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Abstract

We give an improved theoretical analysis of
score-based generative modeling. Under a score
estimate with small L? error (averaged across
timesteps), we provide efficient convergence guar-
antees for any data distribution with second-order
moment, by either employing early stopping or
assuming a smoothness condition on the score
function of the data distribution. Our result does
not rely on any log-concavity or functional in-
equality assumption and has a logarithmic depen-
dence on the smoothness. In particular, we show
that under only a finite second moment condition,
approximating the following in reverse KL diver-

. .~ (dlog(l
gence in e-accuracy can be done in O (M)

steps: 1) the variance-d Gaussian perturbation of
any data distribution; 2) data distributions with
1/6-smooth score functions. Our analysis also
provides a quantitative comparison between dif-
ferent discrete approximations and may guide the
choice of discretization points in practice.

1. Introduction

Generative modeling is one of the central tasks in machine
learning, which aims to learn a probability distribution
from data and generate data from the learned distribution.
Score-based generative modeling (SGM) has achieved state-
of-art performance in data generation tasks (Song & Er-
mon, 2019; Song et al., 2020; 2021b; Dhariwal & Nichol,
2021), surpassing other models like generative adversarial
networks (GAN) (Goodfellow et al., 2014), normalizing
flows (Rezende & Mohamed, 2015), variational autoen-
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coders (Kingma & Welling, 2014), and energy-based mod-
els (Zhao et al., 2016). Due to the impressive sample quality,
SGM has great potential in various applications, including
computer vision (Dhariwal & Nichol, 2021; Rombach et al.,
2021), natural language processing (Austin et al., 2021),
inverse problems (Song et al., 2022; Chung et al., 2021),
molecular graph modeling (Shi et al., 2021; Gnaneshwar
et al., 2022), reinforcement learning (Wang et al., 2022), and
solving high-dimensional PDEs (Boffi & Vanden-Eijnden,
2022).

The key idea of SGM is to use a forward process to diffuse
the data distribution to some prior (often the standard Gaus-
sian), and learn a backward process to transform the prior
to the data distribution by estimating the score functions of
the forward diffusion process. Such a procedure provides
an expressive and efficient way to model high-dimensional
distributions for two reasons: 1) It is easy to construct a
forward process that converges fast to the Gaussian, no mat-
ter how complex the data distribution is. For example, the
Ornstein-Uhlenbeck (OU) process has stationary distribu-
tion equal to the standard Gaussian and converges rapidly. 2)
Several scalable score matching methods such as denoising
score matching (Vincent, 2011) and sliced score matching
(Song et al., 2019) allow us to learn the score function for
use by the backward process.

While SGM has achieved great success in practice, theoreti-
cal understanding of the power of SGM is far from complete.
Recent works (Lee et al., 2022b; Chen et al., 2022) estab-
lished that when an accurate score estimator is given, SGM
can sample from general distributions with polynomial com-
plexity and without requiring structural assumptions such
as log-concavity or functional inequalities. (By polynomial
complexity we mean that the running time is polynomial and
the final error depends polynomially on the score estimation
error and other parameters.) This is surprising in the sam-
pling context, as it implies a sharp contrast between SGM
and sampling dynamics with gradient flow structure (such as
Langevin dynamics), where convergence rates depend cru-
cially on the structure of the data distribution. In this paper,
we further establish the effectiveness of SGM by showing
that convergence with reasonable rates requires very weak
smoothness conditions. Indeed, we obtain a logarithmic
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dependence on the smoothness, or no dependence when
comparing against a slightly perturbed data distribution.

1.1. Background and Our Setting

General Framework. Let P be the data distribution on
RY. Given data {z;}"_, sampled from the data distribution
P, the first step of SGM involves gradually transforming
the data distribution into white noise by a forward SDE:

day = f(ze, t)dt +g(t) dwe, 2o ~ P, 0 <t <T. (1)

We use p;(z) to denote the density of z;. In particular, pp
is close to the white noise distribution A(0, I;). Then z;
also satisfies the reverse SDE

day = (f(we,t) — g(t)?*Vv log pi(x¢)) dt + g(t) d by,
@)

where w; is the Brownian motion in reverse time (Anderson,
1982). For convenience, we rewrite the reverse SDE (2) in a
forward version by switching time direction ¢ — T — ¢:

A& = (=f(@, T —t) + g(T — t)*Viog pr (i) dt

where w; is the usual (forward) Brownian motion. The
process (Z;)o<¢<r transforms noise into samples from P,
which accomplishes the goal of generative modeling.

However, we cannot directly simulate (3) since the score
function V log p; is not available. Thus we learn the score
function V log p; from the noisy data. First, we parameter-
ize the score function within a function class such as that
of neural networks, sg(x,t). Then we optimize one of the
score-matching objectives (denosing score matching (Vin-
cent, 2011) is often used; see appendix A for details), from
which we obtain a score estimator sg such that the L2 score
estimation error

Ep, |s6(z,t) — Vlogp(a)||?

is small. Using the estimated score, we can generate samples
from an approximation of the reverse SDE starting from the
prior distribution:

dy, = (—f(ye, T —t) + g(T — t)*sg(y, T — t)) dt
+9(T —t)dwy, Yo ~ Ppriors 0 <t < T, (4)

The Choice of Forward Process. We focus on the case
f(z,t) = =3, g(t) = 1. The choice of f(x,t) matches
the choice in the original paper (Song et al., 2020), though
our analysis may be adapted for some other choices of drift
terms; the choice of constant variance function does not
cause any loss of generality since the changing the variance
function is equivalent to rescaling time (when f does not

depend on t). In this case, the forward process becomes the
Ornstein-Uhlenbeck process, which has an explicit condi-
tional density:

xi|lro ~ N (e_%txo, (1—e™") Id) .

Moreover, the Ornstein-Uhlenbeck process converges expo-
nentially to the standard Gaussian distribution:

KL (p¢V(0,1)) < e "KL(po||N (0, 1)).

Time Discretization. In practice, we need to use a
discrete-time approximation for the sampling dynamics (4).
Letd = tg < t; < --- <ty = T be the discretization
points, where § = 0 for the normal setting and § > 0 for
the early-stopping setting. For the k-th discretization step
(1 < k < N), we denote hy, := ty — tr_1 as the step size.
We will compare different choices of discretization points
and identify the optimal choice in different settings.

Let tj, = T — tny_ be the corresponding discretization
points in the reverse SDE. We consider two types of dis-
cretization schemes, which are widely used in existing work.

* The Euler-Maruyama scheme:

L )
dyt = |:2th + sp (yt;C ) T— t;i‘):| dt + d’LUt, ®)

fort € [t} 1) ,].k=0,1,...,N -1

» The expontential integrator scheme (Song et al., 2021a;
Zhang & Chen, 2022): by using the semi-linear struc-
ture of (2), we discretize only in the nonlinear term and
retain the continuous dynamics arising from the linear
term:

1
dg = {2@& + so(Gu;, T — t%)] dt+dw,  (6)

fort € [t}, 1}, 1], K =0,..., N — 1, which is solved
explicitly by

o l(t’ —t ) N
—e2\tkt1 7tk
.., =€ i,

+2 (e%(t;“_t;) - 1) s0(Je,, T — t},)

o1tk 1
+ € — 17k,

where 7, ~ N (0,14).

1.2. Related Work

We highlight two recent papers (Chen et al., 2022; Lee et al.,
2022b). Both papers provide convergence guarantees with
polynomial complexity without relying on any structural
assumptions on the data distribution such as log-concavity
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or a functional inequality. In particular, the analysis of
(Chen et al., 2022) is based on the Girsanov change of mea-
sure framework and the authors consider the following two
settings: 1) The score functions in the whole trajectory of
the forward process satisfy the Lipschitz condition with a
uniform Lipschitz constant. 2) The data distribution has
bounded support. Although the smoothness condition on
the forward process seems mild, it may be hard to check
whether the uniform bound for the Lipschitz constants scales
polynomially w.r.t. the dimension d. In fact, this is a prop-
erty of the whole process, related to tail bounds of the data
distribution. The work (Lee et al., 2022b) alternatively uses
the idea of excluding bad sets in order to reduce to the
setting of an L°°-accurate score estimator. This results in
a worse dependence on the problem parameters; however,
they do relax the smoothness condition on the whole trajec-
tory to one on only the data distribution, and the bounded
support assumption to sufficient tail decay.

Many other works have provided convergence analyses, but
do not achieve polynomial complexity except in restricted
settings, for example relying on functional inequalities (thus
precluding multi-modal distributions) (Block et al., 2020;
Lee et al., 2022a; Wibisono & Yang, 2022), manifold hy-
potheses (DeBortoli, 2022), or L°°-accurate score estimates
(DeBortoli et al., 2021). In the setting where only an L?2-
accurate score estimate of the data distribution is given,
(Koehler et al., 2022) give a statistical lower bound which
shows it is in general impossible to accurately sample the
distribution. This highlights the fact that having score esti-
mates for multiple distributions—e.g., the data distribution
with different amounts of noise added—is necessary for ef-
ficient sampling; this is done in practice and in our analysis.
In a different direction, SGM is also related to recent work
on algorithmic stochastic localization (Alaoui et al., 2022),
in which for the spin glass models under consideration, the
score function (i.e., the posterior mean) can be accurately
estimated using approximate message passing.

1.3. Our Contributions

In this paper, we quantitatively show that an L?-accurate
score estimator is enough to guarantee that the sampling
dynamics (5), (6) result in a distribution close to the data
distribution in various regimes. Our results combine the
advantages of (Chen et al., 2022; Lee et al., 2022b): under
weak assumptions on the data distribution and the score
estimator, we provide a concise analysis and refined guar-
antees for the convergence of SGM under several settings,
described below and summarized in Table 1.

Smooth setting. Revisiting the setting where the Lipshitz
constant of V log py, 0 < ¢t < T is uniformly bounded (the
trajectory-smooth setting), we provide three refinements
compared to (Chen et al., 2022): 1) We sidestep the tech-

nical issue of checking Novikov’s condition and provide
a reverse KL divergence guarantee, which is stronger than
a TV guarantee. 2) For the exponential integrator scheme,
the number of steps dependends logarithmically rather than
polynomially on the second moment. 3) We do not assume
the data distribution has finite KL. divergence wrt the stan-
dard Gaussian.

Non-smooth setting. We provide convergence guarantees
for sampling from any distribution with bounded second-
order moment, without any structural assumption or smooth-
ness condition. In particular, for any small constant § > 0,
we show that running the sampling dynamics (6) with ap-
propriate early stopping and decreasing step size results in
a distribution close to ps, using a high-probability bound
on the Hessian matrix V? log p; and a change-of-measure
argument. Comparing to the early stopping result in (Chen
et al., 2022), the use of a high-probability rather than uni-
form bound on the Hessian removes the bounded support
assumption and induces a significantly tighter dependence
on the problem parameters. Quantitatively, to obtain a
bound of ey in TV-distance to ps, when the data distri-
bution is supported on a ball of radius R, (Chen et al.,
2022) require S (egR;) steps, while we consider a dis-
tribution with seconél/ moment bounded by M> and only
require S (531—2 log® %"’d) steps (typically, R < /d). We
have no depeTI;/dence on R, and our dependence on § and
My is logarithmic instead of polynomial.

By adding an extra truncation step on the algorithm, we also
obtain a pure Wasserstein bound depending on the tail decay
of the data distribution, significantly improving the prior
result (Lee et al., 2022a, Theorem 2.2).

Smooth py only. Finally, we consider the intermediate
assumption of smoothness of V log py, rather than the whole
forward process as in (Chen et al., 2022). In this case, we
can bound discretization error in the low-noise regime so
that early stopping is not required. We combine the smooth
and non-smooth analyses to bound the number of steps
logarithmically in L, the Lipschitz constant of V log po.

Furthermore, we analyze difference choices of discretiza-
tion schemes and step-size schedules (equivalently, different
variance functions). This may help guide the practical im-
plementation of SGM.

1.4. Notations

General Notations. Let d be the dimension of the data,
and -y, be the density of standard Gaussian measure
N (0, 1,). |||| denotes the ¢2 norm for vectors or the spectral
norm for matrices, and || - || denotes the Frobenius norm
of matrices. For a random variable X, the sub-exponential
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Table 1. Suppose po has bounded 2nd moment Mo and average L? score error is at most 2. Guarantees for DDPM hold under the
following smoothness assumptions, listed in order of decreasing strength. Note the 2nd bound also holds under the 1st assumption, but
trades off dependence on d and L. (Chen et al., 2022) obtain TV guarantees, which are weaker by Pinsker’s inequality.

ASSUMPTION ERROR GUARANTEE | STEPS TO GET O(e3) ERROR THEOREM
Vt, Vlogp; L-LIPSCHITZ KL(pol|gr) 0 (dLZ) THEOREM 2.1
TV (po, 4r)? ((dVM?>L2) (CHEN ET AL., 2022, THEOREM 2)

V log po L-LIPSCHITZ KL(pol|gr) o} (d2 1‘:§ L THEOREM 2.5
Q

NONE KL(ps||Gr—s) O (M) THEOREM 2.2
0

SUPPORTED ON B (0) TV (ps, Gr—s)* 10) %) (CHEN ET AL., 2022, THM. 2 + LEM. 16)
(0]

and sub-gaussian norms are defined by 2. Main Results

| X ||y, : = inf{t > 0: Eexp <|X|k/t) <2}, k=1,2.
For random vectors, we denote || - ||y, = ||| - ||l We
use x = y if there exist absolute constants C';, Cy > 0 such
that Chy < x < Cyy. Write z < y to mean x < Cy for an
absolute constant C' > 0, and define = 2 y analogously.

Notations for the Forward Process. Let P be the data
distribution and pg be its density (if it exists). For 0 < ¢ <
T, let p; be the density of x; defined in the forward process
(1) with f(t,2z) = g(t)*z,. Define o} as the conditional
variance of x; given xg, i.e.,

ol i=1—e""

Forany 0 <t <s<T,let

1
— o 5(s—t —
Qp s i = € 3 ( ), Q= Qg

gives the scaling between times ¢ and s: E[z;|z¢] = oy 4.
Notations for Reverse Processes. Let s(z,t) be the esti-

mated score function. The reverse processes arising in our
setting are defined as follows:

* Let &, be the the reverse process of (z;)o<<7, which
is driven by the SDE

- 1. . ~
dz, = <2$t + VlngT—t(l"t)) dt +dwy, To ~ pr

Then the law of (Z;)o<¢<r is identical to the law of
(xr—t)o<t<T. We use p; to denote the density of Z;.

e Let g, be the discrete approximation of y; defined in
(5) or (6) starting from o ~ N(0, I4). We use §; to
denote the density of ¢;.

We first consider the trajectory smoothness assumption,
where we strengthen the result of (Chen et al., 2022). Then,
we state our results for more general settings in various
regimes.

All the results rely on L?-accuracy of the score estimator:

Assumption 1. The learned score function s(z, t) satisfies
forany1 <k < N,

N
1
T th Elﬂtk ||V1ngtk(m) - S(,’L‘7tk)||2 < 6(2)' @)

k=1

Remark 1. Because this is a weighted average of score esti-

mation errors on the discretization points, it can be satisfied

even if the error diverges as ¢ — 0. This is useful because

simply based on the size of the gradient, we can expect the
62

error to scale as E,, [|Vlogpy, () — s(z, te) > S 5,

U"k
where 07 ~ t ast — 0. The calculation ft 1dt =
log(1/t1) tells us we can take € = O(e?log(1/t1)). See
Appendix A for details.

Assumption 2. The data distribution has a bounded second
moment: M := Ep ||z]|? < co.

2.1. Analysis under the Trajectory Smoothness
Condition

First, we improve result of (Chen et al., 2022) for the
trajectory-smooth setting, weakening the assumptions and
strengthening the conclusion.

Assumption 3. Forany 0 < ¢ < T, V log p; is L-Lipschitz
on R,

Theorem 2.1. Suppose that Assumptions 1,2,3 hold. If
L>1Lh,<lfork=1,...,NandT > 1, using uniform
discretization points yields the followings

* Using exponential integrator scheme (6), we have
dT?L?

Te
T+ T+ ——

KL(pollgr) < (M2 + d)e™
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In particular, choosing T = log (%) and N =
0
e (desz) makes this O (e%).

€0

» Using the Euler-Maruyama scheme (5), we have

dT2L2+T3M2
N N2

KL(pollgr) S (Ma+d)e™ " +Teg+

For the exponential integrator, the error consists of three
parts: the error of the forward process, the score matching
error, and the discretization error, detailed in Section 3.
Remark 2. The extra conditions on L, hy, T in the above
theorem are introduced to present the result more concisely,
and are not a limitation of the analysis.

Remark 3. Comparing to the exponential integrator scheme,
the Euler-Maruyama scheme causes an additional high-order
discretization error term related to the second-order moment
of the data distribution. This implies a separation between
the exponential integrator scheme and the Euler-Maruyama
scheme: the error of the exponential integrator scheme
scales logarithmically in the second moment of the data
distribution (as it suffices for T" to increase by O(log M>)),
while the error of the Euler-Maruyama scheme scales lin-
early.

Rather than the TV distance guarantees given in (Chen et al.,
2022), we obtain (reverse) KL divergence guarantees which
are stronger by Pinsker’s inequality and nontrivial even
when the bound is larger than 1.

Discussion for Lipschitzness Assumption 3. Though As-
sumption 3 seems mild, it is hard to check whether the Lips-
chitz constant of the score function is bounded uniformly by
a constant L = O(poly(d)) throughout the entire process.
In the log-concave setting, the smoothness of V log py im-
plies the smoothness of V log p; (Lee et al., 2021, Lemma
28). However, for non-log-concave distributions such as
multi-modal distributions, this can be difficult to check, and
may depend on the tail behavior of the data distribution. Our
aim in this work is to relax such smoothness assumptions.

2.2. Results for General Distributions with Early
Stopping

We now consider the most general setting: we provide con-
vergence guarantees for any distribution that has a bounded
second-order moment, without introducing any structural as-
sumptions or smoothness conditions. Hence, our results are
applicable to the case that the score function is non-smooth
or even not well defined, like distributions supported on a
low-dimensional manifold.

Due to our weak assumptions, the backward process (2) may
have very bad properties when ¢ is close to 0, so we need to
employ early stopping. For any small constant § > 0, we

show that running the sampling dynamics (6) for time 7" — §
will result in a distribution close to ps; in KL divergence.
Note that in general, it is impossible to obtain KL or TV
closeness to P as this requires matching exactly the support
of P.

We provide the convergence bound for general discretization
and further quantify the bound for several specific choices.

Theorem 2.2. There is a universal constant K such that
the following hold. Suppose that Assumptions 1 and 2 hold
and the step sizes satisfy

&<i

k=1,...,N. 8
O'tQkil_Kdv ) ) ()

2

Define 11 := Zivzl U4h7" ForT > 2,6 < % the expo-
tp—1

nential integrator scheme (6) with early stopping result in a

distribution G _gs such that
KL(ps|ldr-5) < (d+ Ma) exp(=T) + Teg + d*IL. (9)

In particular, for exponentially decreasing step size hy =

1
cmin{ty, 1}, where ¢ < ﬁ (o7, equivalently %
+=), then (8) holds and

IA

o< oz () + 1)

1 242
Choosing T = log (Migd) ,N =0 ((log(‘;)jT)d)
makes this 5 (e%).

In addition, for the Euler-Maruyama scheme (5), the same
bounds hold with an additional term M, Zivzl h3 term in
the right hand side of (9).

Remark 4. Note the upper bound (9) works for any choice
of discretization points. We will quantify the term II for
other choices of discretization in the later paragraph.

Remark 5. By rescaling time, choosing constant variance
function g = 1 and exponentially decreasing step size is
equivalent to choosing exponential g and constant step size.
We state the theorem with constant g for convenience (with
an exponential choice of g, we would only reach the data
distribution P at time ¢t = —o0).

The key difficulty in analyzing general distributions is that
the discretization error is hard to control without the Lip-
schitz condition on Vlogp;. Our approach is to use a
high-probability bound for the Hessian matrix V2 log p;
with a change of measure. This approach works well for
constant-order ¢, while in the low-noise regime the bound
will explode as ¢ tends to 0. We overcome the blow-up of
discretization error by early stopping.
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Discussion on the Choice of Discretization Points.
When ¢ goes to 0, the regularity of V log p; becomes worse
so slowing down the SDE leads to a smaller discretization er-

ror. In the result of Theorem 2.2, the term II = Z k=1 57 h’“

in the upper bound (9) depends on the choice of dlscretlza-
tion points. In particular,

* If we choose uniform discretization hj, = ¢, the depen-
dence on % becomes linear.

* (Song et al., 2020) considers variance function g(t) =
V/t with uniform discreitzation. This is equivalent to
using constant variance function with quadratic dis-
cretization points t;, = (6 + kh)? for appropriate h.
This choice of discretization points induces a linear
step size and our Theorem results in a square-root de-
pendence on 3.

e In Theorem 2.2, by using exponentially decaying (and
then constant) step size, we reduce this error to a log-
arithmic dependence. Indeed, the term II achieves
its minimum (up to a constant) under our choice of
discretization points.

See Appendix B for details. Although under our assump-
tions, the theory suggests that exponentially decreasing step
sizes are optimal, other issues may arise in practice. We
leave an experimental comparison of different g’s or step
sizes to future work.

Wasserstein+KL Guarantee. Notice that when ¢ is small,
ps is only a small perturbation (in Wasserstein distance) of
the data distribution P. Then stopping the algorithm at
appropriate J results in a distribution that is close in KL
divergence to a distribution that is close to P in Wasserstein
distance, and we obtain the following.

Corollary 2.3. Suppose that Assumptions 1 and 2 hold for
data distribution P. Then using the exponential integrator
scheme with exponentially decreasing step size, to reach
a distribution Q such that W3(P, Myps) < €3, < % and
KL(M;ps||Q) < ek, < “22 requires

d? log? (7((‘6“”2) )

KL

N=06
6KL

steps and Assumption 1 to hold with

2
€
2< KL

K log? (d+M2 )
€KL

for an appropriate absolute constant K. Here, M (x) =
exp( )z, My denote the pushforward map on the distribu-
tions, QQ = Mygr—s.

Remark 6. Corollary 2.3 implies an upper bound for the
bounded Lipschitz metric between the data distribution and
Dt, (as mentioned in (Chen et al., 2022)):

sup {E, f —E, f:| f: R* — [~1,1]is I-Lipschitz } .
Note our improved dependencies compared with (Chen
et al., 2022, Corollary 3) and (Lee et al., 2022b, Theorem
2.1).

While the smoothness assumption is relaxed, our analysis
induces an additional d-factor in place of the Lipschitz con-
stant of V log p; compared to Theorem 2.1. This d-factor
comes from the high-probability bound for the Hessian ma-
trix (see Lemma C.7). However, (Chen et al., 2022, Theo-
rem 5) suggests that the lower bound of the discretization
error scales linearly on d. We leave open the problem of
closing the gap between the dimension dependence in the
upper and lower bounds.

Pure Wasserstein Guarantee. We can also obtain a pure
Wasserstein guarantee by following (Lee et al., 2022a, The-
orem 2.2). For this, we need to include an extra truncation
step on the algorithm output, i.e., for some choice of R, re-
placing any sample §7_5 ~ ¢r_s falling outside Br(0) by
0. In addition, we need to assume some concentration for P,
so that samples from P lie in Br(0) with high probability.

Corollary 2.4. Consider the distribution ¢&™° obtained
by exponential integrator scheme with exponentially de-
creasing step size and the truncation step. Suppose that

Assumptions 1 and 2 hold with ¢¢ = O ( R2>’ and that
R > M>5,0,T, N satisfy

2
s=0 (W), Rl = 1) = 0.

oo (#252))

2R (log 2 +T)°
N@(dR (0%15—1- ))

(10)

w

Then the resulting truncated and scaled distribution
Mygirone satisfies Wi (P, Mygii™se) = O(e%,). (Here, M
is as in Corollary 2.3.)

Remark 7. Note that the appropriate R in (10) exists under
mild tail conditions on the data distribution P. For example:

* If there exists a constant 77 > 0 such that Ep ||z|**" =
O(poly(d)), R depends polynomially on _- and d and
thus we obtain a polynomial complexity guarantee.

* When the data distribution P is K sub-exponential, R
has a logarithmic dependence on i and (10) induces
N =0 (£,

w
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2.3. Result for Smooth Data Distributions

We further provide convergence analysis for smooth py with-
out using early stopping. As mentioned in Subsection 2.2,
the early stopping technique is employed to bound the dis-
cretization error in the low-noise regime. We can alterna-
tively bound this error by using the smoothness condition

on py:

Assumption 4. The data distribution admits a density py €
C?(R?) and V log pg is L-Lipschitz.

We bound the discretization error in two different time
regimes: Choosing an appropriate constant 6o > 0, when
t > dp, we use a high-probability Hessian bound and a
change of measure argument similar to the analysis in the
early stopping setting; for t < &g, we alternatively derive
a Lipschitz constant bound for V log p; (stated in Lemma
C.9) based on Assumption 4.

Theorem 2.5. There is a universal constant K such that
the following holds. Under Assumptions 1, 2, and 4, by
using the exponentially decreasing (then constant) step size
hi = cmin{max{ty, +},1}, ¢ = % < 2. the
sampling dynamic (6) results in a distribution §r such that

R P(og L +T)?
KL(pollir) S (M +d) exp(~T)+Teg+ -8 H TV

Choosing T = log (M5£2) and N = © (LLItRsl?)
0 0
makes this O (€3).

In addition, for Euler-Maruyama scheme (5), the same
bounds hold with an additional M, Zszl h3 term.

Comparing to Theorem 2.1, this result only depends on the
Lipschitz constant of V log pg rather than the uniform Lips-
chitz constant bound for Vlog p;, 0 < ¢ < T'. We also ease
the dependency on L from L? to 1og2 L for optimal choice
of variance function or step size, so the requirement on the
smoothness of the data distribution is significantly relaxed:
even if the Lipschitz constant L scales exponentially on d,
we can still obtain a polynomial complexity guarantee. Note
that we do pay an extra d factor compared to Theorem 2.1.

3. Proof sketches

We sketch the proofs of the main theorems using the expo-
nential integrator discretization, and give complete proofs in
Appendices C and D. We first consider the smooth setting,
and then describe the modifications for the non-smooth case.
Our main technical novelty lies in the arguments for the
non-smooth setting, we also streamline the arguments in the
smooth setting and use an interpolation rather than Girsanov
approach that gives KL divergence bounds.

3.1. Smooth setting (Theorem 2.1)

First term. The first source of error arises from the mis-
match between the distribution of the forward process pr
at time 7', and our Gaussian initialization for the reverse
process, §o = 4. We can separate out this term using the
chain rule for KL divergence:

KL(pollgr) < KL(prlldo) + Ep, () KL(pojr (|a)[lGrio(-|a))-

The first term can be bounded using exponential mixing
of the forward (Ornstein-Uhlenbeck) process towards the
standard Gaussian. In conjunction with the fact that after
constant time, the KL-divergence is bounded by O(d+ M),
we obtain (Lemma C.4)

KL(prldo) S (d+ Ma)e ™.

Note this estimate does not depend on the initial distance
KL(po||74) as in (Chen et al., 2022).

The remaining term can be written as a sum, again using
the chain rule for KL divergence, by comparing the contin-
uous process with the estimated, discrete process through
a chain of intermediate processes where we run the contin-
uous process until time ¢;. We can interpolate the discrete
processes to realize them as SDE’s. If Novikov’s conditions
are satisfied, Girsanov’s Theorem then applies to bound the
KL divergence in terms of the squared difference of the drift
terms between the processes.

Eyp () KL(prjo(-|a)l|grio(-la))

N
= By, (@) KL(pt,_, 11, Cla) 7ty j7—1, (]a))
k=1

N t
1 k
< Z §/ Ea,mp, |5(2t,, te) — Vlog pe(@e)|| dt
k=1 Ytk—1
N tr 5
< Z/ Egmp, [5(2t,, tr) — V1og py, (24,)]|
k=1"tk—1

(2)

N
+) E|Vliogpy, (x1,) — Viogpi ()| dt.
k=1

(3)

In the last step we use the triangle inequality. However, in
general Novikov’s condition may not be satisfied; (Chen
et al., 2022) circumvent this using an involved truncation
argument which only results in a TV bound and relies on
the trajectory-smooth condition (Assumption 3). We instead
use a differential inequality argument which gives the same
conclusion (Lemma C.1, C.2, Proposition C.3) and is appli-
cable to the non-smooth setting; this step requires significant
technical work (Appendix F).
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Second term. Term (2) is exactly the score estimation
error, and by Assumption 1, it is bounded by T'e3.

Third term. Term (3) is the discretization error. This
discretization error bound is non-trivial since in classical
numerical analysis theory, the discretization error often de-
pends exponentially on the time 7" due to the use of Gron-
wall’s inequality. Our analysis our will rely on the special
structure of the Ornstein-Uhlenbeck process. We note that
(3) involves both a “time” and “space” discretization error
(as both the time and space arguments are different). We
show in Lemma C.6 that this can be bounded purely in
terms of the space discretization error (which streamlines
the argument of (Chen et al., 2022))

E ||V log ps(xs) — Vg pi(ae) | < (s — 1)

_ 2
E ||V log pi(x)||*+E ||V log pi (1) — Viog py(ag )|~

The explicit form of the OU process tells us that a;,}xs =
x¢+2z, where z is a Gaussian of variance O(s—t). Therefore,
the second term (which dominates) can be bounded as a
Lipschitz constant times the second moment of a Gaussian:

_ 2
E ||V logpi(ze) — Vieg py(agtzs)||” < L*E 2|
SdLA(s—t). (11)

Note that we crucially use the Lipschitzness of the score
in this step. Plugging this bound into the sum (3) gives the
final error term.

3.2. Non-smooth setting (Theorem 2.2)

Comparing Theorem 2.1 (smooth setting) and Theorem 2.2
(non-smooth setting), we note that ghe discretization error
changes from T2]62d to (log(%12,+T) d; the intuition is that
L is “effectively” bounded by v/d. Previously, (Chen et al.,
2022) assume that P is supported on a ball of radius R to de-
rive a global Lipschitzness bound ||V?log p; || = O (%2)

to plug into the smooth theorem.

Our main insight is that (1) because we are averaging the
error over py, it suffices to have a high-probability rather
than uniform bound on the the Hessian, and (2) such bounds
are obtainable from the smoothing properties of the forward
process. In fact, to bound (11), we only need Lipschitzness
in a random direction, and hence a Frobenius norm bound
is sufficient (Lemma C.7):

d

HHV2 logpt(x)HFle N m 1

(This is the weaker analogue of an operator norm bound
of O(v/d), which was suggested from the L = O(+/d)
analogy.) This incurs significant savings over a uniform

bound, and in particular does not depend on boundedness or
tails of P. We prove this by giving a Bayesian interpretation
of the Hessian as the posterior variance of the noise in
the score matching objective. As a purely mathematical
statement about smoothing of the OU process, this result
may be of independent interest.

Finally, to use (12) in (11), we actually need to bound the
Hessian not just at ; but along the path (in direction 2) join-
ing x; and a;}xs: for this we need a change-of-measure
argument (Lemma C.8) which says that the distributions
of (z¢,2) and (z; + az, z) are close in x2-divergence, for
0 < a < 1. Finally, although the bound (12) blows up
as ¢ — 0, by choosing an exponentially decreasing step
size and stopping at time &, we only incur a log (%) depen-
dence, similarly to the analysis of the score estimation error
(Remark 1).

3.3. Smooth py (Theorem 2.5)

If we only assume Vlogpg is L-Lipschitz, we can still
derive Lipschitzness of Vlogpg for small time ¢t < %
(Lemma C.9). For large ¢ > L, the argument in the
non-smooth case applies (and gives a bound of O(dL)
in (12)). Thus, we take exponentially decreasing step size
until ¢ = 1/L, and then constant step size, and combine the

analyses of Theorems 2.1 and 2.2 to obtain Theorem 2.5.

4. Conclusion

In this paper, we analyzed the theoretical properties of SGM
in various regimes. We extended existing result to the most
general setting and provided refined guarantees. The current
analysis provides guarantees for SGM in the framework that
an L2-accurate score estimator is available. This implies the
training objective in denoising score matching is suitable
for learning a generative model and partially explains why
SGM is empirically successful at modeling very complex
distributions, like multi-mode distributions or distributions
with weak smoothness condition.

We obtain guarantees for arbitrary data distributions without
smoothness assumptions, by exploiting (high-probability)
smoothing properties of the forward process. Besides
closing the factor-d gap between our upper bound and
the (suggested) lower bound, it would be interesting to
carry out this kind of analysis for other choices of the
forward/backward processes, such as critically damped
Langevin Diffusion (Dockhorn et al., 2021), to see if im-
proved guarantees are available. ((Chen et al., 2022) show
that no improvement is available only in the setting of a
uniform bound on the Lipschitz constant of the score.)

Another future direction is to explore theories beyond the
framework that an L2-accurate score estimator is available
and understand the learning of a score estimator, includ-
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ing the approximability, sample complexity, and the train-
ing dynamics of denoising score matching. This is related
to the most challenging problems in deep learning theory;
advances in deep learning theory may provide some new
insight into SGM.
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A. Denoising Score Matching
For 0 <t < T, the goal of score matching for p; is to minimize

minE,, ||so(t, ) — Vlog py ()|

Since the score function V log p; is not available, we alternatively consider a denoising score matching objective (Vincent,
2011), which is derived from integrating by parts

Ep, [lso(x,t) — Vlogpi(x)|®

=E,, lIso(x, 1)|1> + Ey, [[V1og pi||* = 2Ep, (so(, 1), V1og pi())
=E,, [Iso(x, 1) + Ey, [V1ogpi(z)||* + 2Ep, V - sg(x, 1)
= Elﬂt ||Sg(.%‘,t)”2 + Ept ||Vlogpt(x)H2 + QEPO(IO) EPMU(IHCEO) v ' SQ(It, t)
=By, [[so(z, )| + Ep, [[V1og pi(2)]1> = 2By w0) Epy g (a2 20) (V 108 Prjo (2] 20), 50 (21, 1))
Tt — Qo
=E,, Iso(z, )] + Ep, [[V1og pi (2)[|” = 2Epy (x) Epe o (@ lzo) <027 89($t7t)>
t
Ty — QX 2 9 d
=E|so(zi,t) - —5—|| +Ep [[Viogp(2)[|” — =
O O
2
= E |[sg(s,t) — xtig‘txo +C,
0%

where py|o is the conditional distribution of z; given x¢, and C'is a constant independent of 6.

Noticing that E ””;70%””0 = Ui?, it is natural to expect the error to scale as
2
By, IV 1ogpi, (2) = s(a, )P S
k
In this case, by noting that o7, < min{1,#}, we have
2 e
Ep, [V logpe, (1) =5 (0, 0) | § s
then (7) is satisfied with a log factor:
1 & S N 1
7 2 [V hogpin o) s ot S 7 [ g s ()

B. Discussion on Choices of Discretization Points

2

i
o

tk

In this section, we consider the scaling of the term II = Zszl in (9) under different choices of discretization points.

-1

T—90

The Constant Step Size For uniform discretization(inducing constant step size) ty = 6 + kh, h = >

Noop2 h2
Zggk thQ’“ + > hi

k=1 th—1 <1 k=1 gp>1

1 2

1 T

“h| Zdt+—
/5752 TN

_ T/ +T?
==~

, we have

Thus the upper bound for discretization error has a linear dependence on %.

11
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The Linear Step Size For quadratic discretization points(inducing linear step size) tx = (6 + kh)2, h = \/TV";, by noting

that %‘ = /t1, we have

Nop2 h2
Sy Ly

k=1 th—1  4<1 k=1 4 >1

h
o<1 Uk tp>1

11 T
xh/ —dt+h/ Vidt
s tk 1

\/1 T 2
“N<\[s”>'

Optimality of Exponential Decaying Step Size Now we will show that the discretization points used in Theorem 2.2
minimizes the term II (up to a constant). Indeed, note that

(ty — tp—1)?

O<10 + 1, T =Y -
k

tp<1

s HQ = Z(tk —tk,1)2.

tp>1

For the term ITy, let z; = log 3%~ > 0, we have IT = "' (¢** — 1)®. Note that z ~ (e* — 1)* is convex for z > 0.
By Jensen’s inequality, when the summation of z;’s are fixed, the minimum of II; is reached when z;’s are identical.
Equivalently, hy = cty for ¢, < 1. For the term II5, we have Il = Ztk>1 hi Similarly, since A +—> h? is convex for h > 0,
the minimum of Il is reached when h;’s are identical.

C. Main Proof Ingredients

The key idea of the proof is motivated by the Girsanov change of measure framework used in (Chen et al., 2022). However,
in order to avoid the technical challenge of altering the process to satisfy Novikov’s condition, we use a differential
inequality-based argument instead.

Lemma C.1. Consider the following two Ito processes

dXt:Fl(Xt7t)dt+g(t)dwt7 X0:a>
dY; = Fr (Y, t)dt + g(t) dwy, Yy = a,

where I, Iy, g are continuous functions and may depend on a. We assume the uniqueness and regularity condition:

e The two SDEs have unique solutions.

o X;,Y; admit densities p;, q; € C*(R?) fort > 0.
Define the relative Fisher information between p; and q; by

pi(x) ?

(@) dz.

J(pellgr) = /pt(x)

‘Vlog

Then for any t > 0, the evolution of KL(p¢||q:) is given by

ALl = =50l + | (00— P60, Vo 25 .

Remark 8. While we have written the same Brownian motion for X and Y, as we only care about distributions, the Brownian
motions can be chosen independent with each other.

12
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We will apply Lemma C.1 on (Z¢)o<t<7—s and (§;)o<i<7—s to show the convergence in KL divergence. The following
lemma collects some technical properties of the two processes. The proof of both lemmas is deferred to Appendix F.

Lemma C.2. For 0 < k < N — 1, consider the reverse SDE starting from jt% =a
- 1. . -
dz, = ixt+V10gpt(:Et) dt+dw, Ty =a (13)
and its discrete approximation:
N 1 ~ 12 ~
dg, = iyt—i-s(a,T—tk) dit+dw, gy =a (14)
fortime t € (t},t; ] Let Di|t; be the density of T, given Ty;,_and {yy; be density of §, given §y, . Then we have

1. For any a € RY, the two processes satisfy the uniqueness and regularity condition stated in Lemma C.1, that is, (13)
and (14) have unique solution andﬁt‘t;(-m), dre, (‘la) € C*(RY) for t > t,.

2. Fora.e. a € R? (with respect to the Lebesgue measure), we have

lim KL(pg (- Geper (- =0.
i (Peyey (la)llGeye (+la))
In addition, the above results also hold if we replace 1; with that corresponding to the Euler-Maruyama scheme:

N 1 0
A = [ polT ~ 1Pt T~ 1PsolaT = )| At + due iy = .

Proposition C.3. Under Assumption 1, we have

e The exponential integrator scheme (6) satisfies

th—1

N th
KL(psldr—s) S KL(pr|lva) + Teg + Z/ E ||V log pe(:) — Vog py, (x4, )[|* d t.
k=1

* The Euler-Maruyama scheme (5) satisfies

KL(ps|ldr—s) S KL(pr||va) + T€g

N th
+ Z/ (E||V log pe(ze) — Vlogpr, (2012 +E e — w4, |2) d .
k=1

tp—1

Proof. Let us consider first the exponential integrator. For ¢} < ¢ <t} 41» let ﬁt\% be the distribution of z; given 5:% and
(jtm be the distribution of g; given Yy, - From Lemma C.2(1) the uniqueness and regularity condition in Lemma C.1 hold for
(13) and (14). Thus for any a € R% and t > t}, we have

2
d ) X 1 D¢ (yla)
7KL A 7\ :_7E~ vl e
ap L Ul (1a) = =3 Ba  wiay | VIos 20 s
~ D¢, (yla)
+ B, lay |{ (V10gPi(y) — s(a,tn—k)), Viog ————
pt\tk(yl ) [<( S t(y) ( N k)) th\t;(ma)
1 ~
< 5 Byl (0t ) = Vlog i (w)I1, (1

where we use the fact that (v, w) < 1[|v||> + 3||w||?. By Lemma C.2(2), for a.e. a € R? we have

Jim, KL (G, (1) (1) = 0.
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and hence

N 1 % N
KL (g, o, Clo)lde (1) < 5 / Bp,,, wloy I5(a: t &) = Vlog fu(y) > .

k

Since py; is absolutely continuous w.r.t. the Lebesgue measure, integrating on the both sides w.r.t. py; yields

1 t;c+l B o
Ep,, (@) KL(Bey 1, Cla)lldy, 121, (o)) < 5 /t E||s(Zy,tn-x) — Viogp ()| dt.
k

For 0 < k < N — 1, we use the chain rule of KL divergence to obtain

KL(py,, Ny, ,) < Ep,, (@) KL(Pey, 11, Cla)ll ey, 1o, (-la)) + KL(Dy [|Ge )
~ ~ 1 tﬁ” / ~ (~ 2
<KLGiglig) +5 [ Bl T - 1) - Viog (@) [P
th
Summing over k = 0,1,..., N — 1 and using p; = pp_;, we obtain
/ ~ (~ 2
KL(ps|ldr—s) < KL(prllva) + Z / Els(Zy, T —t},) — Viog pe(Z,)[|” d t

< KL(pr|va) + Z/ (s tr) — Viogpy ()2 d t
tr—1

tk
< KL(pr||va) +Z/ s(ze,, tr) — Viogpy, (x4,)[|* dt

tk1

+Z/ |V log pt, (w1,) — Vlog pi(z4)||* d t
lk—1

tr
< KL(pr|jya) + Ted + Z/ |V log ps, (s,) — V log pe(2¢)||* d t.

te—1

This completes the proof for the exponential integrator scheme. The proof for the Euler-Maruyama scheme is similar; the
only difference is the differential inequality becomes

2

d

~ 1 . - 1, -
<7 Ery, KLt ([2) ey (12)) < S E HVlogpt(xt) = 8(@y tn-k) + 5 (T — Ty

and we can obtain the result in an analogous way. O

The three terms in the upper bound of Proposition C.3 match the claim in Theorem 2.1. The first term is controlled by the
exponential convergence of the forward process, which is given in the following lemma.

Lemma C.4. Under Assumption 2, for T > 1, we have
KL(prllva) < (d+ Mz)e™

Proof. Notice that z — x log x is a convex function for z > 0. Let py|g be the conditional density of z; given . For any
t > 0, we can use Jensen’s inequality to bound the entropy of p;:

/Rd pi(x)logp(x)da = /Rd [(/Rd pt|0(:cy)dP(y)) log (/Rd ptlo(x|y)dP(y)>:| dx

< [ peotelintogpiately are)) az
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= [ ([ patels) ogpup(elyy az ) ap).

Since 24|z = y ~ N(auxo,0214), we have

d d
[ peolaly) g puoaly) dx = -5 log(2no?) - 5
Rd
Thus
d o d
pi(x)logpe(x)dz < —=log(2mo;) — —.
e 2 2

Therefore,

[Ells
2

KLpha) = [ (o) togma) da -+ 8y, | 55+ S tog(am)|

From the exponential convergence of Langevin dynamics with strongly log-concave stationary distribution (see, e.g.,
(Vempala & Wibisono, 2019)), we obtain

d. ., 1
KL(pr|lva) <e Tt (2 logo; * + 5 (M — d)) .

etlog( > <1

KL(pr|va) S e 7'(d + Mo). O

By choosing ¢t = log 2, we have

SN

Thus

The second term in the upper bound of Proposition C.3 is exactly the same as the score estimation error defined in Assumption
1. So the key challenge is to bound the third term, which is caused by the discretization error.

According to Proposition C.3, the discretization error of the Euler-Maruyama scheme induces an extra linear term E ||x; —
x4, || compared to the exponential integrator scheme. The following lemma bounds this extra term.

Lemma C.5. Suppose that hy, < 1for1 < k < N. We have
Ellz: — o, || S d(ts — t) + Ma(te — t)?,  ty1 <t <ty,

and

N tr N N
Z/ Bz — 0, P dt Sd Y hi+ My » By
k=1 k=1 k=1

th—1

Proof. From the definition of the forward process (1), we have

] t), 2
/ ixudu—/ dw,
t ¢
tk 2 tk
/ T, du / dw,
t t

tr
< (tp — 1) </ E||zu||2du> +d(tg — t), (16)
t

E|lz: — z¢, ||* = E

2
SE

~

"
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where the last inequality follows from the Cauchy-Schwartz inequality. From the explicit form of the conditional density
Ty|lrg ~ N (eféuxo, (1 — 67“) Id> ,
the second moment of z,, is bounded by E ||x,,||> < My + d. Pluging this into (16), we arrive at

E ||z — 24, || < d(ty —t) + (d + Mo)(ty —t)2.

Therefore,
23
/ E|ler — 20, |2 < dh2 + (d + Ma)h.
tk—1
Taking summation over k = 1,..., N, we complete the proof. O

Therefore, we only need to focus on the term E ||V log p:(z:) — V log py, (x+, )||*. This discretization is taken both in space

and time. One observation is that the time-discretization error can be absorbed by the space-discretization error.

Lemma C.6. Forany 0 <t < s < T, the forward process (1) satisfies
_ 122
E [|[Viogpi(ze) — Viogps(z,)l|* < 4E | Viegpi(ze) — Vlogpe(ag as)|* + 2|V iogpe(x:)|* (1 - az;)"
Proof. Since x|z ~ N (at,sxt, (1-— af)s)ld), from Lemma E.1, we can rewrite V log p, as

\Y% logps (x) = a;sl ]Ept‘s(yh) vy logpt(y)7
where py|, is the conditional density of x; given x5. Thus the time discretization error can be bounded by

2
E||Viogpi(ai sos) — Viogps(xs)|* = By,

at_,sl E’pﬂs(mzs) vlogpt(y) - Vlogpt(a;slxs)
<E ||o¢[)81V10gpt(xt) — Vlogpt(atfslxs)HQ

< 2(1 - a; 1) E ||V logpe(w:)|* + 2E ||V log pe(xe) — Viog pi(az zs)|*.

Therefore, splitting the error into the space-discretization and the time-discretization error,

E ||V log pi(z) — Viog ps(oy ixs)|?

< 2E|Viogpi(z:) — Vlogpt(a;;xs)||2 +2E ||V10gpt(oz;51xs) — Vlogps(zs)|?
< 2(1 - a;,)*E|[Viogpi(ae) | + 4E | Viog pi(z:) — Vlogpe(ag z,)||*.

We complete the proof. O

In Lemma C.6, (1 — a; )% = O((s — t)?) and the term E ||V log p; ()| can be bounded by Lemma E.2, so the space-
discretization error dominates the right hand side. In what follows, we tackle the space-discretization term E ||V log p¢ () —

Vlog pi (e L24)]]? in various regimes. In particular:

* If the score functions of the forward process is smooth, i.e., Assumption 3 holds, the space-discretization error can be
directly bounded using the Lipschitz condition on V log p;.

* In the general setting, we choose a early stopping time ¢y and bound the space-discretization error for ¢ > ¢y by a
high-probability bound on the Hessian matrix V2 log p; and a change of measure argument, which are worked out in
section C.1.

* For smooth pg, we further bound the space-discretization error for small ¢ by providing a Lipschitz constant bound for
V log p; when t is sufficient small, which is given in section C.2.
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C.1. The High-probability Hessian Bound and Change of Measure

In this subsection, we establish the high-probability bound for the Hessian matrix V2 log p; and use the high-probability
bound to control the space-discretization error. This is the critical part of our analysis that allows us to prove Theorem 2.2.
Lemma C.7. Let P be a probability measure on R?. Consider the density its Gaussian perturbation p,(r) o
fRd exp ( llz—yl ) d P(y). Then for x ~ p,, we have the sub-exponential norm bound

202
2 < d
IV=log po (@)l Fvs S 5
where || - ||pp, = ||| - || 7|y, denote the sub-exponential norm of the Frobenius norm of a random matrix.

Proof. Define the conditional density P, (y|x) as d P, (y|x) o exp ( M) d P(y). Using Lemma E.3, V2 log p,, can
be written as

I;

2 _ B Y
V=log po(x) = Varp . (;) a=E

For any positive integer p, using the fact that == is distributed as (0, 1) and the power mean inequality,

TP
Y|P 1 y—x Yy—x
Ep, (2) ‘Varﬁa(y\m) (;) HF < o2 Epo @) || B2, yl) (U ) ( . > .
< ﬁEzNN(O71d) HZZTH%
pd
Using the arbitrariness of p, we know that
Y d
[Vare, i (52)] 1, S 55
Thus by the triangle inequality,
d
V2 10g po ()| Fyps S pex
We complete the proof. O

Lemma C.8. There is a universal constant K > 0 so that the following holds. For 0 <t < s < T, 2 < %d, we have
t

||2 dQ(S_t)

1
Oy

E [|Vlog pt(z¢) — Vlog ps(ay Yzy)
Proof. We bound the difference between the value of V log p; at different points with the Hessian:
1
Viogpi(zy) — Vlogpt(agslxs) = / \V& log pi(z + a(a;slxs — :vt))(agslxs —x)da.
0
Thus
! 2
E [V 1ogpi(x:) — Viogpi(a; sa,)[|* < / E||V2logpi(z: + azis)2es|| da, (17)
0

where z; s is defined by z; ; = agslxs — 2y ~ N (0, (e~t — 1)I,) and is independent of ;. For random vectors X, Y, we
use Py y to denote the joint probability measure of (X, Y") and Px/y to denote the conditional probability measure of X

17
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given Y. Then for 0 < a < 1, we use change of measure to bound E HV2 log pi(zt + azi,s) 25 HQ:

2 det+aZt,37Zt,s (w4, Zt78>:|
dPﬂit,Zt,s(xt’Zt,S)

E V2 log pe(a + aze.s)zes|* = E {Hw log pe() 24,
(18)

o\ 1/2
dth+aZt,57zt,,s (xtvzt,S)) )

< (EHVQIOgPt(xt)Zt’SHZLE( dP, (@, 2¢,5)
Tt,2t,s » LS

Let My = V2log py(x¢)(V21og pe(24)) ", Zt,s = 21,52/ 5. For A, B € R**“, define the tensor product A ® B € (R*)®*
as (A® B)il,iz,ia,u = A i, Bigi,. Since M, and Z; , are independent, the first factor in (18) can be written as

E ||v2 1ngt(xt)2t7s||4 =E |:TI' (MtTZt,S)Q:|

= E<Mt %9 Mt7 Zt,s & Zt,s>
= <]EMt ® Mt7EZt,s ® Zt-,5>'

Notice that

3(68775 — 1)2, le = i2 = Zd = i4,
E(Zt,s ® Zt,s)iyinizia = § (€577 = 1)%, i1 # 42, (i1,42) = (i3,44) Or (i1,12) = (44, 143),
0, else.
So we can bound the inner product by
<]E M, @ My, EZLS ® Zt,3> 5 (es—t - 1)2 Z + Z E(Mt ® Mt)il,iz,imu

(i1,92)=(i3,44)  (i1,92)=(i4,i3)

5 (657t — 1)2 Z ]E(Mt oy Mt)i1,i27i37i4
(i1,i2)=(i3,i4)
S (e = 1)2E || M7
S (e = 1)’ E |V log pe(a1) | 7
d 4
S (et -1)? <2> :
Ot

where the last inequality comes from Lemma C.7. Next, we bound the second term in (18). By the data processing inequality,

2
E (sztJraZt,s,Zt,s(xta Zt,8)>2 N (dprt+a2t,szt,s(mtlzt,8)>
APy, .z, (21, 22,5) d Py, s, (2t|2t,5)

2
<E <debt+GZt,szf,s,ro($t|zt,87 370))
N dP$t|Zt‘sﬂfo (‘xt|zt757x0)

2
—-F (d Pact—&-aztys\zt’s,mg (xtlzt,sa xO))
det\Io (xt|$0)

Notice that z; + a2y s|(2t.6, 20) ~ N (o *wo+azs s, 02 14) and z¢|zg ~ N (o *xo, 021,). We can compute the chi-squared
divergence explicitly:

2
E <szt+azt,sZt,.eymo(xtlztgs’xo)) — Eexp <a2||zt75||2>

d Py, |z (z¢|0) o?

Finally, the condition 35t < ﬁ implies =t — 1 < s — t and ¢ =1 < L Thus for large enough K (actually, K = 1is

Tt o’f ~ Kd-*
enough),
2 LII12 2(ps—t _ 1 —d/2
Eexp (a 21, ) = (1—2a Gy )> <1
0% O

18
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Combining the bound for the first and the second terms of (18), we conclude that

d*(s—t
E V2 logpi(a: + aze )70l £ 00 19)
t

Plugging (19) into (17), we complete the proof. O

C.2. Stability of the Lipschitz Constant

In this subsection, we show that if p, satisfies the smoothness condition, p, is also smooth for sufficiently small ¢. In
particular, under Assumption 4, we can choose ty < % and an absolute constant C' such that for any 0 < ¢ < tg, the
Lipschitz constant of V log p; is bounded by C'L.

Qt

Lemma C.9. Suppose that Assumption 4 holds. If 07 < 51, we have Vlogpy is 2Lay L_Lipschitz on R%.

Proof. Define a density g(x) o po(a; 'z). Then V log ¢ is a; ' L-Lipschitz. Notice that p; is the Gaussian perturbation of
q. Using Lemma E.3, we write the second-order score function of p; as

VZlogpi(x) = Eg, (ya) V2 log q(y) + Varg, (ya)(V1ogq(y)),

Qg

&, the conditional density

2
where G, (y|x) is the conditional density given by G,, (y|*) < q(y) exp (”xz%”) When o7 <
t
satisfies log Gy, (y|z) = — ya_tf +logqis Lay; !_strongly concave, thus it satisfies the Poincaré inequality with a constant

a;L~1. From Lemma C.10, we obtain
Varg, (y2)(V1ogq(y)) < arL ™' B,y (V2 1og a(y))(V? logq(y)) " < Lay ' Ia.
Therefore, we have
Eq,, (vl) V7108 4(y) + Varg, 1a)(Vioga(y)) < 2La; ' a.
Meanwhile,
Eq., (yla) V2108 4(y) + Varg,, y1) (V1og a(y)) = —Lag I
we complete the proof. O

Lemma C.10. Let P be a probability distribution on R? that satisfies a Poincaré inequality with constant Cp. For any
function f € C?(supp(P)), we have

Varp(Vf) < CpEp(V2f)(V2f)T.

Proof. For any vector a € RY, we have
a"Varp(Vf)a < Varp(a' V)
S OP Ep HV(CLTVJC)H2
— CpEp ||(V2f)al®
= Cpa' Ep(V*f)(V?f) a.

We complete the proof. O

D. Proofs for the Main Theorems

Now we follow the discussion in Section C and combine everything together to complete the proof of our main theorems
stated in Section 2.
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D.1. Proof of Theorem 2.1
Lemma D.1. Forty_1 <t < ty, suppose that V 1log p, is L-Lipschitz for t,_1 <t <tx. If L > 1, hi < 1, we have
E ||V log p:(2z:) — V1og py, (.’Etk)HZ < dL2(tk —1)

Proof. The space-discretization error is easily bounded by the Lipschitz condition:
E ||V 1og pi(z:) — Viog pi (e g, ) I” < dLPE ||z — ag 2, |?
— AL (et — 1) (20)
S AL (ty — 1),
where the last inequality is because of ¢, — ¢ < 1. Combining Lemma C.6, Lemma E.2, and (20), we have

E |V logpi(z:) — Viogpr, (x1,) |2

SE|[[Viogpi(ze) — Viogpi(az s, ze,) I + E[|Viog pi(ze) 2 (1 — a; 4, )?
S dL2(ty —t) + dL(ty — t)?

S dLA(ty —t).

We complete the proof. O

Proof of Theorem 2.1. As shown in Section C, the extra terms arising in the discretization error of Euler-Maruyama
scheme can be bounded by Lemma C.5, so we only need to consider the exponential integrator scheme. By Proposition C.3,
we can bound the KL divergence between pg and ¢r by

tr

N
KL(polldr) < KL(prlva) + Teg + ) E ||V logp:(x:) — V1og py, (24, )||> d . (21)
k=1

tp—1

The first term in (21) is bounded by Lemma C.4. Then, we apply Lemma D.1 to bound the discretization error:

N te
Z/ E ||V logpi(x:) — Vg py, (21, )[|* dt
k=1

te—1
N th
< ZdLQ/ (tp —t)dt
k=1 th—1
N
SdL?y O hg
k=1
For uniform discretization, the above quantity is #. We complete the proof. O

D.2. Proof of Theorem 2.2

Lemma D.2. There is a constant K such that the following holds. In the early stopping setting, suppose that the variance
function g satisfies —— < ﬁ for any integer 1 < k < N. Then we have
1

P)
Tth_

N tr N hQ
Z IEHVlogpt(xt)—Vlogp,gk(a:tk)sztA<Jal22:47]c
k=1

lk—1 k=1 trk—1

Proof. By Lemma C.6 and Lemma E.2, we have

E ||V log pi(z) — Viog py, (w4,
SE|Viogpi(ze) — Viogpe(agy, e,)|I> + E[[Viog pe(ze)|*(1 — apy, )?
d(1 - oz,;‘/lk)2

SE|Viogpe(x) — Viog pi(oyf we,)|I> + p
t

(22)
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From Lemma C.8 we have

-1 2 d2<tk —t)
E ||V ilogp:(x:) — Vlogpt(at’thtk)ﬂ S —F (23)

Oy

1—at
Noticing that ozh’* < % implies % < %t and combining this with (22) and (23), we conclude that

tep—1

d?(ty —t
E |V log () — Vlogp, (s, )| £ S50,
¢
Therefore,
Z/t E [V log pi(:) — Vogp, (w4, )]|* d ¢
k—1
N )
k
Sy [Ny,
k=1"1tk—1 t
N )
< kidt
S r
k=1"tk-1 k-1
N 2
T
=1 Ttr
We complete the proof. O

LemmaD3. If K >2 ¢ < 5, to =0, ty =T, and hy, ==ty — tj_1 = cmin{ty, 1}, then:—gl%fork—l N

and N
h2 1
:Z 4k §c<log+T).
— o 1)

k—1

Proof. Note that af = max{1,t}. We consider the sum with ¢, < 1 and t; > 1 separately. For ¢, < 1, we have

(,%fl = tfffl < % (when K > 2, s0 —tktﬁl < 2). Noting that the number of terms in the sum is < log; _.(9),

h? 2t2 log(1/6
Z — o= Z —CQ k= c?log, .(6) = 6270‘%( /) = clog(1/9). (24)
kit <1l mm{tk 1 } kit <1l tr—1 ¢
Fortk>1,ﬁzcg% and
T
_ — T. 25
Z mln{tk 1 Z ¢ c © 25
kitpg>1 kitpg>1
Combining (24) and (25) gives the result. Note the number of steps is
T 1
N <log,_.(0) + = E(log5 + 7).
O

Proof of Theorem 2.2. As shown in Section C, the extra terms arising in the discretization error of the Euler-Maruyama
scheme can be bounded by Lemma C.5, so we only need to consider the exponential integrator scheme. From Proposition
C.3 we obtain

KL(pto l|Gr—10) < KL(prllva) +Z IE||V10<‘§pt(fft) Viogpe, (xe,)||I* dt + Tej. (26)

th—1

By bounding the first term in (26) with Lemma C 4 and the second term in (26) with Lemma D.2, we obtain (9). Further
more, we can further quantify the term II = E k=13

for exponentially decaying (and then constant) step size with
Lemma D.3. 0
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D.3. Proof of Corollary 2.3 and 2.4
Proof of Corollary 2.3. We use the exponentially decreasing step size in Theorem 2.2. We note that W5 (P Myps) <

V/doi = V/db, so choose § < 2. Choose T' = log (dﬂ\fz) Also choose ¢ =< = (lef(?g(l_)) > Py (EZKMM) I
[ S
o8 KL \2N
e < 671%, this ensures that all terms are < €% . Choosing appropriate implied constants completes the proof. O

Lemma D.4. Let yi be the standard Gaussian measure on N (0, I5). Then

M(SX);;A 2|2 p(dz) < € <2d+ 31ln <1> + 3) =0 <e (d+ In C))) :

Proof. By the x? tail bound in (Laurent & Massart, 2000), for ¢ > 0

p (X2 >2d+3t) <P (||X||2 > d+2¢£+2t) <et,

so || X||? is stochastically dominated by a random variable with cdf F(y) =1 —e
corresponding to F,

sup / JolFu(da) < sup /A yPy (dy) = / ydF(y)
€ 2

w(A)<e Py (A)< d+31In(3)

e<2d+31n<1>>+/ 6y32ddye(2d+31n<1)>+36
€ 2d+31n( 1) €

Proof of Corollary 2.4. Let p§™° be the law of 2§ := x51(,,c(0)} and define ¢4} similarly. Note that

W (P Mﬁ AtrunC) < W2(P Mﬁpé) + W2(Mﬁp57MﬁqtrunC)

) @7)
< VdS + Wa(ps, G5%°).

To bound the second term in (27), we consider a coupling xs ~ ps and ytrunc (j}“‘“c such that z5 # gy Ammc with
probability etvy, where

erv = TV(ps, 4r"5) < TV (5™, 475) + TV (ps, p5™™) (28)
< TV(ps, Gr—s) + TV(ps, p5"°) (29)
< VKL(ps|lgr—s) + P (||lzs]| = R) (30)
= O(eo) + P (|las] > R). 31)

We used the triangle inequality, data processing inequality, and Pinsker’s inequality in (28), (29), and (30), respectively.
Express 5 = aszo + 05, where zg ~ P, & ~ N(0,1;). Now

E ||z — g < e 2 (B [[laszo — 925" 1] + o3E [€]214] )

1
<2 ((2M2 + 2R2)6TV + U§€TV -0 <d+ log <>>> s
€TV

where the second inequality comes from Lemma D.4. Combining (27), (31), (32) and the choice of parameters in (10), we
complete the proof. O

(32)
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D.4. Proof of Theorem 2.5

Proof of Theorem 2.5. As shown in Section C, the extra terms arising in the discretization error of the Euler-Maruyama
scheme can be bounded by Lemma C.5, so we only need to consider the exponential integrator scheme. Using Proposition
C.3, we obtain

N th
KL(pollir) S KL(prlva) + 3 / E |V log pi(,) — V log pu, (a1, |21t + Tél. (33)
k=1"tk-1

In the right hand side of (33), the first term is directly bounded by Lemma C.4. Thus we only have to consider the second
term, which is the discretization error. Let kg be the largest index such that 5, < % By Lemma D.2 and Lemma D.3,

N tr N hQ
Z E ||V logpi(z:) — Viogpy, (w4,)]* dt < d? Z = S dPc(log L+ T).
k=ko+1 " th—1 k=Fko+1 thk—1

The number of steps for this partis N — kg < %(logL + T). Note ko < % so by Lemma D.1 and Lemma C.9,

ko th ko 1 /c\2
S [ EIVogn(e) - Viogpa(en)|? S 4Ly S (7)) =ed
k=1"tk—1 k=1

Thus the total discretization error is bounded by

N th
S [ EIVogn(e) - Viogpa (e[ dt S dellog L+ T)
k=1"tk-1

and the total number of steps is N < %(1og L+ T). Given the number of steps N, we can choose ¢ = log#; plugging
this in gives the bound. We complete the proof.

E. Lemmas for Computing Score Functions

In this section, we provide some lemmas for the score function, which will be used in our analysis. O

Lemma E.1. Let P be a probability measure on R®. Consider the Gaussian perturbation of P that admits a density

Pu,o () o [rqexp (—%) d P(y). Let P, ,(y|x) be the conditional probability measure satisfying d P, ,(y|x) o

exp (— L5415 ) a P(y).
1. If P admits a density p € C*(R?), we have
1
Vlogpp,q(z) = ;Ep,l,,”(y|x) V, logp(y).

2. We have
ny — CC)

Vliogpy,qo(v) = Eﬁ“,a@\x)( o2

Proof. The first expression is obtained by
Jra P(y)Va [eXp (—%)} dy
Viogpy.o(@) = [ERPE
Jra p(y) exp (— %) dy

_ _fde(y)Vy [exp (*%)} dy

1t fpa P(y) €xp (—%) dy
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f]Rd V,p(y) exp <_%> dy

Qs fRd p(y) exp ( M) dy

1
= ﬁ Eﬁu,a(ylw) Vy log p(y).

For the second expression,

Jua Vi |exp (—L25405) | a P(y)
Jyaexp (—L25212 ) a P(y)
= exp( oyl )dp( )
Jia €D (f%) dP(y)

_om py —x
7EPu,a(y\w)( o2 ) O

Viogpyq(x) =

Lemma E.2. Let p € C'(R?) be a probability density.

1. (Chewi et al., 2022) If V log p is L-Lipchitz, we have

E, |V log p(x)|? < dL.

2. If there exists a probability measure Q and o > 0 such that p(x) o« [ga exp( ”w y” )dQ( ). then
E, [ Vlegp(z)|]* < 5.

o2

Proof. 1. Using integration by parts, we have
E, [Viogsl = [ p(o)|Vlogp(o)]d
R

- / (Vp(z), Vlogp(x)) d

2. Using Lemma E.1, we rewrite the score function as

o y—=z
Vlogp(x)—Ewylm)( P )

where Q. is the conditional density d Qg(y|x) o< exp ( HT%%” ) d Q(y). Then the second moment of the score

function is bounded by

E, |V 1og p(@)]* = By ~

2
y — X
‘Eéza(mm) (7) H < Epo) Eq, y1a)

O

Lemma E.3. Let P be a probability measure on R%. Consider the density of its Gaussian perturbation p,(r)
Jga €xp (—M) d P(y). Define a conditional probability measure P, (y|z) as d P,(y|z) o< exp (%) d P(y).

202
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1. If P admits a density p € C?(R?), we have

V2log py(x) = Et (y2) V2logp(y) + Varp (1. (Viogp(y)).
2. We have
14

)
VZlogp, (z) = Varg 10 (;) — 3

Proof. We rewrite the second-order score function as

Vpy(x)

pﬂ(z) o V1ngo'(x)(v logpo_(gj))—r.

V?log p, (z) =
To prove the first expression, we write

Vng(a:) [ p(y) V2 exp (M> dy

po(e) [ p(y)exp () ay
[ p(y)VZexp (%) dy

 [plyexp (M) dy
Jexp (“L#5) V2p(y) dy

B Jpy) eXp( = y”z) dy

k. Vop(y)
Folwlo) = p(y)

It follows from Lemma E.1 that

Vlogps(z) = Ep )0y Vy log p(y)-
Combining the two terms, we arrive at

CQp(y) T
Y -
o Ep (y1z) Vylogp(y) (E (o) V v logp(y ))

=Ep (y2) V,?; log p(y) + Varp (1.1 (V1ogp(y)).

V2 1ogps (7) = Ep, ()

To prove the second expression, we note that
Vpox)  JViexn (—lEE) dp@y)
po () fexp( llz— sz) 4P(y)
—y|I? z—y)(z—y) "
fexp (_ Ha:201é|\ ) (( y)§4 y) %) d P(y)
Jexo (=142 ) a P(y)

—E. @E—ye-—y' L

— TP (ylz) )

ot o2

It follows from Lemma E.1 that

y—x
Viegps () =Ep () (7)

Combining the two terms, we have

.
5 - (z—y)z—y)" I y—ax y—x
Vilogps(z) =Ep (40 (4 — ) ~Ep 2 Ep, (i)

o o2 o2

y Iq
= Varg, (i) (ﬁ) T2
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F. Technical details for Proposition C.3

Proof of Lemma C.1. By the Fokker-Plank equation, the evolution of p, and ¢, is given by

2

%(x) =V- {—Fl(x,t)pt(f) + g(;) th(f)} G
2

%(m) =V {—FQ(x,t)Qt(x) + g(;) VQt(x)} =

Then we have

0 0 0
SKL(pular) = /log%ﬂdx —/@ﬁdx.

For the first term,
/m%% do = /v- {pt(x)Fl(z,t) + g(é)Qth(x)} log 22 4

_ / <v1og @) VP t) — g(t)Qth(x)>

2

ey !
:/pt(x) <F1(x,t),VlogZZE§;>dx/g(;) <V10g2;g§,th(x)>dx

/%%dx:/%v. {FQ(xat)Qt(f)Jrg(;PVqt(x)] dz

B / <VJZ’F2($vt)qt(x) — g(;)2Vqt(w)> dz
= [aw <VZ,F2(x7t)>dx—g(2t)2<vpt7vqt(x)>dw.

qt

For the second term,

Notice that

/<th7VCIt(x)>dx—/<V10gpt7VPt($)>dx

qs qt

_/<qtthq_M,V10gqt>dx—/pt <V10g];t7V10gPt(m)>dx
. t

:/pt <Vloglq)t,Vlogqt>dz/pt <Vlog§t,Vlogpt(z)>dz
t t

= —J(pellar),
and
/pt(x) <F1(x,t), V log zz> dz — /qt(x) <V§:,F2(x,t)> dz
= /pt(l’) <F1(x,t), V log 7;> dz — /pt(x) <v1og %, F(:z:,t)> dz
_ /pt(x) <v1og L Fila.t) - Fg(x,t)>
—E [<F1(Xt,t) — Fy(X,,t),Vlog ZEJJZ; >} .
We complete the proof. 0
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Proof of Lemma C.2(1). The uniqueness and regularity for the discrete interpolation (14) are obvious since the drift
term is linear. Now we check the uniqueness and regularity for (13). In fact, the uniqueness of (13) is guaranteed by the
local Lipschitz property of V log jp; (see, e.g., (Karatzas & Shreve, 1991, Chapter 5, Theorem 2.5)) since 5; € C?(R9) is
supported on R?. For the regularity, we note that

prt(x)prtUTft(a‘x)
Pr—v;, (a)

Dr|t, (zla) = Pr—tiT—1), (@la) =

)

where py, |, is the conditional density of x;, given x;,. Since pT_tuT_t(a|x) has distribution J\/'(aT_t,T_t;x, (1-
a%_tT_t;)Id), it is smooth for any a € R?, and we have Pejey (z]a) € C?(RY). O

In order to prove Lemma C.2(2), we need the following.

Lemma F.1. Let P be a probability measure on R?. Consider the Gaussian perturbation of P that admits a density
Po(x) X [paexp ( M) d P(y). Let P,(y|z) be the conditional probability measure satisfying d P, ,(y|x) o

eXp( M)dP( ) For x ~ p, we have

d

19108 b (26 S 1/ 55-

Proof. By Lemma E.1, we write the score function of p, as

y—z
Vlogp,(z) = Eﬁg(ym () )

o2

where P, (y|) be the conditional probability measure satisfying d P, , (y|x) o exp (—%) d P(y). For any positive
integer p, using the fact that ¥== is distributed as A (0, I) and the power-mean inequality,

{I?p

1 Yy —
E, |Vlogp, P —E || =—
b IVloz, @) < 28|

<., /P
~ 2

g

We complete the proof. O

Proof of Lemma C.2(2). LetPy; ; and Qp 4 denote be the path measure of (:is)t;cgsgt and (fls)t;cgsgr For any a € R?
we have

KL, (“la)llGejey (-|la)) < KL(Pyy (1T, = a)|| Qe (-9, = a)).

Thus, it suffices to show

lim KL(P[%V,&](L’Z}; = a)||Q[t;C,t](|gt;c = a)) =0 (36)

t—t] +

for a.e. a € RZ For this, we implement Girsanov change of measure on P[t;,t](-m% = a) and Q[t;,t]<'|ﬂt; =a). If
Novikov’s condition holds for a.e. a € R%, Girsanov’s theorem yields

KL(P[t;c,t]('ﬁt; = a)”@t’ t]( \Z/t' = a

/ [V log p(Zs) — s(x, tn—)||Fe, = ]

for the exponential integrator scheme, or

KL(P[t;,t]('m; = G)H(@[t;,t]('@t; =a))

t
/t'
k

=E

2
|.’i't;C = a‘|

1
Viog () — s(a,ty-x) + (@ — a)
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for the Euler-Maruyama scheme. Hence, (36) is obtained by the Monotone Convergence Theorem and we conclude the
proof. Now we check the Novikov condition, which is given by

1 t
E lexp <2 |V log (%) — s(a,txy—i)|? ds) Ty = a] < 00 (exponential integrator),
t

1t 2
exp | = ds
2 t

Hence, it suffices to prove that the following hold for a.e. a € R¢ when t — t}, is sufficient small (recall that we only care

about the limit ¢ — ¢} +):
t
E |exp / |V log p(i5)||*d s |4,
th

t
exp </ |Zs — a||2ds> |it;c
t,

In fact, by Lemma F.1 we have ||V log p;(z¢) ||y, S 4 /U%. Thus

or

1
E Viogp(zs) — s(a,tn—k) + 5(:25 —a) Ty = a] < oo (Euler-Maruyama).

a] < o0 (37

E

a] < o0 (38)

t
/ IV log s ()2 d s
ty

t
L d
< [ IVlogh. @)1, ds S (01,
v 4 T—t

When ¢ — t;c is sufficient small, we have

1
<77
-2

P1

t
H/ |V log s (&) |2
th

and thus

t
Hg [E P (/ 'Vlogﬁ<fcs>||2ds> &y, = H
k
t
exp ( / IIVlogﬁ(isstN < oo
t

Therefore, (37) holds for a.e. a € R?. To verify (38), we split it as

=E

t t
N —altas <2 [ e - orl oy alP + 20zt oy — DR = ]l (39)
k k

The second term in the right hand side of (39) is a constant so we only need to consider the first term. Note that

t t
2/ |Zs — a;isnyt,kgz%szs < 2/ |Zs — a;is’Tft;cit/kHiz ds
t P1 b

S2(e 7 —1)(t - 1)
Thus when ¢ — ) is sufficient small we have

1
< =
-2

Y1

t
2 [ 5 ol gy ds
t), k
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and thus

t
Eﬁt;(a) [E exp (2 ; 2 — aTls7Tt;€a||2ds> Ty, = aH
k

t
= Eexp (2/ |Es — agt, Tit;ca||2 ds) < 0.
t) ’

We complete the proof of (38).

29



