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Abstract

Denoising diffusion models have gained popularity as a generative modeling tech-
nique for producing high-quality and diverse images. Applying these models to down-
stream tasks requires conditioning, which can take the form of text, class labels, or other
forms of guidance. However, providing conditioning information to these models can
be challenging, particularly when annotations are scarce or imprecise. In this work, we
propose adapting pre-trained unconditional diffusion models to new conditions using
the learned internal representations of the denoiser network. We demonstrate the ef-
fectiveness of our approach on various conditional generation tasks, including attribute-
conditioned generation and mask-conditioned generation. Additionally, we show that
augmenting the Tiny ImageNet training set with synthetic images generated by our ap-
proach improves the classification accuracy of ResNet baselines by up to 8%. Our ap-
proach provides a powerful and flexible way to adapt diffusion models to new conditions
and generate high-quality augmented data for various conditional generation tasks. 1

1 Introduction

Denoising diffusion models have recently gained significant attention in the generative mod-
eling literature due to their impressive results on various synthesis tasks, including image,
audio, and molecule synthesis [4, 9, 11, 14, 20, 26]. Providing conditioning information
can improve the sample quality of diffusion models, effectively guiding the model towards
generating more diverse and representative samples [3, 10, 19].

While text-based conditioning has been widely used in image generation tasks, due to
the wide availability of image-caption pairs, it is not always the best approach, as the scale
at which the sampling guidance is applied can vary between tasks. For instance, sampling
images with a dense per-pixel condition, such as a semantic mask, cannot be adequately
substituted with a text condition, no matter how detailed. Additionally, it is often infeasible to
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provide finer annotations on the image or pixel level due to the large scale of the data used to
train diffusion models. Thus, adapting pre-trained diffusion models to new conditions using
the learned intermediate representations of the denoiser network is an attractive alternative.

In this paper, we propose a method to adapt pre-trained unconditional diffusion models to
new conditions using the internal representations of the denoiser network. We show that the
learned representations are inherently robust to noisy inputs, allowing us to provide guidance
during sampling while utilizing a noisy estimate of the final image x0. Whereas previous
methods relied on training large-scale guidance classifiers on the intermediate noisy steps,
our method can efficiently learn from a small set of examples by exploiting the existing
parameters of the denoiser network. We demonstrate the effectiveness of our approach on
various conditional generation tasks, including attribute-conditioned generation and mask-
conditioned generation.

When we are presented with more data but not enough to train a conditional diffusion
model from scratch, we demonstrate that we can combine the learned unconditional model
representations with the fine-tuning of the model. In particular, we focus on synthetic data
augmentation, where we generate augmented data using a conditional diffusion model fine-
tuned on Tiny ImageNet [15]. We use the internal representations of the unconditional U-
Net [24] denoiser network to train a rejection classifier. This classifier is used to reject
low-quality samples generated by the fine-tuned conditional diffusion model, which helps
to improve the overall quality of the generated images. We then use the augmented data to
train a classification model and evaluate its performance on the Tiny ImageNet dataset. Our
contributions are as follows:

• We demonstrate how the internal representations of an unconditional diffusion de-
noiser network can be used to adapt to new conditions with limited examples.

• We verify the effectiveness of our approach on various conditional generation tasks
such as attribute-conditioned generation and mask-conditioned generation.

• We show how augmenting the Tiny ImageNet training set with synthetic images gen-
erated by our approach significantly improves the classification accuracy over ResNet
[6] baselines.

2 Related Work

2.1 Conditional diffusion models

Similar to other generative models, conditional diffusion models perform better than their
unconditional counterparts, showing impressive results in text-conditioned generation [20,
23]. Apart from text-to-image models, in [4], the authors demonstrate how exploiting the
denoiser network as a learned score function can be used with an auxiliary classifier trained
on noisy samples to guide inference with class labels. In [5], the authors show that diffusion
models can perform conditional generation by minimizing an energy function defined using
the learned denoiser and any auxiliary constraint on the inferred sample.

2.2 Conditioning of unconditional diffusion models

Few-shot conditioning settings have utilized latent diffusion models in the past. In [21,
25], the authors propose learning an expressive latent representation that can be utilized
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to condition diffusion models on a small set of labeled examples. The idea behind their
approach is that the compressed latent representation can be efficiently used to adapt to new
conditions. More recently, [18, 36] showcase faster and more efficient adaptation of diffusion
models to new conditions, but both require a large number of data to train with.

2.3 Diffusion as a pre-training task

In [1], the authors introduced the idea of utilizing the learned representations of a denoiser
network for downstream tasks by training a segmentation network on top of the denoiser
features with as few as 20 labels. Similarly, in [2] and [30], the denoising task is exploited as
a pre-training task for learning semantically meaningful features that can be easily adapted
for performing downstream dense prediction tasks.

3 Background

A Gaussian diffusion process [9, 26] can be viewed as a latent variable model of the form

p! (x0) =
∫

p(xT )
T

!
t=1

p(t)! (xt→1 | xt)dx1dx2 . . .dxT (1)

where x0 is the data, x1, . . . ,xT→1 are intermediate latent variables that represent noisy ver-
sions of x0, and xT is the terminal state with xT ↑N (0,I). The forward process gradually
adds Gaussian noise to the data and is defined by a noise schedule ∀t

q(xt | xt→1) := N(xt ;
↓

atxt→1,(1→at)I). (2)

The reverse process is defined by learned Gaussian transitions and gradually denoises the
data, starting from xT :=N (xT ;0,I)

p! (xt→1 | xt) := N(xt→1; µ! (xt , t),∀! (xt , t)). (3)

A property of the forward process is that it allows sampling of any intermediate xt given x0,
as

q(xt | x0) = N(xt ;
↓

ātx0,(1→ āt)I) or equivalently (4)

xt =
↓

ātx0 +
√

1→ āt#, where # ↑ N(0,I) (5)

with āt = !t
i=1 ai. To approximate the reverse process, it is common to fix the variance ∀! =

∃tI and learn a function that predicts the noise added at each intermediate xt by minimizing

Ex0,t

[
w(t)↔# → #! (

↓
ātx0 +

√
1→ āt#, t)↔2

]
. (6)

The original DDPM [9] formulation introduced sampling from a Gaussian diffusion
model by sequentially applying the predicted noise

xt→1 =
1

↓
at

(
xt →

1→∀t↓
1→ ∀̄t

#! (xt , t)
)
+∃tz, z ↑N (0,I) (7)
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starting from a random xT ↑ N(0,I). Alternatively, in DDIM [27], the authors proposed
utilizing Eq. 5 to sample xt→1 from xt by first estimating x0 and then using the known
forward process to ’point-back’ towards xt , as

xt→1 =
√

∀̄t→1

(
xt →

↓
1→ ∀̄t#! (xt , t)↓

∀̄t

)

︸ ︷︷ ︸
estimated x0

+
√

1→ ∀̄t→1 →∃2
t #! (xt , t)

︸ ︷︷ ︸
direction pointing to xt

+ ∃tz︸︷︷︸
random noise

.

A denoiser #! (xt , t) can be interpreted as a learned score function of the noise-perturbed
xt [4, 28]

#xt log p! (xt) =→ 1↓
1→ ∀̄t

#! (xt , t). (8)

For a conditioning variable y, the score of the posterior p(xt | y) ∃ p(xt)p(y | xt) can be
expressed as

#xt log p(xt | y) = #xt log p(xt)+#xt log p(y | xt)

=→ 1↓
1→ ∀̄t

#! (xt , t)+#xt log p(y | xt). (9)

Thus by modifying the predicted noise #! at every step using the gradient of the log-likelihood
w.r.t. xt we can draw samples from the posterior distribution p(x0 | y)

#̂! (xt , t) = #! (xt , t)→%
√

1→ ∀̄t#xt log p(y | xt) (10)

where % is the tunable guidance sterngth hyperparameter.

4 Methodology

4.1 Learning the guidance signal using denoiser representations

To provide conditional guidance during inference, we can compute the gradient of the log-
likelihood of a condition y w.r.t. xt . Recent works employed a separate classifier p(y | xt)
trained on noisy samples xt to provide semantic guidance, in the form of class labels. This
work argues that retraining the guidance network from scratch is unnecessary. Instead, we
propose using the intermediate denoiser representations, with the estimate of x0 at every step,
to guide sampling.

Recall that from Eq. 5 we can compute an estimate of the final sample x0 from

x̂0 =
xt →

↓
1→ ∀̄t#! (xt , t)↓

∀̄t
. (11)

Using this point estimate p(x0 | xt) = & (x0 → x̂0) we can rewrite the likelihood as

p(y | xt) = %
x0

p(y | xt ,x0)p(x0 | xt) (12)

= %
x0

p(y | x0)p(x0 | xt) (cond. ind.)

= p(y | x̂0) (point estimate)
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Figure 1: Synthetic images from the fine-tuned class conditional sampling (first row) vs
Classifier-free guided sampling (second row) vs. our model with rejection (third row). Sam-
ples are from class 9: Golden Retriever on the Tiny-Imagenet. Our method generated more
realistic and diverse images compared to others.

and plug-in Eq. 10 to get

#̂! (xt , t) = #! (xt , t)→
√

1→ ∀̄t#xt log p(y | x0(xt)). (13)

By expressing the likelihood in terms of an estimate of x0, we allow our guidance net-
work to be trained only on ’clean’ samples, thus reducing the overall complexity of the
post-hoc adaptation process. However, this assumes that the estimates x̂0 perfectly follow
the marginal distribution p! (x0), which is not true, notably for the first few estimates in the
denoising process. In practice, the guidance network p(y | x̂0) will initially steer the sample
xt towards the wrong directions, which in most cases cannot be mitigated by the following
denoising updates.

Using the unconditional denoiser network as a feature extractor, we can both provide
guidance that is robust to the initial inaccurate estimates of x0 and quickly learn the guid-
ance directions from a small set of labeled samples. The denoiser network is trained with
varying noise levels in its inputs and has learned to extract features of different scales at dif-
ferent timesteps. Additionally, the intermediate features of the denoiser U-Net are shown to
contain important information for downstream tasks [1]. Therefore, we argue that apart from
robustness, using the denoiser features enables us to learn the conditioning models with a
small set of examples.

4.2 Combining adaptation with denoiser representations

When presented with more data, we can combine model adaptation methods with the uncon-
ditional denoiser features to generate higher-quality and diverse images. We begin by fine-
tuning the unconditional diffusion model on the labeled examples we are given by naively
adding the conditioning connections to the pre-trained model. It is important to note that
here we assume that the image-label pairs that are provided do not cover the entirety of the
dataset, which would make the task trivial.
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Class Ours DiffAE [21] D2C [25] DDIM-I NVAE [31]
Male 15.34 11.52 13.44 29.03 41.07
Female 9.94 7.29 9.51 15.17 16.57
Blond 13.07 16.10 17.61 29.09 31.24
Non-Blond 10.97 8.48 8.94 19.76 16.73

Table 1: FID scores for attribute-conditioned generation on the CelebA-64 dataset.

Even with more image-condition pairs, the conditional model fails to generate realistic
images, as demonstrated in Fig. 1. We use the unconditional denoiser representations to
train a classifier of the labels of the given samples and improve the results by applying
rejection sampling. The classifier model decides whether to accept a generated sample using
the predicted probability value. We find this method preferable to just providing guidance
during sampling since tuning the weight of the guidance becomes increasingly difficult, with
an inherent trade-off between quality and diversity that becomes infeasible to hand-tune and
we leave to future work.

5 Experiments

5.1 Few-shot guidance for face attributes

We first demonstrate how we can generate conditional samples with a limited number of
image-attribute pairs. We utilize an unconditional diffusion model trained on the CelebA-64
[17] dataset. Similarly to [25], we train an attribute classifier by giving 50 positive and 50
negative examples of a single attribute, such as blonde or male.

To train the classifier, we extract the bottleneck and second upsampling block features
from the denoiser U-Net at T = 700. The classifier network is a simple 3-layer convolutional
network trained for 100 steps. During sampling, we apply classifier guidance with a weight
of % = 1. The results for the conditional generation of images with the attributes male,
female, blond, and non-blond are shown in Table 1.

In order to compare with D2C [25] and DiffAE [21], we train a classifier using the latent
representation of each and generate samples by unconditionally sampling from the model
and applying rejection sampling. When comparing with DiffAE and D2C, we show that we
can provide meaningful guidance and achieve comparable FID scores without requiring to
compress the entire image into a latent representation and without rejection, which signifi-
cantly increases the computation needed. For DDIM-I, we use our approach for providing
guidance with an estimate of x̂0, but now using a separately trained classifier network trained
only on “clean” images. The subpar performance validates the assumption that the interme-
diate denoiser representations are more robust to the initial inaccurate estimates of the final
image. All FID scores are computed using the images of the CelebA-64 test set with the
target attribute.

5.2 Few-shot guidance for semantic segmentations

5.2.1 Mask-conditional generation on faces

We also demonstrate how we can generate conditional samples with a small set of paired
images and segmentation masks. We utilize the dataset of [1] and an unconditional diffusion
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model trained on FFHQ-256 [12]. In this setting, we train on 20 images and their corre-
sponding segmentation masks to generate realistic-looking, semantically accurate images.

We again train a per-pixel classifier network using intermediate U-Net representations
extracted at T = 500 from decoder upsampling blocks. The classifier is a simple per-pixel
multi-layer perceptron trained for 50 steps. During sampling, we apply classifier guidance
of % = 2↗10→4, which is significantly lower than for the single attribute case of 5.1, which
we attribute to the finer per-pixel adjustments that we now have to make.

Model mIoU ↘ FID ≃
DDIM-I 0.28 106.90
DiffAE [21] 0.23 87.68
Ours 0.31 74.74

Table 2: Mean Intersection over Union and
FID on the 500-image CelebA-Mask test set
for mask-conditioned generation.

In Table 2, we provide the results of
generating images conditioned on segmen-
tation masks taken from CelebA-Mask [16].
We compute the mIoU over all classes be-
tween the generated images and input seg-
mentations using a separately trained Ora-
cle segmentation model on a test set of 500
CelebA-Mask images. We also compute the
FID scores between the two. When compar-
ing to the naive approach of using a sepa-
rately trained segmentation network to pro-
vide guidance using the estimates of x̂0, we see that although we get slightly correct semantic
results, the quality is subpar. On the contrary, when using the DiffAE latent to train a seg-
mentation network and sample with rejection sampling, we can improve the quality at the
loss of semantic correctness and speed. The latent representation over-compresses the image
information and fails to accurately reproject the segmentation onto the entire image. Our
method provides more diverse and high-quality samples without sacrificing semantic cor-
rectness. We note that we ran our method with ten denoising steps to make the comparison
to the faster DiffAE fair. The results significantly improve with more steps, as shown in the
last column of Fig. 2 (a).

Additionally, we compare our approach to the widely popular ControlNet [36] which
fine-tunes copies of the denoiser layers to process the conditioning information. We demon-
strate that it does not work in low-data regimes, at which our method is specifically targeted,
by repeating our segmentation experiment using an FFHQ-256 ControlNet model. It is ev-
ident from Fig. 2 (b) that ControlNet is unable to produce realistic images, as the added
layers cannot interpret the conditioning signal and combine it with the unconditional repre-
sentations with the limited set of examples given. We, on the other hand, exploit the fact that
the conditioning information is highly correlated with the learned unconditional denoiser
representations and we can provide guidance even in this data-limited setting.

5.2.2 Mask-conditional generation with large diffusion models

We apply our method on Stable Diffusion (SD) [23] where we use the LSUN-Cat segmen-
tation masks from [1] and condition the denoiser with just 30 examples. We freeze the text
conditioning to "a photo of a cat, full body, realistic photo" and learn a mapping from de-
noiser features to segmentations to provide the guidance signal. The generated samples in
Fig. 2 (c) showcase our method’s ability to work seamlessly with larger models.
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Mask Image DDIM-I DiffAE [21] Ours Ours - 100 steps

(a)
Mask Image ControlNet Ours

(b)

Mask SD samples

(c)

Figure 2: (a) Example of segmentation-conditioned generated images for each method.
(b) Comparison with ControlNet [36] using 100 inference steps. (c) Generating mask-
conditioned samples from Stable Diffusion [23].

5.3 Synthetic data augmentation

5.3.1 Setup

To evaluate the effectiveness of our proposed approach, we conduct experiments on Tiny Im-
agenet [29]. It has 200 object categories and 100,000 images, with 500 images per category
for training and 10,000 images for validation. The images are 64x64 pixels.

We start with an unconditional DDPM trained on Imagenet images with a cosine noise
schedule and fine-tune it as a class-conditioned diffusion model by adding a classifier embed-
ding as proposed in [19]. The classifier embedding layer weights are randomly initialized,
and we train this model for 150k steps with a batch size of 128 and a learning rate of 10→4.

Since the Tiny Imagenet dataset is much smaller than Imagenet, the resulting conditional
model fails to generate realistic images, as seen in Figure 1. As a solution, we also train
a rejection classifier to improve the quality and diversity of generated images. We extract
Tiny-Imagenet features from the unconditional DDPM’s U-Net bottleneck layer. Two feature
vectors extracted at timestep T = 300 and T = 800 are concatenated to obtain a 1024↗4↗4
embedding. The rejection classifier is a 4-layer CNN with 1.2M parameters built on top of
the U-Net features. We set a threshold of 0.2 and discard any generated image for which the
classifier predicts a probability lower than the threshold.

We use classifier-free guidance sampling [7] to generate images from our class condi-
tional model, taking a linear combination of unconditional and conditional estimates. We
use a low guidance weight of 0.01 to encourage higher diversity and generate additional syn-
thetic images for the classes in Tiny-Imagenet to construct training datasets with 100,000→
400,000 synthetic images. Figure 3 shows sample images generated by our approach.

5.3.2 Classification Accuracy Score

Classification Accuracy Score (CAS) [22] can be a better proxy than Inception and FID
for measuring the quality of synthetic datasets. CAS was originally designed for Imagenet;
we adopted it for Tiny-Imagenet by computing the Top-1 accuracy on the Tiny-Imagenet
validation set using a classifier trained on the synthetic data.
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Data type Data Source Top-1 accuracy (%)
Real Tiny-Imagenet 52.24
Synthetic Improved DDPM [19] 35.37
Synthetic Classifier-free guidance [8] 36.12
Synthetic Ours 45.09

Table 3: Classification Accuracy scores of a Resnet-18 on synthetic data. Results indicate
rejection is critical in making our synthetic data effective.

Figure 3: Tiny-Imagenet samples generated by our method. The classes are 28: German
Shepherd, 30: Tabby Cat, 36: Ladybug, and 52: Gazelle. Our model can generate diverse
images across different classes, proving the effectiveness of rejection sampling.

Table 3 reports the CAS for our synthetic data. In all cases, we train a ResNet-18 model
for 40 epochs with a batch size of 256 using the Adam optimizer [13] and a learning rate of
0.001. We generate synthetic data using the fine-tuned class conditional DDPM (Improved
DDPM), combining the unconditional and conditional models (Classifier-free guidance), and
using our method. The classifier trained on our synthetic data achieves a validation accuracy
of 45.09 %, significantly more than the other baselines, showcasing our capability to gener-
ate more diverse and higher-quality data.

5.3.3 Combining real and synthetic data

Having verified the quality of our synthetic data, we also try improving the baseline clas-
sification accuracy on Tiny-Imagenet by augmenting the real data with increasing amounts
of diffusion-generated synthetic data. We follow the same training procedure as 5.3.2 , us-
ing three network architectures: ResNet-18, Wide-ResNet-50 [34], and ResNeXt-50 [32].
Results can be found in Table 4.

We observe that augmenting the training set with our synthetic images improves the ac-
curacy of ResNet baselines by up to 8%. ResNeXt-50 performs the best, improving accuracy
from 53.98% with real data only to 63.15% with the additional augmented data. We see that
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Mixup + Real + Real + Real +
Architecture Cutmix Real only 1x Generated 2x Generated 3x Generated
Resnet-18 No 52.24 56.13 58.13 59.37

Yes 52.9 58.9 62.01 62.75

Wide-ResNet-50 No 53.27 58.57 61.71 62.82

Yes 56.56 62.71 66.42 66.82

ResNeXt-50 No 53.98 59.33 62.27 63.15

Yes 57.98 64.4 66.85 67.05

Table 4: Comparison of Top-1 Accuracy (%) with our synthetic data. "Mixup + Cutmix"
means both techniques were applied with probability 0.5. Our augmentation approach com-
plements image-level augmentations.

performance continues to improve as we increase the amount of synthetic data, with the
expected diminishing returns. The improvement is also consistent across all three network
architectures, which validates the effectiveness of our data generation method. However, we
did notice diminishing returns in the improvement of validation accuracy when increasing
the dataset size from 3↗ to 7↗. This suggests that there may be a saturation point in the
model’s capacity to extract valuable information from augmented data.

5.3.4 Comparison with image level augmentations

To evaluate the effectiveness of our synthetic data compared to image-level augmentation
methods, we conducted experiments on Tiny Imagenet using Mixup [35] and Cutmix [33]
techniques. We applied Mixup and Cutmix with a probability of 0.5 on all images in the
training set (both real and synthetic) and followed the same training procedure from 5.3.3.
The results of these experiments are summarized in Table 4.

Our observations reveal that Mixup and Cutmix techniques further enhance the accuracy
of ResNet baselines. This improvement is consistent across all the network architectures and
different amounts of synthetic data. These findings demonstrate that our augmentation ap-
proach complements image-level augmentations and can be effectively combined to achieve
even better performance.

6 Conclusion

In this paper, we proposed a method for adapting pre-trained unconditional diffusion models
to new conditions using the internal learned representations of the denoiser network. The
effectiveness of the proposed approach is demonstrated by providing guidance for attribute-
conditioned generation and mask-conditioned generation, as well as filtering samples for
synthetic data augmentation. We showed that augmenting the Tiny ImageNet training set
with synthetic images generated by our approach significantly improves the classification ac-
curacy over ResNet baselines. This result highlights the potential of our approach to improv-
ing the performance on datasets with limited labels by using a generative diffusion model as
a pre-training task or feature extractor.
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