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Abstract

A burgeoning line of research leverages deep
neural networks to approximate the solutions to
high dimensional PDEs, opening lines of theo-
retical inquiry focused on explaining how it is
that these models appear to evade the curse of
dimensionality. However, most prior theoreti-
cal analyses have been limited to linear PDEs.
In this work, we take a step towards studying
the representational power of neural networks
for approximating solutions to nonlinear PDEs.
We focus on a class of PDEs known as nonlin-

ear elliptic variational PDEs, whose solutions
minimize an Euler-Lagrange energy functional
E(u) =

∫
! L(x, u(x),→u(x)) ↑ f(x)u(x)dx.

We show that if composing a function with Bar-
ron norm b with partial derivatives of L produces
a function of Barron norm at most BLbp, the
solution to the PDE can be ω-approximated in
the L2 sense by a function with Barron norm
O
(
(dBL)

max{p log(1/ω),plog(1/ω)}
)

. By a classi-
cal result due to (Barron, 1993), this correspond-
ingly bounds the size of a 2-layer neural network
needed to approximate the solution. Treating
p, ω, BL as constants, this quantity is polynomial
in dimension, thus showing neural networks can
evade the curse of dimensionality. Our proof
technique involves neurally simulating (precondi-
tioned) gradient in an appropriate Hilbert space,
which converges exponentially fast to the solution
of the PDE, and such that we can bound the in-
crease of the Barron norm at each iterate. Our
results subsume and substantially generalize anal-
ogous prior results for linear elliptic PDEs over a
unit hypercube.
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1. Introduction
Scientific applications have become one of the new frontiers
for the application of deep learning (Jumper et al., 2021;
Tunyasuvunakool et al., 2021; Sønderby et al., 2020). PDEs
are a fundamental modeling techniques, and designing neu-
ral networks-aided solvers, particularly in high-dimensions,
is of widespread usage in many scientific domains (Hsieh
et al., 2019; Brandstetter et al., 2022). One of the most
common approaches for applying neural networks to solve
PDEs is to parametrize the solution as a neural network and
minimize a variational objective that represents the solu-
tion (Sirignano & Spiliopoulos, 2018; E & Yu, 2017). The
hope in doing so is to have a method which computationally
avoids the “curse of dimensionality”—i.e., that scales less
than exponentially with the ambient dimension.

To date, neither theoretical analysis nor empirical applica-
tions have yielded a precise characterization of the range
of PDEs for which neural networks-aided methods outper-
form classical methods. Active research on the empirical
side (Han et al., 2018; E et al., 2017; Li et al., 2020a;b) has
explored several families of PDEs, e.g., Hamilton-Bellman-
Jacobi and Black-Scholes, where neural networks have been
demonstrated to outperform classical grid-based methods.
On the theory side, a recent line of works (Marwah et al.,
2021; Chen et al., 2021; 2022) has considered the following
fundamental question:

For what families of PDEs, can the solution be represented

by a small neural network?

The motivation for this question is computational: fitting the
neural network (by minimizing some objective) is at least
as expensive as the neural network required to represent it.
Specifically, these works focus on understanding when the
approximating neural network can be sub-exponential in
size, thus avoiding the curse of dimensionality. However, to
date, these results have only been applicable to linear PDEs.

In this paper, we take the first step beyond such work,
considering a nonlinear family of PDEs and study non-

linear variational PDEs. These equations have the
form ↑divx(ε→uL(x, u,→u)) + εuL(x, u,→u) = f
and are a (very general) family of nonlinear Euler-

Lagrange equations. Equivalently, the solution to the
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PDE is the minimizer of the energy functional E(u) =∫
! (L(x, u(X),→u(x))↑ f(x)u(x)) dx. This paradigm is

very general: it originated with Lagrangian formulations
of classical mechanics, and for different L, a variety of
variational problems can be modeled or learned (Schmidt
& Lipson, 2009; Cranmer et al., 2020). These PDEs have
a variety of applications in scientific domains, e.g., (non-
Newtonian) fluid dynamics (Koleva & Vulkov, 2018), mete-
orology (Weller et al., 2016), and nonlinear diffusion equa-
tions (Burgers, 2013).

Our main result is to show that when the function L has

“low complexity”, so does the solution. The notion of com-
plexity we work with is the Barron norm of the function,
similar to Chen et al. (2021); Lee et al. (2017). This is a fre-
quently used notion of complexity, as a function with small
Barron norm can be represented by a small, two-layer neu-
ral network, due to a classical result (Barron, 1993). Mathe-
matically, our proof techniques are based on “neurally un-
folding” an iterative preconditioned gradient descent in an
appropriate function space: namely, we show that each of
the iterates can be represented by a neural network with Bar-
ron norm not much worse than the Barron norm of the pre-
vious iterate—along with showing a bound on the number
of required steps.

Importantly, our results go beyond the typical non-
parametric bounds on the size of an approximator network
that can be easily shown by classical regularity results of
the solution to the nonlinear variational PDEs (De Giorgi,
1957; Nash, 1957; 1958) along with universal approxima-
tion results (Yarotsky, 2017).

2. Overview of Results
Let ! := [0, 1]d be a d-dimensional hypercube and let ε!
denote its boundary.

We first define the energy functional whose minimizers are
represented by a nonlinear variational PDE—i.e., the Euler-
Lagrange equation of the energy functional.
Definition 1 (Energy functional). For all u : ! ↓ R such

that u|ε! = 0, we consider an energy functional of the

following form:

E(u) =
∫

!

(
L(x, u(x),→u(x))↑ f(x)u(x)

)
dx, (1)

where L : ! ↔ R ↔ Rd ↓ R and there exist constants

0 < ϑ ↗ ” such that for every x ↘ ! the function L(x, ·, ·) :
R↔ Rd ↓ R is smooth and convex, i.e.,

diag([0,ϑ1d]) ↗ →2
(y,z)L(x, y, z) ↗ diag([”,”1d]) (2)

for all (y, z) ↘ R↔ Rd
.

Further, we assume that the function f : ! ↓ R is such that

≃f≃L2(!) < ⇐. Note that without loss of generality
1

we

assume that ϑ ↗ 1/Cp (where Cp is the Poincare constant

defined in Theorem 2).

The minimizer uϑ of the energy functional E exists and is
unique. The proof of existence and uniqueness is standard
(following essentially along the same lines as Theorem 3.3
in Fernández-Real & Ros-Oton (2020)), and is stated in
the following Lemma (with the full proof provided in Sec-
tion D.1 of the Appendix for completeness).
Lemma 1. Let L : ! ↔ R ↔ Rd ↓ R be the function as

defined in Definition 1. Then the minimizer of the energy

functional E exists and is unique.

Writing down the condition for stationarity, we can derive
a (nonlinear) elliptic PDE for the minimizer of the energy
functional in Definition 1 .
Lemma 2. Let uϑ : ! ↓ R be the unique minimizer for the

energy functional in Definition 1. Then for all ϖ ↘ H1
0 (!),

uϑ
satisfies the following condition:

DE [u](ϖ)

=

∫

!
(ε→uL(x, u,→u)→ϖ+ εuL(x, u,→u)ϖ↑ fϖ) dx

= 0,
(3)

where dE [u](ϖ) denotes the directional derivative of the

energy functional calculated at u in the direction of ϖ. Thus,

the minimizers of the energy functional satisfy the following

PDE with Dirichlet boundary condition:

DE(u)
:= ↑divx(ε→uL(x, u,→u)) + εuL(x, u,→u) = f

(4)

for all x ↘ ! and u(x) = 0, ⇒x ↘ ε!. Here divx denotes

the divergence operator.

The proof for the Lemma can be found in Appendix D.2.
Here ↑divx(ε→uL(→·)) and εuL(x, ·,→·) are operators
that acts on a function (in this case u).2

Our goal is to determine if the solution to the PDE in (4) can
be expressed by a neural network with a small number of
parameters. In order do so, we rely on the concept of a Bar-

ron norm, which measures the complexity of a function in
terms of its Fourier representation. We show that if compos-
ing with the function partial derivatives of the function L in-
creases the Barron norm of u in a bounded fashion, then the

1Since ω is a lower bound on the strong convexity constant.
If we choose a weaker lower bound, we can always ensure ω →
1/Cp.

2For a vector valued function F : Rd ↑ Rd we will denote the
divergence operator either by divxF or by ↓ ·F , where divxF =
↓ · F =

∑d
i=1

ωiF
ωxi
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solution to the PDE in (4) will have a bounded Barron norm.
The motivation for using this norm is a seminal paper (Bar-
ron, 1993), which established that any function with Barron
norm C can be ω-approximated by a two-layer neural net-
work in the L2 sense by a 2-layer neural network with size
O(C2/ω), thus evading the curse of dimensionality if C is
substantially smaller than exponential in d. Informally, we
will show the following result:
Theorem 1 (Informal). Given the function L in Definition 1,

such that composing a function with Barron norm b with

ε→uL or εuL produces a function of Barron norm at most

BLbp for some constants BL, p > 0. Then, ⇒ω > 0, the

minimizer of the energy functional in Definition 1 can be

ω-approximated in the L2
sense by a function with Barron

norm

O
(
(dBL)

max{p log(1/ω),plog(1/ω)}
)
.

As a consequence, when ω, p, BL are thought of as constants,
we can represent the solution to the Euler-Lagrange PDE
(4) by a polynomially-sized network, as opposed to an ex-
ponentially sized network, which is what we would get by
standard universal approximation results and using regular-
ity results for the solutions of the PDE.

We establish this by neurally simulating a preconditioned
gradient descent (for a strongly-convex loss) in an appropri-
ate Hilbert space, and show that the Barron norm of each
iterate—which is a function—is finite, and at most polyno-
mially bigger than the Barron norm of the previous iterate.
We get the final bound by (i) bounding the growth of the
Barron norm at every iteration; and (ii) bounding the num-
ber of iterations required to reach an ω-approximation to the
solution. The result in formally stated in Section 5.

3. Related Work
Over the past few years there has been a growing line of
work that utilizes neural networks to parameterize the so-
lution to a PDE. Works such as E et al. (2017); E & Yu
(2017); Sirignano & Spiliopoulos (2018); Raissi et al. (2017)
achieved impressive results on a variety of different applica-
tions and have demonstrated the empirical efficacy of neu-
ral networks in solving high dimensional PDEs. This is a
great and promising direction for solving high dimensional
PDEs since erstwhile dominant numerical approaches like
the finite differences and finite element methods (LeVeque,
2007) depend primarily upon discretizing the input space,
hence limiting their use for problems on low dimensional
input space.

Several recent works look into the theoretical analysis into
their representational capabilities has also gained a lot of
attention. Khoo et al. (2021) show the existence of a net-
work by discretizing the input space into a mesh and then
using convolutional NNs, where the size of the layers is ex-

ponential in the input dimension. Sirignano & Spiliopoulos
(2018) provide a universal approximation result, showing
that for sufficiently regularized PDEs, there exists a multi-
layer network that approximates its solution. (Jentzen et al.,
2018; Grohs & Herrmann, 2020; Hutzenthaler et al., 2020)
show that provided a better-than-exponential dependence
on the input dimension for some specific parabolic PDEs,
based on a stochastic representation using the Feynman-Kac
Lemma, thus limiting the applicability of their approach to
PDEs that have such a probabilistic interpretation.

These representational results can be further be utilized
towards analyzing the generalization properties of neural
network approximations to PDE solutions. For example,
Lu et al. (2021) show the generalization analysis for the
Deep Ritz method for elliptic equations like the Poisson
equation and (Lu & Lu, 2021) extends their analysis to the
Schrodinger eigenvalue problem. Furthermore, Mishra &
Molinaro (2020) look at the generalization properties of
physics informed neural networks for a linear operators or
for non-linear operators with well-defined linearization.

Closest to our work is a recent line of study that has focused
on families of PDEs for which neural networks evade the
curse of dimensionality—i.e. the solution can be approxi-
mated by a neural network with a subexponential size. In
Marwah et al. (2021) the authors show that for elliptic PDEs
whose coefficients are approximable by neural networks
with at most N parameters, a neural network exists that ω-
approximates the solution and has size O(dlog(1/ω)N). Chen
et al. (2021) extends this analysis to elliptic PDEs with coef-
ficients with small Barron norm, and shows that if the coef-
ficients have Barron norm bounded by B, an ω-approximate
solution exists with Barron norm at most O(dlog(1/ω)B).
The work by Chen et al. (2022) derives related results for
the Schrödinger equation on the whole space.

As mentioned, while most of previous works show key regu-
larity results for neural network approximations of solution
to PDEs, most of their analysis is limited to simple linear

PDEs. The focus of this paper is towards extending these re-
sults to a family of PDEs referred to as nonlinear variational
PDEs. This particular family of PDEs consists of many fa-
mous PDEs such as p↑Laplacian (on a bounded domain)
and is used to model phenomena like non-Newtonian fluid
dynamics and nonlinear diffusion processes. The regular-
ity results for these family of PDEs was posed as Hilbert’s
XIXth problem. We note that there are classical results like
De Giorgi (1957) and Nash (1957; 1958) that provide regu-
larity estimates on the solutions of a nonlinear variational
PDE of the form in (4). One can easily use these regular-
ity estimates, along with standard universal approximation
results (Yarotsky, 2017) to show that the solutions can be
approximated arbitrarily well. However, the size of the re-
sulting networks will be exponentially large (i.e. they will
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suffer from the curse of dimensionality)—so are of no use
for our desired results.

4. Notation and Definition
In this section we introduce some key concepts and notation
that will be used throughout the paper. For a vector x ↘ Rd

we use ≃x≃2 to denote its ϱ2 norm. C↑(!) is the set of func-
tion f : ! ↓ R that are infinitely differentiable. For a func-
tion F (x, y, z) of multiple variables we use →xF (x, y, z)
and εxF (x, y, z) to denote the (partial) derivative w.r.t the
variable x (we drop the subscript if the function takes in
only a single variable). Similarly, #x denotes the Laplacian
operator where the derivatives are taken w.r.t x ↘ Rd. With
a slight abuse of notation, if a function L : !↔R↔Rd ↓ R
takes functions u and →u as input, we will denote the par-
tial derivatives w.r.t second and third set of coordinates as,
εuL(x, u,→u) and ε→uL(x, u,→u), respectively.

We also define some important function spaces and associ-
ated key results below.
Definition 2. For a vector valued function g : R ↓ Rd

we

define the Lp(!) norm for p ↘ [1,⇐) as

≃g≃Lp(!) =

(∫

!

d∑

i

|gi(x)|p dx
)1/p

,

For p = ⇐ we have

≃g≃L→(!) = max
i

≃gi≃L→(!),

Definition 3. For a domain !, the space of functions H1
0 (!)

is defined as,

H1
0 (!) := {g : ! ↓ R : g ↘ L2(!),

→g ↘ L2(!), g|ε! = 0}.

The corresponding norm for H1
0 (!) is defined as,

≃g≃H1
0 (!) = ≃→g≃L2(!).

Finally, we will make use of the Poincaré inequality through-
out several of our results.
Theorem 2 (Poincaré inequality, Poincaré (1890)). For any

domain $ ⇑ Rd
which is open and bounded, there exists a

constant Cp > 0 such that for all u ↘ H1
0 ($)

≃u≃L2(”) ↗ Cp≃→u≃L2(”).

This constant can be very benignly behaved with dimension
for many natural domains—even dimension independent.
One such example are convex domains (Payne & Wein-
berger, 1960), for which Cp ↗ ς2diam(!). Furthermore,
for ! = [0, 1]d, the value of Cp can be explicitly calculated
and is equal to 1/ς2d. This is a simple calculation, but we
include it for completeness as the following lemma (proved
in Section D.3):

Lemma 3. For the domain ! := [0, 1]d, the Poincare con-

stant is equal to
1

ϖ2d
.

4.1. Barron Norms

For a function f : [0, 1]d ↓ R the Fourier transform is
defined as,

f̂(φ) =

∫

[0,1]d
f(x)e↓i2ϖxT

ϱdx, φ ↘ Nd, (5)

where Nd is the set of vectors with natural numbers as
coordinates. The inverse Fourier transform of a function is
defined as,

f(x) =
∑

ϱ↔Nd

ei2ϖx
T
ϱ f̂(φ) (6)

The Barron norm is an average of the norm of the frequency
vector weighted by the Fourier magnitude |f̂(φ)|.
Definition 4 (Spectral Barron Norm, (Barron, 1993)). Let %
define a set of functions defined over ! := [0, 1]d such that

f̂(φ) and φf̂(φ) are absolutely summable, i.e.,

% =

{
f : ! ↓ R :

∑

ϱ↔Nd

|f̂(φ)| < ⇐,

&
∑

ϱ↔Nd

≃φ≃2|f̂(φ)| < ⇐
}

Then we define the spectral Barron norm ≃ · ≃B(!) as

≃f≃B(!) =
∑

ϱ↔Nd

(1 + ≃φ≃2)|f̂(φ)|.

The Barron norm can be thought of as an L1 relaxation of
requiring sparsity in the Fourier basis—which is intuitively
why it confers representational benefits in terms of the size
of a neural network required. We refer to Barron (1993) for
a more exhaustive list of the Barron norms of some common
function classes.

The main theorem from Barron (1993) formalizes this intu-
ition, by bounding the size of a 2-layer network approximat-
ing a function with small Barron norm:

Theorem 3 (Theorem 1, Barron (1993)). Let f ↘ % such

that ≃f≃B(!) ↗ C and µ be a probability measure de-

fined over !. There exists ai ↘ Rd
, bi ↘ R and ci ↘ R

such that
∑

k

i=1 |ci| ↗ 2C, there exists a function fk(x) =∑
k

i=1 ci↼
(
aT
i
x+ bi

)
, such that we have,

∫

!
(f(x)↑ fk(x))

2 µ(dx) ↭ C2

k
.

Here ↼ denotes a sigmoidal activation function, i.e.,

limx↗↑ ↼(x) = 1 and limx↗↓↑ ↼(x) = 0.
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Note that while Theorem 3 is stated for sigmoidal activa-
tions like sigmoid and tanh (after appropriate rescaling), the
results are also valid for ReLU activation functions, since
ReLU(x)↑ReLU(x↑ 1) is in fact sigmoidal. We will also
need to work with functions that do not have Fourier coeffi-
cients beyond some size (i.e. are band limited), so we intro-
duce the following definition:
Definition 5. We will define the set %W as the set of func-

tions whose Fourier coefficients vanish outside a bounded

ball, that is

%W ={f : ! ↓ R : s.t. f ↘ %,

& ⇒w, ≃w≃↑ ⇓ W, f̂(w) = 0}.

Finally, as we will work with vector valued functions, we
will also define the Barron norm of a vector-valued function
as the maximum of the Barron norms of its coordinates:
Definition 6. For a vector valued function g : ! ↓ Rd

, we

define ≃g≃B(!) = maxi ≃gi≃B(!).

5. Main Result
Before stating the main result we introduce the key assump-
tion.
Assumption 1. The function L in Definition 1 can be ap-

proximated by a function L̃ : ! ↔ R ↔ Rd ↓ R such

that there exists a constant ωL ↘ [0,ϑ) for all x ↘ ! and

u ↘ H1
0 (!) define q := (x, u(x),→u(x)) ↘ !↔ R↔ Rd

sup
q

≃εuL(q)↑ εuL̃(q)≃2 ↗ ωL≃u(x)≃2,

and, sup
q

≃ε→uL(q)↑ ε→uL̃(q)≃2 ↗ ωL≃u(x)≃2,

Furthermore, we assume that L̃ is such that for all g ↘
H1

0 (!), we have L̃(x, g,→g) ↘ H1
0 (!), L̃(x, g,→g) ↘ %

and for all x ↘ !

≃εuL̃(x, g,→g)≃B(!) ↗ B
L̃
≃g≃pL̃

B(!),

and, ≃ε→uL̃(x, g,→g)≃B(!) ↗ B
L̃
≃g≃pL̃

B(!).
(7)

for some constants B
L̃
⇓ 0, and p

L̃
⇓ 0. Finally, if g ↘ %W

then εuL̃(x, g,→g) ↘ %k
L̃
W and ε→uL̃(x, g,→g) ↘ %k

L̃
W

for a k
L̃
> 0.

We refer to Remark 4 for an example of how the conditions
in the assumption manifest for a linear elliptic PDE.

This assumption is fairly natural: it states that the function
L is such that its partial derivatives w.r.t u and →u can be
approximated (up to ωL) by a function L̃ with partial deriva-
tives that have the property that when applied to a function g
with small Barron norm, the new Barron norm is not much
bigger than that of g. The constant p specifies the order of

this growth. The functions for which our results are most
interesting are when the dependence of B

L̃
on d is at most

polynomial—so that the final size of the approximating net-
work does not exhibit curse of dimensionality. For instance,
we can take L to be a multivariate polynomial of degree up
to P : we show in Lemma 10 the constant B

L̃
is O(dP ) (in-

tuitively, this dependence comes from the total number of
monomials of this degree), whereas p and k are both O(P ).

With all the assumptions stated, we now state our main
theorem,
Theorem 4 (Main Result). Consider the nonlinear vari-

ational PDE in (4) which satisfies Assumption 1 and let

uϑ ↘ H1
0 (!) denote the unique solution to the PDE. If

u0 ↘ H1
0 (!) is a function such that u0 ↘ %W0 , then for all

sufficiently small ω > 0, and

T :=

⌈
log

(
2

ω

E(u0)↑ E(uϑ)

ϑ

)
/ log

(
1

1↑ ς6

(1+Cp)10#5

)
,

there exists a function uT ↘ H1
0 (!) such that uT ↘

%(2ϖk
L̃
)TW0

with Barron norm ≃uT ≃B(!) bounded by

(
(1 + ↽2ςk

L̃
W0(2ςkL̃d+ 1)B

L̃
)
(
1 + ↽≃f≃B(!)

))pt+ p
t↑1
p↑1

·
(
max{1, ≃u0≃p

t

B(!)}
)
.

(8)

Furthermore uT satisfies ≃uT ↑ uϑ≃H1
0 (!) ↗ ω+ ω̃ where,

ω̃ ↗ ωLR

ωL + ”

((
1 + ↽(1 + Cp)

2 (ωL + ”))
)T ↑ 1

)
,

where R := ≃uϑ≃H1
0 (!) +

1
ς
E(u0) and ↽ = ς

4

4(1+Cp)7#4 .

Remark 1: The function u0 can be seen as an initial estimate
of the solution, that can be refined to an estimate uT , which
is progressively better at the expense of a larger Barron
norm. A trivial choice could be u0 = 0, which has Barron
norm 1, and which by Lemma 4 would result in E(u0) ↗
”≃u↘≃2

H
1
0 (!).

Remark 2: The final approximation error has two terms, and
note that T goes to infinity as ω tends to zero and is a conse-
quence of the way uT is constructed — by simulating a func-
tional (preconditioned) gradient descent which converges
to the solution to the PDE. ω̃ stems from the approximation
that we make between L̃ and L, which grows as T increases
— it is a consequence of the fact that the gradient descent
updates with L̃ and L progressively drift apart as T ↓ ⇐.

Remark 3: As in the informal theorem, if we think of
p,”,ϑ, Cp, k, ≃u0≃B(!) as constants, the theorem implies
that uϑ can be ω-approximated in the L2 sense by a func-
tion with Barron norm O

(
(dBL)

max{p log(1/ω),plog(1/ω)}
)

.

5
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Therefore, combining results from Theorem 4 and The-
orem 3 the total number of parameters required to
ω↑approximate the solution uϑ by a 2↑layer neural network
is

O

(
1

ω2
(dBL)

2max{p log(1/ω),plog(1/ω)}
)
.

Remark 4: The theorem recovers (and vastly generalizes)
prior results which bound the Barron norm of linear elliptic
PDEs like Chen et al. (2021) over the hypercube. In these re-
sults, the elliptic PDE takes the form that for all u ↘ H1

0 (!),
↑divx(A→u) + cu = f and the functions A : Rd ↓ Rd≃d

and c : Rd ↓ R are such that ⇒x ↘ !, A(x) is positive defi-
nite and c(x) is non-negative and bounded. Further, the func-
tions A and c are assumed to have bounded Barron norm.
To recover this setting from our result, consider choosing

L(x, u(x),→u(x)) :=
1

2
(→u(x))TA(x)(→u(x)) +

1

2
c(x)u(x)2.

For this L, we have ε2
→u

L(x, u(x),→u(x)) = A(x) and
ε2
u
L(x, u(x),→u(x)) = c(x). The conditions in Equation 2

in Definition 1 require that ϑ ↗ A(x) ↗ ” and 0 ↗ c(x) ↗
”, which match the conditions on the coefficients A and c
in Chen et al. (2021).

Further, by a simple application of Lemma 8, one
can show, ≃ε→uL(x, u,→u)≃B(!) ↗ d2≃A≃B(!)≃u≃B(!),
and ≃εuL(x, u,→u)≃B(!) ↗ ≃A≃B(!)≃u≃B(!) and
therefore satisfy (7) in Assumption 1 with B

L̃
=

max{d2≃A≃B(!), ≃c≃B(!)} and p = 1. Plugging these
quantities in Theorem 4, we recover the exact same bound
from Chen et al. (2021).

6. Proof of Main Result
The proof will proceed by “neurally unfolding” a precon-
ditioned gradient descent on the objective E in the Hilbert
space H1

0 (!). This is inspired by previous works by Mar-
wah et al. (2021); Chen et al. (2021) where the authors show
that for a linear elliptic PDE, an objective which is quadratic
can be designed. In our case, we show that E is “strongly
convex” in some suitable sense — thus again, bounding the
amount of steps needed.

More precisely, the result will proceed in two parts:

1. First, we will show that the sequence of functions
{ut}↑t=0, where ut+1 ⇔ ut↑↽(I↑#x)↓1dE(ut) can
be interpreted as performing preconditioned gradient
descent, with the (constant) preconditioner (I↑#x)↓1.
We show that in some appropriate sense (Lemma 4), E
is strongly convex in H1

0 (!) — thus the updates con-
verge at a rate of O(log(1/ω)).

2. We then show that the Barron norm of each iterate
ut+1 can be bounded in terms of the Barron norm of

the prior iterate ut. We show this in Lemma 7, where
we show that given Assumption 1, ≃ut+1≃B(!) can be
bounded as O(d≃ut≃pB(!)). By unrolling this recursion
we show that the Barron norm of the ω-approximation
of uϑ is of the order O(dp

T ≃u0≃pB(!)) where T are the
total steps required for ω-approximation and ≃u0≃B(!)

is the Barron norm of the first function in the iterative
updates.

We now proceed to delineate the main technical ingredients
for both of these parts.

6.1. Convergence Rate of Sequence

The proof to show the convergence to the solution uϑ is
based on adapting the standard proof (in finite dimension)
for convergence of gradient descent when minimizing a
strongly convex function f . Recall, the basic idea is to
Taylor expand f(x + ⇀) ↖ f(x) + →f(x)T ⇀ + O(≃⇀≃2).
Taking ⇀ = ↽→f(x), we lower bound the progress term
↽≃→f(x)≃2 using the convexity of f , and upper bound the
second-order term ↽2≃→f(x)≃2 using the smoothness of f .

We follow analogous steps, and prove that we can lower
bound the progress term by using some appropriate sense
of convexity of E , and upper bound using some appropriate
sense of smoothness of E , when considered as a function
over H1

0 (!). Precisely, we show:

Lemma 4 (Strong convexity of E in H1
0 ). If E , L are as in

Definition 1, we have

1. ⇒u, v ↘ H1
0 (!) : ↙DE(u), v∝L2(!) =∫

! (↑divx(ε→uL(x, u,→u)) + εu(x, u,→u)) vdx =∫
! ε→uL(x, u,→u) ·→v + εuL(x, u,→u)v dx.

2. ⇒u, v ↘ H1
0 (!) : ϑ≃u ↑ v≃2

H
1
0 (!) ↗ ↙DE(u) ↑

DE(v), u↑ v∝L2(!) ↗ (1 + C2
p
)”≃u↑ v≃2

H
1
0 (!).

3. ⇒u, v ↘ H1
0 (!) : ς

2 ≃→v≃2
L2(!) + ↙DE(u) ↑

f, v∝L2(!) ↗ E(u+v)↑E(u) ↗ ↙DE(u)↑f, v∝L2(!)+
(1+Cp)

2#
2 ≃→v≃2

L2(!).

4. ⇒u ↘ H1
0 (!) :

ς

2 ≃u ↑ uϑ≃2
H

1
0 (!) ↗ E(u) ↑ E(uϑ) ↗

(1+Cp)
2#

2 ≃u↑ uϑ≃2
H

1
0 (!).

Part 1 is a helpful way to rewrite an inner product of a “direc-
tion” v with DE(u)—it is essentially a consequence of inte-
gration by parts and the Dirichlet boundary condition. Part
2 and 3 are common proxies of convexity and smoothness:
they are ways of formalizing the notion that E is strongly
convex has “Lipschitz gradients”, when viewed as a func-
tion over H1

0 (!). Finally, Part 4 is a consequence of strong
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convexity, capturing the fact that if the value of E(u) is sub-
optimal, u must be (quantitatively) far from u↘. The proof
of the Lemma can be found in Appendix A.1.

When analyzing gradient descent in (finite dimensions)
to minimize a loss function E , the standard condition for
progress is that the inner product of the gradient with
the direction towards the optimum is lower bounded as
↙DE(u), u↘ ↑ u∝L2(!) ⇓ ⇁≃u↑ u↘≃2

L2(!) (we have L2(!)

inner product vs H1
0 (!) norm). From Parts 2 and 3 of

Lemma 4 one can readily see that the above condition is
only satisfied “with the wrong norm”: i.e. we only have
↙DE(u), u↘ ↑ u∝L2(!) ⇓ ⇁≃u ↑ u↘≃2

H
1
0 (!). Moreover,

since in general, ≃→g≃L2(!) can be arbitrarily bigger than
≃g≃L2(!), there is no way to upper bound the H1

0 (!) norm
by the L2(!) norm.

We can fix this mismatch by instead doing preconditioned
gradient, using the fixed preconditioner (I ↑ #x)↓1. To-
wards that, the main lemma about the preconditioner we
will need is the following one:
Lemma 5 (Norms with preconditioning). For all u ↘
H1

0 (!) we have

1. ≃(I ↑ #x)↓1→x · →xu≃L2(!) = ≃(I ↑
#x)↓1#xu≃L2(!) ↗ ≃u≃L2(!).

2. ≃(I ↑#x)↓1u≃L2(!) ↗ ≃u≃L2(!)

3. ↙(I↑#x)↓1u, u∝L2(!) ⇓ 1
1+Cp

↙(↑#x)↓1u, u∝L2(!).

The first part of the lemma is a relatively simple conse-
quence of the fact that #x and →x “commute”, thus can be
re-ordered, and the second part that the operator (I↑#x)↓1

only decreases the H1
0 (!) norm. The latter lemma can be

understood intuitively as (I ↑#x)↓1 and #↓1
x

act as simi-
lar operators on eigenfunctions of #x with large eigenval-
ues (the extra I does not do much) – and are only different
for eigenfunctions for small eigenvalues. However, since
the smallest eigenvalue is lower bounded by 1/Cp, their gap
can be bounded.

Combining Lemma 4 and Lemma 5, we can show that pre-
conditioned gradient descent exponentially converges to the
solution to the nonlinear variational PDE in 4.
Lemma 6 (Convergence of Preconditioned Gradient De-
scent). Let uϑ

denote the unique solution to the PDE in Def-

inition 4 For all t ↘ N, we define the sequence of functions

ut+1 ⇔ ut ↑ ↽(I ↑#x)
↓1 (DE(ut)↑ f) . (9)

where ↽ = ς
4

4(1+Cp)7#4 . If u0 ↘ H1
0 (!), then after t itera-

tions we have,

E(ut+1)↑E(uϑ) ↗
(
1↑ ϑ6

(1 + Cp)10”5

)
(E(u0)↑ E(uϑ)) .

The complete proof for convergence can be found in Sec-
tion A.3 of the Appendix.

Therefore, using the result from Lemma 4 part 4, i.e., ≃ut ↑
uϑ≃2

H
1
0 (!) ↗

2
ς
(E(ut)↑ E(uϑ)), we have

≃ut ↑ uϑ≃2
H

1
0 (!)

↗ 2

ϑ

(
1↑ ϑ6

(1 + Cp)10”5

)t

(E(u0)↑ E(uϑ)) .

and ≃uT ↑ uϑ≃2
H

1
0 (!) ↗ ω after T steps, where,

T ⇓ log

(
E(u0)↑ E(uϑ)

ϑω/2

)
/ log

(
1

1↑ ς6

(1+Cp)10#5

)
.

(10)

6.2. Bounding the Barron Norm

Having obtained a sequence of functions that converge to
the solution uϑ, we bound the Barron norms of the iterates.
We draw inspiration from Marwah et al. (2021); Lu et al.
(2021) and show that the Barron norm of each iterate in the
sequence increases the Barron norm of the previous iterate
in a bounded fashion. Note that in general, the Fourier
spectrum of a composition of functions cannot easily be
expressed in terms of the Fourier spectrum of the functions
being composed. However, from Assumption 1 we know
that the function L can be approximated by L̃ such that
ε→uL̃(x, u,→u) and εuL(x, u,→u) increases the Barron
norm of u in a bounded fashion. Thus, if we instead of
tracking the iterates in (28) we track

ũt+1 = ũt ↑ ↽ (I ↑#)↓1 DẼ(ũt). (11)

we can derive the following result (the proof is deferred to
Section C.1 of the Appendix):

Lemma 7. For the updates in (11), if ũt ↘ %Wt
then for

all ↽ ↘ (0, ↽] we have ũt+1 ↘ %k
L̃
Wt

and the Barron norm

≃ũt+1≃|B(!) can be bounded as follows,

(1 + ↽(2ςk
L̃
d+ 1)B

L̃
(2ςWt)

p
L̃) ≃ũ≃pL̃

B(!) + ↽≃f≃B(!).

The proof consists of using the result in (7) about the Bar-
ron norm of composition of a function with L̃, as well as
counting the increase in the Barron norm of a function by
any basic algebraic operation, as established in Lemma 8.
Precisely we show:

Lemma 8 (Barron norm algebra). If g, g1, g2 ↘ %, then the

following set of results hold,

• Addition: ≃g1 + g2≃B(!) ↗ ≃g1≃B(!) + ≃g2≃B(!) .

• Multiplication: ≃g1 · g2≃B(!) ↗ ≃g1≃B(!)≃g2≃B(!)
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• Derivative: if h ↘ %W for i ↘ [d] we have

≃εig≃B(!) ↗ 2ςW≃g≃B(!).

• Preconditioning: if g ↘ %, then ≃(I ↑#)↓1g≃B(!) ↗
≃g≃B(!).

The proof for the above lemma can be found in Ap-
pendix C.4. It bears similarity to an analogous result in
(Chen et al., 2021), with the difference being that our bounds
are defined in the spectral Barron space which is different
from the definition of the Barron norm used in (Chen et al.,
2021). Other than preconditioning, the other properties fol-
low by a straightforward calculation. For preconditioning,
the main observation is that (I↑#)↓1 acts as a diagonal op-
erator in the Fourier basis—thus the Fourier coefficients of
(I ↑#)↓1h can be easily expressed in terms of those of h.

Expanding on the recurrence in Lemma 8 we can bound the
Barron norm of the function uT after T iterations as:

Lemma 9. Given the updates in (11) and function u0 ↘
%W0 with Barron norm ≃u0≃B(!), then after T iterations

we have ũT ↘ %(2ϖk
L̃
)TW0

and ≃u0≃B(!) is bounded by,

(
(1 + ↽2ςk

L̃
W0(2ςkL̃d+ 1)B

L̃
)
(
1 + ↽≃f≃B(!)

))pt+ p
t↑1
p↑1

·
(
max{1, ≃u0≃p

t

B(!)}
)

(12)

Finally, we exhibit a natural class of functions that satisfy
the main Barron growth property in Equations 7. Precisely,
we show (multivariate) polynomials of bounded degree have
an effective bound on p and BL:

Lemma 10. Let f(x) =
∑

φ,|φ|⇐P

(
Aφ


d

i=1 x
φi

i

)
where

⇁ is a multi-index and x ↘ Rd
. If g : Rd ↓ Rd

is such that g ↘ %W , then we have f ′ g ↘ %PW

and the Barron norm can be bounded as ≃f ′ g≃B(!) ↗

dP/2
(∑

φ,|φ|⇐P
|Aφ|2

)1/2
≃g≃PB(!)

Hence if L̃ is a polynomial of degree P then using the fact
that for a functions g : ! ↓ R such that g ↘ %W , from
Lemma 8 max{≃g≃B(!), ≃→g≃B(!)} ↗ 2ςW≃g≃B(!), we
will have

≃L̃(x, g,→g)≃B(!)

↗ dP/2




∑

φ,|φ|⇐P

|Aφ|2



1/2

(2ςW )P ≃g≃PB(!).

Using the derivative result from Lemma 8, the constants
in Assumption 1 will take the following values B

L̃
=

dP/2(2ςW )P+1
(∑

φ,|φ|⇐P
|Aφ|2

)1/2
, and r = 2ςWP .

Finally, since we are using an approximation of the function
L we will incur an error at each step of the iteration. The
following Lemma shows that the error between the iterates
ut and the approximate iterates ũt increases with t. The
error is calculated by recursively tracking the error between
ut and ũt for each t in terms of the error at t↑ 1. Note that
this error can be controlled by using smaller values of ↽.

Lemma 11. Let L̃ : Rd ↓ R be the function satisfying the

properties in Assumption 1 and we have

E(u) =
∫

!
L(x, u(x),→u(x))↑ f(x)u(x) dx

and Ẽ(u) =
∫

!
L̃(x, u(x),→u(x))↑ f(x)u(x)dx.

For ↽ ↘ (0, ς
4

4(1+Cp)7#4 ] consider the sequences,

ut+1 = ut ↑ ↽(I ↑#)↓1DE(ut),

and, ũt+1 = ũt ↑ ↽(I ↑#)↓1DẼ(ut)

then for all t ↘ N and denoting R := ≃uϑ≃H1
0 (!) +

1
ς
E(u0)

we have,

≃ut ↑ ũt≃H1
0 (!)

↗ ωLR

ωL + ”

((
1 + ↽(1 + Cp)

2 (ωL + ”))
)t ↑ 1

)

7. Conclusion and Future Work
In this work, we take a representational complexity perspec-
tive on neural networks, as they are used to approximate
solutions of nonlinear elliptic variational PDEs of the form
↑divx(ε→uL(x, u,→u)) + εuL(x, u,→u) = f . We prove
that if L is such that composing partial derivatives of L
with function of bounded Barron norm increases the Barron
norm in a bounded fashion, then we can bound the Barron
norm of the solution uϑ to the PDE—potentially evading
the curse of dimensionality depending on the rate of this
increase. Our results subsume and vastly generalize prior
work on the linear case (Marwah et al., 2021; Chen et al.,
2021) when the domain is a hypercube. Our proof consists
of neurally simulating preconditioned gradient descent on
the energy function defining the PDE, which we prove is
strongly convex in an appropriate sense.

There are many potential avenues for future work. Our tech-
niques (and prior techniques) strongly rely on the existence
of a variational principle characterizing the solution of the
PDE. In classical PDE literature, these classes of PDEs
are also considered better behaved: e.g. proving regular-
ity bounds is much easier for such PDEs (Fernández-Real
& Ros-Oton, 2020). There are many non-linear PDEs that
come without a variational formulation for which regularity
estimates are derived using non-constructive methods like
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comparison principles. It is a wide open question to con-
struct representational bounds for any interesting family of
PDEs of this kind. It is also a very interesting question to
explore other notions of complexity—e.g. number of pa-
rameters in a (potentially deep) network like in (Marwah
et al., 2021), Rademacher complexity, among others.
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A. Proofs from Section 6.1: Convergence Rate of Sequence
A.1. Proof of Lemma 4

Proof. In order to prove part 1, we will use the following integration by parts identity, for functions r : ! ↓ R such that
and s : ! ↓ R, and r, s ↘ H1

0 (!),
∫

!

εr

εxi

sdx = ↑
∫

!
r
εs

εxi

dx+

∫

ε!
rsnd% (13)

where ni is a normal at the boundary and d% is an infinitesimal element of the boundary ε!.

Using the formula in (13) for functions u, v ↘ H1
0 (!), we have

↙DE(u), v∝L2(!) = ↙↑→x · ε→uL(x, u,→u) + εuL(x, u,→u), v∝
L2(!)

= ↑
∫

!
→x · ε→uL(x, u,→u)v + εuL(x, u,→u)v dx

= ↑
∫

!

d∑

i=1

ε (ε→uL(x, u,→u))
i

εxi

v + εuL(x, u,→u)v dx

=

∫

!

d∑

i=1

(ε→uL(x, u,→u))
i

εv

εxi

dx+

∫

!

d∑

i=1

(ε→uL(x, u,→u))
i
vnidx+

∫

!
εuL(x, u,→u)v dx

=

∫
ε→uL(→u) ·→v + εuL(x, u,→u)v dx

where in the last equality we use the fact that the function v ↘ H1
0 (!), thus v(x) = 0, ⇒x ↘ ε!.

To prove part 2. first note from Part 1. we know that ↙DE(u)↑DE(v), u↑ v∝L2(!) takes the following form,

↙DE(u)↑DE(v), u↑ v∝L2(!)

= ↙ε→uL(x, u,→u)↑ ε→vL(x, v,→v),→u↑→v∝L2(!) + ↙εuL(x, u,→u)↑ εvL(x, v,→v), u↑ v∝L2(!) (14)

We know that for x ↘ !, we have
→2

(u,→u)L(x, u,→u) ↗ diag([”,”1d])

Note that →(u,→u)L(x, u,→u) is a vector, and we can write, ε(u,→u)L(x, u,→u) = [εuL(x, u,→u), ε→uL(x, u,→u)] (here
for two vectors a, b we define a new vector c := [a, b] as their concatenation).

Using the smoothness of L can write,

[εuL(x, u,→u)↑ εuL(x, v,→v), ε→uL(x, u,→u)↑ ε→uL(x, v,→v)]T ([u↑ v,→u↑→v])

↗ [u↑ v,→u↑→v]T (diag([”,”1d])) [u↑ v,→u↑→v]

↗ ”[u↑ v,→u↑→v]T [u↑ v,→u↑→v]

This implies that for x ↘ ! we have

(ε→uL(x, u(x),→u(x))↑ ε→uL(x, v(x),→v(x))T (→u(x)↑→v(x))

+ (εuL(x, u(x),→u(x))↑ εuL(x, v(x),→v(x))T (u(x)↑ v(x))

↗ ”≃→u(x)↑→v(x)≃22 + ”≃u(x)↑ v(x)≃22

Integrating over ! on both sides we get

↙ε→uL(x, u,→u)↑ ε→vL(x, v,→v),→u↑→v∝L2(!) + ↙εuL(x, u,→u)↑ εvL(x, v,→v), u↑ v∝L2(!)

↗ ”≃→u↑→v≃2
L2(!) + ”≃u↑ v≃2

L2(!)

↗ ”(1 + C2
p
) · ≃u↑ v≃2

H
1
0 (!).

11
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the Poincare inequaltiy from Theorem 2 in the final equation. Hence plugging this result in Equation 14 we have,

↙DE(u)↑DE(v), u↑ v∝L2(!) ↗ (”+ C2
p
”)≃u↑ v≃2

H
1
0 (!)

This proves the right hand side of the inequality in part 2.

To prove the left and side we use similar to the upper bound, using the convexity of the L(x, ·, ·) : R↔ Rd, we can lower
bound the following term,

[εuL(x, u,→u)↑ εuL(x, v,→v), ε→uL(x, u,→u)↑ ε→uL(x, v,→v)]T ([u↑ v,→u↑→v])

⇓ [u↑ v,→u↑→v]T (diag([0,ϑ1d])) [u↑ v,→u↑→v]

⇓ ϑ(→u↑→v)T (→u↑→v)

Therefore, for all x ↘ ! we have

(ε→uL(x, u(x),→u(x))↑ ε→uL(x, v(x),→v(x))T (→u(x)↑→v(x))

+ (εuL(x, u(x),→u(x))↑ εuL(x, v(x),→v(x))T (u(x)↑ v(x))

⇓ ϑ≃→u(x)↑→v(x)≃22

Integrating over ! on both sides we get

↙ε→uL(x, u,→u)↑ ε→vL(x, v,→v),→u↑→v∝L2(!)

+ ↙εuL(x, u,→u)↑ εvL(x, v,→v), u↑ v∝L2(!)

⇓ ϑ≃→u↑→v≃2
L2(!)

= ϑ≃u↑ v≃2
H

1
0 (!).

Therefore we have,

ϑ≃u↑ v≃2
H

1
0 (!) ↗ ↙DE(u)↑DE(v), u↑ v∝L2(!) ↗ (”+ C2

p
”)≃u↑ v≃2

H
1
0 (!)

as we wanted.

To show part 3, we will again use the fact that the function for a given x ↘ ! the function L(x, ·, ·) is strongly convex and
smooth. Therefore using Taylor’s Theorem L(x, u+ v,→u+→v) along L(x, u,→u) we can re-write the energy function as:

E(u+ v)

=

∫

!
L(x, u(x) + v(x),→u(x) +→v(x))↑ f(x)(u(x) + v(x))dx

=

∫

!
L(x, u(x),→u(x)) +→(u,→u)L(x, u(x),→u(x))T [v(x),→v(x)]

+
1

2
[v(x),→v(x)]T→2

(u,→u)L(x̃, u(x̃),→x̃)[u(x),→u(x)]↑
∫

f(x)(u(x) + v(x))dx

=

∫

!
L(x, u(x),→u(x)) + [εuL(u, u(x),→u(x)), ε→uL(x, u(x),→u(x))]T [v(x),→v(x)]

+
1

2
[v(x),→v(x)]T→2

(u,→u)L(x̃, u(x̃),→u(x̃))[v(x),→v(x)]↑
∫

f(x)(u(x) + v(x))dx (15)

From Equation 2 of Definition 1 we know that for a given x ↘ ! the function L(x, ·, ·) is smooth and convex. In particular
we know that,

diag([0,ϑId]) ↗ →2
(u,→u) ↗ diag[”,”Id].

12



Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Using this to upper bound (15) we get,

E(u+ v) ↗
∫

!
L(x, u(x),→u(x)) + [εuL(u, u(x),→u(x)), ε→uL(x, u(x),→u(x))]T [v(x),→v(x)]

+
”

2
[v(x),→v(x)]T [v(x),→v(x)]↑

∫
f(x)(u(x) + v(x))dx

=

∫

!
L(x, u(x),→u(x)) + εuL(u, u(x),→u(x))v(x) + ε→uL(x, u(x),→u(x))→v(x)

+
”

2

(
v(x)2 + ≃→v(x)≃22

)
↑
∫

f(x)(u(x) + v(x))dx

= E(u) + ↙DE(u)↑ f, v∝L2(!) +
”

2

(
≃v≃L2(!) + ≃v≃H1

0 (!)

)

=∞ E(u+ v) ↗ E(u) + ↙DE(u)↑ f, v∝L2(!) +
”(1 + C2

p
)

2
≃v≃H1

0 (!) (16)

We can similarly lower bound (15) by using the convexity of →2
(u,→u)L as

E(u+ v) ⇓
∫

!
L(x, u(x),→u(x)) + [εuL(u, u(x),→u(x)), ε→uL(x, u(x),→u(x))]T [v(x),→v(x)]

+
”

2
→v(x)T→v(x)↑

∫
f(x)(u(x) + v(x))dx

=

∫

!
L(x, u(x),→u(x)) + εuL(u, u(x),→u(x))v(x) + ε→uL(x, u(x),→u(x))→v(x)

+
ϑ

2
≃→v(x)≃22 ↑

∫
f(x)(u(x) + v(x))dx

=∞ E(u+ v) ⇓ E(u) + ↙DE(u)↑ f, v∝L2(!) +
ϑ

2
≃v≃H1

0 (!) (17)

Combining (16) and (17) we get,

ϑ

2
≃→v≃2

L2(!) + ↙DE(u)↑ f, v∝L2(!) ↗ E(u+ v)↑ E(u) ↗ ↙DE(u)↑ f, v∝L2(!) +
(1 + Cp)2”

2
≃→v≃2

L2(!)

Finally, part 4 follows by plugging in u = uϑ and v = u↑ uϑ in part 3 and using the fact that DE(uϑ) = f .

A.2. Proof of Lemma 5

Proof. Let {ϑi,φi}↑i=1 denote the (eigenvalue, eigenfunction) pairs of the operator ↑# where 0 < ϑ1 ↗ ϑ2 ↗ · · · , which
are real and countable. ( Evans (2010), Theorem 1, Section 6.5)

Using the definition of eigenvalues and eigenfunctions, we have

ϑ1 = inf
v↔H

1
0 (!)

↙↑#v, v∝L2(!)

≃v≃2
L2(!)

= inf
v↔H

1
0 (!)

↙→v,→v∝L2(!)

≃v≃2
L2(!)

=
1

Cp

.

where in the last equality we use Theorem 2.

Let us write the functions v, w in the eigenbasis as v =
∑

i
µiφi. Notice that an eigenfunction of ↑# is also an eigenfunction

for (I ↑#)↓1, with correspondinding eigenvalue 1
1+ςi

.

13
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Thus, to show part 1, we have,

(I ↑#)↓1→x ·→v
2
L2(!)

=
(I ↑#)↓1#v

2
L2(!)

=



↑∑

i=1

ϑi

1 + ϑi

µiφi



2

L2(!)

↗



↑∑

i=1

µiφi



2

L2(!)

=
↑∑

i=1

µ2
i
= ≃u≃2

L2(!)

where in the last equality we use the fact that φi are orthogonal.

Now, bounding ↙(I ↑#)↓1v, v∝L2(!) for part 2. we use the fact that eigenvalues of the operator (I ↑#)↓1 are of the form
1

1+ςi

↑

i=1
we have,

↙(I ↑#)↓1v, v∝L2(!) =

 ↑∑

i=1

µi

1 + ϑi

φi,
↑∑

i=1

µiφi



L2(!)

↗
 ↑∑

i=1

µiφi,
↑∑

i=1

µiφi



L2(!)

= ≃u≃2
L2(!) (18)

Before proving part 3., note that since ϑ1 ↗ ϑ2 ↗ · · · and x

1+x
is monotonically increasing, we have for all i ↘ N

1

1 + ϑi

⇓ 1

(1 + Cp)ϑi

(19)

and note that 1
ςi

are the eigenvalues for (↑#)↓1 for all i ↘ N. Using the inequality in (19) and the fact that φ⇒
i
s are

orthogonal, we can further lower bound ↙(I ↑#)↓1v, v∝L2(!) as follows,

↙(I ↑#)↓1v, v∝L2(!) =
↑∑

i=1

µ2
i

1 + ϑi

≃φi≃2L2(!)

⇓
↑∑

i=1

µ2
i

(1 + pc)ϑi

≃φi≃2L2(!)

=
1

1 + Cp

↙(↑#)↓1v, v∝L2(!),

where we use the following set of equalities in the last step,

↙(↑#)↓1v, v∝L2(!) =

 ↑∑

i=1

µi

ϑi

φi,
↑∑

i=1

µiφi



L2(!)

=
↑∑

i=1

µ2
i

ϑi

≃φi≃2L2(!).

A.3. Proof of Lemma 6: Convergence of Preconditioned Gradient Descent

Proof. For the analysis we consider ↽ = ς
4

4(1+Cp)7#4

14
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Taylor expanding as in (16), we have

E(ut+1) ↗ E(ut)↑ ↽

DE(→ut)↑ f, (I ↑#x)

↓1 (DE(ut)↑ f)

L2(!)  

Term 1

+
↽2 (1 + Cp)

2 ”

2

→x(I ↑#x)
↓1 (DE(ut)↑ f)

2
L2(!)

  
Term 2

. (20)

where we have in (16) plugged in ut+1 ↑ ut = ↑↽ (I ↑#x)
↓1 (DE(ut)↑ f).

First we lower bound Term 1. Since uϑ is the solution to the PDE in (4), we have DE(uϑ) = f . Therefore we have


DE(ut)↑ f, (I ↑#x)

↓1 (DE(ut)↑ f)

L2(!)

=

DE(ut)↑DE(uϑ), (I ↑#x)

↓1 (DE(ut)↑DE(uϑ))

L2(!)

(21)

Using the result from Lemma 5 part 3., we have,

↙DE(ut)↑DE(uϑ), (I ↑#x)
↓1DE(ut)↑DE(uϑ)∝L2(!)

⇓ 1

1 + Cp

(
↙DE(ut)↑DE(uϑ), (↑#x)

↓1DE(ut)↑DE(uϑ)∝L2(!)

)

Using the Equation (21) and the fact that ↙DE(u), v∝L2(!) = ↙ε→uL(x, u,→u),→v∝L2(!) + ↙εuL(x, u,→u), v∝L2(!) from
Lemma 4 we get,

↙DE(ut)↑DE(uϑ), (I ↑#x)
↓1DE(ut)↑DE(uϑ)∝L2(!)

⇓ 1

1 + Cp

(
↙DE(ut)↑DE(uϑ), (↑#x)

↓1DE(ut)↑DE(uϑ)∝L2(!)

)

=
1

1 + Cp

(
↙ε→uL(x, ut,→ut)↑ ε→uL(x, u

ϑ,→uϑ),→x(↑#x)
↓1 (DE(ut)↑DE(uϑ))∝L2(!)

)

+
1

1 + Cp

(
↙εuL(x, ut,→ut)↑ εuL(x, u

ϑ,→uϑ), (↑#x)
↓1(DE(ut)↑DE(uϑ))∝L2(!)

)

=
1

1 + Cp


→(u,→u)L(x, ut,→ut)↑→(u,→u)L(x, u

ϑ,→uϑ),


(↑#x)

↓1 (DE(ut)↑DE(uϑ)) ,→x(↑#x)
↓1 (DE(ut)↑DE(uϑ))

〉

L2(!)

(22)

where we combine the terms →x (↑#x)↓1 (DE(ut)↑DE(uϑ)) and →x(↑#x)↓1 (DE(ut)↑DE(uϑ)) into a single vector
in the last step.

Now, note that since for any x ↘ ! the function L(x, ·, ·) is strongly convex, we have

→2
(u,→u)L(x,→u,→x) ⇓ diag([0,ϑ1d])

Therefore for all x we can bound →(u,→u)L(x, ut(x),→ut(x))↑→(u,→u)L(x, u
ϑ(x),→uϑ(x))

→(u,→u)L(x, ut(x),→ut(x))↑→(u,→u)L(x, u
ϑ(x),→uϑ(x))

= [ut(x)↑ uϑ(x),→ut(x)↑→uϑ(x)]T
(
→2

(u,→u)L(x̃, u(x̃),→u(x̃)
)

(23)

where x̃ ↘ ! (and potentially different from x).

15



Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Using (23) in (22), we can lower bound the term as follows:

↙DE(ut)↑DE(uϑ), (I ↑#x)
↓1DE(ut)↑DE(uϑ)∝L2(!)

⇓ 1

1 + Cp


[ut ↑ uϑ,→ut ↑→uϑ]T

(
→2

(u,→u)L(x̃, u(x̃),→u(x̃)
)
,

[
(↑#x)

↓1 (DE(ut)↑DE(uϑ)) ,→x(↑#x)
↓1 (DE(ut)↑DE(uϑ))

]

L2(!)

⇓ 1

1 + Cp


[0,ϑ (→ut(x)↑→uϑ(x))] ,


(↑#x)

↓1 (DE(ut)↑DE(uϑ)) ,→x(↑#x)
↓1 (DE(ut)↑DE(uϑ))


L2(!)

=
ϑ

1 + Cp


→ut ↑→uϑ,→x(↑#x)

↓1 (DE(ut)↑DE(uϑ))

L2(!)

(i)
=

ϑ

1 + Cp


(↑#)ut ↑ (↑#)uϑ, (↑#x)

↓1 (DE(ut)↑DE(uϑ))

L2(!)

(ii)
=

ϑ

1 + Cp


(↑#)↓1(↑#)ut ↑ (↑#)↓1(↑#)uϑ, (DE(ut)↑DE(uϑ))


L2(!)

(iii)
=

ϑ

1 + Cp

↙ut ↑ uϑ, (DE(ut)↑DE(uϑ))∝
L2(!)

(iv)
⇓ ϑ2

1 + Cp

≃ut ↑ uϑ≃2
H

1
0 (!) (24)

Here, we use the fact that for all u, v ↘ H1
0 (!) we have ↙→u,→v∝L2(!) = ↙↑#u, v∝L2(!), i.e., Green’s identity (along

with the fact that we have a Dirichlet Boundary condition) to get step (i). We use the symmetry of the operator (↑#)↓1 in
step (ii), and the fact that for a function g ↘ H1

0 (!) (↑#)↓1(↑#)g = g in step (iii). We finally use Part 2 of Lemma 4 in
the final step.

Hence finally Term 1 can be simplified as,

↙DE(ut)↑DE(uϑ), (I ↑#x)
↓1DE(ut)↑DE(uϑ)∝L2(!)

⇓ ϑ2

1 + Cp

≃ut ↑ uϑ≃2
H

1
0 (!)

⇓ 2ϑ2

(1 + Cp)3”
(E(ut)↑ E(uϑ))

where we use Part 4 from Lemma 4 in the final step.

We will proceed to upper bounding Term 2. Using the definition of H1
0 (!) norm, we can re-write Term 2 as,

→x (1↑#x)
↓1 (DE(ut)↑ f)


2

L2(!)
=

(1↑#x)
↓1 (DE(ut)↑ f)


2

H
1
0 (!)

16
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Writing the H1
0 (!) norm in its variational form (since H1

0 (!) norm is self-adjoint, Lemma 16) and upper bounding it,

(1↑#x)
↓1 (DE(ut)↑ f)


H

1
0 (!)

= sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

〈
→x (1↑#x)

↓1 (DE(ut)↑ f) ,→v
〉

L2(!)

= sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

〈
→x (1↑#x)

↓1 (DE(ut)↑DE(uϑ)) ,→v
〉

L2(!)

(i)
= sup

v↔H
1
0 (!)

⇑v⇑
H

1
0(!)=1

〈
(1↑#x)

↓1 (DE(ut)↑DE(uϑ)) ,↑#v
〉

L2(!)

(ii)
= sup

v↔H
1
0 (!)

⇑v⇑
H

1
0(!)=1

〈
(↑#) (1↑#x)

↓1 (DE(ut)↑DE(uϑ)) , v
〉

L2(!)

↗ sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

↙DE(ut)↑DE(uϑ), v∝
L2(!) (25)

here, step (i) follows from the equality that for all u, v ↘ H1
0 (!) we have ↙→u,→v∝L2(!) = ↙↑#u, v∝L2(!) and the fact

that ↑# is a symmetric operator in step (ii).

Finally we use Lemma 5 Part 1 for the final step. More precisely, we use Part 1 of Lemma 5 as follows, where for a
g ↘ H1

0 (!) we can write,

sup
v↔L

2(!)
⇑v⇑

L2(!)=1

↙(↑#)(I ↑#)↓1g, v∝L2(!) = ≃ ↑#(I ↑#)↓1g≃L2(!) ↗ ≃g≃L2(!) =: sup
v↔L

2(!)
⇑v⇑

L2(!)=1

↙g, v∝L2(!)

Note that, from Lemma 4 we know that for all u, v we can write the inner product ↙DE(u), v∝ as follows

↙DE(u), v∝L2(!) = ↙ε→uL(x, u,→u), v∝L2(!) + ↙εuL(x, u,→u), v∝L2(!)

= ↙→(u,→u)L(x, u,→u), [v,→v]∝L2(!)

that is, we we combine ε→uL and εuL into a single vector →(u,→u)L := [εuL(x, u,→u), ε→uL(x, u,→u)] ↘ Rd+1 and
combining u and →u as a vector [u,→u].

17
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Using this form and re-writing (25) and using the fact that for x ↘ ! L(x, ·, ·) is convex and smooth in step (i), we have
(1↑#x)

↓1 (DE(ut)↑ f)

H

1
0 (!)

↗ sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1


→(u,→u)L(x, ut,→ut)↑→(u,→u)L(x, u

ϑ,→uϑ), [v,→v]

L2(!)

(i)
= sup

v↔H
1
0 (!)

⇑v⇑
H

1
0(!)=1

〈
[ut ↑ uϑ,→ut ↑→uϑ]T →2

(u,→u)L(x̃, u(x̃),→u(x̃)), [v,→v]
〉

L2(!)

↗ sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

”
〈
[ut ↑ uϑ,→ut ↑→uϑ]T , [v,→v]

〉

L2(!)

= sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

” ↙ut ↑ uϑ, v∝
L2(!) + ” ↙→(ut ↑ uϑ),→v∝

L2(!)

= sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

”C2
p
≃ut ↑ uϑ≃H1

0 (!)≃v≃H1
0 (!) + ”≃ut ↑ uϑ≃H1

0 (!)≃v≃H1
0 (!)

= ”(1 + C2
p
)≃ut ↑ uϑ≃H1

0 (!) ↗ ”(1 + Cp)
2≃ut ↑ uϑ≃H1

0 (!) (26)

where we use the Poincare Inequality 2 in the final step.

Therefore, from the final result in (26) we can upper bound Term 2 in (20) to get,

→x(I ↑#x)
↓1DE(ut)

2
L2(!)

↗ ”2(1 + Cp)
2≃ut ↑ uϑ≃2

H
1
0 (!)

↗ ”2(1 + Cp)2

ϑ
(E(ut)↑ E(uϑ))

where we use the result from part 4 from Lemma 4.

=∞ E(ut+1)↑ E(uϑ) ↗ E(ut)↑ E(uϑ)↑
(

2ϑ2

(1 + Cp)3”
↑ ↽

(1 + Cp)4”3

ϑ

)
↽ (E(ut)↑ E(uϑ))

Since ↽ = ς
4

4(1+Cp)7#4 we have

E(ut+1)↑ E(uϑ) ↗ E(ut)↑ E(uϑ)↑ ϑ2

(1 + Cp)3”
↽ (E(ut)↑ E(uϑ))

=∞ E(ut+1)↑ E(uϑ) ↗
(
1↑ ϑ6

(1 + Cp)10”5

)t

(E(u0)↑ E(uϑ)) .

B. Error Analysis
B.1. Proof of Lemma 11

Proof. We define for all t rt = ũt ↑ ut, and will iteratively bound ≃rt≃L2(!).

Starting with u0 = 0 and ũt = 0, we define the iterative sequences as,
{
u0 = u0

ut+1 = ut ↑ ↽(I ↑#x)↓1DE(ut)
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{
ũt = u0

ũt+1 = ũt ↑ ↽(I ↑#x)↓1DẼ(ũt)

where ↽ ↘
(
0, ς

4

4(1+Cp)7#4

]
. Subtracting the two we get,

ũt+1 ↑ ut+1 = ũt ↑ ut ↑ ↽(I ↑#x)
↓1

(
DẼ(ũt)↑DE(ut)

)

=∞ rt+1 = rt ↑ ↽(I ↑#x)
↓1

(
DẼ(ut + rt)↑DE(ut)

)
(27)

Taking H1
0 (!) norm on both sides we get,

≃rt+1≃H1
0 (!) ↗ ≃rt≃H1

0 (!) + ↽
(I ↑#x)

↓1
(
DẼ(ut + rt)↑DE(ut)

)
H

1
0 (!)

(28)

Towards bounding
(I ↑#x)↓1DẼ(ut + rt)↑DE(ut)


H

1
0 (!)

, from Lemma 15 we know that the dual norm of ≃w≃H1
0 (!)

is ≃w≃H1
0 (!), thus,

(I ↑#x)
↓1DẼ(ut + rt)↑DE(ut)


H

1
0 (!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
→(I ↑#x)

↓1
(
DẼ(ut + rt)↑DE(ut)

)
,→ϖ

〉

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
→(I ↑#x)

↓1
(
DẼ(ut + rt)↑DE(ut + rt)

)
,→ϖ

〉

L2(!)

+ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1


→(I ↑#x)

↓1 (DE(ut + rt)↑DE(ut)) ,→ϖ

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
(I ↑#x)

↓1
(
DẼ(ut + rt)↑DE(ut + rt)

)
,#ϖ

〉

L2(!)

+ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1


(I ↑#x)

↓1 (DE(ut + rt)↑DE(ut)) ,#ϖ

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈(
DẼ(ut + rt)↑DE(ut + rt)

)
, (I ↑#)↓1#ϖ

〉

L2(!)

+ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1


(DE(ut + rt)↑DE(ut)) , (I ↑#)↓1#ϖ


L2(!)

↗ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈(
DẼ(ut + rt)↑DE(ut + rt)

)
,ϖ

〉

L2(!)

+ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

↙(DE(ut + rt)↑DE(ut)) ,ϖ∝L2(!) (29)

Now from Assumption 1, we know that for all x ↘ ! and u ↘ H1
0 (!) we have the following bounds on the difference of

partials of L and L̃:

sup
εuL̃(x, u(x),→u(x))↑ εuL(x, u(x),→u(x))


2
↗ ωL≃u(x)≃2, (30)
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and
sup

ε→uL̃(x, u(x),→u(x))↑ ε→uL(x, u(x),→u(x))

2
↗ ωL≃u(x)≃2, (31)

Therefore, note that we can bound the difference of →(u,→u)L̃ and →(u,→u)L for all x ↘ ! and u ↘ H1
0 (!) as follows,

sup
→(u,→u)L̃(x, u(x),→u(x))↑→(u,→u)L(x, u(x),→u(x))


2

↗ sup
ε→uL̃(x, u(x),→u(x))↑ ε→uL(x, u(x),→u(x))


2
+ sup

ε→uL̃(x, u(x),→u(x))↑ ε→uL(x, u(x),→u(x))

2

↗ 2ωL≃u(x)≃2 (32)

Note that, from Lemma 4 we know that for all u, v we can write the inner product ↙DE(u), v∝ as follows

↙DE(u), v∝L2(!) = ↙ε→uL(x, u,→u), v∝L2(!) + ↙εuL(x, u,→u), v∝L2(!)

= ↙→(u,→u)L(x, u,→u), [v,→v]∝L2(!) (33)

that is, we we combine ε→uL and εuL into a single vector →(u,→u)L := [εuL(x, u,→u), ε→uL(x, u,→u)] ↘ Rd+1 and
combining u and →u as a vector [u,→u].

Using upper bound in Equation 32 we can upper bound sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈(
DẼ(ut + rt)↑DE(ut + rt)

)
,ϖ

〉

L2(!)
(by

expanding it as in Equation 33) as follows,

sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈(
DẼ(ut + rt)↑DE(ut + rt)

)
,ϖ

〉

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
→(u,→u)L̃(x, ut + rt,→ut +→rt)↑→(u,→u)L(x, ut + rt,→ut +→rt), [ϖ,→ϖ]

〉

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
ε→uL̃(x, ut + rt,→ut +→rt)↑ ε→uL(x, ut + rt,→ut +→rt),→ϖ

〉

L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
ε→uL̃(x, ut + rt,→ut +→rt)↑ ε→uL(x, ut + rt,→ut +→rt),ϖ

〉

L2(!)

+ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
εuL̃(x, ut + rt,→ut +→rt)↑ εuL(x, ut + rt,→ut +→rt),ϖ

〉

L2(!)

↗ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

ωL≃ut + rt≃L2(!)(1 + Cp)≃ϖ≃L2(!)

↗ ωL(1 + Cp)≃ut + rt≃L2(!)

↗ ωL(1 + Cp)
2≃ut + rt≃H1

0 (!) (34)

We can similarly bound sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

↙(DE(ut + rt)↑DE(ut)) ,ϖ∝L2(!) where will use the convexity of the function

L(x, ·, ·) for all u ↘ H1
0 (!) to bound the gradient →(u,→u)L(x, ut+rt,→ut+→rt) using Taylor’s theorem in the following

way,

→(u,→u)L(x, ut + rt,→ut +→rt) = →(u,→u)L(x, ut,→ut) + [rt,→rt]
T→2

(u,→u)L(x̃, ut(x̃),→u(x̃))

=∞ →(u,→u)L(x, ut + rt,→ut +→rt)↑→(u,→u)L(x, ut,→ut) = [rt,→rt]
T→2

(u,→u)L(x̃, ut(x̃),→u(x̃))
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here x̃ ↘ !. Therefore, bounding sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

↙(DE(ut + rt)↑DE(ut)) ,ϖ∝L2(!) we get,

sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

↙(DE(ut + rt)↑DE(ut)) ,ϖ∝L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1


→(u,→u)L(x, ut + rt,→ut +→rt)↑→(u,→u)L(x, ut,→ut), [ϖ,→ϖ]


L2(!)

= sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

〈
[rt,→rt]

T→2
(u,→u)L(x̃, u(x̃),→u(x̃)), [ϖ,→ϖ]

〉

L2(!)

↗ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

”

[rt,→rt]

T , [ϖ,→ϖ]

L2(!)

↗ sup
↼↔H

1
0 (!)

⇑↼⇑
H

1
0(!)=1

”
(
≃rt≃L2(!)≃ϖ≃L2(!) + ≃→rt≃L2(!)≃→ϖ≃L2(!)

)

↗ ” (1 + Cp)
2 ≃r≃H1

0 (!) (35)

Plugging in Equations (34) and (35) in (29) we get,
(I ↑#x)

↓1DẼ(ut + rt)↑DE(ut)

H

1
0 (!)

↗ ωL(1 + Cp)
2≃ut + rt≃H1

0 (!) + ”(1 + Cp)
2≃r≃H1

0 (!)

= (1 + Cp)
2(ωL + ”)≃rt≃H1

0 (!) + ω(1 + Cp)
2≃ut≃ (36)

Furthermore, from Lemma 6 we have for all t ↘ N,

E(ut+1)↑ E(uϑ) ↗
(
1↑ ϑ6

(1 + Cp)8”5

)t

E(u0)

↗ E(u0)

and

≃ut ↑ uϑ≃H1
0 (!) ↗

2

ϑ
(E(ut)↑ E(u0))

↗ 2

ϑ
E(u0)

Hence we have that for all t ↘ N,
≃ut≃H1

0 (!) ↗ ≃uϑ≃H1
0 (!) +

2

ϑ
E(u0) =: R.

Putting this all together, we have
(I ↑#x)

↓1DẼ(ut + rt)↑DE(ut)

H

1
0 (!)

↗ (1 + Cp)
2(ωL + ”)≃rt≃H1

0 (!) + ωL(1 + Cp)
2R (37)

Hence using the result from (37) in (28) and unfolding the recursion, we get,

≃rt+1≃H1
0 (!) ↗

(
1 + ↽(1 + Cp)

2(ωL + ”)
)
≃rt≃H1

0 (!) + (1 + Cp)
2ωL↽R

=∞ ≃rt+1≃H1
0 (!) ↗

(1 + Cp)2ωL↽R

↽(1 + Cp)2(ωL + ”)

((
1 + ↽(1 + Cp)

2 (ωL + ”))
)t ↑ 1

)

=∞ ≃rt+1≃H1
0 (!) ↗

ωLR

ωL + ”

((
1 + ↽(1 + Cp)

2 (ωL + ”))
)t ↑ 1

)
(38)

as we needed.
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C. Proofs for Section 6.2: Bounding the Barron Norm
C.1. Proof of Lemma 7: Barron Norm Increase after One Update

Proof. Note that the update equation looks like,

ũt+1 = ũt ↑ ↽(I ↑#x)
↓1DE(ut)

= ũt ↑ ↽(I ↑#x)
↓1 (↑→ · ε→uL(x, ũt,→ũt) + εuL(x, ũt,→ũt)↑ f)

= ũt ↑ ↽(I ↑#x)
↓1

(
↑

d∑

i=1

εiε→uL(x, ũt,→ũt) + εuL(x, ũt,→ũt)↑ f

)
(39)

From Lemma 8 we have
≃→ũt≃B(!) = max

i↔[d]
≃εiũt≃B(!) ↗ 2ςWt≃ũt≃B(!) (40)

This also implies that

max{≃ũt≃B(!), ≃→ũt≃B(!)} ↗ 2ςWt≃ũt≃B(!).

Note that since ũt ↘ %Wt
we have →ũt ↘ %2ϖWt

and L(x, ũt,→ũt) ↘ %2ϖk
L̃
Wt

(from Assumption 1).

Therefore, we can bound the Barron norm as,
(I ↑#x)

↓1

(
↑

d∑

i=1

εiε→uL(x, ũt,→ũt) + εuL(x, ũt,→ũt)↑ f

)
B(!)

(i)
↗

↑
d∑

i=1

εiε→uL(x, ũt,→ũt)


B(!)

+ ≃εuL(x, ũt,→ũt)≃B(!) + ≃f≃B(!)

(ii)
↗ d ≃εiε→uL(x, ũt,→ũt)≃B(!) + ≃εuL(x, ũt,→ũt)≃B(!) + ≃f≃B(!)

↗ dB
L̃
2ςk

L̃
(2ςWt)

p
L̃≃u≃pL̃

B(!) +B
L̃
(2ςWt)

p
L̃≃u≃pL̃

B(!) + ≃f≃B(!)

↗ (2ςk
L̃
d+ 1)B

L̃
(2ςWt)

p
L̃≃u≃pL̃

B(!) + ≃f≃B(!)

where we use the fact that for a function h, we have ≃(I ↑#x)↓1h≃B(!) ↗ ≃h≃B(!) from Lemma 8 in (i) and the bound
from (40) in (ii).

Using the result of Addition from Lemma 8 we have

≃ũt+1≃B(!) ↗ ≃ũt≃B(!) + ↽
(
2ςk

L̃
d+ 1)B

L̃
(2ςWt)

p
L̃≃u≃pL̃

B(!) + ≃f≃B(!)

)

↗ (1 + ↽(2ςk
L̃
d+ 1)B

L̃
(2ςWt)

p
L̃) ≃ũ≃pL̃

B(!) + ↽≃f≃B(!)

C.2. Proof of Lemma 9: Final Barron Norm Bound

Proof. From Lemma 7 we have

≃ũt+1≃B(!) ↗ ≃ũt≃B(!) + ↽
(
(2ςk

L̃
d+ 1)B(2ςWt)

p≃u≃pB(!) + ≃f≃B(!)

)

↗ (1 + ↽(2ςk
L̃
d+ 1)B(2ςWt)

p) ≃u≃pB(!) + ↽≃f≃B(!)
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Denoting the constant A = (1 + ↽(2ςk
L̃
d+ 1)B(2ςWt)p) we have

≃ũt+1≃B(!) = A≃ũt≃pB(!) + ↽≃f≃B(!)

log
(
≃ũt+1≃B(!)

)
= log

(
A≃ũt≃pB(!) + ↽≃f≃B(!)

)

= log

(
A≃ũt≃pB(!)

(
1 +

↽≃f≃B(!)

A≃ũt≃pB(!)

))

↗ log

(
A≃ũt≃pB(!)

(
1 +

↽≃f≃B(!)

max{1, A≃ũt≃pB(!)}

))

= log
(
A≃ũt≃pB(!)

(
1 + ↽≃f≃B(!)

))

= log
(
≃ũt≃pB(!)

)
+ log

(
A
(
1 + ↽≃f≃B(!)

))

= r log(≃ũt≃B(!)) + log
(
A
(
1 + ↽≃f≃B(!)

))
(41)

The above equation is a recursion of the form
xt+1 ↗ rxt + c

which implies

xt+1 ↗ c
pt ↑ 1

p↑ 1
+ ptx0.

Therefore the final bound in (41) is,

log
(
≃ũt+1≃B(!)

)
↗ r log(≃ũt≃B(!)) + log

(
A
(
1 + ↽≃f≃B(!)

))

=∞ log
(
≃ũt+1≃B(!)

)
↗ rn ↑ 1

r ↑ 1
log

(
A
(
1 + ↽≃f≃B(!)

))
+ pt log(≃ũ0≃B(!))

=∞ ≃ũt+1≃B(!) ↗
(
A
(
1 + ↽≃f≃B(!)

)) p
t↑1
p↑1 ≃ũ0≃p

t

B(!)

=∞ ≃ũt+1≃B(!) ↗
(
(1 + ↽(2ςk

L̃
d+ 1)B

L̃
(2ςWt)

p)
(
1 + ↽≃f≃B(!)

)) p
t↑1
p↑1 ≃ũ0≃p

t

B(!)

(i)
=∞ ≃ũt+1≃B(!) ↗

((
1 + ↽(2ςk

L̃
d+ 1)B

L̃
(2ςkt

L̃
W0)

p
) (

1 + ↽≃f≃B(!)

)) p
t↑1
p↑1 ≃ũ0≃p

t

B(!)

(ii)
=∞ ≃ũt+1≃B(!) ↗

(
(1 + ↽(2ςk

L̃
d+ 1)B

L̃
(2ςk

L̃
W0))

(
1 + ↽≃f≃B(!)

))pt+ p
t↑1
p↑1 ≃ũ0≃p

t

B(!)

=∞ ≃ũt+1≃B(!) ↗
(
(1 + ↽2ςk

L̃
W0(2ςkd+ 1)B

L̃
)
(
1 + ↽≃f≃B(!)

))pt+ p
t↑1
p↑1

(
max{1, ≃ũ0≃p

t

B(!)}
)

where we use the fact that Wt = kT
L̃
W0 since ũt ↘ %k

T

L̃
W0

in step (i) and use the property that (1 + xp) ↗ (1 + x)p since
x > 0 in step (ii).

C.3. Proof of Lemma 10

Lemma 12 ( Lemma 10 restated). Let

f(x) =
∑

φ,|φ|⇐P

(
Aφ

d∏

i=1

xφi

i

)

where ⇁ is a multi-index and x ↘ Rd
and Aφ ↘ R is a scalar. If g : Rd ↓ Rd

is a function such that g ↘ %W , then we have

f ′ g ↘ %PW and the Barron norm can be bounded as,

≃f ′ g≃B(!) ↗ dP/2




P∑

φ,|φ|=1

|Aφ|2



1/2

≃g≃PB(!)
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Proof. Recall from Definition 6 we know that for a vector valued function g : Rd ↓ Rd, we have

≃g≃B(!) = max
i↔[d]

≃gi≃B(!).

Then, using Lemma 8, we have

≃f(g)≃B(!) =



P∑

φ,|φ|=0

Aφ

d∏

i=1

gφi

i


B(!)

↗
P∑

φ,|φ|=0

Aφ

d∏

i=1

gφi

i


B(!)

↗
P∑

φ,|φ|=0

|Aφ|



d∏

i=1

gφi

i


B(!)

↗
P∑

φ,|φ|=0

|Aφ|



d∏

i=1

gφi

i


B(!)

↗
P∑

φ,|φ|=0

|Aφ|
(

d∏

i=1

≃gφi

i
≃B(!)

)

↗
P∑

φ,|φ|=0

|Aφ|
(

d∏

i=1

≃gi≃φi

B(!)

)

=
P∑

φ,|φ|=0

|Aφ|
(

d∏

i=1

≃gi≃φi

B(!)

)

↗




P∑

φ,|φ|=0

|Aφ|2



1/2 


P∑

φ,|φ|=1

(
d∏

i=1

≃gi≃φi

B(!)

)2



1/2

(42)

where we have repeatedly used Lemma 8 and Cauchy-Schwartz in the last line. Using the fact that for a multivariate function
g : Rd ↓ Rd we have for all i ↘ [d]

≃g≃B(!) ⇓ ≃gi≃B(!).

Therefore, from (42) we get,

≃f(g)≃B(!) ↗




P∑

φ,|φ|=0

|Aφ|2



1/2 


P∑

φ,|φ|=1

(
≃g≃

∑
d

i=1 φi

B(!)

)2




1/2

↗




P∑

φ,|φ|=0

|Aφ|2



1/2 


P∑

φ,|φ|=1

(
≃g≃φB(!)

)2




1/2

↗ dP/2




P∑

φ,|φ|=0

|Aφ|2



1/2

≃g≃PB(!)

Since the maximum power of the polynomial can take is P from Corollary 1 we will have f ′ g ↘ %PW .

C.4. Proof of Lemma 8: Barron Norm Algebra

The proof of Lemma 8 is fairly similar to the proof of Lemma 3.3 in (Chen et al., 2021)—the change stemming from the
difference of the Barron norm being considered
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Proof. We first show the result for Addition and bound ≃h1 + h2≃B(!),

≃g1 + g2≃B(!) =
∑

ϱ↔Nd

(1 + ≃φ≃2) | ⊋g1 + g2(φ)|

=
∑

ϱ↔Nd

(1 + ≃φ≃2) |ĝ1(φ) + ĝ2(φ)|

↗
∑

ϱ↔Nd

(1 + ≃φ≃2) |ĝ1(φ)|+
∑

ϱ↔Nd

(1 + ≃φ≃2) |ĝ2(φ)|

=∞ ≃h1 + h2≃B(!) ↗ ≃h1≃B(!) + ≃h2≃B(!).

For Multiplication, first note that multiplication of functions is equal to convolution of the functions in the frequency domain,
i.e., for functions g1 : Rd ↓ d and g2 : Rd ↓ d, we have,

⊋g1 · g2 = ĝ1 ∈ ĝ2 (43)

Now, to bound the Barron norm for the multiplication of two functions,

≃g1 · g2≃B(!) =
∑

ϱ↔Nd

(1 + ≃φ≃2)|⊋g1 · g2(φ)|

=
∑

ϱ↔Nd

(1 + ≃φ≃2)|ĝ1 ∈ ĝ2(φ)|

=
∑

ϱ↔Nd

∑

z↔Nd

(1 + ≃φ≃2) |ĝ1(z)ĝ2(φ ↑ z)|

↗
∑

ϱ↔Nd

∑

z↔Nd

(1 + ≃φ ↑ z≃2 + ≃z≃2 + ≃z≃2≃φ ↑ z≃2) |ĝ1(z)ĝ2(φ ↑ z)|

Where we use ≃φ≃2 ↗ ≃φ ↑ z≃2 + ≃z≃2 and the fact that
∑

ϱ

∑

z

≃z≃2≃φ ↑ z≃2|ĝ1(z)ĝ2(φ ↑ z)| > 0.

Collecting the relevant terms together we get,

≃g1 · g2≃B(!) ↗
∑

ϱ↔Nd

∑

z↔Nd

(1 + ≃φ ↑ z≃2) · (1 + ≃z≃2) |ĝ1(z)| |ĝ2(φ ↑ z)|

= ((1 + ≃φ≃2)ĝ1(φ)) ∈ ((1 + ≃φ≃2)ĝ2(φ))

Hence using Young’s convolution identity from Lemma 13 we have

≃g1 · g2≃B(!) ↗




∑

ϱ↔Rd

(1 + ≃w≃2)ĝ1(φ)dφ








∑

ϱ↔Rd

(1 + ≃w≃2)ĝ2(φ)dφ





=∞ ≃g1 · g2≃B(!) ↗ ≃h1≃B(!)≃h2≃B(!).

In order to show the bound for Derivative, since h ↘ %W , there exists a function g : Rd ↓ R such that,

g(x) =
∑

⇑ϱ⇑→⇐W

e2ϖiϱ
T
xĝ(φ)dφ

Now taking derivative on both sides we get,

εjg(x) =
∑

⇑ϱ⇑→⇐W

ieiϱ
T
x2ςφj ĝ(φ) (44)
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This implies that we can upper bound |ε̂ig(φ)| as

ε̂jg(φ) = i2ςφj ĝ(φ)

=∞ |ε̂jg(φ)| ↗ 2ςW |ĝ(φ)| (45)

Hence we can bound the Barron norm of εjh as follows:

≃εjg≃B(!) =
∑

⇑ϱ⇑→⇐W

(1 + ≃φ≃↑) |ε̂jg(φ)|dφ

↗
∑

⇑ϱ⇑→⇐W

(1 + ≃φ≃↑)|2ςWĝ(φ)|dφ

↗ 2ςW
∑

⇑ϱ⇑→⇐W

(1 + ≃φ≃↑)|ĝ(φ)|dφ

↗ 2ςW≃h≃B(!)

In order to show the preconditioning, note that for functions g, f : !d ↓ R, if f = (I ↑#)↓1g then we have then we have
(I ↑#)f = g. Furthermore, by Lemma 14 we have

(1 + ≃φ≃22)f̂(φ) = ĝ(φ) =∞ f̂(φ) =
ĝ(φ)

1 + ≃φ≃22
. (46)

Bounding ≃(I ↑#)↓1f≃B(!),

≃(I ↑#)↓1g≃B(!) =
∑

ϱ↔Nd

1 + ≃φ≃2
(1 + ≃φ≃22)

ĝ(φ)dφ

↗
∑

ϱ↔Nd

(1 + ≃φ≃2)ĝ(φ)dφ

=∞ ≃(I ↑#)↓1g≃B(!) ↗ ≃g≃B(!).

Corollary 1. Let g : Rd ↓ R then for any k ↘ N we have ≃gk≃B(!) ↗ ≃g≃kB(!). Furthermore, if the function g ↘ %W then

the function gk ↘ %kW .

Proof. The result from ≃gk≃B(!) follows from the multiplication result in Lemma 8 and we can show this by induction. For
n = 2, we have from Lemma 8 we have,

≃g2≃B(!) ↗ ≃g≃2B(!) (47)

Assuming that we have for all n till k ↑ 1 we have

≃gn≃B(!) ↗ ≃g≃nB(!) (48)

for n = k we get,
≃gk≃B(!) = ≃ggk↓1≃B(!) ↗ ≃g≃B(!)≃gk↓1≃B(!) ↗ ≃g≃kB(!). (49)

To show that for any k the function gk ↘ %kW , we write gk in the Fourier basis. We have:

gk(x) =
k∏

j=1




∑

⇑ϱj⇑→⇐W

ĝ(φj)e
2iϖϱT

j
xdφj





=
∑

⇑ϱ⇑→⇐kW




∑

∑
k

l=1 ϱl=ϱ

k∏

j=1

ĝ(φj)dφ1 . . . dφk



 ei2ϖϱ
T
kdφ

In particular, the coefficients with ≃φ≃↑ > kW vanish, as we needed.
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Lemma 13 (Young’s convolution identity). For functions g ↘ Lp(Rd) and h ↘ Lq(Rd) and

1

p
+

1

q
=

1

r
+ 1

where 1 ↗ p, q, r ↗ ⇐ we have

≃f ∈ g≃r ↗ ≃g≃p≃h≃q.
Here ∈ denotes the convolution operator.

Lemma 14. For a differentiable function f : [0, 1]d ↓ R, such that f ↘ L1(Rd) we have

→̂f(φ) = i2ςφf̂(φ)

D. Existence Uniqueness and Definition of the Solution
D.1. Proof of Existence and Uniqueness of Minima

Proof. The proof follows a similar sketch of that provided in (Fernández-Real & Ros-Oton, 2020) Chapter 3, Theorem 3.3.

We first show that the minimizer uϑ of the energy functional E(u) exists.

Note that from Definition 1 we have for a fixed x ↘ ! the function L(x, ·, ·) is convex and smooth it has a unique minimum,
i.e., there exists a (yL, zL) ↘ R ↔ Rd such that for all (y, z) ↘ R ↔ Rd we have L(x, y, z) ⇓ L(x, yL, zL) and that
→L(x, yL, zL) = 0. Furthermore, using (2) from Definition 1 this also implies the following,

ϑ≃z ↑ zL≃22 ↗ L(x, y, z)↑ L(x, yL, zL) ↗ ”
(
≃y ↑ yL≃22 + ≃z ↑ zL≃22

)
.

Note we can (w.l.o.g) assume that for a fixed x ↘ ! we have, L(x, 0, 0) = 0, and →y,zL(x, 0, 0) = 0 (we can redefine L as
L̃(x, y, z) = L(x, y + yL, z + zL)↑ L(x, yL, zL) if necessary), hence the above equation can be simplified to,

ϑ≃z≃22 ↗ L(x, y, z) ↗ ”
(
≃y≃22 + ≃z≃22

)
, ⇒p ↘ !↔ R↔ Rd. (50)

Now, we define,

E⇓ = inf

{∫

!
L(x, v,→v)↑ fv dx : x ↘ !, v ↘ H1

0 (!)

}

. Let us first show that E⇓ is finite. Indeed, using (50) for any v ↘ H1
0 (!) and x ↘ !, we have

E(v) =
∫

!
L(x, v,→v)↑ fv dx

↗
∫

!
”
(
≃v(x)≃22 + ≃→v(x)≃22

)
+ ≃f(x)v(x)≃2dx

↗ ”
(
≃v≃2

L2(!) + ≃→v≃2
L2(!)

)
+ ≃f≃L2(!)≃v≃L2(!)

and is thus finite.

Moreover, using (50) for all v ↘ H1
0 (!) and x ↘ !, E(v) can be lower bounded as

E(v) =
∫

!
L(x, v,→v)↑ fv dx

⇓
∫

!
ϑ≃→v(x)≃2 ↑ ≃f(x)v(x)≃2 dx

⇓ ϑ≃→v≃2
L2(!) ↑ ≃f≃L2(!)≃v≃L2(!)

⇓ ϑ

2
≃→v≃2

L2(!) +

(
ϑ

2Cp

↑ 1

C

)
≃v≃2

L2(!) ↑ C≃f≃2
L2(!) (51)

for some large constant C so that ϑ/2Cp ↑ 1/C > 0., where we have used the Poincare inequality (Theorem 2) and Cauchy-
Schwarz inequality to get the last inequality.
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Let {uk} where uk ↘ H1
0 (!) ⇒k define a minimizing sequence of function, that is, we have E(uk) ↓ E⇓ = infv E(v) as

k ↓ 0. From 51 we have for all k

ϑ

2
≃→uk≃2L2(!) +

(
ϑ

2Cp

↑ 1

C

)
≃uk≃2L2(!) ↑ C≃f≃2

L2(!) ↗ E(uk).

Therefore since E(uk) is bounded, we have that ≃uk≃H1
0 (!) is uniformly bounded, and thus we can extract a weakly

convergent subsequence. With some abuse of notations, let us without loss of generality assume that uk ⇀ u.

We will now show that if uk ⇀ u,
E(u) ↗ lim inf

k↗↑
E(uk) = E⇓

and therefore conclude that the limit u is a minimizer. This property is also referred to as weak-lower semi-continuity of E .

In order to show the weak-lower semicontinuity of E we define the following set,

A(t) := {v ↘ H1
0 (!) : E(v) ↗ t}.

Furthermore, note that the functional E(v) is convex in v (since the function L is convex and the term f(x)v(x) is linear),
and this also implies that the set A(t) is convex.

Further, for any sequence of functions {wk} where wk ↘ A(t) such that wk ↓ w from Fatou’s Lemma,

E(w) =
∫

!
L(x,w(x),→w(x))↑ f(x)w(x)dx ↗ lim inf

k↗↑

∫

!
L(x,wk(x),→wk(x))↑ f(x)wk(x)dx ↗ t

hence we also have that the function w ↘ A(t). Therefore the set A(t) is closed (w.r.t H1
0 (!) norm), and it is convex. Since

the set A(t) is closed and convex (it is also weakly closed) therefore if wk ↓ w it also implies that wk ⇀ w in H1
0 (!).

Hence, consider a weakly converging sequence in H1
0 (!), i.e., wk ⇀ w and define

t↘ := lim inf
k↗↑

E(wk)

Now, for any ▷ > 0, there exists a subsequence wkj,ε
⇀ w in H1

0 (!) and Ewkj,ε
↗ tϑ + ▷, that is, wkj,ε

↘ A(t↘ + ▷). This
this is true for all ω > 0 this implies that E(w) ↗ t↘ = lim infk↗0 E . Hence the function E is lower-semi-continuous, and
hence the minimizer exists!

Now to show that the minimum is unique. Note the function E is convex in u. We will prove that the minima is unique by
contradiction.

Let u, v ↘ H1
0 (!) be two (distinct) minima of E , i.e., we have, E(u) = E⇓ and E(v) = E⇓.

Now using the fact that the function L : !↔R↔Rd ↓ R is convex, and the minimality of E⇓, we have for all x ↘ ! we have

E⇓ ↗ E
(
u+ v

2

)
=

∫

!
L

(
x,

u(x) + v(x)

2
,
→u(x) +→v(x)

2

)
+ f(x)

u(x) + v(x)

2

=

∫

!
L

(
x+ x

2
,
u(x) + v(x)

2
,
→u(x) +→v(x)

2

)
+ f(x)

u(x) + v(x)

2

↗
∫

!

1

2
(L (x, u(x),→u(x)) + u(x)) +

∫

!

1

2
(L (x, v(x),→v(x)) + v(x))

↗ 1

2
E(u) + 1

2
E(v)

=∞ E⇓ ↗ E
(
u+ v

2

)
↗ 1

2
E(u) + 1

2
E(v) = E⇓.

The last inequality is a contradiction and therefore the minima is unique.
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D.2. Proof of Lemma 2: Nonlinear Elliptic Variational PDEs

Proof of Lemma 2. If the function uϑ minimizes the energy functional in Definition 1 then we have for all ω ↘ R

E(u) ↗ E(u+ ωϖ)

where ϖ ↘ C↑
c
(!). That is, we have a minima at ω = 0 and taking a derivative w.r.t ω and using Taylor expansion we get,

dE [u](ϖ) = lim
ω↗0

E(u+ ωϖ)↑ E(u)
ω

= 0

= lim
ω↗0

∫
! L(x, u+ ωϖ,→u+ ω→ϖ)↑ f(x) (u(x) + ωϖ(x))↑ L(x, u,→u) + f(x)u(x) dx

ω

= lim
ω↗0

∫
! L(x, u+ ωϖ,→u) + ε→uL(x, u+ ωϖ,→u) + r1(x)↑ ωf(x)ωϖ(x)↑ L(x, u,→u) dx

ω

= lim
ω↗0

∫
! L(x, u,→u) + ωεuL(x, u,→u)ϖ+ r2(x)

ω

+ lim
ω↗0

ωε→uL(x, u,→u)→ϖ+ ω2εuε→uL(x, u,→u)→ϖ · ϖ+ r1(x)↑ ωf(x)ωϖ(x)↑ L(x, u,→u) dx

ω

= lim
ω↗0

∫
! ωε→uL(x, u,→u)→ϖ+ ωεuL(x, u,→u)u+ r1(x) + r2(x)↑ ωf(x)ϖ(x) dx

ω
(52)

where for all x ↘ ! we have,

|r1(x)| ↗
ω2

2
sup
y↔!

∣∣∣
(
(→u(x))T ε2

→u
L(y, u+ ωϖ,→u)→u(x)

)∣∣∣

↗ ”ω2

2
≃→u(x)≃22 (53)

Similarity we have,

|r2(x)| ↗
ω2

2
sup
y↔!

∣∣εuL(y, u,→u)u(x)2
∣∣

↗ ”ω2

2
u(x)2 (54)

Using results from (52) and (54) in Equation (53) and taking ω ↓ 0, the derivative in the direction of ϖ is,

dE [u](ϖ) = lim
ω↗0

∫
! ε→uL(x, u,→u)→ϖ+ εuL(x, u,→u)u↑ f(x)ϖ(x) dx

ω

Since ω ↓ 0 the final derivative is of the form,

dE [u](ϖ) =
∫

!

(
ε→uL(x, u,→u)→ϖ+ εuL(x, u,→v)ϖ↑ fϖ

)
dx = 0. (55)

We will now use the following integration by parts identity, for functions r : ! ↓ R such that and s : ! ↓ R, and
r, s ↘ H1

0 (!),
∫

!

εr

εxi

sdx = ↑
∫

!
r
εs

εxi

dx+

∫

ε!
rsnd% (56)

where ni is a normal at the boundary and d% is an infinitesimal element of the boundary ε!.
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Using the identity in (56) in (55) we get,

dE [u](ϖ) =
∫

!

(
ε→uL(x, u,→u)→ϖ++εuL(x, u,→v)ϖ↑ fϖ

)
dx

=

∫

!

( d∑

i=1

(ε→uL(x, u,→u))
i
εiϖ+ εuL(x, u,→v)ϖ↑ fϖ

)
dx

=

∫

!

( d∑

i=1

↑εi (ε→uL(x, u,→u))
i
ϖ+ εuL(x, u,→v)ϖ↑ fϖ

)
dx

=

∫

!

(
↑→x · (ε→uL(x, u,→u))ϖ+ εuL(x, u,→u)ϖ↑ fϖ

)
dx = 0

=∞ dE [u](ϖ) =
∫

!

(
↑ divx (ε→uL(x, u,→u))ϖ+ εuL(x, u,→u)ϖ↑ fϖ

)
dx = 0

That is the minima for the energy functional is reached at a u which solves the following PDE,

dE(u) := ↑divx (ε→uL(x, u,→u)) + εuL(x, u,→u) = f.

where we define dE(·) as the operator ↑divx (ε→uL(x, ·,→·)) + εuL(x, ·,→·).

D.3. Proof of Lemma 3: Poincare constant of Unit Hypercube

Proof of Lemma 3. We use the fact that the Poincare constant is the smallest eigenvalue of #, i.e.,

1

Cp

:= inf
u↔L2(!)

≃#u≃L2(!)

≃u≃L2(!)
.

Note that the eigenfunctions of # for the domain ! := [0, 1]d are defined as

φϱ(x) =
d∏

i=1

sin(ςiφixi), ⇒φ ↘ Nd & x ↘ !.

Furthermore, this also implies that for all φ ↘ Nd we have,

#φϱ = ς2≃φ≃22φϱ.

We can expand any function u ↘ H1
0 (!) in terms of φϱ as u(x) =

∑
ϱ↔Nd dϱφϱ(x) where dϱ = ↙u,φϱ∝L2(!).

Note that for all x ↘ !, we have,

#u(x) =
∑

ϱ↔Nd

ς2≃φ≃22dϱφϱ(x).
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Taking square L2(!) norm on both sides, we get,

≃#u≃2
L2(!) = ς4



∑

ϱ↔Nd

≃φ≃22dϱφϱ



2

L2(!)

(i)
⇓ ς4d2



∑

ϱ↔Nd

dϱφϱ



2

L2(!)

(ii)
= ς4d2≃u≃2

L2(!)

=∞
≃#u≃L2(!)

≃u≃L2(!)
⇓ ς2d

where we use the fact that ≃φ≃2 ⇓
∋
d (since ⇒i ↘ [d] we have φi ↘ N) in step (i), and use the orthogonality of {φϱ}ϱ↔Nd

in (ii). Moreover, it’s easy to see that equality can be achieved by taking u = φ(1,1,...,1).

Hence the Poincare constant can be calculated as,

1

Cp

:= inf
u↔L2(!)

≃#u≃L2(!)

≃u≃L2(!)
= ς2d

=∞ Cp =
1

ς2d
.

E. Important Helper Lemmas
Lemma 15. The dual norm of ≃ · ≃H1

0 (!) is ≃ · ≃H1
0 (!).

Proof. If ≃u≃↘ denotes the dual norm of ≃u≃H1
0 (!), by definition we have,

≃u≃↘ = sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

↙u, v∝H1
0 (!)

= sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

↙→u,→v∝L2(!)

↗ sup
v↔H

1
0 (!)

⇑v⇑
H

1
0(!)=1

≃→u≃L2(!)≃→v≃L2(!)

= ≃→u≃L2(!)

where the inequality follows by Cauchy- Schwarz. On the other hand, equality can be achieved by taking v = u

⇑→u⇑2
. Thus,

≃u≃↘ = ≃→u≃L2(!) = ≃u≃H1
0 (!) as we wanted.

E.1. Useful properties of Laplacian and Laplacian Inverse

Lemma 16. The operator (↑#)↓1
is self-adjoint.

Proof. Note that since the operator (↑#)↓1 is bounded, to show that it is self-adjoint, we only need to show that the
operator is also symmetric, i.e., for all u, v ↘ H1

0 (!) we have

↙(↑#)↓1u, v∝L2(!) = ↙u, (↑#)↓1v∝L2(!).
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To show this, we first show that the operator # is symmetric. i.e, we have

↙↑#u, v∝L2(!) = ↙u,↑#v∝L2(!) (57)

This is a direct consequence of the Green’s Identity where for functions u, v ↘ C↑
0 the following holds,

∫

!
↑(#u)vdx =

∫

!
→u ·→vdx+

∫

ε!

εu

εn
vd%

=

∫

!
→u ·→vdx

= ↑
∫

!
u#vdx+

∫

ε!

εv

εn
ud%

where we use the fact that since u, v ↘ H1
0 (!) we have u(x) = 0 and v(x) = 0 for all x ↘ ε!.

Now, taking ũ = ↑#u and ṽ = (↑#)↓1v from Equation (57) we get,

↙↑#u, v∝L2(!) = ↙u,#v∝L2(!)

↙ũ, (↑#)↓1ṽ∝L2(!) = ↙(↑#)↓1ũ, ṽ∝L2(!).

Hence we have that the operator (↑#)↓1 is symmetric and bounded and therefore is self-adjoint.

Lemma 17. Given a vector valued function f : Rd ↓ Rd
, such that f ↘ C2

the following identity holds,

→divx(f) = divx(→f). (58)

Proof. We first simplify the right hand side of Equation (58). Note that since →f : Rd ↓ Rd≃d is a is a matrix valued
function the divergence of →f is going to be vector valued. More precisely for all x ↘ !, ↑divx(→f) is defined as

divx(→f(x)) =




d∑

j=1

εj [→f(x)]i




d

i=1

=




d∑

j=1

εjεif(x)




d

i=1

(59)

where for a vector valued function the notation [g(x)]i denotes its ith coordinate, and the notation [g(x)]d
i=1 :=

(g(x)1, g(x)2, · · · , g(x)d) denotes a d dimensional vector.

Now, simplifying the left hand side, for all x ↘ ! we get,

→divx(f(x)) = →




d∑

j=1

εjf(x)





=



εi




d∑

j=1

εjf(x)








d

i=1

=








d∑

j=1

εiεjf(x)








d

i=1

(60)

Since the term in (59) is equal to (60) we have →divx(f) = divx(→f).

Lemma 18. For a function g : Rd ↓ R such that g ↘ C3
the following identity holds,

#→g = →#g
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Proof. The term #→g can be simplified as follows,

#→g = #

(
εf

εx1
,
εf

εx2
, · · · , εf

εxd

)

= #

[
εf

εxi

]d

i=1

=

[
#

εf

εxi

]d

i=1

=




d∑

j=1

ε

εx2
j

εf

εxi




d

i=1

=




d∑

j=1

ε2f

εx2
j
εxi




d

i=1

(61)

Further, →#g can be simplified as follows,

→#g = →




d∑

j=1

εg

εx2
j





=




d∑

j=1

ε

εx1

εg

εx2
j

,
d∑

j=1

ε

εx2

εg

εx2
j

, · · · ,
d∑

j=1

ε

εxd

εg

εx2
j

,





=




d∑

j=1

ε2g

εxiεx2
j

,




d

i=1

(62)

Since (61) is equal to (62) it implies that
#→g = →#g.

Corollary 2. For all vector valued function f : Rd ↓ Rd
functions the following holds,

→(↑#)↓1divx(f) = (↑#)↓1divx(→f). (63)

Proof. We know from Lemma 17 that for a vector valued function f : Rd ↓ Rd that we have

→divx(f) = divx(→f).

Now, using for a fact that any function g can be written as, g = (↑#)(↑#)↓1g we get,

→divx(f) = divx(→f)

=∞ →(↑#)(↑#)↓1divx(f) = divx(→f)

(i)
=∞ (↑#)→(↑#)↓1divx(f) = divx(→f)

=∞ →(↑#)↓1divx(f) = (↑#)↓1divx(→f)

where (i) follows from Lemma 18, i.e., for any function g ↘ C3, we have, →#g = #→g.

E.2. Some properties of Sub-Matrices

Lemma 19. Given matrices A ↘ Rd≃d
and B ↘ Rd≃d

if we have A △ B then for any set of indices U ▽ {1, 2, · · · d}
where |U | = n ↗ d then for all y ↘ Rn

we have yTAUy ↗ yTBUy. where AU = Ai,j for all i, j ↘ U . Similarly if if we

have A ̸ B for all y ↘ Rn
we have, yTAUy ⇓ yTBUy.
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Proof. We will show that A △ B =∞ AU △ BU . The proof for A ̸ B =∞ AU ̸ BU will follow similarly.

Without loss of generality we can assume that U = {1, 2, · · ·n} and a set V = {n, · · · d}, where n ↗ d. Since A △ B we
know that there exists x ↘ Rd we have xTAx ↗ xTBx.

For all y ↘ Rd define x := (y,0d↓n), and let AU,V = Ai,j be i ↘ U and j ↘ V


y 0

T
[
AU AU,V

AV,U AV

] 
y 0

T ↗

y 0

T
[
BU BU,V

BV,U BV

] 
y 0

T

=∞

y 0

T
[

BU ↑AU BU,V ↑AU,V

BV,U ↑AV,U BV ↑AV

] 
y 0

T ⇓ 0

=∞ yT (BU ↑AU )y ⇓ 0

Since we have for all y ↘ Rn we have yT (BU ↑AU )y ⇓ 0, therefore this implies that AU △ BU .
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