.1 0/0/0.5
Epochs 100 100 200 300 80 100/140/140 100/100/200

C.4 Experimental Setup on ogbg-ppa

Differing from TUDatasets, the graphs in ogbg-ppa have edge features representing the type of protein-protein
association. In order to apply NC-GNN to these graphs, we further define a variant of our NC-GNN by
incorporating edge features into the NC-GNN framework, inspired by the GIN model with edge features
introduced by Hu et al. (2019). The layer-wise formulation of our NC-GNN model with considering edge
features is

h(ℓ)
v = MLP

(ℓ)
1

(

(

1 + ϵ(ℓ)
)

h(ℓ−1)
v +

∑

u∈Nv

ReLU(h(ℓ−1)
u + euv) +

∑

u1,u2∈Nv

(u1,u2)∈E

MLP
(ℓ)
2

(

h(ℓ−1)
u1

+ h(ℓ−1)
u2

+ eu1u2

)

)

,

which is a natural extension of Eq. (6) by including edge features. euv is the edge feature associated with
edge (u, v). In practice, we usually apply an embedding layer to input edge features such that they have the
same dimension as the node representations.

For reference, the GIN model with considering edge features (Hu et al., 2019) can be formulated as

h(ℓ)
v = MLP

(ℓ)
1

(

(

1 + ϵ(ℓ)
)

h(ℓ−1)
v +

∑

u∈Nv

ReLU(h(ℓ−1)
u + euv)

)

.

C.5 Experiments on Counting Triangles

Specifically, following prior work (Chen et al., 2020; Zhao et al., 2022), we use the synthetic dataset from Chen
et al. (2020) to evaluate the ability to count triangles in a graph. There are 5000 graphs in total. As (Chen
et al., 2020; Zhao et al., 2022), we use the same 30%/20%/50% (training/validation/test) split. We perform
2 random runs and the comparison of average MAE is shown below.

Table 10: Results (%) on counting triangles.

Model Test MAE

GIN 0.3569
GIN-AK 0.0934
GIN-AK+ 0.0123
NC-GNN 0.0081±0.0012

We compare NC-GNN to GIN and GNN-AK (with GIN as the base model). Our NC-GNN achieves the lowest
MAE of 0.0081, outperforming GIN and GIN-AK by a large margin and reducing the MAE by over 90%.
We also include the result of GIN-AK+, which incorporates additional strategies such as distance encoding

23

Published in Transactions on Machine Learning Research (01/2024)

and context encoding to enhance performance. Despite these improvements, our vanilla NC-GNN model
still outperforms GIN-AK+ in counting triangles. According to the results of the above experiment and the
results in Table 5, our NC-GNN is more time- and memory-efficient compared to subgraph-based GNNs while
achieving practically good performance.

24

	Introduction
	Preliminaries
	The NC-1-WL Algorithm
	The NC-GNN Framework
	Related Work
	Experiments
	Conclusions
	Proofs of Theorems and Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Lemma 5

	More Comparisons with Related Work
	NC-GNN vs. Counting 3-Cycles
	NC-GNN vs. GraphSNN
	NC-GNN vs. Subgraph GNNs
	NC-GNN vs. KP-GNN
	Time Complexity Comparison with Related Work

	Experimental Details
	Comparison on MUTAG, PTC, and NCI1
	Dataset Statistics
	Model Configurations and Training Hyperparameters
	Experimental Setup on ogbg-ppa
	Experiments on Counting Triangles

