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Abstract

We analyze Elman-type Recurrent Reural Net-
works (RNNs) and their training in the mean-field
regime. Specifically, we show convergence of
gradient descent training dynamics of the RNN
to the corresponding mean-field formulation in
the large width limit. We also show that the fixed
points of the limiting infinite-width dynamics are
globally optimal, under some assumptions on the
initialization of the weights. Our results establish
optimality for feature-learning with wide RNNs
in the mean-field regime.

1. Introduction

During the last decade, artificial intelligence and in par-
ticular deep leaning have achieved a significant series of
groundbreaking successes, partly due to the unprecedented
increase of data and computational power at our disposal.
Notably, the range of disciplines that have recently been rev-
olutionized by machine learning is virtually unlimited: from
medicine (Rajkomar et al., 2019) to finance (Dixon et al.,
2020), from games (Silver et al., 2016; Vinyals et al., 2019)
to image analysis (LeCun et al., 1989), to the point where
almost no domain has remained unaltered by the emergence
of these technologies.
This revolution would have been unthinkable without the
advent of deep neural networks. This extremely flexible
family of function approximators has outperformed clas-
sical methods in almost every domain where it has been
applied. A discipline that has been profoundly revolution-
ized by these models is the analysis of time series and, more
generally, the problem of learning dynamical systems. For
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instance, Recurrent Neural Networks (RNNs) (Jordan, 1997;
Rumelhart et al., 1985) and more specifically Long-Short
Term Memory (LSTM) RNNs (Hochreiter & Schmidhuber,
1997; Gers et al., 2000) and Gated Recurrent Units (Cho
et al., 2014) have dramatically increased the predictive per-
formance of machine learning in this context. These models
take as input temporal sequences of data and act iteratively
on the elements of such sequences, storing the information
about previous timepoints into the hidden state of the net-
work. This structure allows to learn datasets with strong
time-correlations using relatively few parameters, and has
provided benchmarks for state-of-the-art time-series learn-
ing algorithms for over a decade. However, despite the
groundbreaking success of these models in practice, the the-
oretical underpinnings of such success remain elusive to the
computer science community. More specifically, many ques-
tions about the theoretical reasons for the performance of
these models applied far into the overparametrized regime,
such as for example explanations for their optimal behavior
and their generalization error, remain open.
Only recently, a theory of neural network learning has
started to emerge in the context of wide, single-layer neu-
ral networks. The two main theoretical frameworks are
based on either understanding mean-field training dynamics
(Chizat & Bach, 2018a; Rotskoff & Vanden-Eijnden, 2018;
Mei et al., 2018; Wojtowytsch, 2020; Sirignano & Spiliopou-
los, 2021; Agazzi & Lu, 2020; Chizat & Bach, 2020)
or based on linearized dynamics in the overparametrized
regime (Jacot et al., 2018; Chizat & Bach, 2018b; Ghor-
bani et al., 2021). These two frameworks provide contrast-
ing explanations for the success of neural networks. On
one hand the linearized dynamics gives strong convergence
guarantees for the training process but fails to explain the
feature-learning properties of neural networks. On the other
hand the the mean-field framework is better at accurately
capturing the highly nonlinear dynamics arguably resulting
in feature-learning (Ghorbani et al., 2019), but the resulting
training process is typically harder to analyze. Consequently,
it remains a challenge to extend the mean-field results listed
above to more realistic structures such as RNNs.
This paper aims to extend the mean-field framework to
Elman-type RNNs. Specifically, we aim to establish op-
timality of the fixed points of the training dynamics for
wide RNNs trained with classical gradient descent. This
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provides an explanation of the outstanding performance of
these models in a certain idealized regime.

1.1. Previous results

The training dynamics of neural networks in the mean-field
infinite width limit was pioneered by the series of papers
(Mei et al., 2018; Chizat & Bach, 2018a; Rotskoff & Vanden-
Eijnden, 2018; Sirignano & Spiliopoulos, 2021). Here, the
authors proved that the training dynamics of infinitely wide,
single layer neural networks in the mean-field regime can be
studied by representing the parametric state of the network
as a probability distribution in the space of weights. Using
this representation it was possible to prove that the limiting
points of the training dynamics are global optimizers of the
loss function.
These ideas have been extended to the reinforcement learn-
ing setting (Sirignano & Spiliopoulos, 2022; Agazzi & Lu,
2020; 2022), to non-differeniable network nonlinearities
such as ReLU (Wojtowytsch, 2020) and to the deep ResNet
architecture (Lu et al., 2020). A recent series of papers
(Nguyen & Pham, 2020; Pham & Nguyen, 2020) has by-
passed the difficulties related to the representation of the
network state as a distribution by introducing the neuronal
embedding framework. This framework allows for the in-
vestigation of the mean-field dynamics of deep, purely feed-
forward neural networks. However, none of these results
can be directly applied to the RNN setting: the presence
of weight-sharing in the RNN structure and the interaction
of the unrolled network with the input violate fundamental
assumptions in these analyses.
The performance of RNNs in the infinite width limit was
studied in (Alemohammad et al., 2021). Here, the authors
explored the performance of the network in the so-called
Neural Tangent Kernel (NTK) regime, arising under a par-
ticular scaling of the weights at initialization. This scaling
linearizes the training dynamics of the network, which be-
haves essentially like a kernel method. It is therefore widely
believed that in this regime feature learning is not possible.
A recent paper (Yang, 2020) considers a similar scaling to
(Alemohammad et al., 2021) in combination with more gen-
eral architectures. In contrast to these works, the mean-field
scaling we consider retains the nonlinear training dynamics.
Finally, a seemingly related result about mean-field theory
for RNNs has been presented in (Chen et al., 2018). That
work, however, uses dynamical mean-field theory to explain
the role of gating in RNN architectures and thus our proof
techniques differ greatly from that paper. The scope of the
results is also significantly different, as their results aim
to explore forward propagation of signal through vanilla
RNNs, and do not aim to establish optimality of the fixed
points after training.

1.2. Contributions

This paper adapts the neuronal embedding analysis frame-
work developed in (Nguyen & Pham, 2020; Pham &
Nguyen, 2020) to unrolled Elman-type RNNs (Elman,
1990). We prove optimality of the fixed points of the training
dynamics in the mean-field regime under some assumptions
on the expressive power of the network at initialization.
Specifically we prove:

1. Convergence of the dynamics of the finite-width RNN
to its infinite-width limit. To do so we adapt the cou-
pling formulation presented in (Nguyen & Pham, 2020)
in the context of fully-connected feedforward networks
to the RNN framework, thereby extending it to net-
works with weight-sharing.

2. Gradient descent trains these networks to optimal fixed
points given infinite training time. This optimality
result holds in the feature-learning regime, as opposed
to previous results that hold in the NTK regime.

3. To prove the above results, we show universal ap-
proximation for deep neural networks with uniformly
bounded hidden weights. This result extends classical
universal approximation theorems, where weights are
critically assumed to be in a vector space and, as such,
to be unbounded.

A standard initialization assumption in feedforward neu-
ral networks, for example 3-layer networks, with a large
number of nodes is to initialize the weights randomly and in-
dependently. In this paper, we further observe that feedback
in an RNN requires stronger assumptions on the weights of
the network at initialization to achieve a comparable level of
expressivity as a 3-layer feedforward network. We examine
this issue in some detail through our analysis.
The paper is organized as follows: in Section 2 we introduce
the notation and the model being investigated, together with
its mean-field limit. Then, in Section 3 we outline our main
results. The results are exemplified with some numerical ex-
periments in Section 4, and conclusions follow in Section 5.
The proofs of our main theorems are given in the appendix.

2. Notation

2.1. Predictors

To put the data-generation process in an abstract framework
for dynamical systems, we consider as predictors subsets of
a bi-infinite observation sequence x → (Rd)Z. For a given
subshift T : (Rd)Z ↑ (Rd)Z, we generate the elements of
x as xk+1 = T (x)k. We make the following assumption
on the underlying dynamical system

Assumption 1. There exists a continuous function
T : Rd

↑ Rd such that xk+1 = T (xk) for all k → Z.
We further assume that this map is uniquely ergodic (upon
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possibly restricting it to a forward invariant set X) and that
the corresponding invariant measure has finite fourth mo-
ments. For the definition of unique ergodicity, see (Katok &
Hasselblatt, 1995).

We denote by !0 : (Rd)Z ↑ Rd the projection of a bi-
infinite sequence on its 0-th element. We further define
ω → M

1
+(RZ) as the invariant measure of the map T , which

exists and is unique by the above assumption. The marginal
ω0 → M

1
+(R) on the 0-th component of ω is the invariant

measure of T , and !0
#ω = ω0.

2.2. Loss function

We assume that we have access to an infinite-length sample
from the invariant measure ω, from a dynamical system sat-
isfying Assumption 1 to train the RNN. Our objective is to
learn a map F

→ : (Rd)N ↑ R from sequences of arbitrary
length to reals. We restrict our attention to functions with a
fixed, finite memory L → N.

Assumption 2. The function F
→ only depends on

{x↑L, . . . ,x0}, for a fixed L → N.

Our objective is to learn an estimate of F
→ by minimiz-

ing the sample Mean Squared Error (MSE) between the
target function F

→ and a parametric family of estimators
{F ( · ;W )}W indexed by the parameter vector W on a sam-
ple of length-L trajectories of size m. In other words, we
aim to find the minimizer F̂ → {F ( · ;W )}W of the empiri-
cal risk

Lm(F →
, F̂ ) :=

1

m

m∑

k=1

1

2
(F →(T k(x))↓ F̂ (T k(x))2.

In the large sample limit M ↑ ↔, the above loss function
can be rewritten as the population risk

L(W ) = lim
m↓↔

Lm(F →( · ), F̂ ( · ;W )) (2.1)

=
1

2

∫
(F →(x)↓ F̂ (x;W ))2ω(dx) ,

expressed above as a function of the parameters of the es-
timator. While our analysis extends to more general loss
functions, for concreteness and ease of exposition we restrict
our discussion to the MSE.

2.3. RNN structure

The family of models we consider are Elman-type Recurrent
Neural Networks of hidden width n → N. Such a neural

Figure 1: The many-to-one structure of the Elman-type
RNN.

network can be written as

F̂ (x;W) = Hhy(x)

Hhy(x) =
1

n
Whyεh(Hhh(x, 0) +Hxh(x0))

Hhh(x, k) =
1

n
Whhεh(Hhh(x, k + 1) +Hxh(x↑(k+1)))

Hhh(x, L) = 0

Hxh(xk) = Wxh · xk

(2.2)
where we assume that xk → Rd, Wxh → Rn↗d, Why → Rn,
Whh → Rn↗n and the activation function εh : R ↑ R is
applied component-wise. The structure of the network is
represented in Fig. 1.
To investigate the convergence properties of RNNs as
n ↑ ↔, we will apply the neuronal embedding formal-
ism from (Nguyen & Pham, 2020; Pham & Nguyen, 2020).
This formalism lifts the labeling of the neurons of the net-
work to an abstract probability space (”h,Fh, Ph), and the
neural network weights are interpreted as a function of these
abstract indices. This lifting allows for the representation
of any network as a specific choice of labelings, and equiva-
lent relabelings of the neural network weights are different
realizations of an abstract (random) labeling process. In this
formalism, the weight functions can then be written as

Wxh(ϑ) → Rd
Whh(ϑ,ϑ

↘) → R Why(ϑ
↘) → R

for ϑ,ϑ↘
→ ”h. A precise definition of ϑ,ϑ↘ and of the cou-

pling procedure to identify the neuronal embedding with the
infinite width limit of the network (2.2) is given in the next
section. The mean-field representation is the continuous ver-
sion of the network introduced above, representing matrix
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multiplications as integral kernels, and can be written as

F̂ (x;W ) =Hhy(x)

Hhy(x) =

∫
Why(ϑ)εh(Hhh(ϑ;x, 0)

+Hxh(ϑ;x0))Ph(dϑ)

Hhh(ϑ;x, k) =

∫
Whh(ϑ,ϑ

↘)εh(Hhh(ϑ
↘;x, k + 1)

+Hxh(ϑ
↘;x↑(k+1)))Ph(dϑ

↘)

Hhh(ϑ;x, L) ↗ 0

Hxh(ϑ;xk) =Wxh(ϑ) · xk

(2.3)
As the next example shows, any finite-width RNN F̂ (W;x)
can be embedded into the mean-field representation.
Example 2.1. (Finite-width RNN) For any choice of pa-
rameters W = {Wxh,Whh,Why} for a width-n net-
work for n < ↔ and assuming d = 1 we can set
”h := {1, 2, . . . , n} . The measure Ph can be chosen as the
uniform measure on {1, 2, . . . , n}. Then, it is readily seen
that, setting Whh(i, j) := (Whh)ij , Wxh(i) := (Wxh)i
and Why(j) := (Why)j for i, j → {1, . . . , n} we have that
(2.3) gives the same output as (2.2).

2.4. Initialization and Coupling procedure

We now introduce the coupling procedure that connects
the evolution of finite-width neural networks (2.2) to their
mean-field representation (2.3). This coupling procedure is
performed at initialization, i.e., before training starts. We
will respectively denote the weights of the finite-width net-
work and of the mean-field limit at initialization by W

0 and
W

0. Instrumental to introducing the coupling procedure
between the finite-width and the infinite-width neural net-
work is the notion of neuronal embedding. Given a family
I of initialization laws indexed by the width n of the hidden
layer,

I = {ϖn : ϖn is the law of W0 for a network of width n}

we consider the parameters W0 of the width-n network as
samples from the corresponding distribution ϖn → I .
We call (”h, Ph,W ) a neuronal embedding for the neural
network with initialization laws in I if for every ϖn → I

there exists a sampling rule P̄n such that

1. P̄n is a distribution on ”n

h
(not necessarily a product

distribution) with marginals given by Ph

2. The mean-field weights W = (Wxh,Whh,Why) are
such that, if (ϑ(j))j ↘ P̄n, then for every n with
i, j → {1, . . . , n}:

Law(Wxh(ϑ(i)),Whh(ϑ(i),ϑ(j)),Why(ϑ(j))) = ϖn.

The above definition decomposes the concept of neural net-
work weights to two parts: the first part is a deterministic

function of possibly continuous arguments and the second
part consists of a random map ϑ transforming the index
i to a (random) argument of the weight function W . A
finite-width network is then seen as a choice of the map
ϑ and weight function W . The evolution of the weights
is captured, for a choice of ϑ, by the dependence of W in
time (the time evolution will be detailed in the next section).
Specifically, we couple W

0 and W
0 as follows:

1. Given a family of initialization laws I , we choose
(”h, Ph,W

0) to be a neuronal embedding of I and
initialize the dynamical quantities W 0(·).

2. Given n → N and the sampling rule P̄n, we sam-
ple (ϑ(1), . . . ,ϑ(n)) ↘ P̄n and set W

0
hh
(i, j) =

W
0
hh
(ϑ(i),ϑ(j)), W

0
xh
(i) = W

0
xh
(ϑ(i)) and

W
0
hy
(j) = W

0
hy
(ϑ(j)) for j → {1, . . . , n}.

The key property of the neuronal embedding construction
is the decomposition of the probability space generating an
instance of the neural network into a product space over
different layers. This decomposition captures the symmetry
of the neural network’s output under certain permutations
of the indices of the neurons, thereby generalizing the repre-
sentation as an empirical measure used in (Chizat & Bach,
2018a; Sirignano & Spiliopoulos, 2021; Rotskoff & Vanden-
Eijnden, 2018; Mei et al., 2018). The following example
helps clarify this analogy.
Example 2.2. In the case of the finite-width network dis-
cussed in Example 2.1, the sampling rule ϑ(i) = i + ϱ

with ϱ → ”h common to the whole layer and distributed
uniformly on ”h satisfies the above conditions. We further
notice that ϑ(i) = ς(i) for any (random) permutation ς of
{1, . . . , n} realizes the same neural network, i.e., a neural
network with the same weights W, up to permutation of the
indices of its neurons.

While the example above illustrates the connection between
neuronal embeddings and finite-width neural networks by
using finite probability spaces, the same connection can be
established more abstractly in the case of IID initializations
for arbitrary and infinite-width networks by means of the
Kolmogorov extension theorem.
Example 2.3. In the case of IID initialization, the neuronal
embedding acquires a more explicit formulation. For a given
probability space (#,G, P0) we define pxh(c), phh(c, c↘)
and phy(c) which are respectively Rd-valued, R-valued
and R-valued random processes indexed by (c, c↘) →

[0, 1] ≃ [0, 1]. For any n and any collection of indices
{c

(i)
, (c↘)(i) : i → {1, . . . , n}} let S be the set of indices

and R be the set of pairs of indices, we let {pxh(c) : c → S},
{phh(c, c↘) : (c, c↘) → R}, {phy(c) : c → S} be indepen-
dent. Then we let Law(pxh(c)) = ϖxh, Law(phh(c, c↘)) =
ϖhh, Law(phy(c)) = ϖhy for all c → S, (c, c↘) → R. This
space exists by Kolmogorov extension theorem. The desired
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neuronal embedding is obtained by taking ”h = #≃ [0, 1],
equipped with the measure Ph = P0 ≃Unif([0, 1]) and we
define the weight functions as

Wxh((φ1, c)) = pxh(c)(φ1)

Whh((φ1, c), (φ2, c
↘)) = phh(c, c

↘)(φ1,φ2)

Why((φ2, c)) = phy(c)(φ2).

In order to state our results we assume that the dependence
of ϑ(i) and ϑ(j) for i ⇐= j is sufficiently weak, as stated
in Assumption 4 below. While this condition is trivially
satisfied by IID initialization introduced above, it makes our
analysis applicable to more general – not fully necessarily
IID – initialization procedures.

2.5. Training dynamics

A popular algorithm to minimize the MSE (2.1) is given by
gradient descent: starting from an initial condition W(0),
we update the parameters W in the direction of steepest
descent of the loss function:

W(j + 1) := W(j)↓ ↼DWL(W) , (2.4)

where DW represents the Fréchet derivative with respect to
W, j → N0 indexes the timesteps of the algorithm and ↼

denotes the stepsize of the discrete-time update.
In this work, we consider the regime of asymptotically small
constant step-sizes, ↼ ↑ 0. In this continuum limit, the
stochastic component of the dynamics is averaged before
the parameters of the model can change significantly. This
allows us to consider the parametric update as a determin-
istic dynamical system emerging from the averaging of the
underlying stochastic algorithm corresponding to the limit
of infinite sample sizes. This is known as the ODE method
(Borkar, 2009) for analyzing stochastic approximations. We
focus on the analysis of this deterministic system to high-
light the core dynamical properties of our training algorithm.
We denote by

W(t) := {Wxh(t; ·),Whh(t; ·, ·),Why(t; ·)}

the continuous-time, averaged trajectory of the finite-width
weights with initial conditions Wxh(0; ·) = W

0
xh
(·),

Whh(0; ·, ·) = W
0
hh
(·, ·), Why(0; ·) = W

0
hy
(·). The gra-

dient descent dynamics for these quantities can be written
as the following ODEs

↽tW(t) = ↓DWL(W(t)) . (2.5)

While the dynamics of both Wxh and Why will be de-
scribed by the above equation, we truncate the evolution of
Whh in an interval of width R > 0 as follows:

↽tWhh(t) =↓ ⇀R(Whh(t))⇒DWhhL(W(t))(2.6)

where ⇒ denotes the Hadamard product and ⇀R : R ↑ R
is a smooth indicator function acting component-wise on
its argument and such that ⇀R(w) = w if ⇑w⇑ ⇓ R/2 and
⇀R(w) ↗ 0 if ⇑w⇑ ⇔ R. We comment on the reasons for
this truncation in Remark 3.2.
Analogously, we denote

W (t) := {Wxh(t; ·),Whh(t; ·, ·),Why(t; ·)} ,

as the continuous-time trajectory of the mean-field weights
with initial condition Wxh(0; ·) = W

0
xh
(·), Whh(0; ·, ·) =

W
0
hh
(·, ·), Why(0; ·) = W

0
hy
(·), obeying the set of ODEs

↽tWhy(t;ϑ) =↓
⇁

⇁Why

L(W (t))

↽tWhh(t;ϑ,ϑ
↘) =↓ ⇀R(Whh(t;ϑ,ϑ

↘))
⇁

⇁Whh

L(W (t))

↽tWxh(t;ϑ) =↓
⇁

⇁Wxh

L(W (t)) (2.7)

where ω

ωW
denotes the variational derivative (Fréchet deriva-

tive) with respect to W . While the explicit expressions for
these dynamics are derived in Appendix A, we give here the
update for the last layer of mean-field weights:

↽tWhy(t;ϑ) =↓

∫
(F̂ (x;W (t))↓ F

→(x)) (2.8)

εh

(
Hhh(ϑ;x, 0) +Hxh(ϑ;x0)

)
ω(dx) .

In the next section we will leverage the fact that this quantity
must be 0 at stationarity to establish the desired optimality
result.

3. Convergence and Optimality Results

To state the main results of this paper, denoting by L
↔

R
(Ph)

whe set of functions on ”h that are essentially bounded by
R > 0, we formulate the following assumption:
Assumption 3. Consider a neuronal embedding
(”h, Ph,W ) and consider a mean-field limit associated
with the neuronal ensemble (”h, Ph) with initialization
W (0) = W

0. We assume that there exists K > R such that

a) Regularity of ε: εh is bounded, differentiable,
εh(0) = 0, ε↘

h
(0) ⇐= 0 and Dεh is K-bounded and

K-Lipschitz.

b) Universal approximation: The span of {εh(Wxh ·x0) :
Wxh → Rd

} is dense in L
2(ω0).

c) Diversity at initialization: The support of the weight
functions W 0

hh
,W

0
xh

at initialization satisfies

supp(W 0
xh
(ϑ),W 0

hh
(·,ϑ),W 0

hh
(ϑ, ·))

= Rd
≃ L

↔

R
(Ph)≃ L

↔

R
(Ph) .

Throughout the paper we denote by Whh(·,ϑ) the ran-
dom (in ϑ) mapping ϑ

↘
↖↑ Whh(ϑ↘

,ϑ).
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d) Regularity at initialization: The weight func-
tions W

0
hy
,W

0
hh
,W

0
xh

at initialization sat-
isfy sup

ε,ε→ |W
0
hh
(ϑ,ϑ↘)| ⇓ R and given

E1(m) = E(|W 0
xh
(ϑ)m|)1/m and E2(m) =

E(|W 0
hy
(ϑ)m|)1/m then

sup
m≃1

1
↙
m

[E1(m) ∝ E2(m)] < K .

Most of the assumptions made above are standard in the liter-
ature on mean-field limits of neural networks, and were first
formulated in similar terms in (Chizat & Bach, 2018a) and
(Nguyen & Pham, 2020). Assumption 3a) gives technical
conditions on the regularity of the nonlinearities, ensuring
that the training dynamics are well-behaved. The condi-
tion on the nonvanishing derivative at the preimage of 0,
which without loss of generality is assumed to be at 0 itself,
is required to preserve expressivity of the network while
allowing for uniform in time boundedness of the hidden
weights. Assumption 3b) demands sufficient expressivity of
the activation function, required to approximate any func-
tion of a finite list of inputs {x↑L, . . . ,x0}. This condition
replaces the convexity assumption from (Chizat & Bach,
2018a), and is satisfied by any nonlinearity for which the
universal approximation theorem holds (Cybenko, 1989;
Barron, 1993), e.g., tanh. Assumption 3c) guarantees that
the initial condition is such that the expressivity from b) can
actually be exploited. This property, which as we shall show
is preserved by the network throughout training, ensures that
the argument of the nonlinearity at each layer is sufficiently
varied, and was first introduced in (Nguyen & Pham, 2020).
Combining this with Assumption 3b) ensures, by induction,
that there is no information bottleneck throughout the depth
of the unrolled network and that the model is highly ex-
pressive throughout training. Finally, Assumption 3d) is a
technical assumption on the data and on the weights guaran-
teeing the well-posedness of the training dynamics. We note
that our results can also be obtained relaxing the assumption
on the boundedness of the Whh weights at initialization, i.e.,
allowing hidden weights to be initialized in regions there
their training dynamics is trivial. This assumption is mainly
made to simplify the proof and to avoid, in practice, the
computation of forward/backward passes for neurons that
would not be updated by the dynamics.
Remark 3.1. We note that Assumption 3c) is significantly
stronger than the analogous “sufficient support” assump-
tion from (Chizat & Bach, 2018a). In particular, this as-
sumption is not satisfied if the weights of each layer are
sampled IID from any initialization law µ. As we comment in
the proof of our results, relaxing this assumption to include
IID initialization would significantly reduce the expressiv-
ity of the untrained infinite-width network with respect to
predictors xk at timesteps k < 0. More specifically, an
IID initialization of the weights combined with the infinite

width limit we are considering results in a highly degenerate
hidden state of the network. Because of the intrinsic depth
of RNN structures, this generates in turn a bottleneck effect
preventing information from values of the predictors in the
distant past to propagate through the network.
Remark 3.2. The truncation of the dynamics of the hidden
layer weights (2.6) (2.7) was introduced in order to guar-
antee existence and uniqueness of the solution to both the
finite-width and the mean-field equations. Indeed, in the
absence of this cutoff, weight-sharing in this class of RNNs
would result in a non-Lipschitz RHS for the dynamical equa-
tion (2.5), as shown explicitly in Appendix A. Given this
lack of regularity, existence of the solution cannot be guar-
anteed by standard analytical tools. However, in practice
the weights are stored using a floating-point representa-
tion which is intrinsically bounded, and we argue that in
this sense the truncation of their trajectories is a relatively
natural assumption.

We now proceed to present the main results of the paper,
which we divide into two parts:

3.1. Convergence

The main result in this section is the convergence of the
finite-width network trajectories to the mean-field limit,
analogously to Thm. 18 in (Nguyen & Pham, 2020). More
specifically, for a given neuronal ensemble (”, P ) and sam-
ple W from P we define the following distance or error
metric Dϑ (W,W) for any τ > 0 as

Dϑ (W,W) :=

sup
t⇐(0,ϑ)

(
1

n2
⇑Whh(t;ϑ(i),ϑ(j))↓Whh(t; i, j)⇑2

∝
1

n
⇑Wxh(t;ϑ(j))↓Wxh(t; j)⇑2

∝
1

n
⇑Why(t;ϑ(j))↓Why(t; j)⇑2

)

where ⇑ · ⇑2 denotes, depending on its argument, the Frobe-
nius norm or the classical -2 norm.
Theorem 3.3. For any R > 0, let Assumptions 1, 2, 3 and 4
hold. There exist constants c, c↘ > 0 such that, for any ⇁ > 0,
any L → N and τ > 0, there exists n→

→ N such that for any
n > n

→ with probability at least 1↓ ⇁ ↓ K̄n exp(↓K̄n
c
→
)

we have

Dϑ (W,W) ⇓ K̄n
↑c

√
log (n2/⇁ + e)

where K̄ is a constant that depends on L and R.

The proof of the above result mimics the one in (Nguyen &
Pham, 2020) and is provided in the appendix for complete-
ness. The main argument of the proof is similar to classical
propagation of chaos results (Sznitman, 1991). The first
step of the argument establishes sufficient regularity of the
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gradient dynamics and guarantees existence and uniqueness
of the solution to (2.7). Then, one bounds the difference in
differential updates for the particle system and the mean-
field dynamics as a function of the distance Dt(W,W). The
proof is concluded by an application of Grönwall’s inequal-
ity.

3.2. Optimality

The main optimality result is presented in the following
theorem.

Theorem 3.4. For any R > 0 let Assumption 1, 2 and 3 hold
and assume that the trajectory W (t) solving (2.7) converges
to W̄ in the following sense: for all i → {1, . . . , L} the
following quantities vanish in the limit t ↑ ↔,

• ess-sup
ε⇐supp(Ph)|↽tWhy(t;ϑ)|

•

∫
|W̄hy(ϑ)↓Why(t;ϑ)|

2
Ph(dϑ)

•

∫
W̄hy(ϑ

(0))2




i↑1∏

j=1

W̄hh(ϑ
(j↑1)

,ϑ
(j))




2

(
W̄hh(ϑ

(i↑1)
,ϑ

(i))↓Whh(t;ϑ
(i↑1)

,ϑ
(i))

)2
P

⇒i+1
h

(dω)

•

∫
W̄hy(ϑ

(0))2




i↑1∏

j=1

W̄hh(ϑ
(j↑1)

,ϑ
(j))




2

(
W̄xh(ϑ

(i↑1))↓Wxh(t;ϑ
(i↑1))

)2
P

⇒i

h
(dω)

Then limt↓↔ L(W (t)) = 0 .

This result asserts that if the gradient descent dynamics
(2.7) converges to a stationary point W̄ , that point must
be a global minimizer of the population risk, i.e., it must
approximate the underlying function to arbitrary accuracy.
We prove the above result in three steps. First, we show
in Proposition D.1 that if the weights at initialization are
sufficiently varied (Assumption 3c)) then the network enjoys
a high level of expressivity, inherited from the properties of
εh Assumption 3a) and b). Such expressivity in turn implies
that the mean-field vector fields evaluated at a suboptimal
fixed point of the dynamics (2.7) cannot vanish everywhere
in neuronal embedding space. In other words, a network
whose weights have sufficient support cannot correspond to
a suboptimal stationary point of the gradient dynamics.
We then show in Lemma D.4 that such sufficient notion
of support (Assumption 3c)) is preserved by the gradient
descent dynamics (2.7) throughout training. For any finite
time, this is true by topological arguments: the full support
property cannot be altered by a continuous vector field such
as (2.7).
Finally, we show that the gradient descent dynamics cannot
converge to a spurious fixed point by combining the two

partial results above. In particular, we show that by the pre-
served expressivity of the network throughout the dynamics
proven above, the fact that the time derivative of Why(t)
(2.8) must vanish almost-everywhere as t ↑ ↔ implies
that the difference between the approximator and the target
function F

→ must also vanish almost everywhere in the limit.
In other words, combining the assumption on convergence
of Why(t) with the nondegeneracy of the Why-Jacobian of
the network (following from expressivity) imples that the
limiting point must be optimal.
There are multiple technical challenges that need to be ad-
dressed in this proof with respect to the proof techniques
used in previous results. The most important one stems
from the fact that the input structure of the (unrolled) net-
work is different from a standard feedforward network or
ResNet. The additive combination of the input with the
hidden state of the previous “layer”, together with weight
sharing, results in possible degeneracies of the dynamics
that need to be taken into account in the proof. By studying
the risk minimization problem in equation (2.1) and con-
sidering exclusively the dynamics of Why (2.8), we bypass
these degenercy problems by leveraging the expressivity
Assumption 3c), as we now explain. As it can be observed
from the explicit expressions for the ODE RHS derived in
Appendix A, the time differentials of Whh and Wxh consist
of a sum of L terms. This is a direct consequence of weight
sharing and does not appear in the feedforward analysis.
Because of this sum, the RHS of the ODE might vanish a)
if all the terms of the sum are 0 or b) if those terms do not
vanish but cancel additively with each other, leading to a
potentially suboptimal fixed point. The study of the locus in
parameter space where b) occurs, which is necessary if one
wants to characterize the set of fixed points of the ODEs, is
extremely challenging. We bypass this problem by consider-
ing the differential of the Why terms where, because of the
absence of the sum structure mentioned above, the nature of
fixed points is of type a). This allows to establish our results
without considering the potentially degenerate points of the
Whh and Wxh dynamics resulting from weight sharing.
Finally, we note that the boundedness of Whh resulting from
the truncation discussed in Remark 3.2, prevents us from
using any of the classical expressivity results leveraging the
vector space structure of the space of admissible weights.
In adapting our proof to bypass the issues resulting from
such boundedness, we leverage the fact that, by Assump-
tion 3a), the image under εh of a function whose supremum
is close to 0 is close to the identity. Combining this with
the possibility of choosing arbitrarily small hidden weights
results in the network being able to propagate information
throughout its layers at arbitrary levels of accuracy. Finally,
the unboundedness of Why allows to recover this informa-
tion and therefore to realize the expressive potential of the
network.
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4. Numerical Experiments

In this section we numerically validate our theoretical opti-
mality and convergence results (respectively Theorem 3.3
and 3.4) with some simulations. More specifically, the first
experiment aims to exemplify our optimality result Theo-
rem 3.4 by training a wide network model - intended as an
approximation of the mean-field ODE - to show that the
empirical risk always converges, given sufficient training
time, to 0. The second experiment aims instead to exemplify
the convergence result Theorem 3.3 by training a sequence
of RNN of increasing width and showing that the evolution
of a specific observable – the empirical risk – approaches
a limiting curve as n ↑ ↔, reflecting the fact that the dy-
namics of the network converge to a limiting object (the
mean-field ODEs) over finite time intervals.

Network architecture and model The network model
we consider is a wide a RNN in the mean-field regime in
a teacher-student scenario. For the optimality results we
set the width to be ns = 1000 and for the convergence
results we train the student RNN with increasing size (ns →

{20, 60, 100, 140, . . . , 300}).
We train a so-called student many-to-one RNN F̂ with d = 1
and hidden layer width ns to learn the output of a teacher
many-to-one RNN F

→, with the same input and output size
and hidden width nt = 15. Both neural networks have
hidden activation εh(·) = tanh(·) and their weights are
initialized IID as follows:

teacher: student:




Wxh ↘ N (1, 1)

Whh ↘ N (0, 1)

Why ↘ N (0, 1)






Wxh ↘ N (0, 5)

Whh ↘ N (0, 10)

Why ↘ N (0, 10).

Simulated data The predictors for our simulation are
generated as samples of length L = 10 from the stationary
trajectories of the shift map T (x) = x + 1 acting on the
sphere X = S

1 = [0, 2▷). To do so, we sample the initial
point x(j)

↑L
IID from the invariant measure ω0(dx) =

1
2ϖdx

of T supported on X and generate the corresponding input
sequence as x(j)

↑k+1 := T (x(j)
↑k

) for k → (1, . . . , L).

Training specifications The training of the student RNN
is performed using the nn package in pytorch (Paszke et al.,
2019). We train the parameters Ŵ to minimize the empiri-
cal Mean Squared Error L̃m(Ŵ) := 1

m


m

j=1(F
→(x(j))↓

F̂ (x(j)
,W))2 where m = 213 ′ 104 denotes the size of

the database. Combining this with our sampling of x
(j)

results in IID samples from the invariant measure ω(x) of T ,
and therefore in the finite-sample equivalent of the popula-
tion risk (2.1). The optimization is performed using stochas-
tic gradient descent (pytorch.optim.SGD), which is
called with a stepsize ◁ = 3 · 10↑3 and batch size of m, the
full database size, thereby resulting in full-fledged gradient

(a)

(b)

Figure 2: Results of numerical experiments. In Fig. 2a
we plot evolution of the MSE L̃(Ŵ) on a log-log scale
as a function of training steps for predictors generated by
a deterministic dynamical system. Here, different curves
correspond to different (random) initializations of the stu-
dent network. For each experiment, the data, the weights of
the teacher and the initialization weights of the student are
generated anew independently from previous experiments.
In Fig. 2b, we plot the evolution of the MSE for a network
of growing size (the legend indicates the size of the student
network). The inset zooms on the same plots for timesteps
k → [100, 150].

descent. The results of the simulation are shown in Fig. 2.
Code is available at (anonymous).

Initialization for the convergence results For the con-
vergence results we need to initialize the family of student
networks in a consistent way. Our procedure for enforcing
consistency draws the weights without replacement from a
reference student network of width 300.
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5. Conclusions

This work shows that, despite the increased complex-
ity, RNNs share common optimality properties with sim-
pler single-layer neural networks (Chizat & Bach, 2018a).
Specifically we show that, under some conditions on the
expressivity of the network at initialization, the fixed points
of wide Elman-type RNNs with gradient descent training
dynamics in the mean-field regime are globally optimal, i.e.,
that the neural network will perfectly learn the given func-
tion of the dynamical system’s trajectories. In this sense,
while extending previous results on the optimality properties
of shallow and deep neural networks to novel architectures,
this work contributes to the understanding of deep learning
applied to dynamical systems data. The proof is carried out
by unrolling the RNN structure and showing that the fixed
points of the training dynamics, which preserve a certain
notion of support in parameter space, can only be globally
optimal.
We note that the adaptation of the neural embedding frame-
work from (Nguyen & Pham, 2020) to the RNN setting
requires a number of technical innovations, mainly result-
ing from the fact that weight-sharing in RNNs requires the
truncation of the dynamics to prevent its solutions to blow
up in finite time as noted in Remark 3.2. This has deep
repercussions in our analysis. On one hand, this requires
the development of brand new expressivity results that relax
the unboundedness of the space of network weights that is
pivotal in the classical proofs of universal approximation
theorems for neural network. Furthermore, our proof relaxes
the requirement from (Nguyen & Pham, 2020) in the case of
MSE loss of applying a bounded nonlinearity to the output
of the network, allowing to fully exploit the expressivity
discussed in the previous point. This in turn is reflected
in the weaker L2 bounds (as opposed to the L

↔ bounds
established in (Nguyen & Pham, 2020)) that are required in
our proof.
Possible future developments include relaxing the truncation
of the hidden weights’ dynamics in (2.7) by proving exis-
tence and uniqueness of the full-fledged gradient descent
ODEs and relaxing the assumption about the support of the
weights at initialization Assumption 3c) to a condition that
is simpler to realize in practice. Drawing an analogy with
autoregressive processes, a promising insight towards solv-
ing the latter problem consists in injecting, at each iteration
of the RNN, new directions in the function space spanned
by the model by means of, e.g., the network biases, so as to
reduce the hidden layer’s null space. Another possible av-
enue of future research consists of relaxing the adiabaticity
assumption, i.e., considering the stochastic approximation
problem resulting from the finite number of samples and
the finite gradient stepsize. We note that, because of this as-
sumption, our analysis is immune to the exploding gradients
problem (Pascanu et al., 2013). To prevent this problem to

affect a finite timestep analysis, another important extension
of the present work is to establish similar results for differ-
ent RNN architectures, such as the LSTM, which given its
extensive use in practice is of great interest.
From the theoretical standpoint, the most important open
question concerns establishing quantitative convergence of
mean-field dynamics of neural networks: even in the single-
layer, supervised setting, despite recent results in specific
settings (Chizat, 2022), these guarantees still elude the com-
munity’s research efforts.
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A. Computation of mean-field ODEs

In this section we explicitly compute the RHS of the mean-field ODEs (2.7). Recall the definitions of the population risk
L(W ) from (2.1) and of the mean-field approximator

F̂ (x;W ) = Hhy(x)

Hhy(x) =

∫
Why(ϑ)εh(Hhh(ϑ;x, 0) +Hxh(ϑ;x0))Ph(dϑ)

Hhh(ϑ;x, k) =

∫
Whh(ϑ,ϑ

↘)εh(Hhh(ϑ
↘;x, k + 1) +Hxh(ϑ

↘;x↑(k+1)))Ph(dϑ
↘)

Hxh(ϑ;x↑k) = Wxh(ϑ) · x↑k

(A.1)

Further, for notational convenience, we define throughout the argument of the nonlinearity as

Hϱ(ϑ;x, k) := Hhh(ϑ;x, k) +Hxh(ϑ;x↑k) (A.2)

and, when necessary, we will slightly abuse notation and explicitly write the set of weights generating the hidden state Hϱ

in its argument as Hϱ[W ](ϑ;x, k). Furthermore, we define

$F (W,x) := F̂ (x;W (t))↓ F
→(x) (A.3)

so that we can write

⇁

⇁Why

L[W ](ϑ) =

∫
$F (W,x)εh

(
Hϱ[W ](ϑ;x, 0)

)
ω(dx)

We proceed to compute the derivative WRT Wxh:

⇁

⇁Wxh

L[W ](ϑ) =

∫
$F (W,x)


⇁

⇁Wxh

∫
Why(ϑ

↘)εh

(
Hhh(ϑ

↘;x, 0) +Hxh(ϑ
↘;x0)

)
Ph(dϑ

↘)


(ϑ)ω(dx)

=

∫
$F (W,x)

∫
Why(ϑ

↘)%0(ϑ;ϑ
↘
,x)Ph(dϑ

↘)ω(dx)

where, denoting here and throughout by ⇁(ϑ) the Dirac delta distribution, we define recursively

%i[W ](ϑ;ϑ↘
,x) :=

⇁

⇁Wxh

εh

(
Hhh(ϑ

↘;x, i) +Hxh(ϑ
↘;x↑i)

)
(ϑ)

= ε
↘

h

(
Hϱ(ϑ

↘;x, i)
)( ⇁

⇁Wxh

Hhh(ϑ
↘;x, i)


(ϑ) + xi⇁(ϑ

↘
↓ ϑ)

)

= ε
↘

h

(
Hϱ(ϑ

↘;x, i)
)(∫

Whh(ϑ
↘
,ϑ

↘↘)%i↑1(ϑ;ϑ
↘↘
,x)Ph(dϑ

↘↘) + xi⇁(ϑ
↘
↓ ϑ)

)

and throughout we slightly abuse notation by suppressing the dependency of %i on W when clear from the context. Therefore,
we obtain

⇁

⇁Wxh

L[W ](ϑ) =

∫
$F (W,x)


L∑

i=0

&i(W,ϑ,x)x↑i


ω(dx) (A.4)

where for i → {0, 1, . . . , L} we define

&i(W,ϑ,x) =

∫
Why(ϑ0)ε

↘

h
(Hϱ(ϑ0;x, 0))

∫
Whh(ϑ0,ϑ1)ε

↘

h
(Hϱ(ϑ1;x, 1)) (A.5)

· · ·

∫
Whh(ϑi,ϑ)ε

↘

h
(Hϱ(ϑ;x, i))P

⇒i+1
h

(ϑ0, . . . ,ϑi)

Analogously, we proceed to compute the derivative WRT Whh:

⇁

⇁Whh

L[W ](ϑ,ϑ↘) =

∫
$F (W,x)


⇁

⇁Whh

∫
Why(ϑ0)εh

(
Hϱ[W ](ϑ0;x, 0)

)
Ph(dϑ0)


(ϑ,ϑ↘)ω(dx)

12
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=

∫
$F (W,x)

∫
Why(ϑ0)%

↘

0[W ](ϑ,ϑ↘;ϑ0,x)Ph(dϑ0)ω(dx)

where we define recursively

%↘

i
[W ](ϑ,ϑ↘;ϑi,x) :=

⇁

⇁Whh

εh

(
Hhh[W ](ϑi;x, i) +Hxh[W ](ϑi;x↑i)

)
(ϑ,ϑ↘)

= ε
↘

h

(
Hϱ[W ](ϑi;x, i)

)  ⇁

⇁Whh

Hhh[W ](ϑi;x, i)


(ϑ,ϑ↘)

= ε
↘

h

(
Hϱ[W ](ϑi;x, i)

)
∫

Whh(ϑi,ϑi+1)%
↘

i+1[W ](ϑ,ϑ↘;ϑi+1,x)Ph(dϑi+1)

+

∫
εh

(
Hϱ[W ](ϑi+1;x, i+ 1)

)
⇁(ϑi ↓ ϑ)⇁(ϑi+1 ↓ ϑ

↘)Ph(dϑi+1)



and throughout we slightly abuse notation by suppressing the dependency of %↘

i
on W when clear from the context. Therefore,

we obtain
⇁

⇁Whh

L[W ](ϑ,ϑ↘) =

∫
$F (W,x)


L∑

i=0

&i(W,ϑ,x)εh(Hϱ(ϑ
↘;x, i+ 1))


ω(dx) (A.6)

for &i defined in (C.8).

B. Existence and uniqueness of solutions to ODEs

We now proceed to sketch the proof of existence and uniqueness of the solutions to the mean-field ODEs, stated below. To
this aim, fixing throughout a value of the cutoff R > 0 for (2.7), we define the sub-Gaussian norm

!Whh"ς,t :=
↙

50 sup
m≃1

1
↙
m

(∫
sup
s<t

|Whh(s,ϑ,ϑ
↘)|mP

⇒2
h

(dϑ, dϑ↘)

)1/m

!Why"ς,t :=
↙

50 sup
m≃1

1
↙
m

(∫
sup
s<t

|Why(s,ϑ)|
m
Ph(dϑ)

)1/m

!Wxh"ς,t :=
↙

50 sup
m≃1

1
↙
m

(∫
sup
s<t

|Wxh(s,ϑ)|
m
Ph(dϑ)

)1/m

inducing the norm on the weights W

!W "ς,t := max (!Whh"ς,t, !Wxh"ς,t, !Why"ς,t) .

From these definitions we have that !Whh"ς,t ⇔ ⇑Whh⇑t, !Why"ς,t ⇔ ⇑Why⇑t, !Wxh"ς,t ⇔ ⇑Wxh⇑t where

⇑Whh⇑t =

(∫
sup
s⇑t

|Whh(s,ϑ,ϑ
↘)|50P⇒2

h
(dϑ, dϑ↘)

)1/50

⇑Why⇑t =

(∫
sup
s<t

|Wxh(s,ϑ)|
50
Ph(dϑ)

)1/50

(B.1)

⇑Wxh⇑t =

(∫
sup
s<t

|Why(s,ϑ)|
50
Ph(dϑ)

)1/50

so that
!W "ς,t ⇔ ⇑W⇑t (B.2)

for

⇑W⇑t := ⇑Whh⇑t ∝ ⇑Wxh⇑t ∝ ⇑Why⇑t .

Note that by Assumption 3 we have ⇑Whh⇑t ⇓ R < K uniformly in t ⇔ 0.

13
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Furthermore, for a pair of mean-field weights W,W
↘, we define the analogous norm on differences (note the different

exponent):

⇑W ↓W
↘
⇑t := ⇑Whh ↓W

↘

hh
⇑t ∝ ⇑Wxh ↓W

↘

xh
⇑t ∝ ⇑Why ↓W

↘

hy
⇑t

for

⇑Whh ↓W
↘

hh
⇑t :=

(∫
sup
s⇑t

|Whh(s,ϑ,ϑ
↘)↓W

↘

hh
(s,ϑ,ϑ↘)|2P⇒2

h
(dϑ, dϑ↘)

)1/2

⇑Why ↓W
↘

hy
⇑t :=

(∫
sup
s<t

|Wxh(s,ϑ)↓W
↘

xh
(s,ϑ)|2Ph(dϑ)

)1/2

(B.3)

⇑Wxh ↓W
↘

xh
⇑t :=

(∫
sup
s<t

|Why(s,ϑ)↓W
↘

hy
(s,ϑ)|2Ph(dϑ)

)1/2

Throughout this section we fix an initialization W
0 for the mean-field weights of the network.

Theorem B.1. Assume that the initialization of the MF ODEs satisfies !W 0"ς,0 < K. Then under Assumption 3 there
exists a unique solution to the MF ODEs (2.7).

Analogously to (Nguyen & Pham, 2020), the proof pivots on the use of Picard’s iteration. In order to apply this strategy,
we define the trajectory of the weights where the RHS of the MF ODEs is obtained by “plugging in” the evolution of the
weights at the previous iteration with initial condition W (0):

Fxh[W
↘](t,ϑ) := Wxh(0,ϑ)↓

∫
t

0

∫

X

$F (W ↘(s),x)

∫

!h

W
↘

hy
(ϑ↘)%0[W

↘(s)](ϑ;ϑ↘
,x)Ph(dϑ

↘)ω(dx)ds

Fhh[W
↘](t,ϑ,ϑ↘) := Whh(0,ϑ,ϑ

↘)↓

∫
t

0

∫

X

$F (W ↘(s),x)

∫

!h

W
↘

hy
(ϑ0)%

↘

0[W
↘(s)](ϑ,ϑ↘;ϑ0,x)Ph(dϑ0)ω(dx)ds

Fhy[W
↘](t,ϑ) := Why(0,ϑ

↘)↓

∫
t

0

∫

X

$F (W ↘(s),x)εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)ds

We now present a preparatory lemma, estimating the growth of

⇑F [W ↘]↓ F [W ↘↘]⇑t := ⇑Fxh[W
↘]↓ Fxh[W

↘↘]⇑t ∝ ⇑Fhh[W
↘]↓ Fhh[W

↘↘]⇑t ∝ ⇑Fhy[W
↘]↓ Fhy[W

↘↘]⇑t

in terms of ⇑W ↘
↓W

↘↘
⇑t in order to prove contraction of the map F . This result holds provided that the growth of the

weight trajectories W ↘
,W

↘↘ is bounded in an appropriate sense. To state these necessary growth bounds, we introduce the
key functional

K0(t) := K
2L+5(1 + t

2)(1 + !W 0"ς,0) (B.4)

that depends on a large constant K > 0 to be chosen later. For any T > 0, we also define the maximal operator

max
T

(W ) := sup
s⇑T

|Whh(s;ϑ,ϑ
↘)| ∝ |Why(s;ϑ)| ∝ |Whx(s;ϑ)|

Lemma B.2. Let Assumption 3 hold and !W 0"0.ς < ↔. For any T > 0 and any B > 0, consider two collections of
mean-field parameters W ↘ = {W

↘(t)}t⇑T ,W
↘↘ = {W

↘↘(t)}t⇑T , assume that ⇑W ↘
⇑T ∝ ⇑W

↘↘
⇑T < K0(T ) and

P(max
T

(W ↘) > K0(T )B) ∝ P(max
T

(W ↘↘) > K0(T )B) ⇓ 2Le1↑K1B
2

for a choice of K,K1 > 0. Then we have

⇑F [W ↘]↓ F [W ↘↘]⇑t ⇓ k1(1 +B)

∫
t

0
⇑W

↘
↓W

↘↘
⇑sds+ k2e

↑k3B
2

where k1 = (KK0(T ))3L+3, k2 = T
↙
L(KK0(T ))3L+3, k3 = K1/2.
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Based on the definition of K0(t) from (B.4) we define the spaces WT ,W
0
T

as the set of mean-field weight trajectories W ↘

satisfying that there exists K > 0 such that, respectively,

⇑W
↘
⇑T ⇓ K0(T )

and

W
↘(0) = W

0
, !W ↘"T,ς ⇓ K0(T ) , P(max

T

(W ↘) > K0(T )B) ⇓ 2Le1↑K1B
2

∞B > 0

so that W0
T
∈ WT by (B.2).

.

Proof of Theorem B.1. Fix an arbitrary finite time T > 0. By the fact that F is an endomorphism in W
0
T

(Lemma 8 in
(Nguyen & Pham, 2020)), we can apply Lemma B.2 (for every B with K,K1 fixed) and iterating the above estimate to
obtain

⇑F
(m)[W ↘]↓F

(m)[W ↘↘]⇑T ⇓ k1(1 +B)

∫
T

0
⇑F

(m↑1)[W ↘]↓ F
(m↑1)[W ↘↘]⇑t2dt2 + k2e

↑k3B
2

⇓ k
2
1(1 +B)2

∫
T

0

∫
t2

0
⇑F

(m↑2)[W ↘]↓ F
(m↑2)[W ↘↘]⇑t3dt3dt2

+ k2

2∑

φ=1

(Tk1k2(1 +B))φ↑1

-!
e
↑k3B

2

. . .

⇓ k
m

1 (1 +B)m
∫

T

0

∫
t2

0
· · ·

∫
tm

0
⇑W

↘
↓W

↘↘
⇑tm+1dtm+1 . . . dt2

+ k2

m∑

φ=1

(Tk1k2(1 +B))φ↑1

-!
e
↑k3B

2

⇓ k
m

1 (1 +B)mT
m

1

m!
⇑W

↘
↓W

↘↘
⇑T + k2e

(Tk1k2(1+B))↑k3B
2

Setting B =
↙
m and choosing W

↘↘ = F [W ↘], from the above estimate we obtain

↔∑

m=1

⇑F
(m+1)[W ↘]↓ F

(m)[W ↘]⇑T =
↔∑

m=1

⇑F
(m)[W ↘↘]↓ F

(m)[W ↘]⇑T < ↔

showing that F (m)[W ↘] is a Cauchy sequence and hence converges (the proof of completeness of the spaces WT ,W
0
T

is
similar to (Nguyen & Pham, 2020) and is omitted). The uniqueness of the limit point is obtained by contradiction: Assume
that W ↘

,W
↘↘ with ⇑W

↘
↓W

↘↘
⇑T > 0 are fixed points of F . Then, again choosing B =

↙
m, for every m > 0 we have

⇑W
↘
↓W

↘↘
⇑T = ⇑F

(m)[W ↘]↓ F
(m)[W ↘↘]⇑T

⇓ k
m

1 (1 +
↙
m)mT

m
1

m!
⇑W

↘
↓W

↘↘
⇑T + k2e

(Tk1k2(1+
⇓
m))↑k3m

which vanishes as m ↑ ↔ contradicting the assumption. Since the above argument goes through for every T > 0 we have
existence and uniqueness for every T > 0.

We now introduce some more compact notation for the time differential of the mean-field weight trajectories:

$xh(x,ϑ,W ↘(s)) := $F (W ↘(s),x)

∫
W

↘

hy
(ϑ↘)%0[W

↘(s)](ϑ;ϑ↘
,x)Ph(dϑ

↘)

$hh(x,ϑ,ϑ↘
,W

↘(s)) := $F (W ↘(s),x)

∫
W

↘

hy
(ϑ0)%

↘

0[W
↘(s)](ϑ,ϑ↘;ϑ0,x)Ph(dϑ0)
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= $F (W,x)


L∑

i=0

&i(W,ϑ,x)εh(Hϱ(ϑ
↘;x, i+ 1))



$hy(x,ϑ,W ↘(s)) := $F (W ↘(s),x)εh

(
Hϱ(ϑ;x, 0)

)

and defining
$H

i
(x,ϑ,W ) := $F (W,x)&i(W,ϑ,x) (B.5)

we can write

$hh(x,ϑ,ϑ↘
,W

↘(s)) =
L∑

i=0

$H

i
(x,ϑ,W ↘(s))εh(Hϱ(ϑ

↘;x, i+ 1)) (B.6)

We proceed to establish the necessary a-priori growth and Lipschitz estimates to obtain the above result, defining throughout
EX [·] :=


X
·ω(dx).

Lemma B.3. Under Assumption 3, given an initialization W (0), a solution W to the MF ODEs (2.7) must satisfy that for
any t > 0

⇑W⇑t ∝max
i

(∫

!h

sup
s⇑t

EX [|$H

i
(x,ϑ;W (s))|]50

)1/50

⇓ K
2L+5(1 + t

2)(1 + ⇑W⇑0)

for a constant K > 0 large enough. Similarly for !W "ς,t, there exists K > 0 large enough such that !W "ς,t < K0(t) for
all t > 0. Furthermore, for any B > 0

P(max
t

(W ) ⇔ K0(t)B) ⇓ 2Le1↑K1B
2

for a universal constant K1.
Lemma B.4. Consider two collections of mean-field parameters W ↘

,W
↘↘
→ WT . Under Assumption 3 for any t < T and

any 1 ⇓ k ⇓ L we have
(∫

sup
s⇑t

EX


|Hϱ[W

↘(s)](ϑ;x, k)↓Hϱ[W
↘↘(s)](ϑ;x, k)|2

)1/2

⇓ K
2L
⇑W

↘
↓W

↘↘
⇑t

sup
s⇑t

EX [|F̂ (x;W ↘(s))↓ F̂ (x;W ↘↘(s))|] ⇓ K
2L
K0(T )⇑W

↘
↓W

↘↘
⇑t

Lemma B.5. For a given B > 0 consider two collections of mean-field parameters W ↘
,W

↘↘
→ WT such that

P(max
T

(W ↘) > K0(T )B) ⇓ e
1↑K1B

2

,

P(max
T

(W ↘↘) > K0(T )B) ⇓ e
1↑K1B

2

Then under Assumption 3, for any t → [0, T ] the following holds:
(∫

sup
s⇑t

EX


|$hh(x,ϑ,ϑ↘

,W
↘(s))↓$hh(x,ϑ,ϑ↘

,W
↘↘(s))|

2
P

⇒2
h

(dϑ, dϑ↘)

)1/2

⇓ D(t,W ↘
,W

↘↘)

where
D(t,W ↘

,W
↘↘) := (KK0(t))

3L+3
(
(1 +B)⇑W ↘

↓W
↘↘
⇑t +

↙

Le
↑K1B

2
/2
)

Proof of Lemma B.2. The proof of this lemma is performed as in Lemma 9 in (Nguyen & Pham, 2020) combining
Lemma B.4 and Lemma B.5, corresponding respectively to Lemma 10 in (Nguyen & Pham, 2020) and Lemma 11
in (Nguyen & Pham, 2020).

Proof of Lemma B.3. The proof of this lemma is analogous to the one of Lemma 6 in (Nguyen & Pham, 2020). In the
following we highlight the main differences with Lemma 6 in (Nguyen & Pham, 2020), to which we refer the reader for the
details of the proof. We define

!Whh"m,t :=


50

m

(∫
sup
s⇑t

|Whh(s,ϑ,ϑ
↘)|mP

⇒2
h

(dϑ, dϑ↘)

)1/m
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and analogously for Wxh and Why .
Starting at the output layer, we have by Cauchy-Schwarz inequality and the fact that the mean-field ODE dynamics decrease
the population risk that

sup
s⇑t

EX [$F (W (s),x)2] ⇓ EX [$F (W (0),x)2] =
√
L[W (0)] < K

for a K > 0 large enough. Consequently, we can bound the RHS of the equation for ↽tWhy using Cauchy-Schwarz and the
boundedness of εh < K as

|↽tWhy| = |

∫
$F (W,x)εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)| ⇓ K

2

so that
!Why"m,t ⇓ !Why"m,0 +K

2
t

as desired.
The boundedness result for Whh trivially holds by the truncation introduced by ⇀R upon choosing K > R as in Assumption 3,
so that ⇑Whh(·, ·)⇑↔ ⇓ R < K uniformly in t.
Finally, for Wxh we have again by Cauchy-Schwarz

!Wxh"m,t ⇓ !Wxh"m,0 +


50

m

∫

!h

t sup
s⇑t

|

∫
$F (W,x)


L∑

i=0

&i(W,ϑ,x)x↑i


ω(dx)|mPh(dϑ)

1/m

⇓ !Wxh"m,0 +


50

m

√
L[W (0)]

L∑

i=0

(∫
|x↑i|

2
ω(dx)

)1/2 (∫

!h

t sup
s⇑t

sup
x

|&i(W,ϑ,x)|mPh(dϑ)

)1/m

⇓ !Wxh"m,0 +
√
L[W (0)]L⇑x0⇑↼K

2L
t!Why"m,t

⇓ !Wxh"m,0 + LK
2L+2

t!Why"m,t

⇓ !Wxh"m,0 + LK
2L+2

t(!Why"m,0 +K
2
t)

where in the second upper bound we have used that |&i(W,ϑ,x)| ⇓ K
2L uniformly in i → {1, . . . , L}, x and ϑ → ’ by

boundedness of Whh and εh,ε
↘

h
from Assumption 3. From this follows that

!Wxh"m,t ⇓ (1 + !W "m,0)K
2L+5(1 + t

2) .

The probability bound follows directly from the fact that maxT (W ) is K0(t) sub-Gaussian by the bounds established
above.

Proof of Lemma B.4. This proof is analogous to the one of Lemma 10 in (Nguyen & Pham, 2020). Recalling the definition
of Hϱ from (A.2)

Hϱ(ϑ;x, k) := Hhh(ϑ;x, k) +Hxh(ϑ;x↑k)

and slightly abusing that notation by Hϱ[W ] (and similarly for Hhh, Hxh) to highlight the set of weights with respect to
which the hidden state is computed, we define

D
H

k
(t) :=

(∫

!h

sup
s⇑t

EX


|Hϱ[W

↘(s)](ϑ;x, k)↓Hϱ[W
↘↘(s)](ϑ;x, k)|2


Ph(dϑ)

)1/2

where we recall that EX [·] =

X
·ω(dx). Proceeding to bound the above for decreasing values of k we have

D
H

L
(t) =

(∫

!h

sup
s⇑t

EX


|Hxh[W

↘](ϑ;x↑L)↓Hxh[W
↘↘](ϑ;x↑L)|

2

Ph(dϑ)

)1/2

=

(∫

!h

sup
s⇑t

EX


|W

↘

xh
(ϑ; s)x↑L ↓W

↘↘

xh
(ϑ; s)x↑L|

2

Ph(dϑ)

)1/2

⇓ EX [|x↑L|]

(∫

!h

sup
s⇑t

|W
↘

xh
(ϑ; s)↓W

↘↘

xh
(ϑ; s)|2Ph(dϑ)

)1/2
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⇓ Kdt(W
↘
,W

↘↘)

where we define

dt(W
↘
,W

↘↘) := max






∫

!2
h

sup
s⇑t

|W
↘

hh
(t;ϑ,ϑ↘)↓W

↘↘

hh
(t;ϑ,ϑ↘)|2P⇒2

h
(dϑ, dϑ↘)

1/2

,

(∫

!h

sup
s⇑t

|W
↘

xh
(t;ϑ)↓W

↘↘

xh
(t;ϑ)|2Ph(dϑ)

)1/2

,

(∫

!h

sup
s⇑t

|W
↘

hy
(t;ϑ)↓W

↘↘

hy
(t;ϑ)|2Ph(dϑ)

)1/2


(B.7)

For i < L we have, by triangle inequality and the Lipschitz and boundedness properties on εh from Assumption 3

D
H

i
(t) =

(∫

!h

sup
s⇑t

EX [|(Hxh[W
↘](ϑ;x↑i)↓Hxh[W

↘↘](ϑ;x↑i))

+(Hhh[W
↘](ϑ;x, i)↓Hhh[W

↘↘](ϑ;x, i))|2

Ph(dϑ)

)1/2

⇓

(∫

!h

sup
s⇑t

EX


|W

↘

xh
(ϑ; s)x↑L ↓W

↘↘

xh
(ϑ; s)x↑L|

2

Ph(dϑ)

)1/2

+

(∫

!h

sup
s⇑t

EX


|Hhh[W

↘(s)](ϑ;x, i)↓Hhh[W
↘↘(s)](ϑ;x, i))|2


Ph(dϑ)

)1/2

⇓ Kdt(W
↘
,W

↘↘) +K
2
D

H

i+1(t) +Kdt(W
↘
,W

↘↘)

⇓ K
2(dt(W

↘
,W

↘↘) +D
H

i+1(t))

This implies that maxi⇐{0,...,L} D
H

i
(t) ⇓ K

2L
dt(W ↘

,W
↘↘), proving the first claim.

The second claim follows from a similar bound:

sup
s⇑t

EX

F̂ (x;W ↘(s))↓ F̂ (x;W ↘↘(s))


⇓ K

(∫

!h

sup
s⇑t

|W
↘

hy
(ϑ; s)↓W

↘↘

hy
(ϑ; s)|2Ph(dϑ)

)1/2

+K⇑W
↘

hy
⇑tD0(t)

⇓ Kdt(W
↘
,W

↘↘) +KK0(t)D0(t)

yielding the desired estimate.

Proof of Lemma B.5. Again by similarity with the original reference we simply sketch this proof highlighting the differences
with the present framework.
We start the proof establishing the a priori bound

(∫

!h

sup
s⇑t

EX [$H

i
[W ↘(t)](ϑ;x)]50Ph(dϑ)

)1/50

⇓ K
2L
K0(t)

which is obtained immediately by the fact that
(

!h
sup

s⇑t
EX [$H

L
[W ↘(t)](ϑ;x)]50Ph(dϑ)

)1/50
⇓ K

2
K0(T ) as estab-

lished above and by the recursion

(∫

!h

sup
s⇑t

EX [$H

i
[W ↘(t)](ϑ;x)]50Ph(dϑ)

)1/50

⇓ K
2

(∫

!h

sup
s⇑t

EX [$H

i+1[W
↘(t)](ϑ;x)]50Ph(dϑ)

)1/50

.

We now consider

D̃
H

i
(t) :=

(∫

!h

sup
s⇑t

EX


|$H

i
[W ↘(t)](ϑ;x)↓$H

i
[W ↘↘(t)](ϑ;x)|

2
Ph(dϑ)

)1/2

.
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Starting from i = 0 we have

D̃
H

0 (t) ⇓ D̃
H,1
0 (t) + D̃

H,2
0 (t) + D̃

H,3
0 (t)

where

D̃
H,1
0 (t) = K⇑W

↘↘

hy
⇑t sup

s⇑t

EX [|F̂ (x;W ↘(s))↓ F̂ (x;W ↘↘(s))|] ⇓ K0(t)
2
K

2L+2
dt(W

↘
,W

↘↘)

D̃
H,2
0 (t) = K

2

(∫

!h

sup
s⇑t

|W
↘

hy
(t;ϑ)↓W

↘↘

hy
(t;ϑ)|2Ph(dϑ)

)1/2

⇓ K
2
dt(W

↘
,W

↘↘)

D̃
H,3
0 (t) =

(∫

!h

sup
s⇑t

(
|W

↘

hy
(s;ϑ)|2

EX [|$F (W ↘↘(s);x) (εh(Hϱ[W
↘(s)](ϑ;x, 0))↓ εh(Hϱ[W

↘↘(s)](ϑ;x, 0))) |]
2 )

Ph(dϑ)
) 1

2

⇓ K
2L+2

K0(t)(Bdt(W
↘
,W

↘↘) +
√
%(B))

for any B > 0, where %(B) = 2Le↑K1B
2

and in the last bound we have separated the expectation in ”h using the
indicator on the set maxt(W ) > BK0(t) and its complement. We then proceed estimating D̃

H

i
(t) from D̃

H

i↑1(t): using the
boundedness of Whh, ε↘

h
, εh and the Lipschitz continuity of εh we have

D̃
H

i
(t) ⇓ D̃

H,1
i

(t) + D̃
H,2
i

(t) + D̃
H,3
i

(t)

where we have,

D̃
H,1
i

(t) = K
2

(∫

!h

sup
s⇑t

EX


|$H

i↑1[W
↘(t)](ϑ;x)↓$H

i↑1[W
↘↘(t)](ϑ;x)|

2
Ph(dϑ)

)1/2

⇓ K
2
D̃

H

i↑1(t)

D̃
H,2
i

(t) = K
2L

∫

!2
h

sup
s⇑t

|W
↘

hh
(t;ϑ,ϑ↘)↓W

↘↘

hh
(t;ϑ,ϑ↘)|2P⇒2

h
(dϑ, dϑ↘)

1/2

⇓ K
2L
dt(W

↘
,W

↘↘)

D̃
H,3
i

(t) = K0(t)K
2L+2

(∫

!h

sup
s⇑t

EX [|Hϱ[W
↘(s)](ϑ;x, k)↓Hϱ[W

↘↘(s)](ϑ;x, k)|]
2
Ph(dϑ)

)1/2

⇓ K0(t)K
4L+3(Bdt(W

↘
,W

↘↘) +
√

%(B)) .

Combining the above equations results in maxi⇐{0,...,L} D̃
H

i
(t) ⇓ K0(t)2K6L+2((1 +B)dt(W ↘

,W
↘↘) +

√
%(B)).

This yields, again analogously to (Nguyen & Pham, 2020), estimates on the quantities

D̃
w

hh
(t) :=

(∫

!h

sup
s⇑t

EX [$hh(x,ϑ,ϑ↘
,W

↘(s))↓$hh(x,ϑ,ϑ↘
,W

↘↘(s))]2P⇒2
h

(dϑ, dϑ↘)

)1/2

D̃
w

xh
(t) :=

(∫

!h

sup
s⇑t

EX [$xh(x,ϑ,W ↘(s))↓$xh(x,ϑ,W ↘↘(s))]2Ph(dϑ)

)1/2

D̃
w

hy
(t) :=

(∫

!h

sup
s⇑t

EX [$hy(x,ϑ,W ↘(s))↓$hy(x,ϑ,W ↘↘(s))]2Ph(dϑ)

)1/2

We only perform these estimates explicitly on the first quantity, as the other ones are analogous. In this case we have, from
(B.6) by the Lipschitz continuity of εh and the uniform boundedness of $H

i
in L

2(ω),

D̃
w

hh
(t) ⇓ LK

2(D̃w,1
hh

(t) + D̃
w,2
hh

(t))

for

D̃
w,1
hh

(t) = max
i⇐{1,...,L}

(∫

!h

sup
s⇑t

EX [$H

i
(x,ϑ,W ↘↘(s))↓$H

i
(x,ϑ,W ↘↘(s))]2Ph(dϑ)

)1/2

,
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D̃
w,2
hh

(t) = max
i⇐{1,...,L}

(∫

!h

sup
s⇑t

EX [Hϱ[W
↘(s)](ϑ;x, i)↓Hϱ[W

↘↘(s)](ϑ;x, i)]2Ph(dϑ)

)1/2

.

Having bounded both terms by

K0(t)
2
K

6L+2((1 +B)dt(W
↘
,W

↘↘) +
√
%(B)) ⇓ K

3L+2
K0(T )

3L+2((1 +B)dt(W
↘
,W

↘↘) +
√
%(B))

in the first part of this proof and in Lemma B.4 respectively concludes the argument.

C. Proof of convergence

To prove finite time convergence for the trajectories of the large-width neural network to the corresponding mean-field limit
we bound the distance

Dϑ (W,W) = sup
t⇐(0,ϑ)

(
1

n2
⇑Whh(t;ϑ(i),ϑ(j))↓Whh(t; i, j)⇑2 ∝

1

n
⇑Wxh(t;ϑ(j))↓Wxh(t; j)⇑2

∝
1

n
⇑Why(t;ϑ(j))↓Why(t; j)⇑2

)
(C.1)

This proof, given for completeness, adapts the steps of Proposition 25 in (Nguyen & Pham, 2020) to the present setting, and
we therefore give it as a sketch. We require the following additional assumption

Assumption 4. Let 0 = n
0.501 and consider a family of initialization laws I . For each n → N the sampling rule P̄n satisfies

that (ϑ(j))n
j=1 ↘ P̄n are 0-independent, i.e. for all 1-bounded f : ”h ↑ H where H is a separable Hilbert space we have

⇑E[f(ϑ(j))|{ϑ(j↘) : j
↘
< j}]↓ E[f(ϑ(j))]⇑H ⇓ 0 for all j → {1, . . . , n}

We recall the main theorem, stated together with the above assumption

Theorem C.1. For any R > 0, let Assumptions 1, 2, 3 and 4 hold. There exist constants c, c
↘
> 0 such that, under

Assumption 3, for any ⇁ > 0, any L → N and τ > 0, there exists n→
→ N such that for any n > n

→ with probability at least
1↓ ⇁ ↓ K̄n exp(↓K̄n

c
→
) we have

Dϑ (W,W) ⇓ K̄n
↑c

√
log (n2/⇁ + e)

where K̄ is a constant that depends on L and R.

We will consider the evolution of the truncated version W of the initialization W
0, which is obtained by evolving according

to (2.7) the initial condition

Wxh(0,ϑ) := ⇀̃B(Wxh(0,ϑ))

Why(0,ϑ) := ⇀̃B(Why(0,ϑ))

and respectively for W

Wxh(0, i) := ⇀̃B(Wxh(0,ϑ(i)))

Why(0, i) := ⇀̃B(Why(0,ϑ(i)))

where ⇀̃B(u) = u (|u| < B) +Bsign(u) (|u| ⇔ B) and is the indicator function. Note that the Whh weights were not
truncated as they are bounded by assumption. Then, analogously to Proposition 27 in (Nguyen & Pham, 2020) one can show
that with probability at least 1↓KLn exp(↓Ke

↑KB
2

n
1/52) we have

⇑W ↓W⇑T ∝ ⇑W ↓W⇑T ⇓ K exp
(
↓KB

2 +K
2L+5(1 + T

2)(1 +B)
)

(C.2)

We define for any t > 0, analogously to (B.3)

⇑W ↓W
↘
⇑t := ⇑Whh ↓W

↘

hh
⇑t ∝ ⇑Wxh ↓W

↘

xh
⇑t ∝ ⇑Why ↓W

↘

hy
⇑t
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for

⇑Whh ↓W
↘

hh
⇑t :=



 1

n2

n∑

j1,j2=1

sup
s⇐(0,t)

|Whh(s, j1, j2)↓W
↘

hh
(s, j1, j2)|

2




1/2

⇑Wxh ↓W
↘

xh
⇑t :=



 1

n

n∑

j1=1

sup
s⇐(0,t)

|Wxh(s, j1)↓W
↘

xh
(s, j1)|

2




1/2

⇑Why ↓W
↘

hy
⇑t :=



 1

n

n∑

j1=1

sup
s⇐(0,t)

|Why(s, j1)↓W
↘

hy
(s, j1)|

2




1/2

Defining throughout
Kt := K

↽(1 + t
↽) (C.3)

for a choice of K,1 that can change from line to line, we proceed to show that with probability at least 1 ↓ ⇁ ↓

KLn exp(↓Kn
1/52)

Dt(W,W) ⇓


1

n
log

(
2TLn2

⇁
+ e

)
exp(KT (1 +B)) (C.4)

for every choice of ⇁ > 0, B > 0. Combining (C.2) and (C.4) via triangle inequality we obtain that with probability
1↓ ⇁ ↓KLn exp(↓Ke

↑KB
2

n
1/52) we have

Dt(W,W) ⇓ Dt(W,W) + ⇑W ↓W⇑T + ⇑W ↓W⇑T

⇓


1

n
log

(
2TLn2

⇁
+ e

)
+ exp(↓KB

2)


exp(KT (1 +B))

and choosing B = c0
↙
log n for some suitable constant c0 > 0 yields the claim of Theorem 3.3.

We prove the missing result (C.4). To do so, in the remainder of the section we slightly abuse notation and denote by W,W

the truncated W,W. Then, for the newly defined W,W, using that

|W
0
hh
(ϑ,ϑ↘)| ⇓ K , (C.5)

we define the norms

⇑Whh⇑t :=



 1

n2

n∑

j1,j2=1

sup
s⇐(0,t)

|Whh(s, j1, j2)|
50




1/50

⇑Wxh⇑t :=



 1

n

n∑

j1=1

sup
s⇐(0,t)

|Wxh(s, j1)|
50




1/50

(C.6)

⇑Why⇑t :=



 1

n

n∑

j1=1

sup
s⇐(0,t)

|Why(s, j1)|
50




1/50

and for a given realization of the sampling P̄n,

⇑W⇑samp,t =


1

n

n∑

i=1

sup
s<t

|Why(s,ϑ(i))|
50

1/50

∝


1

n

n∑

i=1

∫
sup
s<t

|Whh(s,ϑ(i),ϑ
↘)|50Ph(dϑ

↘)

1/50

∝


1

n

n∑

i=1

∫
sup
s<t

|Whh(s,ϑ
↘
,ϑ(i))|50Ph(dϑ

↘)

1/50
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∝



 1

n2

n∑

i,j=1

sup
s<t

|Whh(s,ϑ(i),ϑ(j))|
50




1/50

∝


1

n

n∑

i=1

sup
s<t

|Wxh(s,ϑ(i))|
50

1/50

Then, analogously to Lemma B.3 and in turn Lemma 30 in (Nguyen & Pham, 2020) one can show that for each ⇑W⇑0,
⇑W⇑samp,0 there exists 1 such that, respectively, ⇑W⇑t ⇓ Kt and ⇑W⇑samp,t ⇓ Kt.
Further, we define E as the event

E := {⇑W⇑0 ∝ ⇑W⇑samp,0 < K}

which holds with a probability of at least 1 ↓ KLn exp(↓Kn
1/52) by Lemma 29 in (Nguyen & Pham, 2020) since by

assumption ⇑W⇑0 < K. This directly implies that ⇑W⇑t ∝ ⇑W⇑samp,t < Kt by Lemma 30 in (Nguyen & Pham, 2020).
We start by decomposing, for any 2 > 0,

Dt(W,W) ⇓ K

∫
t

0
(Dw

xh
(∋s/2△2) +D

w

hh
(∋s/2△2) +D

w

hy
(∋s/2△2))ds (C.7)

+Kt sup
s⇐(0,T↑⇀)

sup
⇀→⇐(0,⇀)

max
V ⇐{W,W}

(
D

⇀

xh
[V ](s, 2↘) ∝D

⇀

hy
[V ](s, 2↘) ∝D

⇀

hh
[V ](s, 2↘)

)

where

D
w

hh
(t) :=



 1

n2

n∑

j,k=1

|↽tWhh(t; j, k)↓ ↽tWhh(t;ϑ(j);ϑ(k))|
2




1/2

D
w

xh
(t) :=



 1

n

n∑

j=1

|↽tWxh(t; j)↓ ↽tWxh(t;ϑ(j))|
2




1/2

D
w

hy
(t) :=



 1

n

n∑

j=1

|↽tWhy(t; j)↓ ↽tWhy(t;ϑ(j))|
2




1/2

and

D
⇀

hh
[W](t, 2↘) :=



 1

n2

n∑

j,k=1

|↽tWhh(t; j, k)↓ ↽tWhh(t+ 2
↘; j, k)|2




1/2

D
⇀

xh
[W](t, 2↘) :=



 1

n

n∑

j=1

|↽tWxh(t; j)↓ ↽tWxh(t+ 2
↘; j)|2




1/2

D
⇀

hy
[W](t, 2↘) :=



 1

n

n∑

j=1

|↽tWhy(t; j)↓ ↽tWhy(t+ 2
↘; j)|2




1/2

D
⇀

hh
[W ](t, 2↘) :=



 1

n2

n∑

j,k=1

|↽tWhh(t;ϑ(j),ϑ(k))↓ ↽tWhh(t+ 2
↘;ϑ(j),ϑ(k))|2




1/2

D
⇀

xh
[W ](t, 2↘) :=



 1

n

n∑

j=1

|↽tWxh(t;ϑ(j))↓ ↽tWxh(t+ 2
↘;ϑ(j))|2




1/2

D
⇀

hy
[W ](t, 2↘) :=



 1

n

n∑

j=1

|↽tWhy(t;ϑ(j))↓ ↽tWhy(t+ 2
↘;ϑ(j))|2




1/2

The following lemma, proven at the end of the section, bounds the error resulting from the time-disctretization in 2:
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Lemma C.2. For any 2 → [0, T ] we have that almost surely on the event E

sup
s⇐(0,T↑⇀)

sup
⇀→⇐(0,⇀)

max
V ⇐{W,W}

(
D

⇀

xh
[V ](s, 2↘) ∝D

⇀

hy
[V ](s, 2↘) ∝D

⇀

hh
[V ](s, 2↘)

)
⇓ KT (1 +B)2

We now proceed to bound the terms on the first line of (C.7). To do so we define for - → {1, . . . , L}

G
φ

hh
(t) :=



 1

n

n∑

j=1

EX


|$H

hh
(x, j,W(t), -)↓$H

hh
(x, j,W (t), -)|

2



1/2

M
φ

hh
(t) :=



 1

n

n∑

j=1

EX [|Hhh(x, j,W(t), -)↓Hhh(x, j,W (t), -)|]2




1/2

M
φ

xh
(t) :=



 1

n

n∑

j=1

EX [|Hxh(x, j,W(t), -)↓Hxh(x, j,W (t), -)|]2




1/2

M
φ

ϱ
(t) :=



 1

n

n∑

j=1

EX [|Hϱ(x, j,W(t), -)↓Hϱ(x, j,W (t), -)|]2




1/2

where

Hxh(x, j,W, -) := Wxh(ϑ(j)) · x↑φ

Hxh(x, j,W, -) := Wj · x↑φ

Hhh(x, j,W, -) := Hhh[W ](ϑ(j),x, -)

Hhh(x, j,W, -) := Hhh[W](x, -)j

Hϱ(x, j,W, -) := Hhh(x,ϑ(j),W, -) +Hxh(x,ϑ(j),W, -)

Hϱ(x, j,W, -) := Hhh(x, j,W, -) +Hxh(x, j,W, -)

$H

hh
(x, j,W, -) := $H

φ
(x,ϑ(j),W )

$H

hh
(x, j,W, -) := $H

φ
(x, j,W)

for $H

φ
defined in (B.5) and

$H

φ
(x, j,W) := $F (W,x)!φ(W, j,x)

for

!φ(W, j,x) :=
1

n

n∑

j0=1

Why(j0)ε
↘

h
(Hϱ(x, j0,W, 0))

1

n

n∑

j1=1

Whh(j0, j1)ε
↘

h
(Hϱ(x, j1,W, 1)) (C.8)

. . .
1

n

n∑

jω↑1=1

Whh(jφ↑1, j)ε
↘

h
(Hϱ(x, j,W, -))

Further defining

D
w,φ

ϱ
(t) :=



 1

n

n∑

j=1

EX


1 + |$H

hh
(x, j,W(t), -)|2 + |$H

hh
(x, j,W (t), -)|2





1/2

·







 1

n

n∑

j=1

EX [|Hhh(x, j,W(t), -)↓Hhh(x, j,W (t), -)|]2




1/2

+



 1

n

n∑

j=1

EX [|Hxh(x, j,W(t), -)↓Hxh(x, j,W (t), -)|]2




1/2




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we have that on the event E by Lemma 30 in (Nguyen & Pham, 2020) Dw,φ

ϱ
(t) ⇓ KTM

φ

ϱ
(t), so that on the same event we

have

D
w

hh
(t) ⇓ KT

L↑1∑

φ=0

(
M

φ+1
ϱ

(t) +G
φ+1
hh

(t)
)

and analogously

D
w

hy
(t) ⇓ KT

(
M

0
ϱ
(t) +G

0
hh
(t)

)

D
w

xh
(t) ⇓ KT

L∑

φ=0

G
φ

hh
(t)

Combining these bounds with Lemma C.2 we obtain that on the event E

Dt(W,W) ⇓ KT

∫
t

0

L∑

φ=0

(
M

φ

ϱ
(s) + 2Gφ

hh
(s)

)
+ (1 +B)2 ds


(C.9)

We further proceed to bound M
φ

ϱ
(s) + 2Gφ

hh
(s) in terms of Dt(W,W) with high probability as follows:

Lemma C.3. For any sequence {◁j}
L

j=0 with ◁j > 0, for all k → {0, . . . , L} and t → (0, T ) the event EH

t,k
where

M
φ

ϱ
(t) ⇓ K

L↑φ+1
T



Dt(W,W) + (1 +B)
L↑1∑

j=φ

◁j



 holds for all - → {k, k + 1, . . . , L}

has probability

P(EH

t,k
|E) ⇔ 1↓

L∑

j=k

n

◁j
exp(↓n◁

2
j
/KT ) .

Lemma C.4. For any sequence {↼j}
L

j=1 with ↼j > 0, for all k → {0, . . . , L} and t → (0, T ) the event E”
t,k

where

G
φ

hh
(t) ⇓ K

L+φ+1
T



(1 +B)Dt(W,W) + (1 +B
2)




L↑1∑

j=0

◁j +
φ∑

j=1

↼j







 holds for all - → {0, 2, . . . , k}

satisfies

P(E”
t,k

▽ E
H

t,0|E) ⇔ P(EH

t,0|E)↓
k∑

j=1

n

↼j

exp(↓n↼
2
j
/KT ) .

Combining the above lemmas with (C.9) and Lemma C.2 yields that for every B > 0 we have

Dt(W,W) ⇓ K
2L
T

∫
t

0



(1 +B)Ds(W,W) + (1 +B
2)




L∑

j=1

◁j+1 +
L∑

j=1

↼j+1



+ (1 +B)2



 ds (C.10)

with probability at least

1↓
T

2




L↑1∑

j=1

n

◁j
exp(↓n◁

2
j
/KT )↓

L∑

j=2

n

↼j

exp(↓n↼
2
j
/KT )



↓KLn exp(↓Kn
1/52)

The proof is concluded applying Gronwall’s lemma with

◁j = ↼j :=


1

KTn
log

(
2TLn2

⇁
+ e

)
and 2 =

1
↙
n
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which gives, for all t < T and for all ⇁ > 0, B > 0

Dt(W,W) ⇓ KT



(1 +B
2)




L∑

j=1

◁j+1 +
L∑

j=1

↼j+1



+ (1 +B)2



 exp(KT (1 +B)T )

⇓ KT




L∑

j=1

◁j+1 +
L∑

j=1

↼j+1 + 2



 exp(KT (1 +B))

⇓ KT 2L


1

KTn
log

(
2TLn2

⇁
+ e

)
exp(KT (1 +B))

with probability

P(E ▽ E
H

T,0 ▽ E
”
T,L

) = P(EH

T,0 ▽ E
”
T,L

|E)P(E)

> 1↓ 2L
↙
nT

(
n

◁1
exp(↓n◁

2
1/KT )

)
↓KLn exp(↓Kn

1/52)

> 1↓ ⇁ ↓KLn exp(↓Kn
1/52)

thereby proving (C.4), as desired.
We now proceed with the verification of the claims that led to this conclusion. We limit ourselves to checking Lemma C.2
and Lemma C.3 as the proof of Lemma C.4 is analogous.

Proof of Lemma C.3. We show the claim by induction on the depth of the unrolled network. Starting from M
L

ϱ
we have

that with probability 1


1

n

n∑

j=1

EX [|Hϱ(x, j,W(t), L)↓Hϱ(x,ϑ(j),W (t), L)|]2
1/2

=



 1

n

n∑

j=1

EX [|Wxh(t, j)x↑L ↓Wxh(t,ϑ(j))x↑L|]
2




1/2

⇓ KDt(W,W) (C.11)

In other words, the base case holds with probability P(EH

t,1) = 1.
We now assume that the claim holds for M φ+1

ϱ
and prove it for M φ

ϱ
. The proof for M φ

hh
, M φ

xh
is analogous. To do so we

decompose M
φ

ϱ
in two parts: the first measures the distance between a randomly sampled, finite set of weights evolving

according to W (t) and W(t), while the second compares the approximation obtained by taking a finite sample from W (t)
and the expectation WRT Ph on W (t). More specifically we decompose

|Hhh(x, i,W(t), -)↓Hhh(x,ϑ(i),Whh(t), -)| =

=

1

n

n∑

j=1

W(t, i, j)εh(Hhh(x, j,W(t), -+ 1) +Hxh(j,x,W(t)))

↓

∫
W (t,ϑ(i),ϑ↘)εh(Hhh(x,ϑ

↘
,W (t), -+ 1) +Hxh[W (t)](ϑ↘;x))Ph(dϑ

↘)


= Q1,φ(t; i) +Q2,φ(t; i)

where

Q1,φ(t; i) =
1

n

n∑

j=1

Whh(t, i, j)εh(Hhh(x, j,W(t), -+ 1) +Hxh(j,x,W(t)))

↓Whh(t,ϑ(i),ϑ(j))εh(Hhh(x,ϑ(j),W (t), -+ 1) +Hxh[W (t)](ϑ(j),x))

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Q2,φ(t; i) =


1

n

n∑

j=1

Whh(t,ϑ(i),ϑ(j))εh(Hhh(x,ϑ(j),W (t), -+ 1) +Hxh[W (t)](ϑ(j),x))

↓

∫
Whh(t,ϑ(i),ϑ

↘)εh(Hhh(x,ϑ
↘
,W (t), -+ 1) +Hxh[W (t)](ϑ↘

,x))Ph(dϑ
↘)



and we can bound

M
φ

ϱ
(t) ⇓


1

n

n∑

i=1

EX [|Q1,φ(t; i)|+ |Q2,φ(t; i)|]
2

1/2

+



 1

n

n∑

j=1

EX [|Wxh(t, j)x↑φ ↓Wxh(t,ϑ(j))x↑φ|]
2




1/2

The first term is then bounded by

EX (|Q1,φ(t; i)|)
2
⇓

K

n

n∑

j=1

(
1 + |Whh(t, j, i)|

2 + |Whh(t,ϑ(j),ϑ(i))|
2
)

·
1

n

n∑

j=1

EX (|Hϱ(x, j,W(t), -+ 1)↓Hϱ(x,ϑ(j),W (t), -+ 1)|)2

+
K

n

n∑

j=1

|Whh(t, i, j)↓Whh(t,ϑ(i),ϑ(j))|
2

and therefore, under the event EH

t,φ+1 and E we have


1

n

n∑

i=1

EX [|Q1,φ(t; i)|]
2

1/2

⇓ KTM
φ+1
ϱ

(t) +KDt(W,W)

We proceed to bound Q2,φ(t). Defining

Z
H

φ
(t,ϑ,ϑ↘) = Whh(t,ϑ,ϑ

↘)εh(Hhh(x,ϑ
↘
, -+ 1) +Wxh(t,ϑ)x↑(φ+1))

Using independence of ϑ,ϑ↘, we have that the conditional expectation WRT Ph is trivial

EPh [Z
H

φ
(t,ϑ(i),ϑ(j))|ϑ(i)] = EPh [Z

H

φ
(t,ϑ(j),ϑ↘)]

and we have that, for almost every x almost surely by assumption

Z
H

φ
(t,ϑ(i),ϑ(j)) ⇓ KT (1 +B)

Then, by Lemma 28 in (Nguyen & Pham, 2020), since ◁φ ⇔ 0 we have that

P (EX [Q2,φ(t)] ⇔ KT (1 +B)◁φ) ⇓
1

◁φ
exp(↓n◁

2
φ
/KT ) .

The proof is concluded by combinging the bound on Hhh with the one on Hxh to yield an analogous one on Hϱ and taking
an union bound over i → {1, . . . , n}, resulting in the fact that on the events E and E

H

t,φ+1

M
φ

ϱ
(t) ⇔ KTM

φ+1
ϱ

(t) + 2KDt(W,W) +KT (1 +B)◁φ ⇔ K
L↑φ+1
T


Dt(W,W) + (1 +B)

L↑1∑

k=φ

◁k



with probability at most (n/◁φ) exp(↓n◁
2
φ
/KT ). Therefore we get by union bound

P((EH

t,φ
)c|E) ⇓ P((EH

t,φ+1)
c
|E) + (n/◁φ) exp(↓n◁

2
φ
/KT ) ⇓

L↑1∑

k=φ

n

◁k+1
exp(↓n◁

2
k+1/KT )

proving the desired claim.
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Proof of Lemma C.2. We again only sketch this proof for the term D
⇀

hh
[W ](t, 2↘) as the other cases follow analogously.

We see that since ⇑W⇑0, ⇑W⇑samp,t ⇓ K on the event E , we have



 1

n2

n∑

i,j=1

sup
s⇐(0,t)

|↽tWhh(s,ϑ(i),ϑ(j))|
50




1/50

⇓ K +K



 1

n

n∑

j=1

sup
s⇐(0,t)

Ex[|$
H

i
(x,ϑ(j),W (s))|]50




1/50

⇓ KT

for any t ⇓ T . Consequently we have


 1

n2

n∑

i,j=1

sup
s⇐(0,T↑⇀)

sup
⇀→⇐(0,⇀)

(Whh(s+ 2
↘
,ϑ(i),ϑ(j))↓Whh(s,ϑ(i),ϑ(j)))

2




1/2

⇓ KT 2

The desired bound results from the application of an adapted version of Lemma B.5 to the paths W ↘(t) := Whh(t,ϑ(i),ϑ(j)),
W

↘↘(t) := Whh(t+ 2,ϑ(i),ϑ(j)) replacing e
↑K1B

2

↑ 0 by the assumed trunctaion of W . This yields almost surely on E

sup
t⇐(0,T↑⇀)

sup
⇀→⇐(0,⇀)

D
⇀

hh
(t, 2↘) ⇓ KT (1 +B)⇑W ↘

↓W
↘↘
⇑T↑⇀ ⇓ KT (1 +B)2

as desired. Analogous bounds on D
⇀

hh
[W], D⇀

xh
[W ], D⇀

xh
[W], D⇀

hy
[W ], D⇀

hy
[W] prove the lemma.

D. Global optimality

Recall the definition of the preactivation between the first and the second layer:

Hhh(ϑ;x, L) =

∫
Whh(ϑ,ϑ

↘)εh(Wxh(ϑ
↘) · x↑L)Ph(dϑ

↘)

and define recursively the corresponding --preactivaton for - ⇓ L↓ 1

Hhh(ϑ;x, -) :=

∫
Whh(ϑ,ϑ

↘)εh(Hhh(ϑ
↘;x, -+ 1) +Wxh(ϑ

↘)x↑(φ+1))Ph(dϑ
↘)

For notational convenience, we define ωL,φ := !(↑L,↑L+φ)
# ω, where !(a,b) is projection on coordinates ranging from a to b.

D.1. Expressivity at initialization

In this section we prove our main expressivity result. Defining throughout ’ := supp(Ph) we we state the result as follows:
Proposition D.1. Fix L > 0, for any t > 0 let W = W (t) satisfy Assumption 3b) and c), let εh satisfy Assumption 3a) and
let Assumptions 1 and 2 hold. Then

span {εh(Hhh(ϑ;x, 0) +Wxh(ϑ)x0) : ϑ → ’} = L
2(ωL,0)

The above result can readily be rephrased in the following, more explicit form:
Corollary D.2. Under the conditions of Proposition D.1 above, the map

F̂ (W ;x) =

∫
Why(ϑ)εh(Hhh(ϑ;x, 0) +Wxh(ϑ)x0)Ph(dϑ)

intended as a functional of Why → L
2(Ph) is dense in the space L

2(ωL,0).

Proposition D.1 above proves that the network can express any function in L
2(ωL,0) provided that the support of the weights

W (t) is sufficiently varied as codified in Assumption 3b). We will show in the next subsection that this condition, if satisfied
at initialization, is also satisfied at every finite time throughout the dynamics.
To prove the above result we first state the following
Lemma D.3. Let X ∈ Rd

→
for d

↘
→ N and let µ be a probability measure on X . Assume that εh : R ↑ R satisfies

Assumption 3, that the set ( := {3ε : ϑ → ’} ∈ L
2(µ) ▽ L

↔(µ) is star-shaped at 0 → L
2(µ) and span {3ε : ϑ → ’} is

dense in L
2(µ), then so is span {εh(3ε) : ϑ → ’}.
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Proof of Lemma D.3. Assume towards a contradiction that there exists f
→
→ L

2(µ) such that for any sequence {3n}n

with 3n → L
2(µ) we have


f
→
εh(3n)µ(dx) = 0 for all n → N. By the spanning assumption there exists 3→

→ ( with
⇁
→ := |


3
→
f
→
µ(dx)| > 0. We now consider the sequence of functions 3n = (n⇑3→

⇑↔)↑1
3
→. By assumption on the

star-like structure of (, 3n → ( for all n > 0. The result of the lemma follows by the Taylor expansion of εh around the
point 0:

εh(3ε(x)) = 0 + ε
↘

h
(0)3ε(x) +R[3ε](x)

where, denoting by B
↔

⇁
(0) the ball of radius ϖ in the L

↔(µ) norm around 0, there exists a constant C > 0 such that the
remainder term satisfies |R[3](x)| < C3(x)2 uniformly in 3 → B

↔

⇁
(0) and x for ϖ small enough. Then, along the sequence

{3n}n we have

∫

f
→(x)εh(3n(x))µ(dx)

 ⇔
ε

↘

h
(0)

∫
f
→(x)3n(x)µ(dx)

↓

∫

f
→(x)R[3n](x)µ(dx)

 (D.1)

We notice that for n → N sufficiently large we have,
ε

↘

h
(0)

∫
f
→(x)3n(x)µ(dx)

 =
ε
↘

h
(0)

n⇑3→⇑↔
⇁
→


∫

f
→(x)R[3n](x)µ(dx)

 ⇓ ⇑f
→
⇑2⇑R[3n](x)⇑2 ⇓

C⇑(3→)2⇑2
n2⇑3→⇑2

↔

⇑f
→
⇑2 ⇓

1

2

ε
↘

h
(0)

n⇑3→⇑↔
⇁
→

so that the first term in the expansion dominates the second. Combining this with (D.1) implies that there exists n large
enough such that 

∫
f
→(x)εh(3n(x))µ(dx)

 >
1

2

ε
↘

h
(0)

n⇑3→⇑↔
⇁
→
> 0

contradicting the fact that

f
→
3nµ(dx) = 0 for all n → N.

Proof of Proposition D.1. We want to show that, for any - → {0, . . . , L},

span{εh(Hhh(ϑ;x, -) +Wxhx↑φ) : ϑ → supp(Ph)} = L
2(ω↑L,↑φ) (D.2)

By the deterministic nature of the dynamical system T the measure ω↑L,↑φ can be written, in the sense of distributions, as

ω↑L,↑φ(dx) = ω(dx↑φ|x↑φ) . . . ω(dx↑L+1|x↑L)ω0(dx↑L)

= ω0(dx↑L)
φ∏

j=1

⇁(xL↑j ↓ T
j(x↑L))

so that, integrating on x↑L, . . . ,x↑φ we write

Hhh(ϑ;x, -) := Hhh(ϑ; (x, T (x), . . . , T
L↑φ+1(x)), -) .

Then, condition (D.2) can be written as

span{εh(Hhh(ϑ;x, -) +WxhT
L↑φ(x)) : ϑ → supp(Ph)} = L

2(ω0)

which, since {0}≃ L
↔

R
(Ph) ̸ supp{Wxh(t;ϑ),Whh(t;ϑ, ·) : ϑ → ’} by Lemma D.4 follows if

span
ε

∫
ε

(
Whh(ϑ,ϑ

↘)ε
(
Whh(ϑ

↘
,ϑ

↘↘)ε
(
. . .εh(Wxh(ϑ

(L))x)
)))

P
⇒L

h
(dϑ↘

, . . . , dϑ
(L))


= L

2(ω0) (D.3)

We prove (D.3) by induction on the depth of the unrolled network.
Base case - = L: In this case we simply need to show that span{εh(Wxh(ϑ)x↑L) : ϑ → ’} is dense in L

2(ω↑L) = L
2(ω0).

This, however, is immediately true by the global approximation property Assumption 3b).
Induction step - ↑ -↓ 1: By Lemma D.3 it is sufficient to show that

H
↘

hh
(ϑ;x, -) :=

∫
Whh(ϑ,ϑ

↘)εh

(
Whh(ϑ

↘
,ϑ

↘↘)εh

(
. . .εh(Wxh(ϑ

(L))x)
))

P
⇒(L↑φ+1)
h

(dϑ(φ)
, . . . , dϑ

(L))
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spans the desired space. This claim is true if having
∫

ḡ(x)H ↘

hh
(ϑ;x, -↓ 1)ω0(dx) =

∫
ḡ(x)

∫
Whh(ϑ,ϑ

↘)εh(Hhh(ϑ
↘;x, -))Ph(dϑ

↘)ω0(dx) = 0

for almost all ϑ → ”h implies that the function ḡ : Rd
↑ R must satisfy ḡ(x) ↗ 0. Using Lemma D.4 to establish that

{Whh(t;ϑ, ·)}ε is dense in L
↔

R
(Ph) we can rewrite the above condition as

∫
ḡ(x)H ↘

hh
(ϑ;x, -↓ 1)ω0(dx) =

∫
ḡ(x)

∫
f(ϑ↘)εh(H

↘

hh
(ϑ↘;x, -))Ph(dϑ

↘)ω0(dx)

=

∫
f(ϑ↘)

∫
ḡ(x)εh(H

↘

hh
(ϑ↘;x, -))ω0(dx)Ph(dϑ

↘) = 0

for all f → L
↔

R
(Ph), where in the last line we have applied Fubini’s theorem. This is true only if

∫
ḡ(x)εh(H

↘

hh
(ϑ↘;x, -))ω0(dx) = 0 for Ph-almost all ϑ↘

→ ”h . (D.4)

which, by the induction assumption, is only true if ḡ(x) ↗ 0, showing (D.3) and therefore the claim.

D.2. Preservation of expressivity during training

Recalling the definition of L↔

R
(Ph) = {f → L

2(Ph) : sup# |f | ⇓ R} we have

Lemma D.4 (Bidirectional diversity, Step 1 in (Nguyen & Pham, 2020), proof of Thm. 46). Let Whh(t; ·, ·),Wxh(t; ·) be
the mean-field parameter functions solving (2.7) with initial condition W

0
hh
(·, ·),W 0

xh
(·). If Assumption 3 holds, then at any

time t > 0 we have that

supp(Wxh(t;ϑ),Whh(t; ·,ϑ),Whh(t;ϑ, ·) : ϑ → ’) = Rd
≃ L

↔

R
(Ph)≃ L

↔

R
(Ph)

To prove the bidirectional diversity result we will consider the flow induced by (2.7) on any value of the (parametric) initial
condition. From now on we denote by 〈f, g∀ the inner product in L

2(Ph).

Proof of Lemma D.4. Consider a MF trajectory W (t) and a triple u = (u1, u2, u3) → Rd
≃L

↔

R
(Ph)≃L

↔

R
(Ph), representing

respectively values of (Wxh(ϑ),Whh(·,ϑ),Whh(ϑ, ·)). To characterize the evolution of a triple u we consider the flow

↽

↽t
a
+
xh
(t;u) = ↓↼(t)

∫
$F (W (t),x)

L+1∑

i=1

〈&i↑1(W (t), ·,x), a+
h1(t, ·;u)∀ε

↘

h
(Hϱ[W ](x, a+

h2(t, ·;u), a
+
xh
(t;u), i))xi ω(dx)

↽

↽t
a
+
h1(t,ϑ;u) = ↓↼(t)⇀R(a

+
h1(t,ϑ;u))

∫
$F (W (t),x)

L+1∑

i=1

〈&i↑1(W (t), ·,x), a+
h1(t, ·;u)∀εh(Hϱ[W ](x, a+

h2(t, ·;u), a
+
xh
(t;u), i))ω(dx)

↽

↽t
a
+
h2(t,ϑ

↘;u) = ↓↼(t)⇀R(a
+
h2(t,ϑ

↘;u))

∫
$F (W (t),x)

L+1∑

i=1

〈&i↑1(W (t), ·,x), a+
h1(t, ·;u)∀εh(Hϱ[W ](ϑ↘

,x,W, i+ 1))ω(dx)

with initial conditions axh(0;u)+ = u1, ah2(0, ·;u)+ = u2, ah1(0, ·;u)+ = u3, where &i(W,ϑ,x),$F (W,x) were
defined in Appendix A and

Hϱ[W ](x, a+
h2(t, ·;u), a

+
xh
(t;u), i) := 〈a

+
h2(t, ·;u) , εh(Hϱ[W ](·,x, i+ 1))∀+ a

+
xh
(t;u)x↑i
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These flows track the evolution of mean-field parameters in the space where their evolution is naturally embedded: we see
that the MF trajectory solving (2.7) satisfies

Wxh(t,ϑ) = a
+
xh
(t;Wxh(0;ϑ),Whh(0;ϑ, ·),Whh(0; ·,ϑ))

Whh(t,ϑ, ·) = a
+
h1(t;Wxh(0;ϑ),Whh(0;ϑ, ·),Whh(0; ·,ϑ)) (D.5)

Whh(t, ·,ϑ) = a
+
h2(t;Wxh(0;ϑ),Whh(0;ϑ, ·),Whh(0; ·,ϑ))

We proceed construct, for all finite T > 0 and every u
+ = (u+

1 , u
+
2 , u

+
3 ) → Rd

≃ L
↔

R
(Ph)≃ L

↔

R
(Ph) an initial condition

u
↑ = (u↑

1 , u
↑

2 , u
↑

3 ) → Rd
≃ L

↔

R
(Ph)≃ L

↔

R
(Ph) that reaches u+ after time T , i.e., such that

a
+
xh
(T ;u↑) = u

+
1 a

+
h1(T, ·;u

↑) = u
+
2 a

+
h2(T, ·;u

↑) = u
+
3 (D.6)

To do so we consider the reverse-time dynamics on the interval (0, T ), described by the flow

ω

ωt
a
→
xh(t;u) = →ε(T → t)

∫
!F (W (T → t),x)

L+1∑

i=1

↑”i→1(W (T → t), ·,x), a→
h1(t, ·;u)↓ϑ

↑
h(Hω(x, a

→
h2(t, ·;u), a

→
xh(t;u), i))xi ϖ(dx)

ω

ωt
a
→
h1(t,ϱ;u) = →ε(T → t)ςR(a

→
h1(t,ϱ;u))

∫
!F (W (T → t),x)

L+1∑

i=1

↑”i→1(W (T → t), ·,x), a→
h1(t, ·;u)↓ϑh(Hω(x, a

→
h2(t, ·;u), a

→
xh(t;u), i))ϖ(dx)

ω

ωt
a
→
h2(t,ϱ

↑;u) = →ε(T → t)ςR(a
→
h2(t,ϱ

↑;u))

∫
!F (W (T → t),x)

L+1∑

i=1

↑”i→1(W (T → t), ·,x), a→
h1(t, ·;u)↓ϑh(Hω(ϱ

↑
,x,W, i))ϖ(dx)

initialized at a↑
xh
(0;u) = u1, a↑

h1(0, ·;u) = u2 and a
↑

h2(0, ·;u) = u3. Note that, by construction, ˜ah1
↑(t) = a

↑

h1(T ↓

t,ϑ;u), ˜ah2
↑(t) = a

↑

h2(T ↓ t,ϑ;u) and ˜axh
↑(t) = a

↑

xh
(t;u) solve the same equation as a+

xh
(t;u), a+

h1(t, ·;u), a
+
h1(t, ·;u)

with initial condition ˜ah1
↑(0, ·) = a

↑

h1(T, ·;u
+), ˜ah2

↑(0, ·) = a
↑

h2(T, ·;u
+), ˜axh

↑(0) = a
↑

xh
(T ;u+). By existence and

uniqueness of the solution of this system of ODEs both forward and backward in time proven in Section B, we must
have that, setting u

↑ = (u↑

1 , u
↑

2 , u
↑

3 ) := (a↑
xh
(T, ·;u+), a↑

h1(T, ·;u
+), a↑

h2(T, ·;u
+)) as the initial condition of (D.5), the

endpoint of the trajectory of satisfies (D.6) as desired. Finally, we show that the point u↑ is in R≃ L
↔

R
(Ph)≃ L

↔

R
(Ph).

This follows immediately upon showing that the set R ≃ L
↔

R
(Ph) ≃ L

↔

R
(Ph) is invariant with respect to the flow maps

(a+
xh
, a

+
h1, a

+
h2), (a

↑

xh
, a

↑

h1, a
↑

h2) induced by the ODEs. The forward invariance of R for Wxh under both forward and
backward flow maps follows from the Lipschitz bounds on the RHS of the corresponding ODEs, established in Section B. It
remains to prove forward invariance of L↔

R
(Ph), which we now do by contradiction. Assuming that L↔

R
(Ph) is not invariant

with respect to (a+
xh
, a

+
h1, a

+
h2), (a

↑

xh
, a

↑

h1, a
↑

h2), then by the continuity of the flow maps, there must exist ϑ,ϑ↘
→ suppPh

with |Whh(t;ϑ,ϑ↘)| = K such that ↽t|Whh(t;ϑ,ϑ↘)| > 0, which is impossible given that ↽t|Whh(t;ϑ,ϑ↘)| = 0, since
⇀R(Whh(ϑ,ϑ↘)) = 0, for all such ϑ,ϑ

↘ .
By continuity of the solution map u ↖↑ (a+

xh
(T ;u), a+

h1(T, ·;u), a
+
h2(T, ·;u)), for any 4 > 0 there exists a neighborhood U

of u↑
→ R≃ L

↔

R
(Ph)≃ L

↔

R
(Ph) such that

⇑(a+
xh
(T ;u), a+

h1(T, ·;u), a
+
h2(T, ·;u))↓ u

+
⇑ < 4

for all u → U . This finally implies, by Assumption 3c), that (Wxh(T ;ϑ),Whh(T ;ϑ, ·),Whh(T ; ·,ϑ)) has full support in
Rd

≃ L
↔

R
(Ph)≃ L

↔

R
(Ph), which in turn proves the claim.

D.3. Proof of Theorem 3.4

The proof of Theorem 3.4 is carried out by adapting the argument from Theorem 50 in (Nguyen & Pham, 2020), to the
present setting. We recall that, writing $F [W ](x) := F̂ (x;W (t))↓ F

→(x) and using the definition (A.2) we have

↽tWhy(t;ϑ) = ↓

∫
$F [W ](x)εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)
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so that, by the convergence assumption, we have that for every 4 > 0 there exists a T > 0 such that for almost every
ϑ → supp(Ph)

|

∫
$F [W ](x)εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)| ⇓ 4 .

We proceed to prove that $F [W ] converges in L
2(ω) to $F [W̄ ] as t ↑ ↔. To do so we define

⇁i(t,x,ϑ) =
εh(Hϱ[W̄ ](ϑ;x, i))↓ εh(Hϱ[W (t)](ϑ;x, i))



for which by boundedness and Lipschitz continuity of εh we have

⇁L(t,x,ϑ) ⇓ K|W̄xh(ϑ)x↑L ↓Wxh(t;ϑ)x↑L|

⇁i(t,x,ϑ) ⇓ K

(
|W̄xh(ϑ)x↑L ↓Wxh(t;ϑ)x↑L|+K

∫
|W̄hh(ϑ,ϑ

↘)↓Whh(t;ϑ,ϑ
↘)|Ph(dϑ

↘)

+

∫
|W̄hh(ϑ,ϑ

↘)⇁i+1(t,x,ϑ
↘)|Ph(dϑ

↘)

)

Therefore, denoting by dω the differential dϑ(0)
, . . . , dϑ(L) we have that

∫
|$F [W̄ ](x)↓$F [W (t)](x)|2ω(dx)

=

∫
|F̂ (W̄ ;x)↓ F̂ (W (t);x)|2ω(dx)

⇓

∫ (
K

∫
|W̄hy(ϑ)↓Why(t;ϑ)|Ph(dϑ) +

∫
W̄hy(ϑ)⇁0(t,x,ϑ)Ph(dϑ)

)2

ω(dx)

⇓ K
2L

L∑

i=0

∫
|W̄hy(ϑ

(0))|2




i↑1∏

j=1

|W̄hh(ϑ
(j↑1)

,ϑ
(j))|




2 W̄hh(ϑ

(i↑1)
,ϑ

(i))↓Whh(t;ϑ
(i↑1)

,ϑ
(i))


2
P

⇒L+1
h

(dω)

+K
2L

L∑

i=0

∫
|W̄hy(ϑ

(0))|2




i↑1∏

j=1

|W̄hh(ϑ
(j↑1)

,ϑ
(j))|




2 W̄xh(ϑ

(i↑1))↓Wxh(t;ϑ
(i↑1))


2
P

⇒L+1
h

(dω)EX [⇑x⇑2]

+K
2

∫
|W̄hy(ϑ)↓Why(t;ϑ)|

2
Ph(dϑ) (D.7)

and by Assumption 3 we have that the above goes to 0 as t ↑ ↔.
Having proven the convergence of $F [W (t)] to $F [W̄ ] we proceed to prove the claim of the theorem. By boundedness of
εh we have that for every ϑ → supp(Ph)

|

∫
$F [W̄ ]εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)|

⇓ K|

∫
($F [W̄ ](x)↓$F [W ](x))ω(dx)|+ |

∫
$F [W ](x)εh

(
Hϱ(ϑ;x, 0)

)
ω(dx)|

⇓ K4

By continuity of εh we have that for every 4 > 0

|

∫
$F [W̄ ](x)f(x)ω(dx)| ⇓ K4

uniformly over f(x) → S where S = {εh(Hϱ(ϑ;x, 0)) : ϑ → Ph}, implying that |

$F [W̄ ](x)f(x)ω(dx)| = 0 for all

f → S. Since from Proposition D.1 we have that span(εh(Hϱ(ϑ;x, 0))) = L
2(ω), the above result immediately yields that

for ω-almost every x, $F [W̄ ](x) = 0, so that L(W̄ ) = 0.
Finally, we prove the desired result by connecting L(W̄ ) and L(W (t)):

|L(W̄ )↓ L(W (t))| = |

∫
$F [W̄ ](x)2 ↓$F [W (t)](x)2ω(dx)|⇓ 2K⇑F̂ (W̄ ; ·)↓ F̂ (W (t); ·)⇑↼ ,
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which by (D.7) goes to 0 with t ↑ ↔. Combining the above we have

lim
t↓↔

L(W (t)) ⇓ L(W̄ ) + lim
t↓↔

|L(W̄ )↓ L(W (t))| = 0

which proves the claim.
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