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Abstract

We provide the first polynomial-time convergence guarantees for the probability
flow ODE implementation (together with a corrector step) of score-based gener-
ative modeling with an OU forward process. Our analysis is carried out in the
wake of recent results obtaining such guarantees for the SDE-based implemen-
tation (i.e., denoising diffusion probabilistic modeling or DDPM), but requires
the development of novel techniques for studying deterministic dynamics without
contractivity. Through the use of a specially chosen corrector step based on the un-
derdamped Langevin diffusion, we obtain better dimension dependence than prior
works on DDPM (O(

→
d) vs. O(d), assuming smoothness of the data distribution),

highlighting potential advantages of the ODE framework.

1 Introduction

Score-based generative models (SGMs) [Soh+15; SE19; HJA20; DN21; Son+21a; Son+21b; VKK21]
are a class of generative models which includes prominent image generation systems such as
DALL·E 2 [Ram+22]. Their startling empirical success at data generation across a range of appli-
cation domains has made them a central focus of study in the literature on deep learning [Aus+21;
DN21; Kin+21; Shi+21; CSY22; Gna+22; Rom+22; Son+22; BV23; WHZ23]. In this paper, we aim
to provide theoretical grounding for such models and thereby elucidate the mechanisms driving their
remarkable performance.

Our work follows in the wake of numerous recent works which have provided convergence guarantees
for denoising diffusion probabilistic models (DDPMs) [De +21; BMR22; De 22; LLT22; Liu+22;
Pid22; WY22; Che+23a; CLL23; LLT23] and denoising diffusion implicit models (DDIMs) [CDD23].
We briefly recall that the generating process for SGMs is the time reversal of a certain diffusion
process, and that DDPMs hinge upon implementing the reverse diffusion process as a stochastic
differential equation (SDE) whose coefficients are learned via neural network training and the
statistical technique of score matching [Hyv05; Vin11] (more detailed background is provided in §2).
Among these prior works, the concurrent results of [Che+23a; LLT23] are remarkable because they
require minimal assumptions on the data distribution (in particular, they do not assume log-concavity
or similarly restrictive conditions) and they hold when the errors incurred during score matching are
only bounded in an L

2 sense, which is both natural in view of the derivation of score matching (see
[Hyv05; Vin11]) and far more realistic.7 Subsequently, the work of [CLL23] significantly sharpened
the analysis in the case when no smoothness assumptions are imposed on the data distribution.
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Taken together, these works paint an encouraging picture of our understanding of DDPMs which
takes into account both the diversity of data in applications (including data distributions which are
highly multimodal or supported on lower-dimensional manifolds), as well as the non-convex training
process which is not guaranteed to accurately learn the score function uniformly in space.

Besides DDPMs, instead of implementing the time reversed diffusion as an SDE, it is also possible to
implement it as an ordinary differential equation (ODE), called the probability flow ODE [Son+21b];
see §2. The ODE implementation is often claimed to be faster than the SDE implementation [Lu+22;
ZC23], with the rationale being that ODE discretization is typically more accurate than SDE dis-
cretization, so that one could use a larger step size. Indeed, the discretization error usually depends
on the regularity of the trajectories, which is C

1 for ODEs but only C
1
2↓ for SDEs (i.e., Hölder

continuous with any exponent less than 1
2 ) due to the roughness of the Brownian motion driving the

evolution.

Far from being able to capture this intuition, current analyses of SGMs cannot even provide a
polynomial-time analysis of the probability flow ODE. The key issue is that under our minimal
assumptions (i.e., without log-concavity of the data distribution), the underlying dynamics of either
the ODE or SDE implementation are not contractive, and hence small errors quickly accumulate
and are magnified. The aforementioned analyses of DDPMs managed to overcome this challenge
by leveraging techniques specific to the analysis of SDEs, through which we now understand that
stochasticity plays an important role in alleviating error accumulation. It is unknown, however, how
to carry out the analysis for the purely deterministic dynamics inherent to the probability flow ODE.

Our first main contribution is to give the first convergence guarantees for SGMs with OU forward
dynamics in which steps of the discretized probability flow ODE—referred to as predictor steps—are
interleaved with corrector steps which runs the overdamped Langevin diffusion with estimated score,
as pioneered in [Son+21b]. Our results are akin to prior works on DDPMs in that they hold under
minimal assumptions on the data distribution and under L2 bounds on the score estimation error, and
our guarantees scale polynomially in all relevant problem parameters. Here, the corrector steps inject
stochasticity which is crucial for our proofs; however, we emphasize that the use of corrector steps
does not simply reduce the problem to applying existing DDPM analyses. Instead, we must develop
an entirely new framework based on Wasserstein–to–TV regularization, which is of independent
interest; see §4 for a detailed overview of our techniques. Our results naturally raise the question of
whether the corrector steps are necessary in practice, and we discuss this further in §5.

When the data distribution is log-smooth, then the dimension dependence of prior results on DDPMs,
as well as our first result for the probability flow ODE with overdamped corrector, both scale as O(d).
Does this contradict the intuition that ODE discretization is more accurate than SDE discretization?
The answer is no; upon inspecting our proof, we see that the discretization error of the probability
flow ODE is indeed smaller than what is incurred by DDPMs, and in fact allows for a larger step
size of order 1/

→
d. The bottleneck in our result stems from the use of the overdamped Langevin

diffusion for the corrector steps. Taking inspiration from the literature on log-concave sampling (see,
e.g., [Che22] for an exposition), our second main contribution is to propose corrector steps based on
the underdamped Langevin diffusion (see §2) which is known to improve the dimension dependence
of sampling. In particular, we show that the probability flow ODE with underdamped Langevin
corrector attains O(

→
d) dimension dependence. This dependence is better than what was obtained

for DDPMs in [Che+23a; CLL23; LLT23] and therefore highlights the potential benefits of the ODE
framework. We note that the benefit to which we refer is at generation time, and not at training time.

Previously, [JP22] have proposed a “noise–denoise" sampler using the underdamped Langevin
diffusion, but to our knowledge, our work is the first to use it in conjunction with the probability flow
ODE. Although we provide preliminary numerical experiments in the Appendix, we leave it as a
question for future work to determine whether the theoretical benefits of the underdamped Langevin
corrector are also borne out in practice.

1.1 Our contributions

In summary, our contributions are the following.

• We provide the first convergence guarantees for the probability flow ODE with overdamped
Langevin corrector (DPOM; Algorithm 1).
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• We propose an algorithm based on the probability flow ODE with underdamped Langevin
corrector (DPUM; Algorithm 2).

• We provide the first convergence guarantees for DPUM. These convergence guarantees show
improvement over (i) the complexity of DPOM (O(

→
d) vs O(d)) and (ii) the complexity

of DDPMs, i.e., SDE implementations of score-based generative models (again, O(
→
d) vs

O(d)).

• We provide preliminary numerical experiments in a toy example showing that DPUM

can sample from a highly non log-concave distribution (see Appendix). The numerical
experiments are not among our main contributions and are provided for illustration only.
The Python code can be found in the Supplementary material.

Our main theorem can be summarized informally as follows; see §3 for more detailed statements.
Theorem 1 (Informal). Assume that the score function along the forward process is L-Lipschitz,

and that the data distribution has finite second moment. Assume that we have access to Õ(ω/
→
L)

L
2
-accurate score estimates. Then, the probability flow ODE implementation of the reversed Ornstein–

Uhlenbeck process, when interspersed with either the overdamped Langevin corrector (DPOM; Algo-

rithm 1) or with the underdamped Langevin corrector (DPUM; Algorithm 2), outputs a sample whose

law is ω-close in total variation distance to the data distribution, using Õ(L3
d/ω

2) or Õ(L2
→
d/ω)

iterations respectively.

Our result provides the first polynomial-time guarantees for the probability flow ODE implementation
of SGMs, so long as it is combined with the use of corrector steps. Moreover, when the corrector
steps are based on the underdamped Langevin diffusion, then the dimension dependence of our result
is significantly smaller (O(

→
d) vs. O(d)) than prior works on the complexity of DDPMs, and thus

provides justification for the use of ODE discretization in practice, compared to SDEs.

Our main assumption on the data is that the score functions along the forward process are Lipschitz
continuous, which allows for highly non-log-concave distributions, yet does not cover non-smooth
distributions such as distributions supported on lower-dimensional manifolds. However, as shown
in [Che+23a; CLL23; LLT23], we can also obtain polynomial-time guarantees without this smooth-
ness assumption via early stopping (see Remark 1).

1.2 Related works

The idea of using a time-reversed diffusion for sampling has been fruitfully exploited in the log-
concave sampling literature via the proximal sampler [TP18; LST21; CE22; LC22; FYC23; LC23],
as put forth in [Che+22], as well as through algorithmic stochastic localization [EMS22; MW23].
Although we do not aim to be comprehensive in our discussion of the literature, we mention,
e.g., [ABV23; Che+23b] for alternative approaches for diffusion models. We also note that the recent
work of [CDD23] obtained a discretization analysis for the probability flow ODE (without corrector)
in KL divergence, though their bounds have a large dependence on d and are exponential in the
Lipschitz constant of the score integrated over time.

Since the original arXiv submission of this paper, there have been further works studying the
probability flow ODE. The work of [BDD23] also studied the probability flow ODE, but without
providing discretization guarantees (and with possibly exponential dependencies). The work [Li+23]
provides polynomial-time guarantees for the probability flow ODE (without corrector steps), at the
cost of larger polynomial dependencies and more stringent score assumptions (namely, bounds on the
Jacobian of the score). Also, [PMM23] study another variant of the predictor-corrector framework.

2 Preliminaries

2.1 Score-based generative modeling

Let qω denote the data distribution, i.e., the distribution from which we wish to sample. In score-based
generative modeling, we define a forward process (q↔

t
)
t↗0 with q

↔
0 = qω, which transforms our data

distribution into noise. In this paper, we focus on the canonical choice of the Ornstein–Uhlenbeck
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(OU) process,

dx↔
t

= ↑x
↔
t

dt+
→

2 dBt , x
↔
0 ↓ qω , q

↔
t

:= law(x↔
t
) , (1)

where (Bt)t↗0 is a standard Brownian motion in Rd. It is well-known that the OU process mixes
rapidly (exponentially fast) to its stationary distribution, the standard Gaussian distribution ε

d.

Once we fix a time horizon T > 0, the time reversal of the SDE defined in (1) over [0, T ] is given by

dx↘
t

= (x↘
t

+ 2↔ ln q↘
t
(x↘

t
)) dt+

→

2 dBt , (2)

where q
↘
t

:= q
↔
T↓t

, and the reverse SDE is a generative model: when initialized at x↘
0 ↓ q

↘
0 , then

x
↘
T

↓ q. Since q
↘
0 = q

↔
T

↗ ε
d, the reverse SDE transforms samples from ε

d (i.e., pure noise) into
approximate samples from qω. In order to implement the reverse SDE, however, one needs to estimate
the score functions ↔ ln q↘

t
for t ↘ [0, T ] using the technique of score matching [Hyv05; Vin11]. In

practice, the score estimates are produced via a deep neural network, and our main assumption is that
these score estimates are accurate in an L

2 sense (see Assumption 4). This gives rise to the denoising
diffusion probabilistic modeling (DDPM) algorithm.

Notation. Since the reverse process is the primary object of interest, we drop the arrow ≃ from the
notation for simplicity; thus, qt := q

↘
t

. We will always denote the forward process with the arrow ⇐.

For each t ↘ [0, T ], let st denote the estimate for the score ↔ ln qt = ↔ ln q↘
t

.

2.2 Probability flow ODE (predictor steps)

Instead of running the reverse SDE (2), there is in fact an alternative process (xt)t≃[0,T ] which evolves
according to an ODE (and hence evolves deterministically), and yet has the same marginals as (2).
This alternative process, called the probability flow ODE, can also be used for generative modeling.

One particularly illuminating way of deriving the probability flow ODE is to invoke the celebrated
theorem, due to [JKO98], that the OU process is the Wasserstein gradient flow of the KL divergence
functional (i.e. relative entropy) KL(· ⇒ εd). From the general theory of Wasserstein gradient flows
(see [AGS08; San15]), the Wasserstein gradient flow (µt)t↗0 of a functional F can be implemented
via the dynamics

żt = ↑[↔W2F(µt)](zt) , z0 ↓ µ0 ,

in that zt ↓ µt for all t ⇑ 0. Applying this to F := KL(· ⇒ εd), we arrive at the forward process

ẋ
↔
t

= ↑↔ ln
(
q
↔
t

εd

)
(x↔

t
) = ↑x

↔
t

↑↔ ln q↔
t
(x↔

t
) . (3)

Setting xt := x
↔
T↓t

, it is easily seen that the time reversal of (3) is

ẋt = xt +↔ ln qt(xt) , i.e., ẋt = xt +↔ ln q↔
T↓t

(xt) , (4)

which is called the probability flow ODE. In this paper, the interpretation of the probability flow
ODE as a reverse Wasserstein gradient flow is only introduced for interpretability, and the reader who
is unfamiliar with Wasserstein calculus can take (4) to be the definition of the probability flow ODE.
Crucially, it has the property that if x0 ↓ q0, then xt ↓ qt for all t ↘ [0, T ].

We can discretize the ODE (4). Fixing a step size h > 0, replacing the score function ↔ ln qt with
the estimated score given by st, and applying the exponential integrator to the ODE (i.e., exactly
integrating the linear part), we arrive at the discretized process

xt+h = xt +

∫
h

0
xt+u du+ h st(xt) = exp(h)xt + (exp(h)↑ 1) st(xt) . (5)

2.3 Corrector steps

Let q be a distribution over Rd, and write U as a shorthand for the potential ↑ ln q.
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Overdamped Langevin. The overdamped Langevin diffusion with potential U is a stochastic
process (xt)t↗0 over Rd given by

dxt = ↑↔U(xt) dt+
→

2 dBt .

The stationary distribution of this diffusion is q ⇓ exp(↑U).

We also consider the following discretized process where ↑↔U is replaced by a score estimate s. Fix
a step size h > 0 and let (x̂t)t↗0 over Rd be given by

dx̂t = s(x̂⇐t/h⇒h) dt+
→

2 dBt .

Underdamped Langevin. Given a friction parameter ! > 0, the corresponding underdamped

Langevin diffusion is a stochastic process (zt, vt)t↗0 over Rd
⇔ Rd given by

dzt = vt dt ,

dvt = ↑(↔U(zt) + !vt) dt+
√

2! dBt .

The stationary distribution of this diffusion is q ↖ ε
d.

We also consider the following discretized process, where ↑↔U is replaced by a score estimate s.
Let (ẑt, v̂t)t↗0 over Rd

⇔ Rd be given by
dẑt = v̂t dt ,

dv̂t = (s(ẑ⇐t/h⇒h)↑ !v̂t) dt+
√
2! dBt .

(6)

Diffusions as corrector steps. At time t, the law of the ideal reverse process (4) initialized at q0 is
qt. However, errors are accumulated through the course of the algorithm: the error from initializing
at εd rather than at q0; errors arising from discretization of (4); and errors in estimating the score
function. That’s why the law of the algorithm’s iterate will not be exactly qt. We propose to use either
the overdamped or the underdamped Langevin diffusion with stationary distribution qt and estimated
score as a corrector, in order to bring the law of the algorithm iterate closer to qt. In the case of the
underdamped Langevin diffusion, this is done by drawing an independent Gaussian random variable
v̂0 ↓ ε

d, running the system (6) starting from (ẑ0, v̂0) (where ẑ0 is the current algorithm iterate) for
some time t, and then keeping ẑt. In our theoretical analysis, the use of corrector steps boosts the
accuracy and efficiency of the SGM.

3 Results

3.1 Assumptions

We make the following mild assumptions on the data distribution qω and on the score estimate s.
Assumption 1 (second moment bound). We assume that m2

2 := Eqω [⇒·⇒
2] < ↙.

Assumption 2 (Lipschitz score). For all t ↘ [0, T ], the score ↔ ln qt is L-Lipschitz, for some L ⇑ 1.

Assumption 3 (Lipschitz score estimate). For all t for which we need to estimate the score function

in our algorithms, the score estimate st is L-Lipschitz.

Assumption 4 (score estimation error). For all t for which we need to estimate the score function in

our algorithms,

Eqt [⇒st ↑↔ ln qt⇒
2] ∝ ω

2
sc .

Assumptions 1, 2, and 4 are standard and were shown in [Che+23a; CLL23; LLT23] to suffice for
obtaining polynomial-time convergence guarantees for DDPMs. The new condition that we require
in our analysis is Assumption 3, which was used in [LLT22] but ultimately shown to be unnecessary
for DDPMs. We leave it as an open question whether this can be lifted in the ODE setting.
Remark 1. As observed in [Che+23a; CLL23; LLT23], Assumption 2 can be removed via early
stopping, at the cost of polynomially larger iteration complexity. The idea is that if qω has compact
support but does not necessarily satisfy Assumption 2 (e.g., if qω is supported on a compact and
lower-dimensional manifold), then q

↔
ε

will satisfy Assumption 2 if ϑ > 0. By applying our analysis
up to time T ↑ ϑ instead of time T , one can show that a suitable projection of the output distribution
is close in Wasserstein distance to qω (see [CLL23, Corollary 2.4] or [Che+23a, Corollary 5]). For
brevity, we do not consider this extension of our results here.
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3.2 Algorithms

We provide the pseudocode for the two algorithms we consider, Diffusion Predictor + Overdamped

Modeling (DPOM) and Diffusion Predictor + Underdamped Modeling (DPUM), in Algorithms 1
and 2 respectively. The only difference between the two algorithms is in the corrector step, which
we highlight in Algorithm 2. For simplicity, we take the total amount of time T to be equal to
N0/L+ hpred for an integer N0 ⇑ 1, and we assume that 1/L is a multiple of hpred and that hpred is
a multiple of ϑ = !

(
ϑ
2

L2 (d⇑m2
2)

)
.

We consider two stages: in the first stage, which lasts until time N0/L = T ↑ hpred, we intersperse
predictor epochs (run for time 1/L, discretized with step size hpred) and corrector epochs (run for
time !(1/L) for the overdamped corrector or for time !(1/

→
L) for the underdamped corrector,

and discretized with step size hcorr). The second stage lasts from time T ↑ hpred to time T ↑ ϑ, and
we incorporate geometrically decreasing step sizes for the predictor. Note that this implies that our
algorithm uses early stopping.

Algorithm 1: DPOM(T, hpred, hcorr, s)
Input: Total time T , predictor step size hpred, corrector step size hcorr, score estimates s
Output: Approximate sample from the data distribution qω

1 Draw x̂0 ↓ ε
d.

2 for n = 0, 1, . . . , N0 ↑ 1 do
3 Predictor: Starting from x̂n/L, run the discretized probability flow ODE (5) from time n

L
to

n+1
L

with step size hpred and estimated scores to obtain x̂
⇓
(n+1)/L.

4 Corrector: Starting from x̂
⇓
(n+1)/L, run overdamped Langevin Monte Carlo for total time

!(1/L) with step size hcorr and score estimate s(n+1)/L to obtain x̂(n+1)/L.
5 Predictor: Starting from x̂T↓hpred

, run the discretized probability flow ODE (5) with step sizes
hpred/2, hpred/4, hpred/8, . . . , ϑ and estimated scores to obtain x̂

⇓
T↓ε

.
6 Corrector: Starting from x̂

⇓
T↓ε

, run overdamped Langevin Monte Carlo for total time !(1/L)
with step size hcorr and score estimate sT↓ε to obtain x̂T↓ε .

7 return x̂T↓ε

Algorithm 2: DPUM(T, hpred, hcorr, s)
Input: Total time T , predictor step size hpred, corrector step size hcorr, score estimates s
Output: Approximate sample from the data distribution qω

1 Draw x̂0 ↓ ε
d.

2 for n = 0, 1, . . . , N0 ↑ 1 do
3 Predictor: Starting from x̂n/L, run the discretized probability flow ODE (5) from time n

L
to

n+1
L

with step size hpred and estimated scores to obtain x̂
⇓
(n+1)/L.

4 Corrector: Starting from x̂
⇓
(n+1)/L, run underdamped Langevin Monte Carlo for total time

!(1/
→
L) with step size hcorr and score estimate s(n+1)/L to obtain x̂(n+1)/L.

5 Predictor: Starting from x̂T↓hpred
, run the discretized probability flow ODE (5) with step sizes

hpred/2, hpred/4, hpred/8, . . . , ϑ and estimated scores to obtain x̂
⇓
T↓ε

.
6 Corrector: Starting from x̂

⇓
T↓ε

, run underdamped Langevin Monte Carlo for total time
!(1/

→
L) with step size hcorr and score estimate sT↓ε to obtain x̂T↓ε .

7 return x̂T↓ε

3.3 Convergence guarantees

Our main results are the following convergence guarantees for the two predictor-corrector schemes
described in §3.2:
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Theorem 2 (DPOM). Suppose that Assumptions 1–4 hold. If q̂ denotes the output of DPOM

(Algorithm 1) with ϑ ′
ϑ
2

L2 (d⇑m2
2)

, then

TV(q̂, qω) ↭ (
→

d ∞m2) exp(↑T ) + L
2
Td

1/2
hpred + L

3/2
Td

1/2
h
1/2
corr + L

1/2
Tωsc + ω . (7)

In particular, if we set T = !
(
ln(d⇑m2

2
ϑ2

)
)
, hpred = !̃( ϑ

L2d1/2 ), hcorr = !̃( ϑ
2

L3d
), and if the score

estimation error satisfies ωsc ∝ Õ( ϑ⇔
L
), then we can obtain TV error ω with a total iteration complexity

of !̃(L
3
d

ϑ2
) steps.

The five terms in the bound (7) correspond, respectively, to: the convergence of the forward (OU)
process; the discretization error from the predictor steps; the discretization error from the corrector
steps; the score estimation error; and the early stopping error.

Theorem 2 recovers nearly the same guarantees as the one in [Che+23a; CLL23; LLT23], but for
the probability flow ODE with overdamped Langevin corrector instead of the reverse SDE without
corrector. Recall also from Remark 1 that our results can easily be extended to compactly supported
data distributions without smooth score functions. This covers essentially all distributions encountered
in practice. Therefore, our result provides compelling theoretical justification complementing the
empirical efficacy of the probability flow ODE, which was hitherto absent from the literature.

However, in Theorem 2, the iteration complexity is dominated by the corrector steps. Next, we show
that by replacing the overdamped LMC with underdamped LMC, we can achieve a quadratic im-
provement in the number of steps, considering the dependence on d. As discussed in the Introduction,
this highlights the potential benefits of the ODE framework over the SDE.
Theorem 3 (DPUM). Suppose that Assumptions 1–4 hold. If q̂ denotes the output of DPUM

(Algorithm 2) with ϑ ′
ϑ
2

L2 (d⇑m2
2)

, then

TV(q̂, qω) ↭ (
→

d ∞m2) exp(↑T ) + L
2
Td

1/2
hpred + L

3/2
Td

1/2
hcorr + L

1/2
Tωsc + ω .

In particular, if we set T = !
(
ln(d⇑m2

2
ϑ2

)
)
, hpred = !̃( ϑ

L2d1/2 ), hcorr = !̃( ϑ

L3/2d1/2 ), and if the

score estimation error satisfies ωsc ∝ Õ( ϑ⇔
L
), then we can obtain TV error ω with a total iteration

complexity of !̃(L
2
d
1/2

ϑ
) steps.

4 Proof overview

Here we give a detailed technical overview for the proof of our main results, Theorems 2 and 3.
As in [Che+23a; CLL23; LLT23], the three sources of error that we need to keep track of are (1)
estimation of the score function; (2) discretization of time when implementing the probability flow
ODE and corrector steps; and (3) initialization of the algorithm at εd instead of the true law of the end
of the forward process, q0 = q

↔
T

. It turns out that (1) is not so difficult to manage as soon as we can
control (2) and (3). Furthermore, as in prior work, we can easily control (3) via the data-processing
inequality: the total variation distance between the output of the algorithm initialized at q0 versus at
ε
d is at most TV(q↔

T
, ε

d), which is exponentially small in T by rapid mixing of the OU process. So
henceforth in this overview, let us assume that both the algorithm and the true process are initialized
at q0. It remains to control (2).

Failure of existing approaches. In the SDE implementation of diffusion models, prior works
handled (2) by directly bounding a strictly larger quantity, namely the KL divergence between the
laws of the trajectories of the algorithm and the true process; by Girsanov’s theorem, this has a
clean formulation as an integrated difference of drifts. Unfortunately, in the ODE implementation,
this KL divergence is infinite: in the absence of stochasticity in the reverse process, these laws over
trajectories are not even absolutely continuous with respect to each other.

In search of an alternative approach, one might try a Wasserstein analysis. As a first attempt, we
could couple the initialization of both processes and look at how the distance between them changes
over time. If (x̂t)0↖t↖T and (xt)0↖t↖T denote the algorithm and true process, then smoothness of
the score function allows us to naïvely bound ϖt E[⇒x̂t ↑ xt⇒

2] by O(L)E[⇒x̂t ↑ xt⇒
2]. While this

ensures that the processes are close if run for time ∈ 1/L, it does not rule out the possibility that
they drift apart exponentially quickly after time 1/L.
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Restarting the coupling—first attempt. What we would like is some way of “restarting” this
coupling before the processes drift too far apart, to avoid this exponential compounding. We now
motivate how to achieve this by giving an argument that is incorrect but nevertheless captures the
intuition for our approach. Namely, let pt := law(x̂t) denote the law of the algorithm, let P t0,h

ODE

denote the result of running the ideal probability flow ODE for time h starting from time t0, and
let P̂ t0,h

ODE
denote the same but for the discretized probability flow ODE with estimated score. For

h ↭ 1/L, consider the law of the two processes at time 2h, i.e.,
p2h = q0P̂

0,2h
ODE

and q2h = q0P
0,2h
ODE

. (8)

The discussion above implies that q0P 0,h
ODE

and q0P̂
0,h
ODE

are close in 2-Wasserstein distance, so by
the data-processing inequality, this implies that q0P 0,h

ODE
P̂

h,h

ODE
and q0P̂

0,h
ODE

P̂
h,h

ODE
are also close. To

show that p2h and q2h in Eq. (8) are close, it thus suffices to show that q0P 0,2h
ODE

and q0P
0,h
ODE

P̂
h,h

ODE

are close. But these two distributions are given by running the algorithm and the true process for
time h, both starting from q0P

0,h
ODE

. So if we “restart” the coupling by coupling the processes based
on their locations at time h, rather than time 0, of the reverse process, we can again apply the naïve
Wasserstein analysis.

At this juncture, it would seem that we have miraculously sidestepped the exponential blowup and
shown that the expected distance between the processes only increases linearly over time! The issue
of course is in the application of the “data-processing inequality,” which simply does not hold for the
Wasserstein distance.

Restarting the coupling with a corrector step. This is where the corrector comes in. The idea is
to use short-time regularization: if we apply a small amount of noise to two distributions which are
already close in Wasserstein, then they become close in KL divergence, for which a data-processing
inequality holds. The upshot is that if the noise doesn’t change the distributions too much, then we
can legitimately restart the coupling as above and prove that the distance between the processes, now
defined by interleaving the probability flow ODE and its discretization with periodic injections of
noise, increases only linearly in time.

It turns out that naïve injection of noise, e.g., convolution with a Gaussian of small variance, is
somewhat wasteful as it fails to preserve the true process and leads to poor polynomial dependence in
the dimension. On the other hand, if we instead run the overdamped Langevin diffusion with potential
chosen so that the law of the true process is stationary, then we can recover the linear in d dependence
of Theorem 2. Then by replacing overdamped Langevin diffusion with its underdamped counterpart,
which has the advantage of much smoother trajectories, we can obtain the desired quadratic speedup
in dimension dependence in Theorem 3.

Score perturbation lemma. In addition to the switch from SDE to ODE and the use of the
underdamped corrector, a third ingredient is essential to our improved dimension dependence. The
former two ensure that the trajectory of our algorithm is smoother than that of DDPMs, so that even
over time windows that scale with 1/

→
d, the process does not change too much. By extension, as the

score functions are Lipschitz, this means that any fixed score function evaluated over iterates in such
a window does not change much. This amounts to controlling discretization error in space.

It is also necessary to control discretization error in time, i.e., proving what some prior works referred
to as a score perturbation lemma [LLT22]. That is, for any fixed iterate x, we want to show that the
score function ↔ ln qt(x) does not change too much as t varies over a small window. Unfortunately,
prior works were only able to establish this over windows of length 1/d. In this work, we improve
this to windows of length 1/

→
d (see Lemma 3 and Corollary 1).

In our proof, we bound the squared L
2 norm of the derivative of the score along the trajectory of

the ODE. The score function evaluated at y can be expressed as EP0|t(·|y)[↔U ]; here, the posterior
distribution P0|t(· | y) is essentially the prior qω tilted by a Gaussian of variance O(t). Hence we
need to bound the change in the expectation when we change the distribution from P0|t to P0|t+!t;
because ↔U is L-Lipschitz, we can bound this by the Wasserstein distance between the distributions.
For small enough t, P0|t is strongly log-concave, and a transport cost inequality bounds this in terms
of KL divergence, which is more easily bounded. Indeed, we can bound it with the KL divergence
between the joint distributions P0,t and P0,t+!t, which reduces to bounding the KL divergence
between Gaussians of unequal variance.
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However, since our score perturbation lemma degrades near the beginning of the forward process, we
require better control of the discretization error during this part of the algorithm, hence leading to
our choice of geometrically decreasing step sizes. Alternatively, we could use a two-stage step size
schedule, see Remark 4.

5 Conclusion

In this work, we have provided the first polynomial-time guarantees for the probability flow ODE
implementation of SGMs with corrector steps and exhibited improved dimension dependence of
the ODE framework over prior results for DDPMs (i.e., the SDE framework). Our analysis raises
questions relevant for practice, of which we list a few.

• Although we need the corrector steps for our proof, are they in fact necessary for the
algorithm to work efficiently in practice?

• Is it possible to obtain even better dimension dependence, perhaps using higher-order solvers
and stronger smoothness assumptions?

• Can we obtain improved dimension dependence even in the non-smooth setting, compared
to the result of [CLL23]?

We also list several limitations of our work, namely:

• Our analysis only covers the probability flow ODE corresponding to the OU forward process.
We leave the study of more general dynamics for future study.

• Our guarantees require the score function to be learned to L
2 accuracy Õ(ω/

→
L), which is

more stringent than the prior works [Che+23a; CLL23; LLT23] and may be an technical
artefact of our proof.

• We have not validated our theoretical findings with large-scale experiments. In particular, it
is still unclear whether flow-based methods can outperform the standard DDPM algorithm
in practical, high dimensional settings.
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A Notation and overview

In this section, we collect together the notation used throughout the proofs and provide a road map
for the end-to-end analysis in §E.

Throughout the analysis, Assumptions 1–4 are in full force.

We will reserve q for the law of the reverse process (and denote the forward process by q
↔ when

needed). In §E, the law of the algorithm is denoted by p.

We use the following Markov kernels:

1. P
t,h

ODE
is the output of running the ODE for time h, starting at (reverse) time t.

2. PLD (resp. PULD) is the output of running the continuous-time overdamped (resp. under-
damped) Langevin diffusion for time h. In this notation, we have suppressed mention of the
stationary distributions of the diffusion, which will be provided by context.

3. P̂
t,h

ODE
and P̂LMC (resp. P̂ULMC) are the corresponding processes once discretized and using

the estimated score.

For the ODE, we are more precise with the notation because even within a single epoch of predictor
steps, the kernel for the probability flow ODE depends on time (as opposed to the kernels for the
diffusions, which are constant within any epoch of corrector steps); moreover, for our analysis in §E,
we also need to take time-varying step sizes for the predictor steps. We will omit the dependencies
on t and h when clear from context. When P = PODE or P̂ODE, we use P

t,h1,...,hN to denote
P

t,h1P
t+h1,h2 · · ·P

t+h1+···+hN→1,hN (we compose kernels on the right).

We refer to §4 for a high-level description of the proof strategy. We begin in §B with our improved
score perturbation lemma (Corollary 1); this is the only section of the analysis which is indexed
by forward time (instead of reverse time). In Lemma 5 in §C, we establish our main result for
the predictor steps, which combines together standard ODE discretization analysis with the score
perturbation lemma of §B. Since Corollary 1 degrades near the end of the reverse process (or
equivalently, near the start of the forward process, when the regularization has not yet kicked in),
our analysis requires a geometrically decreasing step size schedule, which leads to the two-stage
Algorithms 1 and 2.

In §D, we prove our main regularization results for the overdamped corrector (Theorem 4) and the
underdamped corrector (Theorem 5). Finally, we put together the various constituent results in the
end-to-end analysis in §E.

B Score perturbation

In this section, we prove a score perturbation lemma which refines that of [LLT22]. This improved
lemma is necessary in order to obtain O(

→
d) dependence for the probability flow ODE.

Lemma 1 (Score perturbation). Suppose pt = p0 ∋ N (0, tI) and x0 ↓ p0, ẋt = ↑
1
2 ↔ ln pt(xt).

Suppose that ⇒↔
2 ln p(t↓ 1

2L )⇑0(x)⇒op ∝ L for all x. Then

E[⇒ϖt↔ ln pt(xt)⇒
2] ∝ L

2
d
(
L+

1

t

)
.

Proof. Without loss of generality, we may assume t ∝
1
2L , as otherwise, noting that pt = p

t↓ 1
2L

∋

N(0, 1
2LI), we may replace p0 with p

t↓ 1
2L

and t with 1
2L . Suppose p0(x) = e

↓V (x). Let P0,t denote
the joint distribution of (X0, Xt) where Xt = X0 +

→
t Z with Z ↓ N (0, I) independent of X0,

and let P0|t(· | xt) denote the conditional distribution of X0 given Xt = xt. We first note that since

ln pt(y) = ln

∫
exp

(
↑V (x)↑

1

2t
⇒y ↑ x⇒

2
)
dx ,

we have the following calculations:

↔ ln pt(y) = ↑
1

t
EP0|t(·|y)(y ↑ ·) = ↑EP0|t(·|y)(↔V ) ,
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↔
2 ln pt(y) = CovP0|t(·|y)(↔V )↑ EP0|t(·|y)(↔

2
V ) .

Using ẋt = ↑
1
2 ↔ ln pt(xt), we calculate

ϖt↔ ln pt(xt) = [ϖt↔ ln pt(y)]|y=xt ↑
1

2
↔

2 ln pt(xt)↔ ln pt(xt) . (9)

We bound each term above separately. For the first term, a quick calculation shows that ϖt↔ ln pt(y) =

↑CovP0|t(·|y)
(↑y↓·↑2

2t2 ,↔V
)

is finite a.s.: by Cauchy–Schwarz, it suffices to show EP0|t(·|y)[⇒y ↑ ·⇒
4]

and EP0|t(·|y)[⇒↔V ⇒
2] are finite for all y, and this follows because for t ∝ 1

2L the measure P0|t(· | y)

is strongly log-concave and ⇒↔V ⇒
2 can be bounded by a quadratic. Because ↔V is L-Lipschitz,

⇒[ϖt↔ ln pt(y)]|y=xt⇒
2 = ⇒[ϖt EP0|t(·|y)(↔V )]|y=xt⇒

2

=
∥∥∥ lim
!t↔0

1

”t

[
EP0|t+!t(·|y)[↔V ]↑ EP0|t(·|y)[↔V ]

]∣∣
y=xt

∥∥∥
2

∝ L
2 lim inf

!t↔0

1

(”t)2
W

2
1

(
P0|t+!t(· | xt), P0|t(· | xt)

)
. (10)

Now P0|t(· | y) has density p0|t(x | y) ⇓ p0(x) e↓
↑x→y↑2

2t so if ⇒↔2 ln p0⇒op ∝ L and t ∝
1
2L , then

P0|t is 1
2t -strongly log-concave. By Talagrand’s transport cost inequality,

W
2
1

(
P0|t+!t(· | xt), P0|t(· | xt)

)
∝ 4tKL

(
P0|t+!t(· | xt)

∥∥ P0|t(· | xt)
)
.

Plugging this back in (10) and using Fatou’s lemma and the chain rule for KL,

E[⇒[ϖt↔ ln pt(y)]|y=xt⇒
2] ∝ L

2 E lim inf
!t↔0

1

(”t)2
4tKL

(
P0|t+!t(· | xt)

∥∥ P0|t(· | xt)
)

∝ L
2 lim inf

!t↔0

1

(”t)2
4tEKL

(
P0|t+!t(· | xt)

∥∥ P0|t(· | xt)
)

∝ L
2 lim inf

!t↔0

1

(”t)2
4tKL(P0,t+!t ⇒ P0,t) . (11)

Now

KL(P0,t+!t ⇒ P0,t) = Ex↙P0 KL
(
Pt+!t|0(· | x), Pt|0(· | x)

)
= KL

(
N (0, (t+”t)I)

∥∥ N (0, tI)
)

=
d

2

(
↑ ln

t+”t

t
+

t+”t

t
↑ 1

)
=

d

4

(”t

t

)2
+O

((”t

t

)3)
.

Plugging into (11) gives

E[⇒[ϖt↔ ln pt(y)]|y=xt⇒
2] ∝

L
2
d

t
. (12)

For the second term, by assumption we have ⇒↔
2 ln pt⇒op ∝ L. Then, since xt ↓ pt,

E[⇒↔2 ln pt(xt)↔ ln pt(xt)⇒
2] ∝ L

2 Ept [⇒↔ ln pt⇒
2] ∝ L

3
d (13)

using the fact Eµ[⇒↔ lnµ⇒2] ∝ Ld for any measure µ such that lnµ is L-smooth, which follows from
integration by parts. From (9), (12), and (13), and the elementary inequality △a, b▽ ∝ ⇒a⇒

2 + 4 ⇒b⇒2,
we get

E[⇒ϖt↔ ln pt(xt)⇒
2] ∝ E[⇒[ϖt↔ ln pt(y)]|y=xt⇒

2] + E[⇒↔2 ln pt(xt)↔ ln pt(xt)⇒
2]

∝ L
2
d
(
L+

1

t

)
.

The above result holds for the dynamics ẋt = ↑
1
2 ↔ ln pt(xt) for which (pt)t↗0 follows the heat

flow; this corresponds to the variance-exploding SGM. In this paper, since we wish to consider
the SGM based on the variance-conserving Ornstein–Uhlenbeck (OU) process, we can apply the
following reparameterization lemma.
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Lemma 2 (Reparameterization). Suppose that (xt)t↗0 satisfies the probability flow ODE for Brown-

ian motion starting at p0; that is, letting pt = p0 ∋N (0, tI), we have x0 ↓ p0, ẋt = ↑
1
2 ↔ ln pt(xt).

Then, if we set

yt = e
↓t

xe2t↓1 ,

then (yt)t↗0 satisfies the probability flow ODE for the OU process starting at p0; that is, letting q
↔
t

be the density of the OU process at time t, we have y0 ↓ p0 = q
↔
0 , ẏt = ↑yt ↑↔ ln q↔

t
(yt).

Proof. By direct calculation, one can check that for any y ↘ Rd, it holds that q↔
t
(y) ⇓ pe2t↓1(e

t
y).

The claim follows from the chain rule.

Lemma 3 (Score perturbation for OU). Suppose q
↔
t

is the density of the OU process at time t, started

at q
↔
0 , and y0 ↓ q

↔
0 , ẏt = ↑yt↑↔ ln q↔

t
(yt). Suppose for all t and all x that ⇒↔

2 ln q↔
t
(x)⇒op ∝ L,

where L ⇑ 1. Then,

E[⇒ϖt↔ ln q↔
t
(yt)⇒

2] ↭ L
2
d
(
L ∞

1

t

)
.

Proof. Using the relationship q
↔
t
(y) ⇓ pe2t↓1(e

t
y),

↔ ln q↔
t
(y) = e

t
↔ ln pe2t↓1(e

t
y) ,

ϖt↔ ln q↔
t
(yt) = e

t
↔ ln pe2t↓1(xe2t↓1)︸ ︷︷ 

=:A

+ e
t
ϖs↔ ln ps(xs)|s=e2t↓1 · 2e

2t

︸ ︷︷ 
=:B

.

If ⇒↔2 ln q↔
t
⇒op ∝ L, then ⇒↔

2 ln pe2t↓1⇒op ∝ e
↓2t

L. By Lemma 1,

E[⇒ϖs↔ ln ps(xs)|s=e2t↓1⇒
2] ↭ e

↓4t
L
2
d
(
e
↓2t

L ∞
1

e2t ↑ 1

)
.

Hence

E[B2] ↭ L
2
d
(
L ∞

1

t

)
.

Next,

E[A2] ∝ e
2t E[⇒↔ ln pe2t↓1(xe2t↓1)⇒

2] ∝ e
2t
e
↓2t

Ld ∝ Ld .

The result follows.

Finally, we use Lemma 3 to derive a bound on how much the score changes along the trajectory of
the probability flow ODE.
Corollary 1. Consider the setting of Lemma 3, and suppose 0 < s < t, h = t↑ s.

1. If s, t ↫ 1/L, then

E
[
⇒↔ ln q↔

t
(xt)↑↔ ln q↔

s
(xs)⇒

2
]
↭ L

3
dh

2
.

2. If
t

2 ∝ s ∝ t ↭ 1
L

, then

E
[
⇒↔ ln q↔

t
(xt)↑↔ ln q↔

s
(xs)⇒

2
]
↭ L

2
dh

2

t
.

Proof. By Lemma 3,

E
[
⇒↔ ln q↔

t
(xt)↑↔ ln q↔

s
(xs)⇒

2
]
= E

∥∥∥
∫

t

s

ϖu↔ ln q↔
u
(xu) du

∥∥∥
2

∝ (t↑ s)

∫
t

s

E[⇒ϖu↔ ln q↔
u
(xu)⇒

2] du

↭ h

∫
t

s

L
2
dmax


L,

1

u


du .

In the first case, this is bounded by O(L3
dh

2). In the second case, this is bounded by
O(L2

dh

t

s

1
u
du) = O(L2

dh ln(t/s)) = O(L2
dh

2
/t).
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C Predictor step

Next, we need an ODE discretization analysis.
Lemma 4. Suppose the score function satisfies Assumption 2. Assume that L ⇑ 1, h ↭ 1/L, and

T ↑ (t0 + h) ⇑ T↓t0
2 . Then

W2(qP
t0,h

ODE
, qP̂

t0,h

ODE
) ↭ Ld

1/2
h
2
(
L
1/2

∞
1

(T ↑ t0)
1/2

)
+ hωsc .

Proof. We have the ODEs

ẋt = xt +↔ ln qt(xt) ,

˙̂xt = x̂t + st0(x̂t0) ,

for t0 ∝ t ∝ t0 + h, with xt0 = x̂t0 ↓ q, xt0+h ↓ qPODE, and x̂t0+h ↓ qP̂ODE. Then,

ϖt⇒xt ↑ x̂t⇒
2 = 2 △xt ↑ x̂t, ẋt ↑

˙̂xt▽

= 2
(
⇒xt ↑ x̂t⇒

2 + △xt ↑ x̂t,↔ ln qt(xt) + st0(x̂t0)▽
)

∝
(
2 +

1

h

)
⇒xt ↑ x̂t⇒

2 + h ⇒↔ ln qt(xt)↑ st0(x̂t0)⇒
2
.

By Grönwall’s inequality, noting that h = O(1),

E[⇒xt0+h ↑ x̂t0+h⇒
2] ∝ exp

((
2 +

1

h

)
h
) ∫ t0+h

t0

hE[⇒↔ ln qt(xt)↑ st0(x̂t0)⇒
2] dt

↭ h

∫
t0+h

t0

E[⇒↔ ln qt(xt)↑ st0(x̂t0)⇒
2] dt . (14)

We split up the error term as

⇒↔ ln qt(xt)↑ st0(x̂t0)⇒
2 ↭ ⇒↔ ln qt(xt)↑↔ ln qt0(xt0)⇒

2 + ⇒↔ ln qt0(xt0)↑ st0(x̂t0)⇒
2
.

By Corollary 1, the expectation of the first term is bounded by

E[⇒↔ ln qt(xt)↑↔ ln qt0(xt0)⇒
2] ↭ L

2
dh

2
(
L ∞

1

T ↑ t0

)
.

The second term is bounded in expectation by ω
2
sc. Plugging back into (14) gives

E[⇒xt0+h ↑ x̂t0+h⇒
2] ↭ h

2
(
L
2
dh

2
(
L ∞

1

T ↑ t0

)
+ ω

2
sc

)
.

The Wasserstein distance is bounded by the square root of this quantity, and the lemma follows.

Lemma 4 suggests that focusing on the dependence on d, we will be able to take h ′ d
↓1/2 (we need

to keep one factor of h in the bound, as we need to sum up the bound over 1/h iterations).
Remark 2. Our improved score perturbation lemma is necessary to obtain this d1/2 dependence. The
original score perturbation lemma [LLT22, Lemma C.11–12] combined with a space discretization
bound gives a bound of

E
[
⇒↔ ln q↔

t
(xt)↑↔ ln q↔

s
(xs)⇒

2
]
↭ L

2
dh

in place of Corollary 1. Note this is a 1
2 -Hölder continuity bound rather than a Lipschitz bound. The

bound in Lemma 4 then becomes

W2(qP
t0,h

ODE
, qP̂

t0,h

ODE
) ↭ Ld

1/2
h
3/2 + hωsc ,

and we would only be able to take h ′ d
↓1. We also note that our bound has an extra factor of

max{L1/2
, (T ↑ t0)↓1/2

}; we do not know if this extra factor is necessary.

We now iterate Lemma 4 to obtain the following result. Note that we now need to also assume that
the score estimate is L-Lipschitz.
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Lemma 5. Suppose that both Assumptions 2 and 3 hold. Let h1, . . . , hN > 0 be a sequence such

that letting tN = h1 + · · ·+ hN , we have tN ∝ 1/L. Let hmax = max1↖n↖N hn.

1. If T ↑ (t0 + tN ) ↫ 1/L, then

W2(qP
t0,h1,...,hN

ODE
, qP̂

t0,h1,...,hN

ODE
) ↭ L

3/2
d
1/2

hmaxtN + ωsctN ∝ L
1/2

d
1/2

hmax +
ωsc

L
.

2. If T ↑ t0 ↭ 1/L and hn+1 ∝
T↓t0↓tn

2 for each n, then

W2(qP
t0,h1,...,hN

ODE
, qP̂

t0,h1,...,hN

ODE
) ↭ L

1/2
d
1/2

hmax + ωsctN ∝ L
1/2

d
1/2

hmax +
ωsc

L
.

Proof. We abbreviate PN

ODE
:= P

t0,h1,...,hN

ODE
and P̂

N

ODE
:= P̂

t0,h1,...,hN

ODE
. Using the triangle inequality,

W2(qP
N

ODE, qP̂
N

ODE) ∝ W2(qP
N

ODE, qP
N↓1
ODE

P̂ODE) +W2(qP
N↓1
ODE

P̂ODE, qP̂
N

ODE)

∝ O(Ld1/2h2
N
max{L1/2

, (T ↑ t0 ↑ tN )↓1/2
}+ hNωsc)

+ exp(O(LhN ))W2(qP
N↓1
ODE

, qP̂
N↓1
ODE

)

where the bound on the first term is by Lemma 4. By induction,

W2(qP
N

ODE, qP̂
N

ODE) ↭
N

n=1

(
Ld

1/2
h
2
n
max{L1/2

, (T ↑ t0 ↑ tn)
↓1/2

}+ hnωsc

)

⇔ exp(O(L (hn+1 + · · ·+ hN ))) .

By assumption, hn+1 + · · ·+ hN ∝ tN ∝ 1/L. In the first case, we get

W2(qP
N

ODE, qP̂
N

ODE) ↭ L
3/2

d
1/2

hmaxtN + ωsctN .

In the second case we get

W2(qP
N

ODE, qP̂
N

ODE) ↭ Ld
1/2

hmax

N

n=1

hn

(T ↑ t0 ↑ tn)
1/2

+ ωsctN ↭ L
1/2

d
1/2

hmax + ωsctN

by interpreting the summation as a Riemann sum, and noting that the condition hn+1 ∝
T↓t0↓tn

2

implies that this is a constant-factor approximation of the integral

T↓t0

T↓t0↓tN

1
t1/2

dt ↭
→
T ↑ t0.

Choice of step sizes. In the first case, we can take all the step sizes to be equal, but in the second
case, we may need to take decreasing step sizes. Given a target time T ↑ t0 ↑ tN = ϑ, by taking
h1 = hmax and then

hn = min

ϑ, hmax,

T ↑ t0 ↑ tn↓1

2


,

we can reach the target time in

N = O

( 1

Lhmax
+ ln

hmax

ϑ

)
steps .

D Corrector step

In §D.1 (resp. §D.2), we will show that if p, q are close in Wasserstein distance, then running the
corrector step based on the overdamped (resp. underdamped) Langevin diffusion starting from p and
from q for some amount of time results in distributions which are close in total variation distance. In
the end-to-end analysis in §E, we combine this “total variation to Wasserstein” regularization with the
Wasserstein discretization analysis of the predictor step in §C in order to establish our final results.

17



D.1 Corrector via overdamped Langevin

We will take the potential and score estimate defining the Markov kernels PLD and P̂LMC from §2.3
to be U and s respectively. Recall that these correspond respectively to running the overdamped
Langevin diffusion with stationary distribution q ⇓ exp(↑U) and running the discretized diffusion
with score estimate s, both for time h.

The main result of this section is to show that pP̂N

LMC
and q are close in total variation if p and q are

close in Wasserstein.
Theorem 4 (Overdamped corrector). For any Tcorr := Nh ↭ 1/L,

TV(pP̂N

LMC, q) ↭ W2(p, q)/
√

Tcorr + ωsc

√
Tcorr + L

√
dhTcorr .

In particular, for Tcorr ′ 1/L,

TV(pP̂N

LMC, q) ↭
→

LW2(p, q) + ωsc/

→

L+
→

Ldh .

We will bound TV(pPN

LD
, q) and TV(pP̂N

LMC
, pP

N

LD
) separately. For the former, we use the following

short-time regularization result:
Lemma 6 ([BGL01, Lemma 4.2]). If Tcorr ↭ 1/L, then

TV(pPN

LD, q) ↭

KL(pPN

LD
⇒ q) ↭ W2(p, q)/

√
Tcorr .

Proof. The first inequality is Pinsker’s inequality. The second inequality is a consequence of [BGL01,
Lemma 4.2], which gives a bound of KL(pPN

LD
⇒ q) ↭ L (1 + 1/(e2LTcorr ↑ 1))W 2

2 (p, q). The claim
then follows from simplifying by using Tcorr ↭ 1/L.

For the latter term, we introduce notation for two stochastic processes.

dx∝
t
= ↑↔U(x∝

t
) dt+

→

2 dBt , x
∝
0 ↓ q ,

dxt = ↑↔U(xt) dt+
→

2 dBt , x0 ↓ p .

Note that for any integer k ⇑ 0,

x
∝
kh

↓ qP
k

LD , xkh ↓ pP
k

LD .

Observe that marginally, qP k

LD
= q for any k ⇑ 0 because q is the stationary distribution of the

Langevin diffusion. The three processes are coupled by using the same Brownian motion and by
coupling x0 = x̂0 ↓ p and x

∝
0 ↓ q optimally.

Before we proceed to bound TV(pPN

LD
, pP̂

N

LMC
), we need the following simple lemma.

Lemma 7. If Tcorr ↭ 1/L, then

E[⇒xt ↑ x
∝
t
⇒
2] ↭ W

2
2 (p, q)

for all 0 ∝ t ∝ Tcorr.

Proof. By Itô’s formula,

d(⇒xt ↑ x
∝
t
⇒
2) = ↑2 △xt ↑ x

∝
t
,↔U(xt)↑↔U(x∝

t
)▽ ∝ 2L ⇒xt ↑ x

∝
t
⇒
2
.

By Grönwall’s inequality,
⇒xt ↑ x

∝
t
⇒
2
∝ e

2Lt
⇒x0 ↑ x

∝
0⇒

2
,

so that if we couple the two processes by coupling x0 and x
∝
0 optimally, we conclude that

E[⇒xt ↑ x
∝
t
⇒
2] ∝ e

2Lt E[⇒x0 ↑ x
∝
0⇒

2] = e
2Lt

W
2
2 (p, q) ↭ W

2
2 (p, q) ,

recalling that t ∝ Tcorr ↭ 1/L by hypothesis.

It remains to bound TV(pP̂N

LMC
, pP

N

LD
).
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Lemma 8. If Tcorr ↭ 1/L, then

TV(pP̂N

LMC, pP
N

LD) ↭

KL(pPN

LD
⇒ pP̂N

LMC
) ↭ L

√
Tcorr W2(p, q) + ωsc

√
Tcorr + L

√
dhTcorr .

Proof. As x and x̂ are driven by the same Brownian motion, by Girsanov’s theorem8 and the data
processing inequality we have

KL(pPN

LD ⇒ pP̂
N

LMC) ↭
N↓1

k=0

∫ (k+1)h

kh

E[⇒s(xkh)↑↔U(xu)⇒
2] du .

We can decompose the integrand as follows:
E[⇒s(xkh)↑↔U(xu)⇒

2] ↭ E
[
⇒s(xkh)↑ s(x∝

kh
)⇒2 + ⇒s(x∝

kh
)↑↔U(x∝

kh
)⇒2

+ ⇒↔U(x∝
kh
)↑↔U(x∝

u
)⇒2 + ⇒↔U(x∝

u
)↑↔U(xu)⇒

2
]

∝ L
2 E[⇒xkh ↑ x

∝
kh
⇒
2] + ω

2
sc + L

2 E[⇒x∝
kh

↑ x
∝
u
⇒
2] + L

2 E[⇒x∝
u
↑ xu⇒

2]

↭ L
2
W

2
2 (p, q) + ω

2
sc + L

2 E[⇒x∝
kh

↑ x
∝
u
⇒
2] (15)

where we used Lemma 7 to bound E[⇒x∝
u
↑ xu⇒

2].

It remains to bound E[⇒x∝
kh

↑ x
∝
u
⇒
2]. Note that

E[⇒x∝
kh

↑ x
∝
u
⇒
2] = E

∥∥∥
∫

u

kh

↑↔U(x∝
s
) ds+

→

2 (Bu ↑Bkh)
∥∥∥
2

↭ h

∫
u

kh

E[⇒↔U(x∝
s
)⇒2] ds+ dh

∝ Ldh
2 + dh ↭ dh ,

where in the last step we used that E[⇒↔U(x∝
u
)⇒2] ∝ Ld. Substituting this into (15), we obtain

KL(pPN

LD ⇒ pP̂
N

LMC) ↭ L
2
Tcorr W

2
2 (p, q) + ω

2
scTcorr + L

2
dhTcorr .

The claimed bound on TV(pPN

LD
, pP̂

N

LMC
) follows by Pinsker’s inequality.

Proof of Theorem 4. This is immediate from Lemma 6 and Lemma 8, recalling that Tcorr ↭ 1/L so
that the bound in Lemma 6 dominates the W2(p, q) term in Lemma 8.

D.2 Corrector via underdamped Langevin

Throughout, we set the friction parameter to

! ′

→

L .

We will take the potential and score estimate defining the Markov kernels PULD and P̂ULMC from §2.3
to be U and s respectively. Recall that these correspond respectively to running the underdamped
Langevin diffusion with stationary distribution q and running the discretized diffusion with score
estimate s, both for time h.

Given probability measures p and q, we write p := p↖ εd and q := q ↖ εd, where εd is the standard
Gaussian measure in Rd.

The main result of this section is to show that pP̂N

ULMC
and q are close in total variation if p and q

are close in Wasserstein. Compared to §D.1, the discretization error for the underdamped Langevin
diffusion is smaller.
Theorem 5 (Underdamped corrector). For Tcorr ↭ 1/

→
L,

TV(pP̂N

ULMC, q) ↭
W2(p, q)

L1/4T
3/2
corr

+
ωscT

1/2
corr

L1/4
+ L

3/4
T

1/2
corr d

1/2
h .

In particular, if we take Tcorr ′ 1/
→
L, then

TV(pP̂N

ULMC, q) ↭
→

LW2(p, q) + ωsc/

→

L+
→

Ldh .

8Although the validity of Girsanov’s theorem typically requires Novikov’s condition to be satisfied, this can
be avoided via an approximation argument as in [Che+23a].
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We will bound TV(pPN

ULD
, q) and TV(pP̂N

ULMC
,pPN

ULD
) separately. For the former, we use the

short-time regularization result of [GW12]:

Lemma 9. If Tcorr ↭ 1/
→
L, then

TV(pPN

ULD, q) ↭

KL(pPN

ULD
⇒ q) ↭ W2(p, q)

L1/4T
3/2
corr

.

Proof. This is a consequence of [GW12, Corollary 4.7 (1)]. The condition to check therein is their
Eq. (3.6), which in our setting is satisfied by the constants K1 = L and K2 = !. The Corollary then
states that for the cost function

cTcorr
((z, v), (z⇓, v⇓)) := inf

t≃(0,Tcorr]

t

2!

( 6

t2
+ L+

3!
2t

)
⇒z ↑ z

⇓
⇒+

(4
t
+

4Lt

27
+ !

)
⇒v ↑ v

⇓
⇒

2
,

we have KL(pPN

ULD
⇒ q) ∝ WcTcorr

(p↖ εd, q ↖ εd). For v = v
⇓ and Tcorr ↭ 1/

→
L, note that

cTcorr
((z, v), (z⇓, v)) ↭ 1

L1/2T 3
corr

⇒z ↑ z
⇓
⇒
2
,

so the claim follows by Pinsker’s inequality.

Next, we define the following processes: dz∝
t
= v

∝
t
dt, dzt = vt dt,

dv∝
t
= ↑!v∝

t
dt↑↔U(z∝

t
) dt+

√
2! dBt , (z∝0 , v

∝
0) ↓ q ,

dvt = ↑!vt dt↑↔U(zt) dt+
√

2! dBt , (z0, v0) ↓ p .

It follows that for any integer k ⇑ 0,

(z∝
kh
, v

∝
kh
) ↓ qP k

ULD = q , (zkh, vkh) ↓ pP k

ULD .

We couple these processes by using the same Brownian motion and coupling q ↖ εd and p ↖ εd

optimally (in particular, v0 = v
∝
0).

Before we proceed to bound TV(pPN

ULD
, pP̂

N

ULMC
), we start with the following lemma.

Lemma 10. If Tcorr ↭ 1/
→
L, then for all 0 ∝ t ∝ Tcorr,

E[⇒zt ↑ z
∝
t
⇒
2] ↭ W

2
2 (p, q) .

Proof. We have

↔U(zt)↑↔U(z∝
t
) =

(∫ 1

0
↔

2
U(zt + u (z∝

t
↑ zt)) du

)
(zt ↑ z

∝
t
) := Ht(zt ↑ z

∝
t
) ,

and the operator Ht satisfies
⇒Ht⇒op ∝ L .

Let ϱ := 2/!. For the vectors ϑt := (zt + ϱvt)↑ (z∝
t
+ ϱv

∝
t
) and ςt := zt ↑ z

∝
t

, we have

1

2
d(⇒ϑt⇒

2 + ⇒ςt⇒
2) = ↑(ϑt, ςt)

↭


(! ↑ 1
ϖ
) Id

1
2 (ϱHt ↑ ! Id)

1
2 (ϱHt ↑ ! Id) 1

ϖ
Id


(ϑt, ςt)

↭
→

L (⇒ϑt⇒
2 + ⇒ςt⇒

2) .

By Grönwall’s inequality,

⇒ϑt⇒
2 + ⇒ςt⇒

2
∝ e

O(
⇔
Lt) (⇒ϑ0⇒

2 + ⇒ς0⇒
2) ,

so if we couple the two processes by coupling z0 and z
∝
0 optimally and taking v0 = v

∝
0 , we obtain

E[⇒zt↑z
∝
t
⇒
2] ↭ E[⇒ϑt⇒2+⇒ςt⇒

2] ∝ e
O(

⇔
Lt) E[⇒ϑ0⇒2+⇒ς0⇒

2] ↭ e
O(

⇔
Lt)

W
2
2 (p, q) ↭ W

2
2 (p, q) ,

recalling that t ∝ Tcorr ↭ 1/
→
L by hypothesis.

It remains to bound TV(pP̂N

ULMC
,pPN

ULD
).
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Lemma 11. If Tcorr ↭ 1/
→
L, then

TV(pP̂N

ULMC,pP
N

ULD) ↭

KL(pPN

ULD
⇒ pP̂N

ULMC
)

↭ L
3/4

T
1/2
corr W2(p, q) + L

↓1/4
T

1/2
corr ωsc + L

3/4
T

1/2
corr d

1/2
h .

Proof. As (z, v) and (z∝, v∝) are driven by the same Brownian motion, by Girsanov’s theorem9 and
the data processing inequality we have

KL(pPN

ULD ⇒ pP̂N

ULMC) ↭
1

!

N↓1

k=0

∫ (k+1)h

kh

E[⇒s(zkh)↑↔U(zu)⇒
2] du .

We can decompose the integrand as follows:
E[⇒s(zkh)↑↔U(zu)⇒

2] ↭ E
[
⇒s(zkh)↑ s(z∝

kh
)⇒2 + ⇒s(z∝

kh
)↑↔U(z∝

kh
)⇒2

+ ⇒↔U(z∝
kh
)↑↔U(z∝

u
)⇒2 + ⇒↔U(z∝

u
)↑↔U(zu)⇒

2
]

∝ L
2 E[⇒zkh ↑ z

∝
kh
⇒
2] + ω

2
sc + L

2 E[⇒z∝
kh

↑ z
∝
u
⇒
2] + L

2 E[⇒z∝
u
↑ zu⇒

2]

↭ L
2
W

2
2 (p, q) + ω

2
sc + L

2 E[⇒z∝
kh

↑ z
∝
u
⇒
2] , (16)

where we applied Lemma 10.

It remains to bound E[⇒z∝
kh

↑ z
∝
u
⇒
2]. Note that

E[⇒z∝
kh

↑ z
∝
u
⇒
2] = E

∥∥∥
∫

u

kh

v
∝
s
ds

∥∥∥
2

∝ h

∫
u

kh

E[⇒v∝
s
⇒
2] ds ∝ dh

2
,

where in the last step we used the fact that v∝
s
↓ εd. Substituting this into (16), we conclude that

KL(pPN

ULD ⇒ pP̂N

ULMC) ↭ L
3/2

Tcorr W
2
2 (p, q) + L

↓1/2
Tcorrω

2
sc + L

3/2
dh

2
Tcorr .

The claimed bound on TV(pPN

ULD
,pP̂N

ULMC
) follows by Pinsker’s inequality.

Proof of Theorem 5. This is immediate from Lemma 9 and Lemma 11, recalling that Tcorr ↭ 1/
→
L

so that the bound in Lemma 9 dominates the W2(p, q) term in Lemma 11.

Remark 3. In all other sections of this paper, we abuse notation as follows. Given a distribution p on
Rd, we write pP̂ULMC to denote the projection onto the z-coordinate of pP̂ULMC, i.e., we view P̂ULMC

as a Markov kernel on Rd rather than on Rd
⇔ Rd (and similarly for PULD).

E End-to-end analysis

Lemma 12 (TV error after one round of predictor and corrector). Choose predictor step sizes

h1, . . . , hNpred
as in Lemma 5 with Tpred = h1+ · · ·+hNpred

∝ 1/L. That is, if T ↑ t0↑Tpred ↭ 1/L,

then we ensure that hn+1 ∝
T↓t0↓h1↓···↓hn

2 for all n, and if T ↑ t0 ↫ 1/L, then we can take

h1 = · · · = hN . Let hpred := max1↖n↖Npred
hn and abbreviate P

(Npred)
ODE

:= P
t0,h1,...,hNpred

ODE
(and

similarly for P̂ODE).

1. Consider running the overdamped Langevin corrector for time Tcorr ′ 1/L, step size hcorr,

and stationary distribution qt0P
(Npred)
ODE

= qt0+Tpred
; set Ncorr = Tcorr/hcorr. Then,

TV(pP̂
(Npred)
ODE

P̂
Ncorr

LMC
, qt0+Tpred

) ∝ TV(p, qt0) +O

(
L

→

d hpred +
√
Ldhcorr +

ωsc
→
L

)
.

2. Consider running the underdamped Langevin corrector for time Tcorr ′ 1/
→
L, step size

hcorr, and stationary distribution qt0P
(Npred)
ODE

= qt0+Tpred
; set Ncorr = Tcorr/hcorr. Then,

TV(pP̂
(Npred)
ODE

P̂
Ncorr

ULMC
, qt0+Tpred

) ∝ TV(p, qt0) +O

(
L

→

d hpred +
→

Ldhcorr +
ωsc
→
L

)
.

9Again, we can avoid checking Novikov’s condition using the approximation argument of [Che+23a].
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Proof. By the triangle inequality and the data-processing inequality,

TV(pP̂
(Npred)
ODE

P̂
Ncorr

LMC
, qt0+Tpred

)

∝ TV(pP̂
(Npred)
ODE

P̂
Ncorr

LMC
, qt0 P̂

(Npred)
ODE

P̂
Ncorr

LMC
) + TV(qt0 P̂

(Npred)
ODE

P̂
Ncorr

LMC
, qt0+Tpred

)

∝ TV(p, qt0) + TV(qt0 P̂
(Npred)
ODE

P̂
Ncorr

LMC
, qt0+Tpred

) .

For overdamped Langevin, applying Theorem 4,

TV(qt0 P̂
(Npred)
ODE

P̂
Ncorr

LMC
, qt0+Tpred

) ↭
→

LW2(qP̂
(Npred)
ODE

, qt0+Tpred
) + ωsc/

→

L+
√
Ldhcorr . (17)

For the Wasserstein term, Lemma 5 yields

W2(qt0 P̂
(Npred)
ODE

, qt0+Tpred
) = W2(qt0 P̂

(Npred)
ODE

, qt0P
(Npred)
ODE

) ↭
→

Ldhpred +
ωsc

L
.

Combining these bounds yields the result for the overdamped corrector. For the underdamped
corrector, we modify (17) by replacing the use of Theorem 4 with Theorem 5.

We also need the following lemma on the convergence of the OU process.
Lemma 13. Let (q↔

t
)
t↗0 denote the marginal law of the OU process started at q

↔
0 = qω. Then, for

all T ↫ 1, it holds that

TV(q↔
T
, ε

d) ↭ (
→

d+m2) exp(↑T ) .

Proof. This follows from [CLL23, Lemma C.4]. Alternatively, using the short-time regularization
result of [BGL01, Lemma 4.2] for time t0 ′ 1 and the Wasserstein contraction of the OU process,

TV(q↔
T
, ε

d) ↭

KL(q↔

T
⇒ εd) ↭

W2(q↔T↓t0
, ε

d)
→
t0

∝ exp(↑(T ↑ t0))W2(qω, ε
d) .

The result follows from W2(qω, εd) ∝ W2(qω, ϑ0) +W2(ϑ0, εd) ∝ m2 +
→
d.

We now prove our main theorems.

Proof of Theorems 2 and 3. For t ↘ [0, T ], let pt := law(x̂t). From Lemma 13,

TV(p0, q0) = TV(q↔
T
, ε

d) ↭ (
→

d+m2) exp(↑T ) .

We divide our analysis according to the two stages of the algorithm. In the first stage, after iterating
Lemma 12 for N0 ′ LT steps,

TV(pT↓hpred
, qT↓hpred

) ∝ TV(p0, q0) +O

(
L

→

d hpred +
→

Ldh
p
corr +

ωsc
→
L

)
⇔N0

↭ (
→

d+m2) exp(↑T ) + L
2
Td

1/2
hpred + L

3/2
Td

1/2
h
p
corr + L

1/2
Tωsc

where p = 1
2 if we use the overdamped corrector and p = 1 if we use the underdamped corrector.

Applying the second part of Lemma 12 for the second stage of the algorithm, we then conclude that

TV(pT↓ε, qT↓ε) ↭ (
→

d+m2) exp(↑T ) + L
2
Td

1/2
hpred + L

3/2
Td

1/2
h
p
corr + L

1/2
Tωsc .

Finally, we note that if we take ϑ ′
ϑ
2

L2 (d⇑m2
2)

, then by [LLT23, Lemma 6.4], TV(qT↓ε, qT ) ∝ ω; a
triangle inequality thus finishes the proof.

Remark 4. Alternatively, instead of taking geometrically decreasing step sizes and employing early
stopping, we could split the algorithm into two stages: for time t < T ↑ hpred, we take constant step
size hpred, and for time t > T ↑ hpred, we use a smaller constant step size h

⇓ as required if working
with the original score perturbation lemma (see Remark 2).
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F Numerical experiments

In this section, we provide preliminary numerical experiments to illustrate our theory. We implement
DPUM on a toy model that is not log-concave (mixture of Gaussians).

Setup. The target distribution is a mixture of five Gaussians in dimension 5. On Figures 1 and 2,
the red stars represent the means of the Gaussians and the red ellipses around the stars represent
the variances of the Gaussians. We start by sampling 500 independent points (in blue) from a
standard Gaussian. Then, we run DPUM from the blue dots over 300 iterations and plot the two first
coordinates of the dots at iterations 0, 100, 200 and 300. This is a low-dimensional toy example so it
does not illustrate our theory, rather we include it as a simple sanity check.

Parameters. We use a closed form formula for the score along the forward process. In other words,
the score estimation error is equal to zero. The step size of the predictor is 0.01 and the step size of
the corrector is 0.001. The corrector consists in 3 steps of the underdamped Langevin algorithm. In
the latter algorithm, we initialize the velocity as a centered Gaussian random variable with standard
deviation 0.001 and set the parameter ε to 0.01.

Observations. We observe the expected behavior: although the target distribution is highly non-log-
concave, DPUM is able to provide samples from a distribution that is close to the target distribution.
In particular, the initial Gaussian distribution splits in clusters that will fit each component of the target
mixture of Gaussians. Recall that we experiment without score error but with discretization error:
our numerical results illustrate the common wisdom that score knowledge along the forward process
can replace convexity assumptions. In particular, we observe that even isolated, low probability
components of the Gaussian mixture, are recovered by DPUM.

Figure 1: A realization of DPUM for a mixture of Gaussians.
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Figure 2: A realization of DPUM for another mixture of Gaussians.
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