
Journal of Machine Learning Research 24 (2023) 1-34 Submitted 6/22; Published 7/23

Single Timescale Actor-Critic Method to Solve the Linear Quadratic

Regulator with Convergence Guarantees

Mo Zhou MO.ZHOU366@DUKE.EDU
Department of Mathematics
Duke University
Durham, NC 27708, USA

Jianfeng Lu JIANFENG@MATH.DUKE.EDU

Department of Mathematics, Department of Physics, and Department of Chemistry
Duke University
Durham, NC 27708, USA

Editor: John Shawe-Taylor

Abstract

We propose a single timescale actor-critic algorithm to solve the linear quadratic regulator (LQR)
problem. A least squares temporal difference (LSTD) method is applied to the critic and a natural
policy gradient method is used for the actor. We give a proof of convergence with sample complex-
ity O("�1 log("�1)2). The method in the proof is applicable to general single timescale bilevel
optimization problems. We also numerically validate our theoretical results on the convergence.

Keywords: linear quadratic regulator, actor-critic, reinforcement learning, single timescale

1. Introduction

Reinforcement learning (RL) is a semi-supervised learning model that learns to take actions and
interact with the environment in order to maximize the expected reward (Sutton and Barto, 2018).
It has a wide range of applications, including robotics (Kober et al., 2013), traditional games (Silver
et al., 2016), and traffic light control (Wiering, 2000). RL is closely related to the optimal control
problem (Bertsekas, 2019), where one usually minimizes the expected cost instead of maximizing
the reward. Among all the control problems, the LQR (Anderson and Moore, 2007) is the cleanest
setup to analyze theoretically and has many applications (Hashim, 2019; Ebrahim et al., 2010).
Many research has been devoted to LQR. Early research mostly focused on model-based methods,
such as deriving the explicit solution of the LQR with known dynamics. This research showed that
the optimal control is a linear function of the state and the coefficient can be obtained by solving
the Riccati equation (Anderson and Moore, 2007). Recent research focuses more on the model-
free setting in the context of RL, where the algorithm does not know the dynamic and has only
observations of states and rewards (Tu and Recht, 2018; Mohammadi et al., 2021).

The actor-critic method (Konda and Tsitsiklis, 2000) is a class of algorithms that solve the RL
or optimal control problems through alternately updating the actor and the critic. In this framework,
we solve for both the control and the value function, which is the expected cost w.r.t. the initial
state (and action). The control is known as the actor, so in the actor update, we improve the control
in order to minimize the cost; i.e., policy improvement. The value function is known as the critic.

c�2023 Mo Zhou and Jianfeng Lu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/22-0644.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0644.html

ZHOU AND LU

Hence, in the critic update, we evaluate a fixed control through computing the value function; i.e.,
policy evaluation.

On a broader scale, the actor-critic method belongs to the bilevel optimization problem (Sinha
et al., 2017; Bard, 2013), as it is an optimization problem (higher-level problem) whose constraint
is another optimization problem (lower-level problem). In the actor-critic method, the higher-level
problem is to minimize the cost (the actor) and the lower-level problem is to let the critic be equal to
value function corresponding to the control, which is equivalent to minimizing the expected squared
Bellman residual (Bradtke and Barto, 1996). The major difficulty of a bilevel optimization problem
is that when the lower-level problem is not solved exactly, the error could propagate to the higher-
level problem and accumulate in the algorithm. One approach to overcome this problem is the two
timescale method (Konda and Tsitsiklis, 2000; Wu et al., 2020; Zeng et al., 2021), where the update
of lower-level problem is in a time scale that is much faster than the higher-level one. This method
suffers from high computational costs because of the lower-level optimization. Another method is
to modify the update direction to improve accuracy (Kakade, 2001), which also introduces extra
cost. In order to reduce the cost, we seek an efficient single timescale method to solve LQR.

1.1 Our contributions

In this paper, we consider a single timescale actor-critic algorithm to solve the LQR problem. We
apply an LSTD method (Bradtke and Barto, 1996) for the critic and a natural policy gradient method
(Kakade, 2001) for the actor. For the critic, we derive an explicit expression for the gradient and
design a sample method with the desired accuracy, with access to multiple next-step samples from
a state. For the actor, we apply a natural policy gradient method borrowed from Fazel et al. (2018).
We give a proof of convergence with sample complexity O("�1 log("�1)2) to achieve an "-optimal
solution. The major challenge is to analyze the interdependent actor and critic part of the algorithm
and give bounds for the errors. To the best of our knowledge, our work is the first single timescale
actor-critic method to solve the LQR problem with provable guarantees.

Our work not only solves the specific LQR problem but also advances the study of convergence
for single timescale bilevel optimization. In our proof of convergence, we construct a Lyapunov
function that involves both the critic error and the actor loss. We show that there is a contraction
of the Lyapunov function in the algorithm. If we consider the actor and the critic separately, the
critic error becomes an issue when we want to show an improvement of the actor and vice versa.
Therefore, the higher and lower level problems have to be analyzed simultaneously for a single
timescale algorithm.

1.2 Related works

Let us compare our work with related ones in the literature. Perhaps the most closely related work
to ours is by Fu et al. (2020). They consider a single timescale actor-critic method to solve the
optimal control problem with discrete state and action spaces, while we solve the LQR problem
with continuous state and action spaces. They add an entropy regularization in the loss function and
achieve a sample complexity of O("�2) with linear parameterization.

For two timescale approaches, Yang et al. (2019) study a two timescale actor-critic algorithm
to solve the LQR problem in continuous space. They also use a natural policy gradient method
for the actor (Fazel et al., 2018). For the critic, they reformulate policy evaluation into a minimax
optimization problem using Fenchel’s duality. Several critic steps are performed between two actor

2

SINGLE TIMESCALE ACTOR-CRITIC LQR

steps and their final sample complexity is O("�5). Zeng et al. (2021) study a bilevel optimization
problem that is applied to a two timescale actor-critic algorithm on LQR. They obtain a complexity
of O("�3/2). They have assumed strong convexity of the higher-level loss function (actor) while
our analysis does not require such assumptions.

Besides model-free approaches, another way to solve the LQR problem is to first learn the model
through the system identification approach and then solve the model-based LQR. For example, Dean
et al. (2020) use a least square system identification approach to learn the model parameter and then
solve the LQR, with sample complexity O("�2). Their work is further improved by Mania et al.
(2019), who study the certainty equivalent controller on LQ problem, under both fully observed and
partially observed settings.

As can be seen from the above discussions, our single timescale algorithm achieves a lower sam-
ple complexity O("�1 log("�1)2), which is an improvement over previously proposed algorithms.

For the general bilevel optimization problem, we refer the reader to Chen et al. (2022), where
the authors summarize the existing bilevel algorithms and propose a STABLE method with O("�1)
sample complexity under strong convexity assumption.

The rest of this paper is organized as follows. In Section 2, we introduce the theoretical back-
ground of the LQR problem. In Section 3, we describe the algorithm for the LQR problem and our
choice of parameters. In Section 4, we give the outline of the convergence proof of the algorithm,
with proof details in the appendix. The numerical examples are also deferred to the appendix.

2. Theoretical background

First, we clarify some notations. We use k · k to denote the operator norm of a matrix and k · kF

to denote the Frobenius norm of a matrix. When we write M � c where M is a symmetric matrix
and c is a number, we mean M � cI is positive semi-definite. Similarly, M > c means M � cI is
positive definite.

We consider a discrete-time Markov process {xs} on a filtered probability space (⌦,F , {Fs},P):
xs+1 = Axs +Bus + ⇠s,

where xs 2 Rd is an adapted state process, us 2 Rk is the adapted control process, A 2 Rd⇥d and
B 2 Rd⇥k are two fixed matrices. ⇠s ⇠ N(0, D⇠) is independent noise. The initial state x0 follows
certain distribution that will be specified later.

The goal is to minimize the infinite horizon cost functional

J({us}) = lim
S!1

E
"
1

S

S�1X

s=0

c(xs, us)

#
, (1)

where c(x, u) = x>Qx+ u>Ru is the one-step cost, with Q 2 Rd⇥d and R 2 Rk⇥k being positive
definite. Theoretical results guarantee that the optimal control u⇤ is linear in x: u⇤s = �K⇤xs. If the
model is known, we can obtain the optimal control parameter by K⇤ = (R + B>P ⇤B)�1B>P ⇤A
where P ⇤ is the solution to the Riccati equation (Anderson and Moore, 2007)

P ⇤ = Q+A>P ⇤A�A>P ⇤B(R+B>P ⇤B)�1B>P ⇤A. (2)

In this work, we consider the model-free setting (i.e., the algorithm does not have access to A, B,
D⇠, Q, R). We will use a stochastic policy parametrized as

us ⇠ ⇡K := N(�Kxs,�
2Ik) (3)

3

ZHOU AND LU

to encourage exploration, where � > 0 is a fixed constant. Here, we use ⇡K to denote the distribu-
tion while we will not distinguish in notation a probability distribution with its density. We remark
that adding exploration does not change the optimal K⇤ because the optimal policy parameters with
or without exploration satisfy the same Riccati equation while adding exploration would help the
convergence of the algorithm. Under this policy, the cost functional (1) is also denoted by J(K)
and the state trajectory can be rewritten as

xs+1 = Axs +B(�Kxs + �!s) + ⇠s =: (A�BK)xs + ✏s

where !s ⇠ N(0, Ik) and ✏s ⇠ N(0, D✏) with D✏ = D⇠ +�2BB> being positive definite. Let ⇢(·)
denote the spectral radius of a matrix. When ⇢(A � BK) < 1, the state process has a stationary
distribution N(0, DK), where DK 2 Rd⇥d satisfies the Lyapunov equation

DK = D✏ + (A�BK)DK(A�BK)>. (4)

In order to understand (4), let us assume that x ⇠ N(0, DK) follows the stationary distribution.
Then, x0 = (A�BK)x+ ✏ ⇠ N(0, (A�BK)DK(A�BK)> +D✏) also follows the stationary
distribution, which leads to (4). DK can also be expressed in terms of a series: since ⇢(A�BK) <
1, we can recursively plug in the definition of DK into the right hand side of (4) and obtain

DK =
1X

s=0

(A�BK)sD✏((A�BK)>)s. (5)

From here on, the notation EK means the expectation with x (or x0) ⇠ N(0, DK) if not specified
and u (or us) ⇠ ⇡K . The state-action value function (Q function) and the state value function with
respect to a control {us} are defined by

Q(x, u) =
1X

s=0

(E [c(xs, us) | x0 = x, u0 = u]� J({us}))

V (x) =
1X

s=0

(E [c(xs, us) | x0 = x]� J({us})) = Eu [Q(x, u)]

(6)

respectively. V (x) is the expected extra cost if we start at x0 = x and follow a given policy. Q(x, u)
is the expected extra cost if we start at x0 = x, take the first action u0 = u, and then follow a given
policy. These two functions are crucial in reinforcement learning. If the policy ⇡K follows (3), then
the two functions in (6) are denoted by QK(x, u) and VK(x) respectively. By definition, for any x
and u, it satisfies the Bellman equation:

QK(x, u) = c(x, u)� J(K) + EK
⇥
QK(x0, u0) | x, u

⇤
, (7)

where (x0, u0) is the next state-action pair starting from (x, u).
We define PK as the solution to the following matrix valued equation

PK = (Q+K>RK) + (A�BK)>PK(A�BK). (8)

PK can be interpreted as the second order adjoint state, and PKxt is the shadow price for the
system (see for example Yong and Zhou (1999)). We have the following two properties to illustrate
the importance of PK . The proofs are deferred to the appendix.

4

SINGLE TIMESCALE ACTOR-CRITIC LQR

Proposition 1 Let the policy ⇡K be defined by (3) with ⇢(A � BK) < 1. Then the cost function
and its gradient w.r.t. K have the following explicit expressions:

J(K) = Tr(D✏PK) + �2Tr(R), (9)

rKJ(K) = 2
h
(R+B>PKB)K �B>PKA

i
DK . (10)

Remark 1 In the LQR problem, we usually assume that DK is positive definite and hence in-
vertible. Therefore, the critical point for J(K) (i.e., when rKJ(K) = 0) satisfies K = (R +
B>PKB)�1B>PKA. If we substitute this into (8), we recover the Riccati equation (2).

Proposition 2 Let the policy ⇡K be defined by (3) with ⇢(A�BK) < 1. Then the value functions
have the following explicit expressions:

VK(x) = x>PKx� Tr(DKPK),

QK(x, u) =
⇥
x> u>

⇤ Q+A>PKA A>PKB
B>PKA R+B>PKB

� 
x
u

�

� �2Tr(R+ PKBB>)� Tr(DKPK). (11)

If we concatenate x and u in the dynamic equation, the process can be written as


xs+1

us+1

�
=


A B

�KA �KB

� 
xs
us

�
+


⇠s

�K⇠s + �!s

�
.

We simplify the expression by introducing some new notations: zs = [x>s , u
>
s]

>, thus zs+1 =
Ezs + e✏s, where

E =


A B

�KA �KB

�
, and e✏s ⇠ N(0,⌃✏) := N

✓
0,


D⇠ �D⇠K>

�KD⇠ KD⇠K> + �2Ik

�◆
. (12)

The ergodicity of the dynamics is guaranteed if ⇢(A � BK) = ⇢(E) < 1, where the identity
⇢(A�BK) = ⇢(E) can be verified from

⇢(E) = ⇢

✓
Id
�K

� ⇥
A B

⇤◆
= ⇢

✓⇥
A B

⇤  Id
�K

�◆
= ⇢(A�BK).

The stationary distribution for z is given by

z ⇠ N(0,⌃K) := N

✓
0,


DK �DKK>

�KDK KDKK> + �2Ik

�◆
(13)

and we have ⌃K = ⌃✏ + E⌃KE>.

5

ZHOU AND LU

3. The actor-critic algorithm

In this section, we present our specific design of the algorithm under the actor-critic framework. We
apply an LSTD method for the policy evaluation (critic), with a detailed description for sampling
the gradient of the loss function. We also use a natural policy gradient method for the policy im-
provement (actor). We will use Gt to denote the filtration generated by the training process. We
use O(a) to denote a quantity that is is bounded by a constant times a, where this constant only
depends on the problem setting (A, B, D✏, Q, R, �) and does not depend on the target accuracy or
training trajectory. The dependence of the constants on the dimensions is explained in the proof of
our theorem.

3.1 Policy evaluation for the critic

In this subsection, we describe the policy evaluation algorithm for a fixed policy ⇡K . We parametrize
the state-action value function by Q✓

K with ✓ as a parameter and subscript K indicating that it de-
pends on the given policy ⇡K . We define the Bellman residual w.r.t. the critic parameter ✓ as

BR✓(x, u) = c(x, u)� J(K) + EK

h
Q✓

K(x0, u0)|x, u
i
�Q✓

K(x, u).

Recall the exact Q function is given by (11), accordingly, we define a feature matrix

�(x, u) =


x
u

� ⇥
x> u>

⇤
2 R(d+k)⇥(d+k) (14)

and parametrize the Q function as

Q✓
K(x, u) = Tr(�(x, u)✓)� ✓0, (15)

where ✓ 2 R(d+k)⇥(d+k) and ✓0 2 R. Here, we denote

✓ =


✓11 ✓12

✓21 ✓22

�
, which intends to approximate ✓K =


Q+A>PKA A>PKB
B>PKA R+B>PKB

�
. (16)

The scalar parameter ✓0 is to approximate �2Tr(R+ PKBB>) + Tr(DKPK). Recall the Bellman
equation (7), with parametrization (15), the Bellman residual is written as

BR✓(x, u) = c(x, u)� J(K) + hEK
⇥
�(x0, u0)|x, u

⇤
� �(x, u), ✓i

=: c(x, u)� J(K) + h (x, u), ✓i,

where h·, ·i is the trace inner product and we have defined (x, u) := EK [�(x0, u0)|x, u]� �(x, u)
for convenience. It is clear by definition that EK [(x, u)] = 0 (recall that x follows the stationary
distribution N(0, DK)). The loss function for critic is then defined as the expectation of squared
Bellman residual:

LK(✓) =
1

2
EK

⇥
BR✓(x, u)

2
⇤
=

1

2
EK

h
(c(x, u)� J(K) + h (x, u), ✓i)2

i
. (17)

We will find that ✓0 does not affect the training, so only ✓ will be considered as the critic parameter
from now on. According to the Bellman equation (7), the unique minimizer of (17) is the true

6

SINGLE TIMESCALE ACTOR-CRITIC LQR

parameter for the Q function w.r.t. ⇡K . By direct computation, the gradient (as a matrix) and
Hessian (as a tensor) of the loss function w.r.t. ✓ are

rLK(✓) = EK [(c(x, u)� J(K) + h (x, u), ✓i) (x, u)]

= EK [(c(x, u) + h (x, u), ✓i) (x, u)]
(18)

and
r

2LK(✓) = EK [(x, u)⌦ (x, u)] ,

where ⌦ denotes the tensor product. The loss function LK is strongly convex in ✓, as will be shown
later.

To minimize the loss (17), we use stochastic gradient descent method. Thus, we need an accurate
sample estimate of rLK(✓) for given K and ✓. For simplicity of notation, we denote

f(x, u) := (c(x, u) + h (x, u), ✓i) (x, u) = c(x, u) (x, u) + ((x, u)⌦ (x, u)) · ✓ (19)

so that rLK(✓) = EK [f(x, u)]. Note that f(x, u) depends on ✓ and K, while we suppress that in
the notation. We decompose the sampling into three steps: we firstly sample (x, u), then sample
f(x, u) accordingly, and finally give estimate of rLK(✓).

For the first step, we use the Markov chain Monte Carlo (MCMC) method (Gilks et al., 1995).
Let N0 and N be two integers that will be determined according to the error tolerance. Starting
at x0 = 0, we sample N independent trajectories of length N0 + 1 according to the policy ⇡K .
So, we obtain N samples {(x(i)N0

, u(i)N0
)}Ni=1 that follow the distribution of (xN0 , uN0). For each pair

(x(i)N0
, u(i)N0

), we generate N1 unbiased sample for (x(i)N0
, u(i)N0

), given by

b (i)
j = �(x(i,j), u(i,j))� �(x(i)N0

, u(i)N0
) j = 1, 2, · · · , N1

where x(i,j), u(i,j) are sampled independently and follow the next step distribution conditioned on
(x(i)N0

, u(i)N0
). Here, N1 is another predefined hyperparameter.

In the second step, we denote the mean of b (i)
j by ̄(i) = 1

N1

PN1
j=1

b (i)
j . Therefore, we can

obtain an unbiased sample for f(x(i)N0
, u(i)N0

) by

bf(x(i)N0
, u(i)N0

) =
1

N1

N1X

j=1

c(x(i)N0
, u(i)N0

) b (i)
j

+


1

N1

N1X

j=1

b (i)
j ⌦ b (i)

j �
1

N1 � 1

N1X

j=1

(b (i)
j � ̄(i))⌦ (b (i)

j � ̄(i))

�
· ✓.

(20)

Note that the first and second terms in the square bracket are unbiased samples for E[b (i)
j ⌦

b (i)
j] and Cov(b (i)

j) respectively, which implies that the square bracket is an unbiased sample for

 (x(i)N0
, u(i)N0

) ⌦ (x(i)N0
, u(i)N0

). Note that we require N1 � 2, which implies our algorithm is not a
pure online method.

Finally, the sample of gradient rLK(✓) is given by

drLK(✓) =
1

N

NX

i=1

bf(x(i)N0
, u(i)N0

). (21)

7

ZHOU AND LU

The one-step sample complexity is O(N0N1N). We remark that our LSTD is similar to a TD(0)
algorithm, except that we have N trajectories and we omit J(K) in (18). Denote LKt(✓) by Lt(✓)
for simplicity. We also denote ✓t the critic parameter at step t. The gradient sample at step t (in
matrix form) is denoted by drLt(✓t) and the critic update is given by

✓t+1 = ✓t � ↵t
drLt(✓t),

where ↵t is the step size for the critic.

3.2 Policy improvement for the actor

For the actor algorithm, we borrow the idea from Fazel et al. (2018) which considered a policy
gradient algorithm for the LQR problem. A similar approach is also studied by Yang et al. (2019);
Zeng et al. (2021).

Motivated by the form of the gradient (10), we define

GK := (R+B>PKB)K �B>PKA, (22)

so that rKJ(K) = 2GKDK . Therefore, a vanilla policy gradient algorithm looks like

Kt+1 = Kt � �tGKtDKt ,

where GKt and DKt may be replaced by some estimates and �t is the step size for the actor.
Instead of the vanilla policy gradient, we would consider the commonly used variant known as

the natural policy gradient method (Kakade, 2001). The natural policy gradient uses the inverse
Fisher information matrix to precondition the gradient so that the gradient is taken w.r.t. the metric
induced by the Hessian of the loss function (Peters and Schaal, 2008). This method has been studied
in e.g., (Kakade, 2001; Peters and Schaal, 2008; Bhatnagar et al., 2009; Liu et al., 2020). The Fisher
information matrix at each state x is given by

Fx(K) = Eu⇠⇡K [rK log(⇡K(u|x))⌦rK log(⇡K(u|x))] , (23)

which is a tensor in Rk⇥d
⌦Rk⇥d as K 2 Rk⇥d is a matrix. Then, the (average) Fisher information

matrix is defined as

F (K) = Ex⇠N(0,DK) [Fx(K)] = EK [rK log(⇡K(u|x))⌦rK log(⇡K(u|x))] .

Under the metric induced by the Hessian, the steepest descent direction of J(K) is given by

�erJ(K) = �F (K)�1
rKJ(K) = �2F (K)�1GKDK ,

where for F (K)�1, we view the tensor F (K) as a linear operator Rk⇥d
! Rk⇥d, so F (K)�1 is

the inverse operator. The following property gives a simple expression of erJ(K). The proof is in
the appendix.

Proposition 3 We have
erJ(K) = 2�2GK . (24)

Recall that GK = (R + B>PKB)K � B>PKA. Hence, GK = ✓22KK � ✓21K where ✓K is the true
parameter w.r.t. policy ⇡K , given by (16). Therefore, the actor update is given by

Kt+1 = Kt � �t(✓
22
t Kt � ✓21t) =: Kt � �t bGKt , (25)

where the constant 2�2 is absorbed in the step size �t and we have defined bGKt := ✓22t Kt � ✓21t .
Recall that we use Gt to denote the filtration generated by the training process. Since Kt+1 is
deterministic in ✓t and Kt, Kt+1 is Gt-measurable.

8

SINGLE TIMESCALE ACTOR-CRITIC LQR

3.3 Assumptions and main result

Here we state some technical assumptions for our result.

Assumption 1 We assume that

1. There exists a constant ⇢ 2 (0, 1) such that ⇢(A�BKt) = ⇢(Et)  ⇢, for all t.

2. There exist constants cA, cE , c✓, cK > 0 such that kA�BKtk  cA, kEtk  cE , k✓tkF  c✓,
and kK⇤

k, kKtk  cK for all t.

3. D✏ is positive definite with minimum eigenvalue �min(D✏) > 0.

Remark 2 In the assumption, Et is defined by (12) with K replaced by Kt. The first assumption
is common in the analysis of the LQR problem (Fazel et al., 2018; Yang et al., 2019). A theoretical
guarantee for this condition is hard to obtain, while we will present some numerical examples to
support this assumption. The second assumption gives upper bounds for several matrices, which
is made to avoid technical tedious works to control the probability of the random trajectory hitting
unfavorable regions. One potential way to alleviate this assumption is to define a projection map
that reduces the size of ✓t or Kt whenever it is out of range (Konda and Tsitsiklis, 2000; Bhatnagar
et al., 2009), which is left for future work. The third assumption is necessary to make the problem
non-degenerate (cf. Lemma 7 below).

Next, we specify the choice of parameters in the algorithm. We initialize ✓0 = 0, K0 = 0 for
simplicity. Fixing the error tolerance " > 0, we set the step sizes ↵t and �t to be constant in t:

↵t =
�min(D✏)

16c2Lc3
" �t =

�min(D✏)

16c2Lc3
2
" (26)

where

 = max

✓
3�min(D✏)

2c3µ�
,

4c21
µ��min(D✏)

,
3cDc2K
µ�

◆
. (27)

Here, every parameter appearing in (26) and (27), except ↵t, �t, or ", are constants of order O(1):
1. c2L is the upper bound for E[kdrLt(✓t)k2F | Gt] that is in Lemma 3;
2. c3 illustrates the geometry of J(K), with details in Lemma 6;
3. In Lemma 2, we will show that the critic loss is µ�-strongly convex;
4. c1 is a Lipschitz constant for ✓K w.r.t. K that is specified in Lemma 4;
5. cD is an upper bound for kDKtk and kDK⇤k that is specified in Lemma 1.

It is easy to verify that the step sizes satisfies the following inequalities:

�min(D✏)

c3
�t 

2

3
µ�↵t,

�min(D✏)

�t
� (

3

↵tµ�
+ 2)c21 + (kRk+ cP kBk

2), and
1

3
↵tµ� � �tcDc

2
K ,

(28)
where we need to assume that " is small enough such that 1/(µ�↵t) � 2 + (kRk + cP kBk

2)/c21
for the second inequality. Here, cP is the upper bound for PKt , which is given in Lemma 1. These
are technical inequalities that will be used in the proof later. The total number of iterations is
T = O(1" log(

1
")) such that

(1� �tc4)
TL0 < ",

9

ZHOU AND LU

where L0 = O(1) is the initial Lyapunov function that is specified at the beginning of the proof for
Theorem 1 and c4 = O(1) is a positive constant that is also specified in the proof for Theorem 1.
This (1� �tc4) is the one-step decay ratio of the Lyapunov function, which indicates our choice of
T above. The number of samples N , the length of trajectory N0 each step, and the sub-sample size
N1, are set to be N = O(1), N0 = O(log(1")), and N1 = O(1), in order to achieve desired accuracy
for the sample of critic gradient, with details in Lemma 3. Here, ↵t

�t
=  = O(1) implies that our

algorithm has single timescale. In such algorithm, the actor and the critic are interdependent, which
makes the analysis challenging. We summarize the actor-critic algorithm in Algorithm 1.

Algorithm 1 Single timescale actor-critic algorithm for LQR
Input: Training steps T , step sizes ↵t, �t, sample size N , N0, and N1

Output: critic parameter ✓T , actor parameter KT

initialization: critic parameter ✓0 = 0 and actor parameter K0 = 0
for t = 0 to T � 1 do

Sample drLt(✓t) according to (21) . critic steps
✓t+1 = ✓t � ↵t

drLt(✓t)

Kt+1 = Kt � �t(✓22t Kt � ✓21t) . actor steps
end for

The main result of our work is the following convergence theorem.

Theorem 1 (Main theorem) Under Assumption 1, for any " > 0 that is sufficiently small, Al-
gorithm 1, with the choice of parameters discussed above, has sample complexity O(1" log(

1
")

2).
Moreover, the terminal error satisfies

E[k✓T � ✓KT k
2
F]  " and E[J(KT)� J(K⇤)]  ".

Remark 3 The number of steps is T = O(1" log(
1
")) and the one-step complexity is O(log(1")).

Therefore, the total complexity is O(1" log(1")
2). This theorem tells us that we have small error for

both the critic and the actor. If we want error estimate for kKT � K⇤
kF or k✓T � ✓⇤kF , we will

need extra assumption such as strong convexity of J(K) in K.
As a follow up for Remark 2, another potential way to alleviate Assumption 1 is to modify the

main theorem in concentration sense (the result holds with high probability), which omits the rare
cases.

We believe the complexity O(1" log(
1
")

2) is nearly optimal (up to a log factor). Even for a simple
stochastic gradient descent (SGD) algorithm, we need O("�1) sample to achieve "-optimal solution
(Bottou, 2012). The LQR problem is bilevel, with the critic part similar to SGD. Thus, the problem
is more complicated than SGD and expects to require higher sample complexity. The convergence
rate is also confirmed by the numerical examples below.

4. Proof sketch of the main theorem

In this section, we give a sketch of the proof of Theorem 1 and postpone the details to the appendix.
The lemmas used in the proof are stated in the later part of this section.

10

SINGLE TIMESCALE ACTOR-CRITIC LQR

Proof [Proof Sketch of Theorem 1] First, we show in Lemma 2 that the critic loss is strongly convex.
Then, we show in Lemma 3 that we can obtain the sample of gradient with small bias:

���E
h
drLt(✓t)�rLt(✓t)|Gt

i���
F
 �

With these two lemmas, we show in Lemma 5 that there is an improvement of critic error in each
step:

E
⇥
k✓t+1 � ✓Kt+1k

2
F |Gt

⇤
� k✓t � ✓Ktk

2
F

 �
4

3
↵tµ�k✓t � ✓Ktk

2
F +

1

4

�min(D✏)

c3
�t"+

� 3

↵tµ�
+ 2
�
k✓Kt � ✓Kt+1k

2
F . (29)

Here, the term 1
4
�min(D✏)

c3
�t" comes from the sample error in Lemma 3 and (3

↵tµ�
+ 2)k✓Kt �

✓Kt+1k
2
F is due to the actor update. Intuitively, we expect k✓t+1 � ✓KtkF to be smaller than k✓t �

✓KtkF , recall that k✓t�✓KtkF measures the error of ✓t w.r.t. the current policy parameter Kt, while
the last term in (29) takes into account the update of Kt to Kt+1 in the actor step.

Furthermore, we establish the improvement of the actor in Lemma 7:

J(Kt+1)� J(Kt)  ��t
�min(D✏)

c3
(J(Kt)� J(K⇤))

� �t
⇥
�min(D✏)� �tcD(kRk+ cP kBk

2)
⇤
k bGKtk

2
F + �tcDkGKt �

bGKtk
2
F

(30)

where the last term comes from the critic error.
To establish the convergence, we define a Lyapunov function

Lt = L(✓t,Kt) := k✓t � ✓Ktk
2
F + J(Kt)� J(K⇤),

which is the sum of critic and actor errors. Direct computation shows that the last term in (29) can
be bounded by the second term in (30) and the last term in (30) can be bounded by 1

4 of the first
term in (29). Therefore, combining (29) and (30), we obtain the decay estimate of the Lyapunov
function

E[Lt+1 � Lt]  �E

↵tµ�k✓t � ✓Ktk

2
F + �t

�min(D✏)

c3
(J(Kt)� J(K⇤))

�
+

1

4

�min(D✏)

c3
�t".

(31)
Notice that the last term (sample error) in (31) can be bounded by the first term if E[k✓t�✓Ktk

2
F] �

"
2

(according to the first inequality of (28)) or by the second term if E[J(Kt) � J(K⇤)] � "
2 and we

will obtain a contraction rate for the Lyapunov function:

Lt+1 � Lt  �O(�t)Lt.

If both E[k✓t � ✓Ktk
2
F] <

"
2 and E[J(Kt) � J(K⇤)] < "

2 , then E[Lt] < " and we can easily show
that E[Lt+1] is also less than ". This finishes the proof.

In summary, the key point of the proof is that we can bound the positive term in the critic
improvement by the negative term in the actor improvement and vice versa. In this way, we obtain
a contraction rate of the Lyapunov function.

Before we turn to the analysis of critic and actor parts, we state the following lemma which
provides bounds for matrices DKt , PKt , and ⌃Kt .

11

ZHOU AND LU

Lemma 1 Under Assumption 1, the matrix DKt , PKt and ⌃Kt satisfy

�min(D✏)  DKt  cD, PKt  cP , and ⌃Kt  c⌃ (32)

where the three constants cD, cP , c⌃ = O(1) only depend on A, B, D✏, Q, R, ⇢, �, and cA.
Furthermore, the first inequality also holds with DKt replaced by DK⇤ .

4.1 Analysis of the critic part

In this subsection, we analyze the critic part of the algorithm. All the proofs are deferred to the
appendix. Let us start with the following lemma, which gives the strong convexity property of the
critic loss.

Lemma 2 (Strong convexity of critic loss) Suppose that ⇢(E)  ⇢ < 1, LK(✓) is µ�-strongly
convex in ✓, where µ� > 0 only depends on A, B, D✏, ⇢, �, cK , and c⌃. Moreover, µ� = O(�4)
when � is small.

Actually, one technical reason of using a stochastic policy for exploration is to guarantee the strong
convexity. The next lemma gives a quantitative description of the accuracy of critic gradient sam-
pling proposed in §3.1.

Lemma 3 (Gradient sample accuracy) Under Assumption 1, for any � > 0 that is sufficiently
small, let drLt(✓t) be the sample of rLt(✓t) with complexity N,N1 = O(1) and N0 = O(log 1

�).
Then, we have ���E

h
drLt(✓t)�rLt(✓t)

��� Gt

i���
F
 � (33)

and
E
h
kdrLt(✓t)k

2
F

��� Gt

i
 c2L, (34)

where cL = O(1) is a positive constant that only depends on A, B, D✏, Q, R, �, cK , and c✓.

Remark 4 When we apply this lemma later, we will set �2 = 1
24

�min(D✏)
c3

µ�", and thus � = O("
1
2).

By definition of the step sizes (26), we have

2↵2
tE
h
kdrLt(✓t)k

2
F

��� Gt

i


1

8
�t
�min(D✏)

c3
". (35)

when (34) holds. This inequality (35) will be used later and we can see that the step size has to be
of order O(") to guarantee (35).

Next, we show a Lipschitz property for ✓K with respect to K.

Lemma 4 For any two actor parameters K and K 0 such that kKk, kK 0
k  cK , kA�BKk, kA�

BK 0
k  cA, and ⇢(A�BK), ⇢(A�BK 0)  ⇢ < 1, we have

k✓K � ✓K0kF  c1kK �K 0
kF ,

where the constant c1 = O(1) only depends on A, B, R, ⇢, cA, cK , and cP .

With the above lemmas, we can establish the improvement by the critic update.

12

SINGLE TIMESCALE ACTOR-CRITIC LQR

Lemma 5 Let the step size be defined as in (26) and Assumption 1 hold. For any " > 0 that is
sufficiently small, assume that (33) and (34) hold with �2 = 1

24
�min(D✏)

c3
µ�" for all t, then we have

E
⇥
k✓t+1 � ✓Kt+1k

2
F

�� Gt
⇤
� k✓t � ✓Ktk

2
F

 �
4

3
↵tµ�k✓t � ✓Ktk

2
F +

1

4

�min(D✏)

c3
�t"+

� 3

↵tµ�
+ 2
�
k✓Kt � ✓Kt+1k

2
F . (36)

Recall that Kt+1 is Gt-measurable.

4.2 Analysis of the actor part

In this subsection, we give the convergence result for the actor part. All proofs are deferred to
the appendix. The first lemma demonstrates that the cost functional is roughly quadratic in GK .
Inequality (37) has also been established in earlier works (Fazel et al., 2018; Fu et al., 2020).

Lemma 6 Let K be an actor parameter such that ⇢(A�BK) < 1, we have

c2Tr(GKG>
K)  J(K)� J(K⇤)  c3Tr(GKG>

K), (37)

with positive constants c2 =
�min(D✏)

kRk+cP kBk2 and c3 =
kDK⇤k
�min(R) .

We recall that k · k denotes the operator norm of a matrix. We also recall that K⇤ is the optimal
control parameter that is given by K⇤ = (R + B>P ⇤B)�1B>P ⇤A (see (2) for definition of P ⇤).
Next lemma establishes the improvement of the actor update.

Lemma 7 (Improvement in the actor update) Let the actor update be defined by (25) and As-
sumption 1 hold, then

J(Kt+1)� J(Kt)  ��t
�min(D✏)

c3
(J(Kt)� J(K⇤))

� �t
⇥
�min(D✏)� �tcD(kRk+ cP kBk

2)
⇤
k bGKtk

2
F + �tcDkGKt �

bGKtk
2
F

Remark 5 This actor improvement lemma is a generalization of Lemma 15 in Fazel et al. (2018).
Their lemma shows an improvement of policy gradient with accurate critic, while our lemma shows
that there are extra terms when we have stochastic estimate of the critic.

5. Numerical Examples

In this section, we present some numerical examples to validate our theoretical results. The code
can be found at Zhou. We consider two examples: the first one has d = 2 and k = 3:

A =


0.5 0
0 0.5

�
, B =


0.2 0 0.1
0 0.2 0.1

�
, Q =


1 0
0 0.8

�
, R =

2

4
1 0 0
0 1 0
0 0 0.5

3

5 , D⇠ =


1 0
0 1

�
,

and � = 1. The other one has d = 4 and k = 3:

A =

2

664

0.5 0.1 0 0
0.1 0.5 0.1 0
0 0.1 0.5 0
0 0 0 0.5

3

775 , B =

2

664

0.3 0.1 0
0.1 0.3 0.1
0 0.1 0.3
0.1 0.1 0.1

3

775 , Q =

2

664

1 0 0 0
0 1 0.1 0
0 0.1 1 0.1
0 0 0.1 1

3

775 ,

13

ZHOU AND LU

Figure 1: The error curves for the two examples with step size ↵t = �t = 0.001. The errors are the
average of 10 independent runs, with standard deviation plotted.

R =

2

4
1 0.1 0
0.1 1 0.1
0 0.1 1

3

5 , D⇠ =

2

664

1 0 0.1 0
0 1 0 0
0.1 0 1 0.1
0 0 0.1 1

3

775 ,

and � = 1. In all the tests, we set N = N0 = N1 = 100 for simplicity. We test for T =
125, 250, 500, 1000, 2000, 4000. In each example, we set the step sizes to be ↵t = �t =

4
T . In order

to save time, we multiply the step sizes by 3 for the first T/2 steps.
Figure 1 shows the learning curves for the two example with step size ↵t = �t = 0.001.

The error is the average of 10 independent runs, and we also show the standard deviations. In the
beginning, the error curves are nearly straight lines, which coincide with our one-step improvement
analysis in the previous section. Then the errors become static because the algorithm has reached
its capacity.

In order to obtain a convergence rate, we also test different step sizes, which is shown in Figure
2. In the tests, we keep T↵t = T�t as a constant. The horizontal axis marks the number of steps
T , ranging from 125 to 4000. We take a log2 transform of T . The vertical axis is the final critic and
actor errors (after a log2 transform). A linear regression indicates that the slopes of the four error
curves are all �1.0, which confirms our theoretical results in the previous section.

We also track the norm in Assumption 1. In the numerical tests, the maximum of ⇢(A�BKt),
kA�BKtk, kEtk, kKtk, and k✓tkF for the first and second examples are 0.524, 0.529, 0.586, 0.329,
2.641 and 0.662, 0.662, 0.867, 0.498, 4.254 respectively. This further confirms that Assumption 1
is reasonable.

Acknowledgments

This work is supported in part by the National Science Foundation via grants DMS-2012286 and
CCF-1934964 (Duke TRIPODS).

14

SINGLE TIMESCALE ACTOR-CRITIC LQR

Figure 2: The convergence rate for the two examples with the numbers of steps ranging from T =
125 to T = 4000 and step size 4

T . Each error is the average of 10 independent runs. The
slope for the four error curves are all �1.0.

Appendix A. Proofs

Throughout the proof, we will frequently use two basic properties in linear algebra. So we state
them here. The first one is that if X is a (symmetric and) positive semi-definite matrix and Y is
of the same shape, then Tr(XY)  Tr(X)kY k, where we recall that k · k is the operator norm of
a matrix. The second property is a direct corollary of the first one: for any matrices X and Y of
proper shapes, we have kXY kF  kXk kY kF

A.1 Proofs for results in Section 2 and Section 3

Proof [Proof of Proposition 1] Since ⇢(A�BK) < 1, we know from definition (8) that the expres-
sion for PK in series is

PK =
1X

s=0

((A�BK)>)s(Q+K>RK)(A�BK)s. (38)

Give the state xs, the conditional expectation of one-step cost is

E[c(xs, us)|xs] = x>s Qxs + E!s⇠N(0,Id)[(�Kxs + �!s)
>R(�Kxs + �!s)]

= x>s (Q+K>RK)xs + �2Tr(R).
(39)

15

ZHOU AND LU

So the total cost is

J(K) = lim
S!1

EK

"
1

S

S�1X

s=0

c(xs, us)

#
= lim

S!1
EK

"
1

S

S�1X

s=0

E[c(xs, us)|xs]
#

= lim
S!1

EK

"
1

S

S�1X

s=0

x>s (Q+K>RK)xs

#
+ �2Tr(R)

= EK [x>(Q+K>RK)x] + �2Tr(R)

= Tr
h
EK [xx>](Q+K>RK)

i
+ �2Tr(R) = Tr

h
DK(Q+K>RK)

i
+ �2Tr(R)

= Tr
h
DK(PK � (A�BK)>PK(A�BK))

i
+ �2Tr(R)

= Tr
h
(DK � (A�BK)DK(A�BK)>)PK

i
+ �2Tr(R) = Tr[D✏PK] + �2Tr(R).

So (9) holds. Next, we derive the expression for rKJ(K). We need a simple formula: if the
shape of M is the same as the shape of K, then rK Tr(M>K) = rK Tr(MK>) = M . Since
J(K) = Tr

⇥
DK(Q+K>RK)

⇤
+ �2Tr(R), we have

rKJ(K) = 2RKDK +rK Tr[DKQ0]|Q0=Q+K>RK . (40)

We recall that
DK = D✏ + (A�BK)DK(A�BK)>.

Therefore,

rK Tr[DKQ0] = rK Tr[(D✏ + (A�BK)DK(A�BK)>)Q0]

= �B>(Q0 +Q>
0)(A�BK)DK +rK Tr[DKQ1]|Q1=(A�BK)>Q0(A�BK)

= �2B>Q0(A�BK)DK +rK Tr[DKQ1]|Q1=(A�BK)>Q0(A�BK)

(41)

where we used Q0 = Q>
0 in the last equality. Therefore, we can apply (41) recursively and obtain

rK Tr[DKQ0]|Q0=Q+K>RK

= �2B>(Q+K>RK)(A�BK)DK +rK Tr[DKQ1]|Q1=(A�BK)>(Q+K>RK)(A�BK)

= �2B>(Q+K>RK)(A�BK)DK � 2B>(A�BK)>(Q+K>RK)(A�BK)2DK

+rK Tr[DKQ2]|Q2=((A�BK)>)2(Q+K>RK)(A�BK)2

= · · ·

= �

1X

s=0

2B>((A�BK)>)s(Q+K>RK)(A�BK)s+1DK

= �2B>PK(A�BK)DK

(42)
where the assumption ⇢(A�BK) < 1 guarantees that the series converges and the remaining term
vanishes. Substituting (42) into (40), we obtain

rKJ(K) = 2RKDK � 2B>PK(A�BK)DK = 2
h
(R+B>PKB)K �B>PKA

i
DK .

16

SINGLE TIMESCALE ACTOR-CRITIC LQR

Proof [Proof of Proposition 2] If we start with x0 = x, since the state dynamic is

xs+1 = (A�BK)xs + ✏s

with ✏s ⇠ N(0, D✏), the state distribution is

xs ⇠ N

(A�BK)sx,

s�1X

i=0

(A�BK)iD✏((A�BK)>)i
!

=: N
⇣
(A�BK)sx, D(s)

K

⌘
.

Therefore, by definition, the value function is

VK(x) =
1X

s=0

{EK [c(xs, us) | x0 = x]� J(K)}

=
1X

s=0

n
EK

h
x>s (Q+K>RK)xs | x0 = x

i
+ �2Tr(R)� J(K)

o

=
1X

s=0

n
Tr
⇣
EK

h
xsx

>
s | x0 = x

i
(Q+K>RK)

⌘
� Tr[D✏PK]

o

=
1X

s=0

n
Tr
h⇣

(A�BK)sxx>((A�BK)>)s +D(s)
K

⌘
(Q+K>RK)

i
� Tr[D✏PK]

o
,

where the second equality is by (39), the third equality is by (9). Therefore,

VK(x)

= x>PKx+
1X

s=0

(
Tr

"
s�1X

i=0

(A�BK)iD✏((A�BK)>)i
!
(Q+K>RK)

#

�Tr

"
D✏

 1X

i=0

((A�BK)>)i(Q+K>RK)(A�BK)i
!#)

= x>PKx�

1X

s=0

Tr

" 1X

i=s

(A�BK)iD✏((A�BK)>)i
!
(Q+K>RK)

#

= x>PKx�

1X

s=0

1X

j=0

Tr
h⇣

(A�BK)sD✏((A�BK)>)s
⌘

⇣
((A�BK)>)j(Q+K>RK)(A�BK)j

⌘i

= x>PKx�

1X

s=0

n
Tr
h⇣

(A�BK)sD✏((A�BK)>)s
⌘
PK

io
= x>PKx� Tr[DKPK],

where we have used the series expressions for PK (38) and DK (5). The assumption ⇢(A�BK) < 1
guarantees that all the series above converge. Next, we compute the state-value function QK(x, u).

17

ZHOU AND LU

Recall that QK(x, u) is the expected extra cost if we start at x0 = x, take a first action u0 = u and
then follow the policy ⇡K . Therefore,

QK(x, u) = c(x, u)� J(K) + E[VK(x0) | x, u]

= x>Qx+ u>Ru� Tr[D✏PK]� �2Tr(R) + Ex0⇠N(Ax+Bu,D⇠)[x
0>PKx0 � Tr[DKPK]]

= x>Qx+ u>Ru� Tr[D✏PK]� �2Tr(R) + Tr
h
Ex0⇠N(Ax+Bu,D⇠)[x

0x0>]PK

i
� Tr[DKPK]

= x>Qx+ u>Ru� Tr[D✏PK + �2R+DKPK] + Tr
h⇣

(Ax+Bu)(Ax+Bu)> +D⇠

⌘
PK

i

= x>Qx+ u>Ru� Tr[(D✏ �D⇠)PK + �2R+DKPK] + (Ax+Bu)>PK(Ax+Bu)

=
⇥
x> u>

⇤ Q+A>PKA A>PKB
B>PKA R+B>PKB

� 
x
u

�
� �2Tr(R+ PKBB>)� Tr(DKPK).

Proof [Proof of Proposition 3] The distribution of policy is ⇡K(u|x) ⇠ N(�Kx,�2Ik), with prob-
ability density

⇡K(u|x) = (2⇡�2)�k/2 exp

✓
�

1

2�2
|u+Kx|2

◆
.

Therefore,

log ⇡K(u|x) = �
k

2
log(2⇡�2)�

1

2�2
|u+Kx|2

and
rK log ⇡K(u|x) = �

1

�2
(u+Kx)x>.

Therefore, by the definition in (23), the Fisher information matrix at state x is

Fx(K) =

Z

Rk
(2⇡�2)�k/2 exp

✓
�

1

2�2
|u+Kx|2

◆
1

�4
[(u+Kx)x>]⌦ [(u+Kx)x>] du

=

Z

Rk
(2⇡�2)�k/2 exp

✓
�

1

2�2
|u|2
◆

1

�4
[ux>]⌦ [ux>] du.

Recall that the stationary state distribution is N(0, DK). Hence, the Fisher information matrix is

F (K) =

Z

Rd
(2⇡)�d/2(det(DK))�1/2 exp

✓
�
1

2
x>D�1

K x

◆
Fx(K) dx

=

Z

Rd
(2⇡)�d/2(det(DK))�1/2 exp

✓
�
1

2
x>D�1

K x

◆

Z

Rk
(2⇡�2)�k/2 exp

✓
�

1

2�2
|u|2
◆

1

�4
[ux>]⌦ [ux>] du dx

Note that we can compute the integration w.r.t. x and u separately with
Z

Rd
(2⇡)�d/2(det(DK))�1/2 exp

✓
�
1

2
x>D�1

K x

◆
xx> dx = DK

18

SINGLE TIMESCALE ACTOR-CRITIC LQR

and Z

Rk
(2⇡�2)�k/2 exp

✓
�

1

2�2
|u|2
◆
uu> du = �2Ik.

Therefore, by an elementwise analysis, we obtain

�2F (K) ·GK = GKDK .

Therefore, (24) holds.

A.2 Proofs for results in section 4

We first prove the lemmas and then the main theorem 1.
Proof [Proof of Lemma 1] Firstly

DKt = D✏ + (A�BKt)DKt(A�BKt)
>
� D✏ � �min(D✏).

DKt also has an expression in series:

DKt =
1X

s=0

(A�BKt)
sD✏((A�BKt)

>)s.

Since limk!1 k(A�BKt)kk
1
k = ⇢(A�BKt)  ⇢ < 1 and kA�BKtk  cA, (with an argument

similar to the proof in Lemma 2 below,) we have

DKt =
1X

s=0

(A�BKt)
sD✏((A�BKt)

>)s . 1

1� ⇢2
kD✏k

with the constant depending on cA and d. Therefore, the first inequality in (32) holds. The constant

cD is proportional to
1

1� ⇢2
kD✏k and also depends on cA and d. The argument above also holds

for K⇤, so the inequality also holds with Kt replaced by K⇤. For PKt , we also have an expression
in series:

PKt =
1X

s=0

((A�BKt)
>)s(Q+B>RB)(A�BKt)

s.

So the argument to prove the second inequality of (32) is the same. Finally, since ⌃Kt has ex-
pression (13) with kDKtk  cD and kKtk  cK , k⌃Ktk has a bound c⌃ = (1 + cK)2cD + �2

automatically.

A.2.1 PROOFS FOR CRITIC

Here we prove the results for the critic.
Proof [Proof of Lemma 2] In order to show r

2LK(✓) = EK [(x, u)⌦ (x, u)] � µ�, we only
need to show that for any M 2 R(d+k)⇥(d+k), we have

EK
⇥
(Tr[M (x, u)])2

⇤
� µ�kMk

2
F .

19

ZHOU AND LU

Since (x, u) is symmetric, we have Tr[M (x, u)] = Tr[M> (x, u)] = Tr[12(M+M>) (x, u)].
We also have 2k1

2(M +M>)k2F � kMk
2
F . Therefore, we only need to show

EK
⇥
(Tr[M (x, u)])2

⇤
� 2µ�kMk

2
F (43)

for all symmetric matrix M . Recall that

zs+1 = Ezs + e✏s.

Since

 (z) = EK [(Ez + e✏)(Ez + e✏)>]� zz> = Ezz>E> + ⌃✏ � zz>,

we have

Tr[M (x, u)] = Tr[MEzz>E> +M⌃✏ �Mzz>] = z>(E>ME �M)z +Tr[M⌃✏].

Recall that z ⇠ N(0,⌃K) under the stationary distribution where ⌃K is defined in (13). By defini-
tion, for any x 2 Rd, u 2 Rk, and � 6= 0, we have

⇥
x> u>

⇤
⌃K


x
u

�
= (�x�

1

�
K>u)>DK(�x�

1

�
K>u)

+ (1� �2)x>DKx+ u>[�2Ik � (
1

�2
� 1)KDKK>]u. (44)

Therefore, we can smartly choose a � 2 (0, 1) s.t. (1 � �2)DK � µ⌃ and �2Ik � (1
�2 �

1)KDKK>
� µ⌃ for some positive constant µ⌃ 2 R. Therefore, ⌃K � µ⌃. Using the same

method, we can also show that ⌃✏ � µ⌃. This µ⌃ depends on �, �min(DK) (�min(D✏) for ⌃✏) and
kKk. Since �min(DK) � �min(D✏) = O(1), µ⌃ is of order O(1) as long as we have an upper
bound for kKk. We can also find that µ⌃ = O(�2) when � is small. Next, we start to compute
(43).

EK
⇥
(Tr[M (x, u)])2

⇤

= EK

h⇣
z>(E>ME �M)z +Tr[M⌃✏]

⌘⇣
z>(E>ME �M)z +Tr[M⌃✏]

⌘i

= EK

h
z>(E>ME �M)zz>(E>ME �M)z + 2z>(E>ME �M)zTr[M⌃✏] + Tr[M⌃✏]

2
i
.

(45)
We will compute each term respectively. We recall the stationary distribution is z ⇠ N(0,⌃K). If

we define w = ⌃
� 1

2
K z, then w ⇠ N(0, Id+k). Denote (mij) = fM = ⌃

1
2
K(E>ME �M)⌃

1
2
K , then

20

SINGLE TIMESCALE ACTOR-CRITIC LQR

fM is symmetric and

EK

h
z>(E>ME �M)zz>(E>ME �M)z

i

= Ew⇠N(0,Id+k)


w>⌃

1
2
K(E>ME �M)⌃

1
2
Kww>⌃

1
2
K(E>ME �M)⌃

1
2
Kw

�

= Ew⇠N(0,Id+k)

h
w>fMww>fMw

i

=

Z

Rd+k
(2⇡)�

d+k
2 w>fMww>fMw exp

✓
�
|w|2

2

◆
dw

= 3
d+kX

i=1

m2
ii +

X

i 6=j

miimjj + 2
X

i 6=j

m2
ij = 2Tr[fM2] + Tr[fM]2

= 2Tr
h
⌃K(E>ME �M)⌃K(E>ME �M)

i
+Tr

h
⌃K(E>ME �M)

i2
.

(46)

Also,

EK

h
z>(E>ME �M)z

i
= EK

h
Tr(zz>(E>ME �M))

i
= Tr[⌃K(E>ME �M))]. (47)

Recall that ⌃K = ⌃✏ + E⌃KE>, so

Tr[⌃K(E>ME �M))] = �Tr[M(⌃K � E⌃KE>)] = �Tr[M⌃✏] (48)

Therefore, substituting (46), (47) and (48) into (45), we obtain

EK
⇥
(Tr[M (x, u)])2

⇤

= 2Tr
h
⌃K(E>ME �M)⌃K(E>ME �M)

i
+Tr [M⌃✏]

2
� 2Tr [M⌃✏]

2 +Tr [M⌃✏]
2

= 2Tr
h
⌃K(E>ME �M)⌃K(E>ME �M)

i

� 2µ⌃Tr
h
(E>ME �M)⌃K(E>ME �M)

i

� 2µ2
⌃ kE>ME �Mk

2
F

(49)
for all symmetric matrix M . Next, we want to show kMkF . kE>ME � MkF . Since the
Frobenius norm is equivalent to the operator norm (with the constant depending on the dimension),
we only need to show kMk . kE>ME �Mk. Note that this step makes µ� depend polynomially
on d+ k. We define an operator TE : R(d+k)⇥(d+k)

! R(d+k)⇥(d+k) such that

TE(X) =
1X

s=0

(E>)sXEs.

Since 1 > ⇢ � ⇢(E) = lims!1 kEs
k

1
s , the norm of the operator should satisfy

kTEk = supX 6=0
kTE(X)k

kXk


c

1� ⇢2

21

ZHOU AND LU

where c depends on kEk and d+ k. Notice that

TE(M � E>ME) =
1X

s=0

(E>)s(M � E>ME)Es = M,

we conclude that

kMk = kTE(M � E>ME)k  kTEkkM � E>MEk 
c

1� ⇢2
kM � E>MEk.

So, kMkF . kE>ME � MkF . Therefore, by (49), r2LK(✓) = EK [(x, u)⌦ (x, u)] � µ�

holds with µ� proportional to �4/(1� ⇢2) and depending on kEk and d+ k. Moreover, µ� grows
polynomially as d+ k becomes large.

Proof [Proof of Lemma 3] Similar to (19), we define

rLt(✓t) = EKt [f(x, u)],

where f depends on both ✓t and Kt. We denote EN0 [f(x, u)] the expectation of the same func-
tion under the distribution of (xN0 , uN0), which starts at x0 = 0 and follows the policy ⇡Kt . We
prove (34) first. We recall that the feature matrix �(x, u) defined in (14) is quadratic in (x, u).
So, (x, u) = E [�(x0, u0)|x, u] � �(x, u) also grows at most quadratically in (x, u) since (x0, u0)
are normally distributed. Therefore, f(x, u), defined in (19) grows at most quartically in (x, u).
By assumption 1, k✓tkF  c✓ = O(1) and kKtk  cK = O(1), so the coefficients for this
quadratic growth are of order O(1). A similar argument tells us that bf(x(i)N0

, u(i)N0
) defined in (20)

grows at most quartically in {(x(i,j), u(i,j))}N1
j=1 and (x(i)N0

, u(i)N0
), with O(1) coefficients. Note that

{(x(i,j), u(i,j))}N1
j=1 and (x(i)N0

, u(i)N0
) are normally distributed with 0 mean and O(1) covariance ma-

trix. Therefore,

E
���drLt(✓t)

���
2

F

��� Gt

�
= E

2

4
�����
1

N

NX

i=1

bf(x(i)N0
, u(i)N0

)

�����

2

F

��� Gt

3

5 = O(1)

So (34) holds with cL = O(1). We also see that cL = poly(d+ k) as the dimensions increase. We
will show (33) next. By definition,

���E
h
drLt(✓t)�rLt(✓t)

��� Gt

i���
F
= kEN0 [f(x, u)]� EKt [f(x, u)]kF . (50)

Here, we remind the reader that the expectation on the left in (50) is taken w.r.t. the training filtration
Gt while those on the right are taken w.r.t. the state and action distributions.

We remark that existing results (Arnold and Avez, 1968) bound (50) directly. However, it can
be computed directly, so we give an elementary proof. Recall that the state trajectory is given by

xs+1 = (A�BKt)xs + ✏s

with x0 = 0 where ✏s ⇠ N(0, D✏). Therefore, the distribution of xN0 is

xN0 ⇠ N

0,

N0�1X

s=0

(A�BKt)
sD✏((A�BKt)

>)s
!

=: N
⇣
0, D(N0)

Kt

⌘

22

SINGLE TIMESCALE ACTOR-CRITIC LQR

and the stationary distribution of xs is

x1 ⇠ N

0,

1X

s=0

(A�BKt)
sD✏((A�BKt)

>)s
!

= N (0, DKt) .

Since ⇢(A � BKt)  ⇢ < 1, D✏ > 0, and N0 = O(log 1
�), we have DKt > �min(D✏), D

(N0)
Kt

>

�min(D✏), DKt �D(N0)
Kt

� 0 and kDKt �D(N0)
Kt

kF . �. Since us ⇠ N(�Ktxs,�2Ik), we have
the joint distribution for zN0 = (x>N0

, u>N0
)>

zN0 ⇠ N

0,

"
D(N0)

Kt
�D(N0)

Kt
K>

t

�KtD
(N0)
Kt

KtD
(N0)
Kt

K>
t + �2Ik

#!
=: N

⇣
0,⌃(N0)

Kt

⌘

and the joint stationary distribution

z ⇠ N

✓
0,


DKt �DKtK

>
t

�KtDKt KtDKtK
>
t + �2Ik

�◆
=: N (0,⌃Kt)

Since kDKt �D(N0)
Kt

kF . � and kKtk  cK , we have k⌃Kt � ⌃(N0)
Kt

kF  c6�. Here the positive
constant c6 = O(1) decrease geometrically as N0 increases algebraically. Furthermore, using the
same argument when we prove ⌃K � µ⌃ in Lemma 2, we can find a positive constant µ⌃ = O(1)

such that ⌃Kt � µ⌃ and ⌃(N0)
Kt

� µ⌃. Therefore

kEN0 [f(x, u)]� EKt [f(x, u)]kF

=

����
Z

Rd+k
f(z)(2⇡)�

d+k
2


det(⌃(N0)

Kt
)�

1
2 exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆

� det(⌃Kt)
� 1

2 exp

✓
�
1

2
z>(⌃Kt)

�1z

◆�
dz

����
F



Z

Rd+k
c(1 + |z|4)

����� det(⌃
(N0)
Kt

)�
1
2 exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆

� det(⌃Kt)
� 1

2 exp

✓
�
1

2
z>(⌃Kt)

�1z

◆ ����� dz



Z

Rd+k
c(1 + |z|4)

h
det(⌃(N0)

Kt
)�

1
2 � det(⌃Kt)

� 1
2

i
exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆
dz

+

Z

Rd+k
c(1 + |z|4) det(⌃Kt)

� 1
2


exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
� exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆�
dz

(51)
There is no absolute value at the end of (51) because each term is non-negative. Next, we will bound
the two integrals respectively. For the first one, we have

det(⌃(N0)
Kt

)�
1
2 � det(⌃Kt)

� 1
2

=
det(⌃Kt)� det(⌃(N0)

Kt
)

q
det(⌃(N0)

Kt
) det(⌃Kt)

✓p
det(⌃Kt) +

q
det(⌃(N0)

Kt
)

◆

= O(1)
⇣
det(⌃Kt)� det(⌃(N0)

Kt
)
⌘
.

23

ZHOU AND LU

Next, we will show det(⌃Kt) � det(⌃(N0)
Kt

) = O(�). We can find a unitary matrix U such that
U>⌃(N0)

Kt
U is a diagonal matrix,

���U>⌃KtU � U>⌃(N0)
Kt

U
���
F
=
���⌃Kt � ⌃(N0)

Kt

���
F
 c6�,

and
det(⌃Kt)� det(⌃(N0)

Kt
) = det(U⌃KtU

>)� det(U⌃(N0)
Kt

U>).

If we assume that the diagonal element of U⌃KtU
> to be a1, · · · , ad+k and

U⌃(N0)
Kt

U> = diag(b1, · · · , bd+k).

Then ai � bi and ai � bi = O(�). Therefore

0  det(U⌃KtU
>)� det(U⌃(N0)

Kt
U>) 

d+kY

i=1

ai �
d+kY

i=1

bi = O(�).

Therefore, det(⌃Kt)� det(⌃(N0)
Kt

) = O(�) and hence

det(⌃(N0)
Kt

)�
1
2 � det(⌃Kt)

� 1
2  c�

with positive constant c being as small as we want (through increasing N0). Therefore, the first
integral in (51) satisfies

Z

Rd+k
c(1 + |z|4)

h
det(⌃(N0)

Kt
)�

1
2 � det(⌃Kt)

� 1
2

i
exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆
dz

 c�

Z

Rd+k
(1 + |z|4) exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆
dz = c�O(1) 

1

2
�.

(52)

Here, again, the constant c may differ according to the context. A more detailed computation shows
that

det(⌃(N0)
Kt

)�
1
2 � det(⌃Kt)

� 1
2  det(⌃(N0)

Kt
)�

1
2 poly(d+ k) c6�.

Therefore, N0 should scale with log(d+ k) as the dimensions increase. Next, we bound the second
integration in (51). Using the inequality 1� e�x

 x, we have

exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
� exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆

= exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
1� exp

✓
�
1

2
z>
⇣
(⌃(N0)

Kt
)�1

� (⌃Kt)
�1
⌘
z

◆�


1

2
z>
⇣
(⌃(N0)

Kt
)�1

� (⌃Kt)
�1
⌘
z exp

✓
�
1

2
z>(⌃Kt)

�1z

◆

=
1

2
exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
Tr
h⇣

(⌃(N0)
Kt

)�1
� (⌃Kt)

�1
⌘
zz>

i

=
1

2
exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
Tr
h
(⌃(N0)

Kt
)�1

⇣
⌃Kt � ⌃(N0)

Kt

⌘
(⌃Kt)

�1zz>
i


1

2
exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
k(⌃(N0)

Kt
)�1

⇣
⌃Kt � ⌃(N0)

Kt

⌘
(⌃Kt)

�1
k Tr[zz>]


1

2
exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
1

µ2
⌃

c6�|z|
2.

24

SINGLE TIMESCALE ACTOR-CRITIC LQR

Therefore, the second integration in (51) satisfies
Z

Rd+k
c(1 + |z|4) det(⌃Kt)

� 1
2


exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
� exp

✓
�
1

2
z>(⌃(N0)

Kt
)�1z

◆�
dz

 �

Z

Rd+k
c(|z|2 + |z|6) det(⌃Kt)

� 1
2 exp

✓
�
1

2
z>(⌃Kt)

�1z

◆
dz = �cO(1) 

1

2
�.

(53)
Plugging (52) and (53) into (51), we obtain

kEN0 [f(x, u)]� EKt [f(x, u)]kF  �.

Proof [Proof of Lemma 4] By definition

✓K � ✓K0 =


A>(PK � PK0)A A>(PK � PK0)B
B>(PK � PK0)A B>(PK � PK0)B

�
=


A>

B>

� ⇥
PK � PK0

⇤ ⇥
A B

⇤

Therefore,

k✓K � ✓K0k
2
F = Tr[(✓K � ✓K0)>(✓K � ✓K0)]

= Tr
⇣
[(AA> +BB>)(PK � PK0)]2

⌘
 (kAk

2 + kBk
2)2kPK � PK0k

2
F

(54)

Therefore, our goal is to bound kPK � PK0kF by kK �K 0
kF . By definition in (8),

PK � PK0

= K>RK �K 0>RK 0 + (A�BK)>PK(A�BK)� (A�BK 0)>PK0(A�BK 0)

= K>RK �K>RK 0 +K>RK 0
�K 0>RK 0

+ (A�BK)>PK(A�BK)� (A�BK)>PK(A�BK 0)

+ (A�BK)>PK(A�BK 0)� (A�BK)>PK0(A�BK 0)

+ (A�BK)>PK0(A�BK 0)� (A�BK 0)>PK0(A�BK 0)

= K>R(K �K 0) + (K �K 0)>RK 0
� (A�BK)>PKB(K �K 0)

+ (A�BK)>(PK � PK0)(A�BK 0)� (K �K 0)>B>PK0(A�BK 0)

Therefore,

PK � PK0 � (A�BK)>(PK � PK0)(A�BK 0)

= K>R(K �K 0) + (K �K 0)>RK 0

� (A�BK)>PKB(K �K 0)� (K �K 0)>B>PK0(A�BK 0)

(55)

Next, we want to take k · kF on both sides of (55). For the left hand side, since ⇢(A�BK), ⇢(A�

BK 0)  ⇢ < 1 and kA � BKk, kA � BK 0
k  cA, we can repeat the last part in the proof of

Lemma 2 and prove that

kPK � PK0kF  ck(PK � PK0)� (A�BK)>(PK � PK0)(A�BK 0)kF (56)

25

ZHOU AND LU

where c is proportional to 1/(1� ⇢2) and also depends on cA and d. For the right hand side of (55),
since kPKk  cP , kPK0k  cP , kKk  cK and kK 0

k  cK ,

kK>R(K �K 0) + (K �K 0)>RK 0

� (A�BK)>PKB(K �K 0)� (K �K 0)>B>PK0(A�BK 0)kF

 2(cKkRk+ cP cAkBk) kK �K 0
kF .

(57)

Plugging (56) and (57) into (55), we obtain

kPK � PK0kF  2c(cKkRk+ cP cAkBk) kK �K 0
kF . (58)

Finally, combining (54) and (58), we obtain

k✓K � ✓K0kF  c1kK �K 0
kF (59)

with c1 = 2c(cKkRk+ cP cAkBk) (kAk
2 + kBk

2). This c1 grows polynomially as the dimensions
increase.

Proof [Proof of Lemma 5] Note that

k✓t+1 � ✓Kt+1k
2
F = k✓t � ↵t

drLt(✓t)� ✓Kt + ✓Kt � ✓Kt+1k
2
F

= k✓t � ✓Ktk
2
F � 2↵tTr

h
(✓t � ✓Kt)

>drLt(✓t)
i

+ ↵2
t k
drLt(✓t)k

2
F + k✓Kt � ✓Kt+1k

2
F + 2Tr

h
(✓Kt � ✓Kt+1)

>(✓t � ✓Kt � ↵t
drLt(✓t))

i

= k✓t � ✓Ktk
2
F � 2↵tTr

h
(✓t � ✓Kt)

>
rLt(✓t)

i
+ 2↵tTr

h
(✓t � ✓Kt)

>(rLt(✓t)� drLt(✓t)))
i

+ ↵2
t k
drLt(✓t)k

2
F + k✓Kt � ✓Kt+1k

2
F + 2Tr

h
(✓Kt � ✓Kt+1)

>(✓t � ✓Kt � ↵t
drLt(✓t))

i

 (1� 2↵tµ�)k✓t � ✓Ktk
2
F + 2↵tTr

h
(✓t � ✓Kt)

>(rLt(✓t)� drLt(✓t)))
i
+ ↵2

t k
drLt(✓t)k

2
F

+ k✓Kt � ✓Kt+1k
2
F + 2Tr

h
(✓Kt � ✓Kt+1)

>(✓t � ✓Kt)
i
� 2↵tTr

h
(✓Kt � ✓Kt+1)

>drLt(✓t)
i

 (1�
5

3
↵tµ�)k✓t � ✓Ktk

2
F + 2↵tTr

h
(✓t � ✓Kt)

>(rLt(✓t)� drLt(✓t)))
i
+ 2↵2

t k
drLt(✓t)k

2
F

+ (
3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F

(60)
The first inequality is because Lt(✓) is µ�� strongly convex and hence

Tr
h
(✓t � ✓Kt)

>
rLt(✓t)

i
= Tr

h
(✓t � ✓Kt)

>(rLt(✓t)�rLt(✓Kt))
i
� µ�k✓t � ✓Ktk

2
F .

26

SINGLE TIMESCALE ACTOR-CRITIC LQR

The second inequality in (60) is a simple application of Cauchy-Schwartz inequality. Taking expec-
tation w.r.t. Gt in (60), we obtain

E
⇥
k✓t+1 � ✓Kt+1k

2
F

�� Gt
⇤

 (1�
5

3
↵tµ�)k✓t � ✓Ktk

2
F + 2↵tTr

h
(✓t � ✓Kt)

>E
h
rLt(✓t)� drLt(✓t)

��� Gt

ii

+ 2↵2
tE
���drLt(✓t)

���
2

F

��� Gt

�
+ (

3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F

 (1�
4

3
↵tµ�)k✓t � ✓Ktk

2
F +

3↵t

µ�

���E
h
rLt(✓t)� drLt(✓t)

��� Gt

i���
2

F

+ 2↵2
tE
���drLt(✓t)

���
2

F

��� Gt

�
+ (

3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F .

Therefore,
E
⇥
k✓t+1 � ✓Kt+1k

2
F

�� Gt
⇤
� k✓t � ✓Ktk

2
F

 �
4

3
↵tµ�k✓t � ✓Ktk

2
F +

3↵t

µ�

���E
h
rLt(✓t)� drLt(✓t)

��� Gt

i���
2

F

+ 2↵2
tE
���drLt(✓t)

���
2

F

��� Gt

�
+ (

3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F .

Combining with (33), (34), and the definition of ↵t, we obtain (36):

E
⇥
k✓t+1 � ✓Kt+1k

2
F

�� Gt
⇤
� k✓t � ✓Ktk

2
F

 �
4

3
↵tµ�k✓t � ✓Ktk

2
F +

1

4

�min(D✏)

c3
�t"+

� 3

↵tµ�
+ 2
�
k✓Kt � ✓Kt+1k

2
F .

A.2.2 PROOFS FOR THE ACTOR

Next, we prove the results for the actor.
Proof [Proof of Lemma 6] We prove the upper bound first. According to (9),

J(K)� J(K⇤) = Tr((PK � PK⇤)D✏) = Ex⇠N(0,D✏)[x
>(PK � PK⇤)x] (61)

where we recall that PK = (Q+K>RK)+ (A�BK)>PK(A�BK) and PK⇤ satisfies a similar
equation. So, PK⇤ also has the following expression in series

PK⇤ =
1X

s=0

[(A�BK⇤)s]>(Q+K⇤>RK⇤)(A�BK⇤)s.

Therefore, if we define a sequence {ys}1s=0 with y0 = x and ys+1 = (A�BK⇤)ys, then

x>PK⇤x =
1X

s=0

x>[(A�BK⇤)s]>(Q+K⇤>R⇤K)(A�BK⇤)sx =
1X

s=0

y>s (Q+K⇤>RK⇤)ys.

27

ZHOU AND LU

Combining with

x>PKx =
1X

s=0

⇣
y>s PKys � y>s+1PKys+1

⌘
=

1X

s=0

y>s (PK � (A�BK⇤)>PK(A�BK⇤))ys

and (61), we obtain

J(K)� J(K⇤)

= ED✏,K⇤

" 1X

s=0

y>s

⇣
�Q�K⇤>RK⇤ + PK � (A�BK⇤)>PK(A�BK⇤)

⌘
ys

#

= Tr

"
ED✏,K⇤

" 1X

s=0

ysy
>
s

#
·

⇣
�Q�K⇤>RK⇤ + PK � (A�BK⇤)>PK(A�BK⇤)

⌘#
(62)

where ED✏,K⇤ denotes the expectation with y0 ⇠ N(0, D✏) and ys+1 = (A � BK⇤)ys. Next, we
analyze the two terms in (62) respectively. The first term is easy, recall that DK⇤ is the solution of

DK⇤ = D✏ + (A�BK⇤)DK⇤(A�BK⇤)>

so that

DK⇤ =
1X

s=0

(A�BK⇤)sD✏[(A�BK⇤)>]s.

Therefore,

ED✏,K⇤

" 1X

s=0

ysy
>
s

#
= Ex⇠N(0,D✏)

" 1X

s=0

(A�BK⇤)sxx>[(A�BK⇤)>]s
#
= DK⇤ . (63)

Next, we consider the second term in (62). By direct computation,

�Q�K⇤>RK⇤ + PK � (A�BK⇤)>PK(A�BK⇤)

= �Q� (K⇤
�K +K)>R(K⇤

�K +K) + PK

� (A�BK +BK �BK⇤)>PK(A�BK +BK �BK⇤)

= (K �K⇤)>(RK �B>PK(A�BK)) + (RK �B>PK(A�BK))>(K �K⇤)

� (K �K⇤)>(R+B>PKB)(K �K⇤)

= (K �K⇤)>GK +G>
K(K �K⇤)� (K �K⇤)>(R+B>PKB)(K �K⇤)

= G>
K(R+B>PKB)�1GK

� (K �K⇤
� (R+B>PKB)�1GK)>(R+B>PKB)(K �K⇤

� (R+B>PKB)�1GK)

 G>
K(R+B>PKB)�1GK

(64)
where we have used the equation (8) for PK in the second equality and the definition of GK (22)
in the third equality. The  above means the difference of the two matrix is positive semi-definite.
Plugging (63) and (64) into (62), we obtain

J(K)� J(K⇤)  Tr(DK⇤ G>
K(R+B>PKB)�1GK)  kDK⇤k/�min(R) Tr(GKG>

K).

28

SINGLE TIMESCALE ACTOR-CRITIC LQR

This finishes the proof of the upper bound. Next, we prove the lower bound. Note that the argument
above does not rely on the optimality of K⇤. Therefore, we can obtain a general formula (that is
useful in the proof later):

J(K)� J(K 0)

= Tr
h
DK0

⇣
(K �K 0)>GK +G>

K(K �K 0)� (K �K 0)>(R+B>PKB)(K �K 0)
⌘i

. (65)

Specifically, we can set K 0 = K � (R+B>PKB)�1GK (i.e., let (64) hold with equality), then by
the optimality of K⇤ and (65), we obtain

J(K)� J(K⇤) � J(K)� J(K 0) = Tr(DK0 G>
K(R+B>PKB)�1GK)

� �min(D✏) kR+B>PKBk
�1Tr(GKG>

K) �
�min(D✏)

kRk+ cP kBk2
Tr(GKG>

K)

Proof [Proof of Lemma 7] By (65),

J(Kt)� J(Kt+1)

= Tr
h
DKt+1

⇣
(Kt �Kt+1)

>GKt +G>
Kt

(Kt �Kt+1)

�(Kt �Kt+1)
>(R+B>PKtB)(Kt �Kt+1)

⌘i

= Tr
h
DKt+1

⇣
�t bG>

Kt
GKt + �tG

>
Kt
bGKt � �2t bG>

Kt
(R+B>PKtB) bGKt

⌘i

Therefore,

J(Kt+1)� J(Kt)

= ��tTr
h
DKt

⇣
bG>
Kt

GKt +G>
Kt
bGKt � �t bG>

Kt
(R+B>PKtB) bGKt

⌘i

= ��tTr
h
DKt

⇣
G>

Kt
GKt + bG>

Kt
bGKt � (GKt �

bGKt)
>(GKt �

bGKt)� �t bG>
Kt

(R+B>PKtB) bGKt

⌘i

Recall that we proved
�min(D✏)Id  DKt  cDId and PKt  cP

in Lemma 1. Therefore,

Tr
h
DKtG

>
Kt

GKt

i
� �min(D✏)kGKtk

2
F ,

Tr
h
DKt

bG>
Kt
bGKt

i
� �min(D✏)k bGKtk

2
F ,

Tr
h
DKt

bG>
Kt

(R+B>PKtB) bGKt

i
 cD(kRk+ cP kBk

2)k bGKtk
2
F ,

and
Tr
h
DKt(GKt �

bGKt)
>(GKt �

bGKt)
i
 cDkGKt �

bGKtk
2
F .

29

ZHOU AND LU

Therefore,

J(Kt+1)� J(Kt)  ��t�min(D✏)(kGKtk
2
F + k bGKtk

2
F) + �tcDkGKt �

bGKtk
2
F

+ �2t cD(kRk+ cP kBk
2)k bGKtk

2
F

Finally, by Lemma 6, we can conclude that

J(Kt+1)� J(Kt)  ��t
�min(D✏)

c3
(J(Kt)� J(K⇤))

� �t
⇥
�min(D✏)� �tcD(kRk+ cP kBk

2)
⇤
k bGKtk

2
F + �tcDkGKt �

bGKtk
2
F

A.2.3 PROOFS FOR THE MAIN THEOREM

Finally we can prove our main theorem.
Proof [Proof of Theorem 1] By lemma 3, (33) and (34) hold for all t  T . We define a Lyapunov
function

Lt = L(✓t,Kt) = k✓t � ✓Ktk
2
F + J(Kt)� J(K⇤).

Firstly, L0 = O(1) because

k✓0 � ✓K0k
2
F = k✓K0k

2
F =

����


Q+A>PK0A A>PK0B
B>PK0A R+B>PK0B

�����
2

F

= O(1)

(note that PK0 = Q+A>PK0A implies kPK0kF = O(1)) and

J(K0)� J(K⇤)  J(K0) = Tr(D✏PK0) + �2Tr(R)  cP Tr[D✏] + �2Tr(R) = O(1).

Next, we want to show a decrease rate of the Lyapunov function. According to Lemma 5 and
Lemma 7,

E [Lt+1 | Gt]� Lt

 �
4

3
↵tµ�k✓t � ✓Ktk

2
F +

1

4

�min(D✏)

c3
�t"+ (

3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F

� �t
�min(D✏)

c3
(J(Kt)� J(K⇤))� �t

⇥
�min(D✏)� �tcD(kRk+ cP kBk

2)
⇤
k bGKtk

2
F

+ �tcDkGKt �
bGKtk

2
F .

(66)

Fortunately, we can use the negative term in the actor estimate to bound the positive term in the
critic estimate and use the negative term in the critic estimate to bound the positive term in the actor
estimate. Specifically, by Lemma 4,

k✓Kt � ✓Kt+1k
2
F  c21kKt �Kt+1k

2
F = c21�

2
t k
bGKtk

2
F .

So, by the second inequality in (28)

�t
⇥
�min(D✏)� �tcD(kRk+ cP kBk

2)
⇤
k bGKtk

2
F � (

3

↵tµ�
+ 2)k✓Kt � ✓Kt+1k

2
F . (67)

30

SINGLE TIMESCALE ACTOR-CRITIC LQR

In addition,

kGKt �
bGKtk

2
F = k(✓22Kt

� ✓22t)Kt � (✓21Kt
� ✓21t)k2F  c2Kk✓t � ✓Ktk

2
F .

So, by the third inequality in (28)

1

3
↵tµ�k✓t � ✓Ktk

2
F � �tcDkGKt �

bGKtk
2
F . (68)

Substituting (67) and (68) into (66), we obtain

E [Lt+1 | Gt]� Lt

 �↵tµ�k✓t � ✓Ktk
2
F +

1

4

�min(D✏)

c3
�t"� �t

�min(D✏)

c3
(J(Kt)� J(K⇤)).

Taking expectation, we obtain

E[Lt+1 � Lt]  �E

↵tµ�k✓t � ✓Ktk

2
F + �t

�min(D✏)

c3
(J(Kt)� J(K⇤))

�
+

1

4

�min(D✏)

c3
�t".

(69)
Next, we consider three cases. The first case is when E[k✓t � ✓Ktk

2
F] �

1
2". In this case, by (69)

and the first inequality of (28),

E[Lt+1 � Lt]  �E

1

3
↵tµ�k✓t � ✓Ktk

2
F + �t

�min(D✏)

c3
(J(Kt)� J(K⇤))

�
.

The second case is when E[J(Kt)� J(K⇤)] � 1
2". In this case

E[Lt+1 � Lt]  �E

↵tµ�k✓t � ✓Ktk

2
F +

1

2
�t
�min(D✏)

c3
(J(Kt)� J(K⇤))

�
.

In both the first and the second cases, we have

E[Lt+1 � Lt]  �E

1

3
↵tµ�k✓t � ✓Ktk

2
F +

1

2
�t
�min(D✏)

c3
(J(Kt)� J(K⇤))

�
.

Note that 1
2�t

�min(D✏)

c3


1
3↵tµ�, we obtain a contraction rate for the Lyaponov function in both

cases:
E[Lt+1 � Lt]  �

1

2
�t
�min(D✏)

c3
E[Lt] =: ��tc4E[Lt]

where we remind the reader that L(✓K⇤ ,K⇤) = 0. Let us rewrite it into a contraction form

E[Lt+1]  (1� �tc4)E[Lt]. (70)

Next, we consider the third case, when both E[k✓t � ✓Ktk
2
F] <

1
2" and E[J(Kt) � J(K⇤)] < 1

2".
In this case we have E[Lt] < ". Therefore, by (69), we obtain

E[Lt+1]

 (1� ↵tµ�)E
⇥
k✓t � ✓Ktk

2
F

⇤
+

1

4

�min(D✏)

c3
�t"+

✓
1� �t

�min(D✏)

c3

◆
E [(J(Kt)� J(K⇤))]

<
1

2
"+

1

2
"

✓
1

2

�min(D✏)

c3
�t + 1� �t

�min(D✏)

c3

◆
< ".

31

ZHOU AND LU

Therefore, we have shown that under (33) and (34), the Lyapunov function is decreasing at rate
(70) as long as E[k✓t � ✓Ktk

2
F] �

1
2" or E[J(Kt) � J(K⇤)] � 1

2", or else, the Lyapunov function
will keep being smaller than ". Since (1 � �tc4)TL0 < " (recall that �t is constant in t), we have
E[LT]  ". Since E[LT] is the sum of two non-negative numbers, both of them are less than ".

References

Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier
Corporation, 2007.

Vladimir Igorevich Arnold and André Avez. Ergodic problems of classical mechanics, volume 9.
Benjamin, 1968.

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media, 2013.

Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor–
critic algorithms. Automatica, 45(11):2471–2482, 2009.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1):33–57, 1996.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In International Conference on Artificial Intelligence and Statistics, pages
2466–2488. PMLR, 2022.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample com-
plexity of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):
633–679, 2020.

OS Ebrahim, MF Salem, PK Jain, and MA Badr. Application of linear quadratic regulator theory
to the stator field-oriented control of induction motors. IET Electric Power Applications, 4(8):
637–646, 2010.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradi-
ent methods for the linear quadratic regulator. In International Conference on Machine Learning,
pages 1467–1476. PMLR, 2018.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in practice.
CRC press, 1995.

32

SINGLE TIMESCALE ACTOR-CRITIC LQR

Aamir Hashim. Optimal speed control for direct current motors using linear quadratic regulator.
Journal of Engineering and Computer Science (JECS), 14(2):48–56, 2019.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014, 2000.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-
reduced) policy gradient and natural policy gradient methods. In NeurIPS, 2020.

Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence is efficient for linear
quadratic control. Advances in Neural Information Processing Systems, 32, 2019.

Hesameddin Mohammadi, Armin Zare, Mahdi Soltanolkotabi, and Mihailo R Jovanovic. Conver-
gence and sample complexity of gradient methods for the model-free linear quadratic regulator
problem. IEEE Transactions on Automatic Control, 2021.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: from classical
to evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation,
22(2):276–295, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Stephen Tu and Benjamin Recht. Least-squares temporal difference learning for the linear quadratic
regulator. In International Conference on Machine Learning, pages 5005–5014. PMLR, 2018.

Marco A Wiering. Multi-agent reinforcement learning for traffic light control. In Machine Learning:
Proceedings of the Seventeenth International Conference (ICML’2000), pages 1151–1158, 2000.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617–17628,
2020.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural informa-
tion processing systems, 32, 2019.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

33

ZHOU AND LU

Sihan Zeng, Thinh T Doan, and Justin Romberg. A two-time-scale stochastic optimization frame-
work with applications in control and reinforcement learning. arXiv preprint arXiv:2109.14756,
2021.

Mo Zhou. Single time-scale actor-critic method to solve the linear quadratic regulator with conver-
gence proof. https://github.com/MoZhou1995/ActorCriticLQR.git.

34

https://github.com/MoZhou1995/ActorCriticLQR.git

	Introduction
	Our contributions
	Related works

	Theoretical background
	The actor-critic algorithm
	Policy evaluation for the critic
	Policy improvement for the actor
	Assumptions and main result

	Proof sketch of the main theorem
	Analysis of the critic part
	Analysis of the actor part

	Numerical Examples
	Proofs
	Proofs for results in Section 2 and Section 3
	Proofs for results in section 4
	Proofs for critic
	Proofs for the Actor
	Proofs for the main theorem

