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ABSTRACT

We propose an innovative, effective, and data-agnostic method to
train a deep-neural network model with an extremely small train-
ing dataset, called VELR (Voting-based Ensemble Learning with
Rejection). In educational research and practice, providing valid
labels for a sufficient amount of data to be used for supervised
learning can be very costly and often impractical. The shortage of
training data often results in deep neural networks being overfit-
ting. There are many methods to avoid overfitting such as data
augmentation and regularization. Though, data augmentation is
considerably data dependent and does not usually work well for
natural language processing tasks. Moreover, regularization is of-
ten quite task specific and costly. To address this issue, we
propose an ensemble of overfitting models with uncertainty-
based rejection. We hypothesize that misclassification can be
identified by estimating the distribution of the class-posterior
probability P(y|x) as a random variable. The proposed VELR
method is data independent, and it does not require changes to the
model structure or the re-training of the model. Empirical studies
demonstrated that VELR achieved classification accuracy of 0.7
with only 200 samples per class on the CIFAR-10 dataset, but
75% of input samples were rejected. VELR was also applied to a
question generation task using a BERT language model with only
350 training data points, which resulted in generating questions
that are indistinguishable from human-generated questions. The
paper concludes that VELR has potential applications to a broad
range of real-world problems where misclassification is very
costly, which is quite common in the educational domain.
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1. INTRODUCTION

When applying a deep-neural network to real-world classification
tasks, it is sometimes the case that only a very small amount of
labeled data is available for training a model. When a deep neural-
network (DNN) model is trained with a small amount of data, the
model often overfits to the training data due to over-parameteri-
zation. We call such a problematically small amount of data the
extremely low data regime [36].
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Regularization is a widely used technique to prevent the model
from overfitting. However, it requires the hyperparameters to be
fine-tuned a priori, and the model must be retrained each time the
hyperparameters are changed.

Another commonly used technique that is known to be an effec-
tive solution to the overfitting problem is semi-supervised
learning, which utilizes unlabeled data in conjunction with la-
beled data for training [30, 33]. In recent years, data augmentation
using Generative Adversarial Networks (GAN) has been actively
studied to synthetically inflate data, significantly improving the
performance of semi-supervised learning [4, 6, 10, 19]. However,
there are situations where only a small amount of labeled data is
available and data augmentation is not a suitable option. Text
analysis in natural language processing is an example of one such
data-augmentation incompatible task.

Although some research has demonstrated that DNN models can
generalize well with extremely small data regimes, the perfor-
mance is still lower than that of when an abundant amount of data
is available [26, 32]. Low performance due to overfitting is a se-
rious problem, especially when the model is used for real-world
tasks where misclassification can be very costly and even unethi-
cal such as medical diagnoses or educational interventions. To
further expand the application of DNN to real-word tasks, it is
therefore critical to develop a technique that can overcome the
overfitting problem with extremely low data regimes.

In this study, we propose a rigorous ensemble technique for esti-
mating class-posterior probabilities based on a collection of
overfitting models. Our proposed method does not use any regu-
larization techniques or generative models for data augmentation
to avoid overfitting. Instead of preventing overfitting while train-
ing models, we propose to identify unreliable classification using
a soft voting ensemble method based on the distribution of the
estimated class-posterior probability P(y|x) among the collection
of overfitting models.

In other words, we aggregate the class-posterior probabilities
P(y|x) from multiple isomorphic models (aka soft voting) instead
of aggregating the class prediction y (aka hard voting) [37]. We
treat P(y|x) as a random variable while considering a predicted
class-posterior probability from each model as an observation to
estimate the distribution of this random variable.

An unreliable classification will be rejected to reduce the risk of
giving wrong predictions. We shall call our proposed method Vot-
ing-based Ensemble Learning with Rejection (VELR).

With a lack of theoretical work in the design of a voting technique,
we explored two soft-voting methods: min-majority voting and
uniform voting. The min-majority voting estimates Gaussian
Mixture Models and takes the minimum probability in a majority
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Figure 1. Set of posterior probability (or “certainty”)
P™(y; € Y|x) computed by a collection of models.

cluster, whereas uniform voting sums the probabilities with a uni-
form weight. Although uniform voting itself is not novel, voting
among overfitting models due to the extremely low data regime
has not been studied, as far as we are aware.

In addition, it is not clear in the current literature how classifica-
tion with rejection works in conjunction with voting over an
ensemble of overfitting models. We demonstrated that classifica-
tion with rejection with voting shows a better performance than
that with a single model when only an extremely low data regime
is available.

To validate VELR, we conducted evaluation studies on two tasks:
(1) image classification on a commonly used bench-mark dataset
and (2) pedagogical question generation for online courseware
engineering. The results showed that voting-based ensemble
learning with rejection was able to identify incorrect predictions
and accuracy of classification increased significantly by rejecting
those predictions.

Our contributions are as follows: (1) We propose voting-based
ensemble learning with rejection, VELR, a practical and data-ag-
nostic solution for training deep-neural network models with
extremely small datasets that would otherwise be overfit to the
training data. (2) We show that a combination of soft voting
among overfitting models and rejection can significantly increase
performance of a model that relies on estimation of a class-poste-
rior probability. (3) We demonstrated that VELR is data agonistic
through two empirical studies—image and text analyses. (4) The
code and data used for the current study have been open sourced!.

2. VELR: VOTING-BASED ENSEMBLE
LEARNING WITH REJECTION

2.1 Training the Base Models

VELR applies to any deep-neural network model that outputs nor-
malized posterior probability (or certainty), P(y|x) = [0, 1], which
means that when multiple certainties are output (e.g., multi-label
classification), the sum of P(y;|x) are 1 across all outputs. In the
current paper, we assume multiple certainties are output, but it
sshould be clear that the same logic applies to models with a sin-
gle certainty, e.g., a binary classification.

1 The code and data are available at https://github.com/IEClab-
NCSU/VELR
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Suppose we have an input x € X in a multi-dimensional space and
class labels Y= {yi, y», ..., yc}. In general, to train a classification
model is to optimize a set of certainties P(y;€Y|x) in a training
dataset.

When trained with an extremely low data regime, the model will
unavoidably overfit. We therefore propose to create a collection
of models that are independently trained using the same deep-
neural network structure, the same training dataset, and the same
hyperparameter settings. It is only that the random initial weights
are different. Accordingly, a set of certainty P"(y;€ Y|x) for a sam-
ple x are computed, each independently by an individual model
m (m=1, ..., M) as depicted in Figure 1. The question is how to
make a consensus among multiple certainties. The next section
describes a voting technique to compute the consensus certainty
P*y;eYlx).

2.2 Voting on Estimated Certainty Distribu-
tion

An essential problem of ensemble learning is to determine which
posterior probability, among a collection of competing ones,
should be taken. In the current literature, one approach takes
model as the unit of analysis—i.e., individual models make a pre-
diction based on their own posterior probabilities and then a
majority vote is taken from the set of those predictions, aka hard
voting [2].

VELR takes a different approach, where certainty is used as the
unit of analysis. Namely, for each class y; € ¥, VELR makes an
ensemble decision about the posterior probability P*(yieYix)
based on a set of certainties, P"(yie Y|x), m = 1, ..., M, as shown
in Figure 1. In the current literature, this approach is called soft
voting [37]. In the rest of this paper, we call P*(y;eY|x) as the
consensus certainty*.

We explored two different methods for voting: min-majority vot-
ing and uniform voting, as shown in the following subsections.
Our basic hypothesis is that voting decisions should be made
based on the distribution of the certainty P(y;|x) per class y; among
the M models. Therefore, we define a random variable vYi =
{vf;n = P™(y;|x); m = 1, ..., M} for each sample x and class y;.
We hypothesize that the decision of classification should be made
based on voting among v’s.

2.2.1 Min-majority voting
For the min-majority voting, we assume that v”i follows the
Gaussian Mixture Model (GMM) defined as:

K
PR =) MmN o)

2:§=17Tk =1,
N (v, 0y) : Gaussian Density function
K: Number of clusters
As Salman and Liu [25] analyzed, when models are overfitting,
the probability distribution of the random variable v tends to
skew towards 0 and 1. We therefore assume K = 2 in the current
implementation of VELR.

For each sample x, the estimation of @, i, and o is done by the EM
algorithm [7] over the random variable v as mentioned above.

LIS

2 We use the term “posterior probability”, “prediction”, and “cer-
tainty” interchangeably unless otherwise noted.



Once the density functions are estimated, VELR finds the major-
ity cluster that indicates the most dominant distribution of v?¢ as
defined below:

kmajority = argmaXxyeg My

Let v,{ i, be an observation of v¥¢, which is P™ (y;|x). Then, like
a normal clustering method, we assign each certainty vg L=
P™(y;|x) to acluster k; (i € {1, 2}):
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Our goal is to reject samples whose prediction is likely to be
wrong. To make the model prediction more conservative, we hy-
pothesize that the least confident certainty (i.e., posterior
probability) should be taken. Therefore, for min-majority voting,
the minimum P™(y;/x) in the majority cluster is taken as the con-
sensus prediction for the posterior probability, denoted as
P*(yilx):

P*(y;|x) = min vyl
meMM,*

x

MMgi ={m: m € M where k(vzin = kmajority}

By taking the majority cluster, the value of P*(yijx) by min-ma-
jority voting is less likely to be zero.

2.2.2 Uniform voting
Uniform voting takes the mean of the certainty distribution per
class yi, vaty = P"(yix):
* 1 Vi
P (y;lx) = MZmEM Uxm
Notice that uniform voting is equivalent to soft voting with the
uniform weight of one (1.0) [9].

2.3 Rejecting Uncertain Predictions

Once the consensus certainty P*(yx) is determined for each class
Vi, a rejection method is applied. The rejection is made based on
a hypothesis that a reliable prediction should agree with highly
certain posterior probabilities across models.

Our rejection function 7(x) is defined with pre-defined threshold
0: R(0, 1) as:

r(x) = maxP*(y;|x) — 6
YVi€Y

The sample x is rejected if 7(x) < 0 and accepted otherwise. There-
fore, our classification function f{x) is:

Reject

ifr(x) <0
f(X) = {argmaxyieyp*(yilx)

otherwise

Rejection increases the risk of not being able to make a prediction
but decreases the risk of creating a wrong prediction. In some do-
mains, including education, the quality of the model output is
more important than the quantity, and often making a wrong pre-
diction results in a harmful consequence. The task of pedagogical
question generation, which is reposted later in section 4.2 as a
sample task, is an example of such a sensitive task.

3. RELATED WORK

3.1 Training with Extremely Low Data Re-
gime
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Deep neural networks (DNN) are prone to overfit small training
data. There has been extensive research conducted on preventing
overfitting. Three commonly used techniques are: (1) restricting
models and data, (2) pre-training models, and (3) augmenting
data.

Restricting the model and data is used to prevent the model from
being too complex. Regularization techniques are commonly
used, including dropout [29], dropconnect [31], random noise [20,
22], and many others (for example, [11, 32]). Reducing the di-
mensionality of the input can also increase the generalizability of
the model [1, 16]. However, it is not clear whether these regular-
ization techniques work for extremely low data regimes.

Pre-training methods are used to initially train a model with data
from a related task before fine-tuning the model using the target
data. In NLP tasks, it is common to use pre-training models [8,
28, 35]. Although fine-tuning might be done with less amounts of
data when a model is sufficiently pre-trained, it does not always
work. Indeed, fine-tuning did not work for the question genera-
tion task that we used for an evaluation (section 4.2).

Data augmentation is conducted to increase the amount of train-
ing data. There are various methods proposed for DNN-based
data augmentation [5, 14, 15, 18]. When unlabeled data are avail-
able, a generative technique model can be combined with semi-
supervised learning [3, 12, 34]. These generative models might
apply to extremely low data regimes. Zhang et al. [36] proposed
a GAN-based data-augmentation technique, called DADA, spe-
cifically for extremely low data regimes. DADA involves a
device called Augmenter that generates a new image given ran-
dom noise and a label. DADA also involves a Discriminator,
which acts as a classifier that outputs a binary decision for each
class category, indicating whether the input belongs to the distri-
bution of the real data for the target class.

Unlike the above-mentioned methods, VELR does not require
changing a model structure or input data. Theoretically, VELR is
thoroughly data-agnostic—it can be easily adapted to any classi-
fication or prediction tasks including NLP tasks. Practically,
VELR should work as a reliable solution for many existing mod-
els with an extremely low data regime.

3.2 Classification with Rejection

For classification tasks that involve a high risk for misclassifica-
tion, there has been research on classification with rejection,
where a classifier may choose not to make a prediction in order
to avoid wrong predictions [21]. The original study on classifica-
tion with rejection [21] is based on a single model. It is not clear
how classification with rejection works in conjunction with vot-
ing over an ensemble of overfitting models. The empirical study
reported in the next section demonstrated that classification with
rejection with voting shows a better performance than that with a
single model in an extremely low data regime.

4. EVALUATION STUDY

An evaluation study was conducted to test the effectiveness of
VELR. To validate the generality of the algorithm, VELR was
applied to two different tasks—image classification and educa-
tional question generation. An NVIDIA GeForce RTX 3090 was
used for the evaluation.

4.1 First task: Image classification
4.1.1 Method: Image classification



The first task used a subset of CIFAR-10 datasets [13] to simulate
VELR being applied to an extremely low data regime.

CIFAR-10 contains 10 classes with 5000 samples per class. The
training datasets we used consist of 50 (1% of complete training
dataset), 150 (3%), 200 (4%), 500 (10%), and 1000 (20%) sam-
ples per class randomly sampled from the CIFAR-10 dataset.

To increase the reliability of the results, we created four different
subsets of training data for each of the five different sample sizes
mentioned above. The results reported below in the results section
show the averaged performance among four subsets.

For each training subset, we trained 5000 models, applied VELR,
and validated the ensemble outcome using the CIFAR-10 test da-
taset, which contains 10,000 samples.
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Figure 2. Comparison with DADA in terms of accuracy.
Each line shows the change of accuracy (y-axis) with a given
threshold @ depending on the number of training samples (x-
axis). The value above each data point shows the predicted
ratio (i.e., number of samples predicted without rejection / to-
tal number of samples).
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The architecture of the classification model consists of two con-
volutional layers with max-pooling and three fully connected
layers, as shown in Table 2 in Appendix. Each model was trained
for 9000 steps. The batch size was 32. The learning rate was 107,
No regularization technique was used.

By applying VELR to this task, 10 consensus predictions
P*(yi|x), ..., P*(y10lx) were computed (cf. Figure 1).

The results were compared with a state-of-the-art model for en-
semble learning with the extremely low data regimes, DADA
[36]. Note that DADA uses data augmentation and regularization.

For this task, we also explored how the size of ensemble, i.e., the
number of models trained, influences the performance of the clas-
sifier.

4.1.2 Results: Image classification

Figure 2 shows the accuracy of the prediction (y-axis) with dif-
ferent numbers of training data (x-axis). The accuracy was
averaged over 4 trials. Since the standard deviation was smaller
than 0.01 for all data points, it is not shown in the figure.

Figure 2-a shows results for min-majority voting, Figure 2-b
shows uniform voting. Each line corresponds to a particular re-
jection threshold € as shown in the legend. The numbers
associated with a data point show the predicted ratio as defined as
follows (not all data points show the predicted ratio for simplic-

ity):

# samples predicted without rejection

predicted ratio = # samples in the test data

The figure only shows data with 0.4 < 8 < 0.8, because there was
aclear trend that the larger the 0, the higher the accuracy becomes
regardless of other factors (e.g., size of data and voting method).
Also, when the threshold became greater than 0.8, a considerable
number of samples was rejected.

The figure shows that VELR with min-majority voting outper-
formed DADA when 6 > 0.6. VELR with uniform voting also
outperformed DADA when 0 > 0.7. The current data demon-
strates that a very simple ensemble model with no data
augmentation and regularization can outperform a complex
model that includes a generative model for data augmentation.

As shown in Figure 2 when the training data size was fixed (for
example, see 500 per class), the larger the 6, the higher the accu-
racy but the lower the predicted ratio was. This indicates a trade-
off between the accuracy and the predicted ratio. We therefore
investigated the trade-off of each voting method as shown next.

We also plotted the trade-off between accuracy (y-axis) and the
predicted ratio (x-axis), comparing training models with 200 (Fig-
ure 4-a in Appendix) and 1000 (Figure 4-b) samples per class.
The plots clearly show a trade-off between accuracy and pre-
dicted ratio. Together with the fact that threshold and accuracy
are negatively correlated, this finding suggests that when the
threshold is increased, the accuracy also increases at the cost of
predicted ratio (or the number of rejections). Figure 4 also shows
that uniform voting was clearly better than a single model predic-
tion, and consistently better than or equal to min-majority voting.
Because of this, we used uniform voting for the second task as
shown in the next section.

4.2 Second task: Educational Question Gen-
eration



The task of generating educational questions motivated us to de-
velop the VELR method. This section describes the overview of
the question generation model that we developed and why we
needed to invent VELR.

4.2.1 Model to be trained.: Question generation

As part of our on-going effort to develop evidence-based learn-
ing-engineering methods that facilitate the creation of online
courseware, called PASTEL [17], we developed a system for au-
tomated question generation, called QUADL [27]. A unique
characteristic of QUADL is that it is aimed to generate a question
for a key concept in a given didactic text that is assumed to help
students attain a specific learning objective. The input to QUADL
is a didactic text and a learning objective, and the output is a pair
of a question and an answer.

QUADL consists of two machine-learning models: (1) An answer
prediction model that identifies a key token in a given didactic
text that is related to a specific learning objective. (2) A question
conversion model that converts the didactic text that contains the
key token into a question for which the key token is the literal
answer. Notice that the answer for the generated question can be
literally identified in the source didactic text. Since the source di-
dactic text is sampled from the actual online courseware, the
generated questions, by definition, are verbatim questions.

The technical details of the models used in QUADL is provided
elsewhere [27]. Here, we provide a quick overview of those mod-
els sufficient to understand how the ensemble technique VELR
was applied to train QUADL.

Given a pair of a learning objective LO and a sentence .S, QUADL
generates a question @ that is assumed to be suitable to achieve
the learning objective LO (Figure 5 in Appendix shows an over-
view of QUADL). The following is an example of LO, S, and Q:

Learning objective (LO): Describe the basic (overall) struc-
ture of the human brain.
Sentence (.5): The dominant portion of the human brain is the
cerebrum.
Question (Q): What is the dominant portion of human brain?
Answer (A): cerebrum

Notice that the target token is underlined in the sentence S and
becomes the answer A4 for the question Q.

The input of the answer prediction model is a single sentence §
(or a “source sentence” for the sake of clarity) and a learning ob-
jective LO. The output from the answer prediction model is a
target token index <Is, le>, where Is and /e show the index of the
start and end of the target token within the source sentence  rel-
ative to the learning objective LO. The models may output </s=0,
Ie=0>, indicating that the source sentence is not suitable to gen-
erate a question for the learning objective.

For the answer prediction model, we adopted Bidirectional En-
coder Representation from Transformers (BERT) [8]. The final
hidden state of the BERT model is fed to two single layer classi-
fication models. One of them outputs a vector of probabilities
Ps(i) indicating the probability that the i-th token in the sentence
is the beginning of the target token. Likewise, another classifica-
tion model outputs a vector of probabilities that the end index is
located at the j-th token, Pe(j). To compute the probability of a
target token index <Is=i, le=j>, a normalized sum of Ps(i) and
Pe(j) is first calculated as the joint probability P(Is=i, le=j) for
every possible span (Is < le) in the sentence. The probability
P(Is=0, Ie=0) is also computed, which indicates the likelihood
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that the sentence is not suitable to generate a question for the
learning objective. The index <Is=i, le=> with the largest joint
probability becomes the final prediction.

For the question conversion model, we hypothesize that if a target
token is identified in a source sentence, a pedagogically valuable
question can be generated by converting that source sentence into
a verbatim question using a sequence-to-sequence model that can
generate fluent and relevant questions. Therefore, we decided to
use the state-of-the-art technology, called ProphetNet [23], for
now. ProphetNet is an encoder-decoder pre-training model that is
optimized by future n-gram prediction while predicting n-tokens
simultaneously.

4.2.2 Methods: Question generation

Training QUADL models. For the current study, QUADL was ap-
plied to an existing online course “Anatomy and Physiology”
(A&P) hosted on the Open Learning Initiative (OLI) at Carnegie
Mellon University. The A&P course consists of 490 pages and
has 317 learning objectives. To create training data for the answer
prediction model, in-service instructors who actively teach the
A&P course manually tagged the didactic text. The instructors
were asked to tag each sentence .S in the didactic text to indicate
the target tokens relevant to specific learning objective LO.

A total of 8 instructors generated 350 pairs of <LO, $> for mon-
etary compensation. Those 350 pairs of token index data were
used to fine-tune the answer prediction model. As expected, fine-
tuning the BERT model with only 350 training data points re-
sulted in severe overfit—in average, only 38% of predicted target
tokens were correct relative to the ground truth data (i.e., 350
pairs of <LO, §>). VELR was then applied to training the answer
prediction model to overcome the model overfit.

To make an ensemble prediction, 400 answer prediction models
were trained independently using the same training data, but each
with a different parameter initialization. Using all 400 answer pre-
diction models, an ensemble model prediction was made as
follows.

To begin with, recall that for each answer prediction model AP
(k=1, ...,400), two vectors of probabilities are output, one for the
start index Ps’(7), and another one for the end index PéX(j). Uni-
form voting was then applied for each vector. That is, those
probabilities were averaged across all models to obtain the en-
semble predictions Ps*(7) and Pe’(j) for the start and end indices,
respectively. The final target token prediction P*(Is=i, le=j) was
then computed using Ps*(i) and Pe’(j) as described in section
4.2.1.

In the current study, we used threshold of 0.4 for rejection because
otherwise the accuracy of the model is too low (token precision
<0.60) or the recall is too small (token recall < 0.20) on the test
dataset. How the token precision and the token recall were com-
puted is described in section 4.2.3

For the question conversion model, we used an existing instance
of ProphetNet that was already trained on the SQuAD1.1 dataset
[24], one of the most commonly used datasets for question gener-
ation tasks that contains question-answer pairs retrieved from
Wikipedia.

Generating questions using QUADL. Once trained, QUADL was
applied to the pages of OLI A&P courseware (excluding pages
that were used in the training dataset for the answer prediction
model). A total of 2191 questions were generated from 490 pages
with 317 learning objectives.
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Figure 3. Average of token precision (a) and token recall (b)
when VELR is used with 10 models (blue triangle markers)
and 400 models (orange round markers). The dashed line
(black) shows token precision and token recall by a single an-
swer prediction model with no rejection.

State-of-the-art question generation model. We used Info-
HCVAE [6], a state-of-the-art question generation model, as a
baseline. Info-HCVAE generates questions without taking a
learning objective into account. Instead, it extracts key concepts
from a given paragraph and generates questions for them. There-
fore, our primary motivation to use Info-HCVAE as a baseline
(besides its outstanding performance at the time of writing this
paper) is to compare question generation with and without taking
learning objectives into account. The details of the evaluation of
question generation are beyond the scope of this paper but can be
found in [27].

Survey. Five in-service instructors who actively teach the OLI
A&P course (the “participants” hereafter) were recruited for a
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survey study. The survey contained 100 items, each consisting of
a paragraph, a learning objective, a question, and an answer.

Participants were asked to rate the prospective pedagogical value
of proposed questions using four evaluation metrics on a 5-point
Likert scale that we developed for the current study: answerabil-
ity, correctness, appropriateness, and adoptability.

Answerability refers to whether the question can be answered
from the information shown in the proposed paragraph. Correct-
ness is whether the proposed answer adequately addresses the
question. Appropriateness is whether the question is appropriate
for helping students achieve the corresponding learning objective.
Adoptability is how likely the participants would adapt the pro-
posed question to their class.

Each individual participant rated all 100 survey items. The ques-
tions used in the survey were created either by QUADL, Info-
HCVAE, or a human expert. There were 34 questions generated
by QUADL, 33 questions by Info-HCVAE, and 33 human-gen-
erated questions from the same OLI A&P course. Since the
survey did not mention the source of the included questions, the
participants blindly evaluated the prospective pedagogical value
of those questions.

Consequently, five responses per question were collected, which
is notably richer than any other human-rated study for question
generation in the current literature, as these studies often involve
only two coders.

4.2.3 Results: Question generation

Our primary research questions regarding the use of VELR with
QuapL are: (1) How does VELR improve the accuracy (token
precision) of the answer prediction? (2) How pedagogically ade-
quate are the questions generated by QUADL when combined
with VELR?

Accuracy of Answer Prediction Model. To investigate how
VELR improved the accuracy of the answer prediction model
used in QUADL, we evaluated the token precision with different
threshold values.

We operationalized the accuracy of target token identification us-
ing two metrics: token precision and token recall. Token precision
is the number of correctly predicted tokens divided by the number
of tokens in the prediction. Token recall is the number of correctly
predicted tokens divided by the number of ground truth tokens.
For example, suppose a sentence “The farget tissues of the nerv-
ous system are muscles and glands” has the ground truth tokens
as “muscles and glands.” When the predicted token is “glands,”
the token precision is 1.0 and recall is 0.33.

Figure 3 shows the change of token precision (a) and token recall
(b) depending on the threshold when VELR is applied on 10 an-
swer prediction models vs. 400 models. The figure shows the
aggregated average over 7 runs.

Figure 3-a shows that VELR improves the token precision of the
answer prediction model. When VELR is not used, the average
token precision was 0.38 (as shown in the black dashed line).
When VELR was used with a threshold of 0.6, for example, the
token precision was 0.63.

There was a trade-off between precision and recall as predicted.
As Figure 3-b shows the token recall decreased when the thresh-
old increased. The plots in the figure also suggest that there was
no significant difference between 10 models and 400 models
when unified voting was applied.



In sum, VELR improved the performance of the answer prediction
model (which is based on the BERT architecture) even when it
was trained with only 350 data points. For uniform voting, the
number of models did not significantly impact the performance
of the ensemble model. Due to the rejection, there is a clear trade-
off between the soundness (token precision) and the completeness
(token recall) of the ensemble model prediction.

As discussed before, the use of VELR is beneficial for tasks
where soundness is valued over completeness—for pedagogical
question generation, it is far more useful to generate a small num-
ber of pedagogically valuable questions than to generate lots of
harmful questions. So, a further research question is: How peda-
gogically adequate are the questions generated by QUADL when
combined with VELR?

Quality of the generated questions. The results on the answer
prediction model shown above promisingly suggest that VELR
has a practical application for generating questions for existing
online courseware. The current survey results supported this ex-
pectation. Table 1 shows the survey results.

To see if there was a difference in ratings between questions with
the different sources (QUADL vs. Infor-HCVAE vs. Human), a
one-way ANOVA was applied separately to each metric. The re-
sults revealed that source is a main effect for ratings on all four
metrics; F(2, 97) = 36.38, 24.15, 26.11, and 25.03, for answera-

bility, correctness, appropriateness, and adoptability, respectively.

A post hoc analysis using Tukey’s test showed that there was a
statistically significant difference between QUADL and Info-
HCVAE; #97)=1.87, 1.50, 1.52, 1.39 for each metric, p < 0.05
for all metrics. There was, however, no significant difference be-
tween QUADL and human-generated questions for each of the four
metrics: #(97)=0.40, 0.25, 0.16, 0.25, p = 0.19, 0.53, 0.78, 0.45
respectively.

In sum, the results from the current survey data suggest that
QuaDL-generated questions were evaluated as on-par with hu-
man-generated questions when VELR is applied to the answer
prediction model trained with an extremely small data regime.

We further investigated how the consensus certainty of ensemble
prediction of the answer prediction model impacted the quality of
the generated questions. We sampled a subset of questions used
in the survey by excluding the questions whose source target sen-
tences would have been rejected if a threshold higher than 0.4 had
been applied. In other words, we investigated the following re-
search question: How does the rejection threshold used by VELR
when applied to the answer prediction model impact the ratings
of the QUADL-generated questions? We plotted how the ratings
change if thresholds higher than 0.4 were applied (Figure 6 in
Appendix). The figure shows a trend that the participants would
have increased their rating when higher values for rejection
threshold were used, though the differences were relatively small
and not monotonic.

Table 1. Survey results. Average rating by five participants
(£ standard deviations). The rating values range from 1 as
strongly disagree to 5 as strongly agree. The rejection
threshold for the answer prediction model was set to 0.4.

Info-
QuADL Human HCVAE
Answerability 4.19+0.74 3.794+0.89 | 2.32+l1.15
Correctness 4.05+0.72 3.80+0.83 2.55+1.21
Appropriateness 4.04 +0.74 3.88+0.76 2.52+1.25
Adoptability 3.79 £ 0.62 3.53+0.78 2.39+1.10
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5. DISCUSSION AND LIMITATIONS

Building a valid prediction model with extremely low data re-
gimes is an omnipresent challenge in education research and
many other domains when human annotation is required. There-
fore, developing a data-agnostic technique to overcome this issue
is vital to advance the pragmatic theory of learning engineering.

We proposed a voting function based on the distribution of the
predicted posterior probability (or “certainly”). The experiment
with CIFAR-10 showed that both min-majority and uniform vot-
ing can achieve better accuracy than the state-of-the-art method,
DADA [36], even without any regulation or data augmentation
technique on the image classification task.

Although concepts of soft-voting and classification with rejection
have already been studied in the current literature, VELR is the
first in the literature that combines soft-voting technique with re-
jection to carry out ensemble learning to overcome the issue of
overfitting when a model is trained with an extremely low data
regime.

In this paper, we explored only the Gaussian mixture model for
min-majority voting, there are various ways to implement a vot-
ing technique by fitting different probability distributions. We
conjecture that using a voting technique that better estimates a
distribution of the posterior probability will further expand the
potential of the proposed ensemble method.

We demonstrated that VELR is useful for a real-world applica-
tion: pedagogical question generation as a learning-engineering
tool for online courseware creation. However, the observations
related to the evaluation of VELR on QUADL needs some atten-
tion. Since the total number of QUADL-generated questions used
in the survey is small (34) due to the cost of the human-evalua-
tion, the number of questions included in a subset when a higher
threshold was applied was significantly small, too (Figure 6 in
Appendix). The survey study should be replicated with a larger
number of questions to further validate the current findings.

6. CONCULSION

We found that combining soft voting among overfitting models
and rejection based on the distribution of the learned posterior
probability leads to remarkable accuracy on tasks even when
models were trained with extremely low data regimes and were
hence severely overfit.

While a conventional solution for overfitting due to extremely
low data regimes is to restrict the flexibility of the model or in-
crease the amount of data using the data-augmentation
techniques, proposed VELR (Voting-based Ensemble Learning
with Rejection) applies to any task and any models that estimate
predicted certainly using posterior probability. VELR combines
multiple overfitting models to output reliable predictions rather
than preventing a model from overfitting while training.

The extremely low data regime is one of the most common prob-
lems in many practical tasks including educational data mining.
Yet, building a reliable machine-learning model with a limited
amount of data is an unavoidable demand. Further research to
study the theoretical foundation for overcoming the overfitting
problem under an extremely low data regime is therefore needed.
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9. APPENDIX
Classification model for CIFAR-10

Each model was trained for 9000 steps. The batch size was 32.
The learning rate was 1073, No regularization technique was used.

Table 2. The architecture of a model used for the image
classification task.

Layer [Output shape]

5*5 Conv. 2*2 Max-pooling [32, 6, 14, 14]
5*5 Conv. 2*2 Max-pooling [32, 16, 5, 5]
Fully connected ReLu [32, 120]
Fully connected ReLu [32, 84]

Fully connected [32, 10]
10-class Softmax [32, 10]

Trade-off between Accuracy and Predicted Ratio

The dotted line and solid line show min-majority and uniform
voting, respectively. Each voting schema has three plots with
100, 1000, and 5000 models as shown with different markers.
Each line contains 20 data points (denoted as markers on the
line). Each data point corresponds to a particular threshold rang-
ing from 0.95 to 0.0 (i.e., no rejection), decreasing by 0.5. Since
the predicted ratio increases as the threshold is lowered, the 20
data points on the line are coincidentally arranged in a decre-
mental manner, from left to right, for the threshold (hence the
threshold values are not displayed on the plot for simplicity).
For example, the second marker from the right on min-majority
models shows that when 6 = 0.90, the min-majority voting over
1000 models yielded the accuracy of 0.49 with the predicted ra-
tio of 0.62.

The figure shows uniform voting was clearly better than a single
model prediction, and consistently better than or equal to min-
majority voting.
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Overview of QUADL

The answer prediction model identifies start/end index <Is, le> of
the target token (i.e., key term) in S. When S is not suitable for
LO, it outputs <0,0>. The question conversion model converts S
with target token to a verbatim question.

Learning Objective
LO:

Answer
Sentence Prediction Suitable for LO

S Sentence+Target Token <Is, le>
: _

Learning Objective l

Verbatim Question
€« — Qo
-— uestion
Answer Conversion
A ==

Figure 5. An overview of QUADL used for question gener-
ation task.

Learning Objective

Paragraph

Is le

Change of Average Rating for Questions Gener-
ated by QUADL

Figure 6 was plotted to answer the research question: How does
the rejection threshold used by VELR when applied to the answer
prediction model impact the ratings of the QUADL-generated
questions?

Each data point includes a subset of questions used in the survey
excluding the questions whose source target sentences would
have been rejected if a threshold higher than 0.4 had been ap-
plied.

The figure shows how the ratings change if thresholds higher than
0.4 were applied. The figure shows a trend that the participants
would have increased their rating when higher values for rejection
threshold were used, though the differences were relatively small
and not monotonic. Appropriateness, for example, increased from
4.04 to 4.30 when the threshold was changed from 0.4 to 0.75.
Accordingly, acceptability also increased from 3.53 to 4.10.
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Figure 6. Change of average ratings with higher threshold
VELR.
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