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Abstract We demonstrate that a modification of the classical index calculus algorithm can be used to factor integers.
More generally, we reduce the factoring problem to finding an overdetermined system of multiplicative relations in
any factor base modulo n, where n is the integer whose factorization is sought. The algorithm has subexponential
runtime exp(O ({/lognloglogn)) (or exp(O((logn)'/3(loglogn)*?3)) with the addition of a number field sieve),
but requires a rational linear algebra phase, which is more intensive than the linear algebra phase of the classical
index calculus algorithm. The algorithm is certainly slower than the best known factoring algorithms, but is
perhaps somewhat notable for its simplicity and its similarity to the index calculus.
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1 INTRODUCTION

The index calculus (whose roots date to Kraitchik [11] and which was rediscovered and developed more recently
by Adleman [1] and Western and Miller [24], among others) computes the discrete logarithm of a residue 4 modulo
p with respect to a base g by collecting relations of the form

g-=[]py (modp),

i=1

in terms of a factor base of primes p;. Choosing subexponentially many primes, it takes subexponential time to
find as many relations as there are primes. This leads to a linear algebra system, whose solution gives the discrete
logarithms of the primes, which can then be used to find the discrete logarithm of .

It has long been observed that factoring algorithms and discrete logarithm algorithms have many similarities.
In the present note, we demonstrate a factoring algorithm that is especially closely inspired by the index calculus
algorithm. The fundamental idea is easy to state: we attempt to use the index calculus algorithm modulo an integer
n with unknown factorization (instead of a prime p). That is, with respect to a factor base of primes, collect
relations of the form

b
g¥= npfi (mod n).

i=1
In this case, the exponent relations live modulo the Euler totient ¢(n), or, more precisely, modulo the order of the
chosen base g. We do not know this order, and in fact its discovery would typically lead to a factorisation of n.
Although the discrete logarithms of a factor base need not exist in this situation, multiple relations will tend to lead
to a linear system that is overdetermined and has no solution, unless working modulo the order of g. This leads to
a linear algebra method to extract the order of g.

It turns out that more generally, any method of finding an overdetermined system of multiplicative relations

between elements of a factor base modulo n will lead to a method of factorization. We give a simple heuristic
reduction from factoring to finding such a system of multiplicative relations:

Theorem 1 (Introductory form of Theorem 4). Let n be an integer, and let b be a function of n. Let B be a
factor base of b residues modulo n. Suppose an oracle provides random multiplicative relations of size < O (logn)
amongst the residues B. Then there is a Las Vegas algorithm to determine the multiplicative order of residues
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modulo n (and hence factor n), whose runtime is polynomial in b and log n, and which requires at most O (b) calls
to the oracle. Furthermore, under Hypothesis 3 (Section 3), the probability of success approaches 1 —1/¢(c + 1)
where a total of b + ¢ calls are made to the oracle.

The notation { denotes the Riemann zeta function. Although the algorithm may fail (it may return a nontrivial
multiple of the order of g, or return 0), a simple and informal implementation using SageMath [19] indicates the
algorithm succeeds with very high probability. Hypothesis 3 concerns the probability that a random selection
of elements of a lattice will generate that lattice, or, more precisely, that the same is true for a restriction to a
one-dimensional subspace. The probability 1 — 1/£(k) is more familiar as the probability that £ random integers
have no non-trivial common factor.

In fact, taking ¢ = 1 should in general suffice, using methods of Ekera; see Section 5.

The runtime of the new index-calculus-like algorithm is slower than that of the textbook index calculus,
because the linear algebra step involves arithmetic over Q. Its runtime is exp(O((logn)'/?(loglogn)'/?)). The
textbook index calculus described above has been improved by the addition of the number field sieve in the
precomputation (relation-finding) phase [8]. The methods of [8, Section 3.1] can be adapated to find relations
modulo n, which, when combined with Theorem 4, leads to a version of the present algorithm which runs in time
exp(O0((logn)'/3(loglog n)?/3)). We do not pursue this in greater detail here.

The literature for factoring includes a panoply of approaches. As far as index-calculus-style approaches to
factoring, another family of approaches uses an index calculus within the class group of a quadratic field [12, 14,
21]. The analysis of Section 3 has some commonalities with the Hafner-McCurley rigorous class group algorithm
[9], and their methods may be applicable to making the present algorithm rigorous. Although the present algorithm
is closely related to the index calculus and other relation-finding approaches such as the quadratic and number fields
sieves, the author has been unable to find this particular variation in the literature. For background on the index
calculus, the number field sieve and factoring algorithms in general, see [4].

ACCOMPANYING CODE

A toy implementation is available at

https://github.com/katestange/index- factor
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2 THE ALGORITHM

The algorithm is actually one for finding the multiplicative order of g modulo n. It is well-known that this leads
to a factorization of n. For example, Shor’s quantum factoring algorithm determines this order » for random values
of g until it finds an order r which is even and for which g’"/> # —1 (mod n) [22]. In this case, ged(g"/? + 1, n)
should be a non-trivial factor. More generally, including odd orders, see [5].

By the period problem for an integer n, we shall mean the problem of computing the multiplicative order of
a given residue modulo n. The factorization problem for an integer n is the problem of giving its unique prime
factorization over the integers. It is known that these are equivalent.

Theorem 2 ([15, Theorem 4]). Under the Extended Riemann Hypothesis, the period problem and the factorization
problem are polynomial-time equivalent.

The Extended Riemann Hypothesis is used to guarantee the existence of a small residue which generates the
multiplicative group; in practice, choosing a residue at random is likely to result in a generator very quickly.

We now describe the algorithm. Let n be an odd positive integer, and let g be a residue modulo n. Let B be
a factor base consisting of the primes pjy, ..., pp less than or equal to a bound B, chosen depending upon n (so
b =#8B).

For random integers 0 < x; < n, compute g*/ (mod n) and attempt to factor the resulting smallest positive
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residue in the factor base. For each relation obtained in this way, being of the form
gy = l_[pf”" (mod n),

store the vector f; = ( fj,i)f’: | € 7P and the value x;. Collect these vectors until we have more than b vectors; say
fi,...,fpic. (Taking ¢ = 10 or so should generally suffice, but this is a parameter of the algorithm.)

We should now find integer relations between the vectors f;. These relations can be found as elements of
the basis of the right kernel of the b X (b + ¢) matrix whose columns are the relations, working over Q. Using
gcd computations, scale ¢ of these basis elements to have integral entries with no common factor, and call them
bi,...,b. € ZP*¢. In other words,

b+c

> (b))t =0,

J=1

fort =1,...,c. Collect the values

b+c

a; = Z(b,)jxj.
j=1

We return the ged of this set of values. We show below that this gcd is is with high probability the multiplicative
order of g modulo 7, and otherwise an integer multiple of this multiplicative order. The algorithm is given more
formally in Algorithm 2.1.

Algorithm 2.1: Computing the multiplicative order of g modulo n.

Input : A positive integer n, and a positive integer g < n.
Output The multiplicative order of g modulo n.

Inititialization phase:
1 Select a suitable B € N, and let 8 = {p1, p2, ..., pp} be the factor base consisting of all primes less than

B.
2 Select a suitable ¢ € N (typically ¢ ~ 10 is fine).

Relation finding phase:
Letj=1.
while j < b +cdo
Choose an integer x randomly in the range [1, ..., n]. (If x has been drawn previously, draw again.)
Compute the smallest positive residue of g* modulo 7.
Attempt to factor the residue of g* in terms of the factor base.
if g~ is factored, say g* = I—[f’:1 plf" (mod n) then
| Setf; = (fi.....fp). Setx; =x. Increment j.

e e 9 W

Linear algebra phase:

10 Form the b X (b + ¢) integer matrix whose columns are the f;.
11 Compute independent vectors by, ...,b. € Qb+c in the right kernel of this matrix (i.e., column
combinations that vanish).

GCD computation phase:
12 Scale each basis element so that the entries are integers with no factor common to all entries.
13 for ¢ from 1to c do

b

15 Let G be the greatest common divisor of all the ay, . .., ac.
16 return G
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2.1 CORRECTNESS

We now briefly demonstrate the claim that the result is a multiple of ord(g), the multiplicative order of g. For
a more complete analysis of runtime and success probability, see the next section. When one has a relation

b+c

Z(bt)jfj =0,
=

this implies that

b+c
l—l(gx-")(b’)-" =1 (mod n).
j=1
In particular, this implies that
b+c
a = ) (b)jx; =0 (mod ord(g)).
j=1

Hence, the multiplicative order g modulo » must divide every «;. Therefore the final gcd of the algorithm is a
multiple of ord(g).

Remark 1. Particularly when g has small order, it is likely that the individual discrete logarithms Lg(p;) don’t
all exist. However, the algorithm doesn’t mind; the factorization is just a way to create multiplicative relations
between values of g*. If Ly(p;) and Lg(p;) don’t exist, but Lg(p;p ;) does, then Lg(p;) will only appear with the
same coefficient as Lq(p;) in the linear algebra, effectively reducing the number of variables and increasing the
size of the kernel. But the correctness of the algorithm is not affected.

3 FACTORING BY RELATIONS MODULO =

In order to analyse the algorithm’s correctness and runtime, we will isolate the novel phase encompassing the
linear algebra and gcd computations. In fact, this phase of the algorithm generalizes to give a heuristic reduction
from factoring to finding multiplicative relations modulo n, which we will state in Theorem 4 below. This theorem
will then imply that Algorithm 2.1 is correct and has a high probability of success, under Hypothesis 3 below. This
hypothesis is known to hold in some cases, such as when the size of the factor base is much smaller than n, so that
in those cases there is a reduction from factoring » to finding relations in such a factor base (under ERH).

If we have a factor base B of b residues ay, . . ., ap modulo n, then by a multiplicative relation, we shall mean
a relationship

modulo n for e; € Z. We give a name to the lattice of exponent vectors for all valid relations:

b
Ag = {e = (e,-)l.b:l : l_[al.e" = 1}.

i=1

This is a sublattice of Z”. If the residues generate (Z/nZ)*, then it will have covolume equal to ¢ (7).

Let S; be the i-th coordinate axis, i.e. vectors whose entries are non-zero only in the i-th position. The
restriction Ag|s, of Ag to S; has covolume equal to the multiplicative order of a;, denoted ord(a;). In particular, it
is generated by a vector having i-th entry ord(a;), and zeroes elsewhere. Equivalently, any generating set for Agl|s,
will be of the form {d €} ; where €; is the i-th standard basis vector, and ged; (d;) is equal to ord(a;).

The size of a relation e will be equal to the logarithm of the 1-norm |e|;. (Thus relation vectors whose entries
are < n have size O(logn).)

Hypothesis 3 (Hypothesis on sublattice generation). Let n > 0 tend to co, and b = f(n) be a given function
of n. Let B be a factor base of b invertible residues modulo n. Let Ny C Ag be a lattice generated by b + ¢
relations randomly chosen from amongst those in Ag of size O(logn). Then, asymptotically, the probability that
Ngls, = Agls, is equal to the probability that ¢ + 1 random integers (in the sense of natural density) share no
common factor, i.e. 1 — 1/ (c + 1) where { is the Riemann zeta function.

If b and n satisfy the relationship n > 86" as n tends to infinity, then taking ¢ = b + 1, it is known that the
probability has a positive lower bound [6, Theorem 1.1]. By contrast, to apply this result to Algorithm 2.1, we need
the Hypothesis to hold when b is subexponential in log n.
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To provide some evidence for the Hypothesis, we give a heuristic argument. The index [Agls, : Agls;] is
computed (for example in Algorithm 2.1) as follows: let K be the right kernel of the matrix M whose columns
are the b + c relations. It has dimension > ¢, and with high probability the dimension is exactly c (if the relations
generate a sublattice of Ag of full rank; see [6] for a result that this is the case with constant probability once the
relation size is large enough). Let M; be the matrix obtained by deleting the i-th row of M. Then its right kernel
K; 2 K (of dimension ¢ + 1 with high probability) gives linear combinations of the original relations which are
supported only on a;, i.e. live in S;. These generate A%|s,, and each is an integer multiple of ord(a;)e;, where €;
is the i-th standard basis vector in Z". Write a;, for these integers, t = 1,...,c + 1.

Let us assume heuristically that the values @, behave as random integers (in the sense of natural density). The
probability that & random integers share no common factor is 1 — 1/£(k), where ¢ is the Riemann zeta function
[17]. Therefore the probability that Agls, = A%g|s, would be 1 — 1/ (c + 1).

As the convergence {(n) — 1 as n — oo is exponential, we need only a polynomial number of extra relations
to reduce the failure probability to be negligible. For example, we might expect Agls, = Ajls, at least 99.9% of
the time if ¢ > 9.

It is worth noting that it is possible for the algorithm to return @, = 0. This occurs for elements of K C K;,
which forms a hyperplane of codimension 1; such occurrences are unlikely (by a cardinality argument similar to
that in [6, Section 2.1]).

Theorem 4. Let n be an integer, and let b be a function of n. Let B be a factor base of b invertible residues
modulo n. Suppose an oracle provides random multiplicative relations of size < O(log n) amongst the residues B.
Then there is a Las Vegas algorithm to solve the period problem for modulus n, whose runtime is O (b°) poly(log n)
and which requires at most O (b) calls to the oracle. Furthermore, under Hypothesis 3, the probability of success
approaches 1 — 1/{(c + 1) where a total of b + ¢ calls are made to the oracle.

We use the convention that a Las Vegas algorithm is one which may return L (failure) with a finite probability
less than 1.

Proof. The algorithm is as follows (similarly to the latter portions of Algorithm 2.1). Let ¢ > 0 be an integer. Call
the oracle b + ¢ times to obtain b + ¢ relations. Isolate variable ap, rewriting the j-th relation for each j as

b
€j,1 _ €j.i
i=2
f:f fork = 1,...,c+1 which give linear

1 ck,je; which are supported only on the first entry. Equivalently, these satisfy

Then, by dimensional considerations, there are at least ¢ + 1 vectors (c_;)

b+

combinations ), ul

b+c
2757 crjej

; =1.

We can normalize these relations by scaling so the entries ¢y, ; are integers with no common factor, by use of a gcd
computation. Write ay := Z?:f ck,jej,1 € Z. Let g be the ged of the set of exponents o, k = 1,...,c+ 1. Then
g is a multiple of the multiplicative order of a; modulo n, say g = hord(a,).

By the discussion preceding the proof, & = [Agls; : Algls,]. Under Hypothesis 3, the probability that & = 1
(and hence the algorithm succeeds) is 1 — 1/{(c + 1). Failure is easily detected: finding the order is equivalent to
factoring n, so if the obtained order does not lead to a factorization of n, we should return L.

We now take ¢ to be O (b), and consider the runtime. We must find a basis for the kernel of a b X (b + ¢) matrix,
where b + ¢ = O(b). The entries are of size O(logn) (in the sense that they are integers < n). We can find the
Smith Normal Form in time O (b“ M (b log n)), where matrix multiplication takes O (r*) operations in dimension
r and integer multiplication takes time M (r) for r-bit integers [23]. Since w < 3 [2] and M (r) = O(rlogr) [10],
the Smith Normal Form computation takes time O (b*) poly(log n). With this, one can compute the kernel.

Thus the linear algebra takes time at most O (b*) poly (log 1) resulting in vectors with entries of size O (b*) poly(log n)
(using the loose approximation that runtime bounds output size; see also [20, Corollary 3.2d]). In the GCD phase, we
must perform O (b) ged operations on integers of size at most O (b*) poly (log n); this has runtime O (b°) poly(log ).
Overall, the runtime of the algorithm is O (5°) poly(log ). O

4 RUNTIME OF THE ALGORITHM

As usual, we set the notation

Ly (a,B) = exp((8 + o(1))(logx)*(log log x) '~ ).
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We will now show that the algorithm is of runtime L, (1/2,8) for some constant 3, which can be improved by
the use of many optimizations developed for the index calculus; see below. However, since this algorithm is of
academic, not practical, interest, we will not devote time to optimizing the constant 3.

The runtime of the linear algebra and gcd phase is given in Theorem 4. The relation finding phase is exactly as for
the index calculus itself. If we use the standard notation u* for the number of trials to find one smooth integer, where
u = logn/log b, then, to find b + ¢ smooth integers by trial division (time bM (b log b) = blog b loglog b per trial
division) the runtime is u* (b + ¢)b log b loglog b with trial division. Thus, optimizing, we take b = L, (1/2,1/2)
(for the standard analysis of such runtimes, see [4, Chapter 6] or [7, Chapter 15]), and obtain a runtime for the
relation finding phase of L,,(1/2,1).

With this choice of b, the runtime of Theorem 4 becomes L, (1/2,9). Thus, 8 = 9 in our implementation. If
we use ¢ = | as discussed in the next section, the GCD phase would be dispensed with, so that we get L, (1/2,4).

5 IMPROVEMENTS

The work of Ekeréd provides an algorithm to factor n given the order r of an invertible residue a;. However,
after this article was accepted, the author was made aware that the method of Ekera works on multiples of 7’ of the
order r, without any necessity to factor 7’. This has an immediate effect on the algorithm presented in this paper,
namely that it is no longer necessary to collect several @,; one will suffice. Instead of Hypothesis 3, we would only
need a heuristic on the probability that a certain number of randomly chosen relations in Ag will form a full-rank
sublattice of Ag. Once we have a full rank sublattice A’,, the intersection with S; will be non-trivial, and obtain
at least one non-trivial @,, a multiple of the order . The algorithm of Ekera is also a Las Vegas algorithm, with a
probability of failure that can be made to approach 0, under the assumption that the element a; whose order we are
finding is chosen at random from the multiplicative group. This is not strictly the case in the present application
(since the a; are the factor base, chosen with other considerations in mind). Nevertheless, in practice this would
simplify the algorithm here.

Some other relevant implementation notes:

1. One might include —1 in the factor base.

2. One may use the linear sieve of Coppersmith, Odlyzko and Schroeppel [3]; this improves the relation-finding
phase.

3. For the linear algebra phase, one might use an algorithm of runtime O (b>) poly(log n) due to Mulders and
Storjohann [16].

4. One might use the elliptic curve method [13] to remove all prime factors below a bound before attempting
this algorithm. Having many small factors will result in the order of g being smaller more often, which gives

a higher failure rate in using the order to obtain the factorization.

5. We might test for the existence of a non-trivial kernel periodically as we generate relations, since if the order
of g is small, the algorithm actually requires fewer relations.

6. In the same vein, we might use a single kernel element, when it is found, to obtain a multiple of ord(g) and
then do further linear algebra modulo that modulus.

7. We may need to return to the relation-finding and add more relations if we do not find enough elements of
the kernel which result in a; # 0.

8. Many implementation tricks for the index calculus may apply in this situation, see for example [18].

9. The number field sieve as in [8, Section 3.1] can be adapted to speed up the relation-finding phase.

6 EXAMPLE

Let us compute the order of g = 43 modulo n = 62389 and use this to factor n. We will use B = 50, resulting in
a factor base of b = 15 primes 2 < p < 47. We will need 25 relations (this assumes ¢ = 10). With 188 smoothness
tests, we find the relations:
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433371 = 23 .33 .7.29,

4361 Z22.5.7.112, 4320 =22.5% .72,
4351344 _ 54
317 g 53793 439990 =33 .11 .43, 432418 =2°.3.17-19,
b
0390 4312688 _ 23 . 3.7.192, 4350821 _ 52 41
43 =3-13-37, 10480 _ 73 3 46106 2
56136 ) 43 =27.37.5.13, 43 =2-3.-7-11°,
43 =2-3-117- 13, 19831 _ A8 14141 2
43720 =2°.3.5-11, 43 =2-3-5°-7-19,
4353393 — 54 . 41’
437783 = 20.32.5.7, 4320246 = 2.33. 5.4,
4324567 _ 04 7 932
’ 25154 _ A5 10795 3
2484 ) 43 =2-31-37, 43 =2-5.7-11,
4377 =2-37-13-37, 9481 _ »3 20889
39818 _ 2 4377 =277 11, 43 =5-11-37,
43 =177,
The relation matrix is (cols are relations):
301 0 1 0 4 1 0 2 0 3 3 86 5 3 2 50 1 1 1 10
300 1 1 00 2 00 3 1 3 1 2000 101 1 3 00
04 300 40001001 11 00 3 020 2 1 3 1
1 01000102 101001012001 10 1 0
00 0 0 2 0000 2 100100100020 0 1 1
000 1 100100001 0O00O0DO0O0OTO0OO0 0 0
0000 O0O0OTUO0OOT OO O0OTO0O0O0O0O0 1 000 0 0 0
000 00 O0O0OTUO0OGOT OO 20000001 00 1 0 0 0
000 1 000 20000000000 00000 0 0 0
1 000 000O0O0OUOTOT®OOIO0OO0O0O0O0O0O0 00 0 0 0
00 00 0O0OUO0OO OO O0O0OTO0O0T1O0O0O0O0O0O0 0 0 0
0001 00O0T10D0O0TO0UO0TOTOTI1UO0TO0OTO0TO0TO0O0 0 0 1
00000100000 O0O0TO0O0O0O0O0O0 100 1 0 0
000 00 0O0O0OO0OO0O0 100000000000 0 0 0
00 00 0O0OOO0O 0O 0O O0O0 0000000 0 0 0

The following matrix is made up of rows representing the right kernel:

0o 1 0 0 0 O o 0 0 0 0 O 0o 0 12 0 -23 30 14 18 0 -14 -13 0
o 0 2 0 0 0O -1 0 0 0 0 O 0 0 7 0 -12 1 0 8§ 10 0 -8 -8 0
0 0 0 1 0 O o 0 0 0 0 0 -1 0 0 0 1 -1 0 -1 -1 0 1 2 -1
0 0 0 0 1 0 o 0 0 0 0 0 -1 0 8§ 0 ~I5 2 0 8 10 0 -8 =7 0
0 0 0 0 0 1 o 0 0 0 0 O o 0 13 0 =25 30 14 19 0 -15 -13 0
0 0 0 0 0 O o 1 0 0 0 0 -1 0 4 0 =7 0 0 4 5 0 -4 -2 -1
0 0 0 0 0 O 0O 0 1 0 0 O 0 0 3.0 -5 -1 0 3 3 0 -3 -1 0
0 0 0 0 0 O o 0 0 1 0 O 0 0 8§ 0 -16 2 0 9 11 0 -9 -8 0
0 0 0 0 0 O o 0 0 0 0 1 0 0 2 0 -5 1 0 2 3 -2 -2 -1 0
0 0 0 0 0 O 0O 0 0 0 0 O 0 1 6 0 -I5 3.0 8 11 0 -8 -8 0
0 0 0 0 0 O o 0 0 0 0 O 0o 0 14 0 =27 30 16 20 0 -16 -13 0

The corresponding «; are:
1201200, 631400, —61600, 708400, 1232000, 323400, 277200, 754600, 169400, 662200, 1309000.
Their ged is 15400. We check that
4315400 — 1 431549072 = 51174 # 1 (mod n).

and therefore taking
gcd (51174 - 1,62389) = 701

reveals a non-trivial factor. In fact, 62389 = 701 - 89.
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