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Abstract We demonstrate that a modification of the classical index calculus algorithm can be used to factor integers.
More generally, we reduce the factoring problem to finding an overdetermined system of multiplicative relations in
any factor base modulo 𝑛, where 𝑛 is the integer whose factorization is sought. The algorithm has subexponential
runtime exp(𝑂 (

√︁
log 𝑛 log log 𝑛)) (or exp(𝑂 ((log 𝑛)1/3 (log log 𝑛)2/3)) with the addition of a number field sieve),

but requires a rational linear algebra phase, which is more intensive than the linear algebra phase of the classical
index calculus algorithm. The algorithm is certainly slower than the best known factoring algorithms, but is
perhaps somewhat notable for its simplicity and its similarity to the index calculus.
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1 INTRODUCTION
The index calculus (whose roots date to Kraitchik [11] and which was rediscovered and developed more recently

by Adleman [1] and Western and Miller [24], among others) computes the discrete logarithm of a residue ℎ modulo
𝑝 with respect to a base 𝑔 by collecting relations of the form

𝑔𝑥 =

𝑏∏︂
𝑖=1

𝑝
𝑒𝑖
𝑖

(mod 𝑝),

in terms of a factor base of primes 𝑝𝑖 . Choosing subexponentially many primes, it takes subexponential time to
find as many relations as there are primes. This leads to a linear algebra system, whose solution gives the discrete
logarithms of the primes, which can then be used to find the discrete logarithm of ℎ.

It has long been observed that factoring algorithms and discrete logarithm algorithms have many similarities.
In the present note, we demonstrate a factoring algorithm that is especially closely inspired by the index calculus
algorithm. The fundamental idea is easy to state: we attempt to use the index calculus algorithm modulo an integer
𝑛 with unknown factorization (instead of a prime 𝑝). That is, with respect to a factor base of primes, collect
relations of the form

𝑔𝑥 =

𝑏∏︂
𝑖=1

𝑝
𝑒𝑖
𝑖

(mod 𝑛).

In this case, the exponent relations live modulo the Euler totient 𝜑(𝑛), or, more precisely, modulo the order of the
chosen base 𝑔. We do not know this order, and in fact its discovery would typically lead to a factorisation of 𝑛.
Although the discrete logarithms of a factor base need not exist in this situation, multiple relations will tend to lead
to a linear system that is overdetermined and has no solution, unless working modulo the order of 𝑔. This leads to
a linear algebra method to extract the order of 𝑔.

It turns out that more generally, any method of finding an overdetermined system of multiplicative relations
between elements of a factor base modulo 𝑛 will lead to a method of factorization. We give a simple heuristic
reduction from factoring to finding such a system of multiplicative relations:

Theorem 1 (Introductory form of Theorem 4). Let 𝑛 be an integer, and let 𝑏 be a function of 𝑛. Let B be a
factor base of 𝑏 residues modulo 𝑛. Suppose an oracle provides random multiplicative relations of size ≤ 𝑂 (log 𝑛)
amongst the residues B. Then there is a Las Vegas algorithm to determine the multiplicative order of residues
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modulo 𝑛 (and hence factor 𝑛), whose runtime is polynomial in 𝑏 and log 𝑛, and which requires at most 𝑂 (𝑏) calls
to the oracle. Furthermore, under Hypothesis 3 (Section 3), the probability of success approaches 1 − 1/𝜁 (𝑐 + 1)
where a total of 𝑏 + 𝑐 calls are made to the oracle.

The notation 𝜁 denotes the Riemann zeta function. Although the algorithm may fail (it may return a nontrivial
multiple of the order of 𝑔, or return 0), a simple and informal implementation using SageMath [19] indicates the
algorithm succeeds with very high probability. Hypothesis 3 concerns the probability that a random selection
of elements of a lattice will generate that lattice, or, more precisely, that the same is true for a restriction to a
one-dimensional subspace. The probability 1 − 1/𝜁 (𝑘) is more familiar as the probability that 𝑘 random integers
have no non-trivial common factor.

In fact, taking 𝑐 = 1 should in general suffice, using methods of Ekerå; see Section 5.
The runtime of the new index-calculus-like algorithm is slower than that of the textbook index calculus,

because the linear algebra step involves arithmetic over Q. Its runtime is exp(𝑂 ((log 𝑛)1/2 (log log 𝑛)1/2)). The
textbook index calculus described above has been improved by the addition of the number field sieve in the
precomputation (relation-finding) phase [8]. The methods of [8, Section 3.1] can be adapated to find relations
modulo 𝑛, which, when combined with Theorem 4, leads to a version of the present algorithm which runs in time
exp(𝑂 ((log 𝑛)1/3 (log log 𝑛)2/3)). We do not pursue this in greater detail here.

The literature for factoring includes a panoply of approaches. As far as index-calculus-style approaches to
factoring, another family of approaches uses an index calculus within the class group of a quadratic field [12, 14,
21]. The analysis of Section 3 has some commonalities with the Hafner-McCurley rigorous class group algorithm
[9], and their methods may be applicable to making the present algorithm rigorous. Although the present algorithm
is closely related to the index calculus and other relation-finding approaches such as the quadratic and number fields
sieves, the author has been unable to find this particular variation in the literature. For background on the index
calculus, the number field sieve and factoring algorithms in general, see [4].

ACCOMPANYING CODE
A toy implementation is available at

https://github.com/katestange/index-factor
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2 THE ALGORITHM
The algorithm is actually one for finding the multiplicative order of 𝑔 modulo 𝑛. It is well-known that this leads

to a factorization of 𝑛. For example, Shor’s quantum factoring algorithm determines this order 𝑟 for random values
of 𝑔 until it finds an order 𝑟 which is even and for which 𝑔𝑟/2 ≠ −1 (mod 𝑛) [22]. In this case, gcd(𝑔𝑟/2 ± 1, 𝑛)
should be a non-trivial factor. More generally, including odd orders, see [5].

By the period problem for an integer 𝑛, we shall mean the problem of computing the multiplicative order of
a given residue modulo 𝑛. The factorization problem for an integer 𝑛 is the problem of giving its unique prime
factorization over the integers. It is known that these are equivalent.

Theorem 2 ([15, Theorem 4]). Under the Extended Riemann Hypothesis, the period problem and the factorization
problem are polynomial-time equivalent.

The Extended Riemann Hypothesis is used to guarantee the existence of a small residue which generates the
multiplicative group; in practice, choosing a residue at random is likely to result in a generator very quickly.

We now describe the algorithm. Let 𝑛 be an odd positive integer, and let 𝑔 be a residue modulo 𝑛. Let B be
a factor base consisting of the primes 𝑝1, . . . , 𝑝𝑏 less than or equal to a bound 𝐵, chosen depending upon 𝑛 (so
𝑏 = #B).

For random integers 0 < 𝑥 𝑗 < 𝑛, compute 𝑔𝑥 𝑗 (mod 𝑛) and attempt to factor the resulting smallest positive
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residue in the factor base. For each relation obtained in this way, being of the form

𝑔𝑥 𝑗 =

𝑏∏︂
𝑖=1

𝑝
𝑓 𝑗,𝑖

𝑖
(mod 𝑛),

store the vector f 𝑗 = ( 𝑓 𝑗 ,𝑖)𝑏𝑖=1 ∈ Z𝑏 and the value 𝑥 𝑗 . Collect these vectors until we have more than 𝑏 vectors; say
f1, . . . , f𝑏+𝑐. (Taking 𝑐 = 10 or so should generally suffice, but this is a parameter of the algorithm.)

We should now find integer relations between the vectors f 𝑗 . These relations can be found as elements of
the basis of the right kernel of the 𝑏 × (𝑏 + 𝑐) matrix whose columns are the relations, working over Q. Using
gcd computations, scale 𝑐 of these basis elements to have integral entries with no common factor, and call them
b1, . . . , b𝑐 ∈ Z𝑏+𝑐. In other words,

𝑏+𝑐∑︂
𝑗=1

(b𝑡 ) 𝑗 f 𝑗 = 0,

for 𝑡 = 1, . . . , 𝑐. Collect the values

𝛼𝑡 :=
𝑏+𝑐∑︂
𝑗=1

(b𝑡 ) 𝑗𝑥 𝑗 .

We return the gcd of this set of values. We show below that this gcd is is with high probability the multiplicative
order of 𝑔 modulo 𝑛, and otherwise an integer multiple of this multiplicative order. The algorithm is given more
formally in Algorithm 2.1.

Algorithm 2.1: Computing the multiplicative order of 𝑔 modulo 𝑛.
Input : A positive integer 𝑛, and a positive integer 𝑔 < 𝑛.
Output
:

The multiplicative order of 𝑔 modulo 𝑛.

Inititialization phase:
1 Select a suitable 𝐵 ∈ N, and let B = {𝑝1, 𝑝2, . . . , 𝑝𝑏} be the factor base consisting of all primes less than

𝐵.
2 Select a suitable 𝑐 ∈ N (typically 𝑐 ∼ 10 is fine).

Relation finding phase:
3 Let 𝑗 = 1.
4 while 𝑗 < 𝑏 + 𝑐 do
5 Choose an integer 𝑥 randomly in the range [1, . . . , 𝑛]. (If 𝑥 has been drawn previously, draw again.)
6 Compute the smallest positive residue of 𝑔𝑥 modulo 𝑛.
7 Attempt to factor the residue of 𝑔𝑥 in terms of the factor base.
8 if 𝑔𝑥 is factored, say 𝑔𝑥 =

∏︁𝑏
𝑖=1 𝑝

𝑓𝑖
𝑖

(mod 𝑛) then
9 Set f 𝑗 = ( 𝑓1, . . . , 𝑓𝑏). Set 𝑥 𝑗 = 𝑥. Increment 𝑗 .

Linear algebra phase:
10 Form the 𝑏 × (𝑏 + 𝑐) integer matrix whose columns are the f 𝑗 .
11 Compute independent vectors b1, . . . , b𝑐 ∈ Q𝑏+𝑐 in the right kernel of this matrix (i.e., column

combinations that vanish).

GCD computation phase:
12 Scale each basis element so that the entries are integers with no factor common to all entries.
13 for 𝑡 from 1 to 𝑐 do
14 Let 𝛼𝑡 =

∑︁𝑏+𝑐
𝑗=1 (b𝑡 ) 𝑗𝑥 𝑗 .

15 Let 𝐺 be the greatest common divisor of all the 𝛼1, . . . , 𝛼𝑐.
16 return 𝐺
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2.1 CORRECTNESS
We now briefly demonstrate the claim that the result is a multiple of ord(𝑔), the multiplicative order of 𝑔. For

a more complete analysis of runtime and success probability, see the next section. When one has a relation

𝑏+𝑐∑︂
𝑗=1

(b𝑡 ) 𝑗 f 𝑗 = 0,

this implies that
𝑏+𝑐∏︂
𝑗=1

(𝑔𝑥 𝑗 ) (b𝑡 ) 𝑗 = 1 (mod 𝑛).

In particular, this implies that

𝛼𝑡 =

𝑏+𝑐∑︂
𝑗=1

(b𝑡 ) 𝑗𝑥 𝑗 = 0 (mod ord(𝑔)).

Hence, the multiplicative order 𝑔 modulo 𝑛 must divide every 𝛼𝑡 . Therefore the final gcd of the algorithm is a
multiple of ord(𝑔).

Remark 1. Particularly when 𝑔 has small order, it is likely that the individual discrete logarithms 𝐿𝑔 (𝑝𝑖) don’t
all exist. However, the algorithm doesn’t mind; the factorization is just a way to create multiplicative relations
between values of 𝑔𝑥 . If 𝐿𝑔 (𝑝𝑖) and 𝐿𝑔 (𝑝 𝑗 ) don’t exist, but 𝐿𝑔 (𝑝𝑖 𝑝 𝑗 ) does, then 𝐿𝑔 (𝑝𝑖) will only appear with the
same coefficient as 𝐿𝑔 (𝑝 𝑗 ) in the linear algebra, effectively reducing the number of variables and increasing the
size of the kernel. But the correctness of the algorithm is not affected.

3 FACTORING BY RELATIONS MODULO 𝑛

In order to analyse the algorithm’s correctness and runtime, we will isolate the novel phase encompassing the
linear algebra and gcd computations. In fact, this phase of the algorithm generalizes to give a heuristic reduction
from factoring to finding multiplicative relations modulo 𝑛, which we will state in Theorem 4 below. This theorem
will then imply that Algorithm 2.1 is correct and has a high probability of success, under Hypothesis 3 below. This
hypothesis is known to hold in some cases, such as when the size of the factor base is much smaller than 𝑛, so that
in those cases there is a reduction from factoring 𝑛 to finding relations in such a factor base (under ERH).

If we have a factor base B of 𝑏 residues 𝑎1, . . . , 𝑎𝑏 modulo 𝑛, then by a multiplicative relation, we shall mean
a relationship

𝑏∏︂
𝑖=1

𝑎
𝑒𝑖
𝑖
= 1

modulo 𝑛 for 𝑒𝑖 ∈ Z. We give a name to the lattice of exponent vectors for all valid relations:

ΛB =

{︄
e = (𝑒𝑖)𝑏𝑖=1 :

𝑏∏︂
𝑖=1

𝑎
𝑒𝑖
𝑖
= 1

}︄
.

This is a sublattice of Z𝑏. If the residues generate (Z/𝑛Z)∗, then it will have covolume equal to 𝜑(𝑛).
Let 𝑆𝑖 be the 𝑖-th coordinate axis, i.e. vectors whose entries are non-zero only in the 𝑖-th position. The

restriction ΛB |𝑆𝑖 of ΛB to 𝑆𝑖 has covolume equal to the multiplicative order of 𝑎𝑖 , denoted ord(𝑎𝑖). In particular, it
is generated by a vector having 𝑖-th entry ord(𝑎𝑖), and zeroes elsewhere. Equivalently, any generating set for ΛB |𝑆𝑖
will be of the form {𝑑 𝑗𝜖i} 𝑗 where 𝜖𝑖 is the 𝑖-th standard basis vector, and gcd 𝑗 (𝑑 𝑗 ) is equal to ord(𝑎𝑖).

The size of a relation e will be equal to the logarithm of the 1-norm |e|1. (Thus relation vectors whose entries
are < 𝑛 have size 𝑂 (log 𝑛).)

Hypothesis 3 (Hypothesis on sublattice generation). Let 𝑛 > 0 tend to ∞, and 𝑏 = 𝑓 (𝑛) be a given function
of 𝑛. Let B be a factor base of 𝑏 invertible residues modulo 𝑛. Let Λ′

B ⊆ ΛB be a lattice generated by 𝑏 + 𝑐
relations randomly chosen from amongst those in ΛB of size 𝑂 (log 𝑛). Then, asymptotically, the probability that
Λ′

B |𝑆𝑖 = ΛB |𝑆𝑖 is equal to the probability that 𝑐 + 1 random integers (in the sense of natural density) share no
common factor, i.e. 1 − 1/𝜁 (𝑐 + 1) where 𝜁 is the Riemann zeta function.

If 𝑏 and 𝑛 satisfy the relationship 𝑛 ≥ 8𝑏 𝑏+1
2 as 𝑛 tends to infinity, then taking 𝑐 = 𝑏 + 1, it is known that the

probability has a positive lower bound [6, Theorem 1.1]. By contrast, to apply this result to Algorithm 2.1, we need
the Hypothesis to hold when 𝑏 is subexponential in log 𝑛.

4



Factoring using multiplicative relations modulo 𝑛: a subexponential algorithm inspired by the index calculus

To provide some evidence for the Hypothesis, we give a heuristic argument. The index [ΛB |𝑆𝑖 : Λ′
B |𝑆𝑖 ] is

computed (for example in Algorithm 2.1) as follows: let 𝐾 be the right kernel of the matrix 𝑀 whose columns
are the 𝑏 + 𝑐 relations. It has dimension ≥ 𝑐, and with high probability the dimension is exactly 𝑐 (if the relations
generate a sublattice of ΛB of full rank; see [6] for a result that this is the case with constant probability once the
relation size is large enough). Let 𝑀𝑖 be the matrix obtained by deleting the 𝑖-th row of 𝑀 . Then its right kernel
𝐾𝑖 ⊇ 𝐾 (of dimension 𝑐 + 1 with high probability) gives linear combinations of the original relations which are
supported only on 𝑎𝑖 , i.e. live in 𝑆𝑖 . These generate Λ′

B |𝑆𝑖 , and each is an integer multiple of ord(𝑎𝑖)𝜖𝑖 , where 𝜖𝑖
is the 𝑖-th standard basis vector in Z𝑛. Write 𝛼𝑡 for these integers, 𝑡 = 1, . . . , 𝑐 + 1.

Let us assume heuristically that the values 𝛼𝑡 behave as random integers (in the sense of natural density). The
probability that 𝑘 random integers share no common factor is 1 − 1/𝜁 (𝑘), where 𝜁 is the Riemann zeta function
[17]. Therefore the probability that ΛB |𝑆𝑖 = Λ′

B |𝑆𝑖 would be 1 − 1/𝜁 (𝑐 + 1).
As the convergence 𝜁 (𝑛) → 1 as 𝑛 → ∞ is exponential, we need only a polynomial number of extra relations

to reduce the failure probability to be negligible. For example, we might expect ΛB |𝑆𝑖 = Λ′
B |𝑆𝑖 at least 99.9% of

the time if 𝑐 ≥ 9.
It is worth noting that it is possible for the algorithm to return 𝛼𝑡 = 0. This occurs for elements of 𝐾 ⊆ 𝐾𝑖 ,

which forms a hyperplane of codimension 1; such occurrences are unlikely (by a cardinality argument similar to
that in [6, Section 2.1]).

Theorem 4. Let 𝑛 be an integer, and let 𝑏 be a function of 𝑛. Let B be a factor base of 𝑏 invertible residues
modulo 𝑛. Suppose an oracle provides random multiplicative relations of size ≤ 𝑂 (log 𝑛) amongst the residues B.
Then there is a Las Vegas algorithm to solve the period problem for modulus 𝑛, whose runtime is 𝑂̃ (𝑏9) poly(log 𝑛)
and which requires at most 𝑂 (𝑏) calls to the oracle. Furthermore, under Hypothesis 3, the probability of success
approaches 1 − 1/𝜁 (𝑐 + 1) where a total of 𝑏 + 𝑐 calls are made to the oracle.

We use the convention that a Las Vegas algorithm is one which may return ⊥ (failure) with a finite probability
less than 1.

Proof. The algorithm is as follows (similarly to the latter portions of Algorithm 2.1). Let 𝑐 > 0 be an integer. Call
the oracle 𝑏 + 𝑐 times to obtain 𝑏 + 𝑐 relations. Isolate variable 𝑎1, rewriting the 𝑗-th relation for each 𝑗 as

𝑎
𝑒 𝑗,1
1 =

𝑏∏︂
𝑖=2

𝑎
𝑒 𝑗,𝑖

𝑖
.

Then, by dimensional considerations, there are at least 𝑐 + 1 vectors (𝑐𝑘, 𝑗 )𝑏+𝑐𝑗=1 for 𝑘 = 1, . . . , 𝑐 + 1 which give linear
combinations

∑︁𝑏+𝑐
𝑗=1 𝑐𝑘, 𝑗e 𝑗 which are supported only on the first entry. Equivalently, these satisfy

𝑎

∑︁𝑏+𝑐
𝑗=1 𝑐𝑘, 𝑗𝑒 𝑗,1

1 = 1.

We can normalize these relations by scaling so the entries 𝑐𝑘, 𝑗 are integers with no common factor, by use of a gcd
computation. Write 𝛼𝑘 :=

∑︁𝑏+𝑐
𝑗=1 𝑐𝑘, 𝑗𝑒 𝑗 ,1 ∈ Z. Let 𝑔 be the gcd of the set of exponents 𝛼𝑘 , 𝑘 = 1, . . . , 𝑐 + 1. Then

𝑔 is a multiple of the multiplicative order of 𝑎1 modulo 𝑛, say 𝑔 = ℎ ord(𝑎1).
By the discussion preceding the proof, ℎ = [ΛB |𝑆𝑖 : Λ′

B |𝑆𝑖 ]. Under Hypothesis 3, the probability that ℎ = 1
(and hence the algorithm succeeds) is 1 − 1/𝜁 (𝑐 + 1). Failure is easily detected: finding the order is equivalent to
factoring 𝑛, so if the obtained order does not lead to a factorization of 𝑛, we should return ⊥.

We now take 𝑐 to be𝑂 (𝑏), and consider the runtime. We must find a basis for the kernel of a 𝑏× (𝑏 + 𝑐) matrix,
where 𝑏 + 𝑐 = 𝑂 (𝑏). The entries are of size 𝑂 (log 𝑛) (in the sense that they are integers ≤ 𝑛). We can find the
Smith Normal Form in time 𝑂 (𝑏𝜔𝑀 (𝑏 log 𝑛)), where matrix multiplication takes 𝑂 (𝑟𝜔) operations in dimension
𝑟 and integer multiplication takes time 𝑀 (𝑟) for 𝑟-bit integers [23]. Since 𝜔 < 3 [2] and 𝑀 (𝑟) = 𝑂 (𝑟 log 𝑟) [10],
the Smith Normal Form computation takes time 𝑂 (𝑏4) poly(log 𝑛). With this, one can compute the kernel.

Thus the linear algebra takes time at most𝑂 (𝑏4) poly(log 𝑛) resulting in vectors with entries of size𝑂 (𝑏4) poly(log 𝑛)
(using the loose approximation that runtime bounds output size; see also [20, Corollary 3.2d]). In the GCD phase, we
must perform𝑂 (𝑏) gcd operations on integers of size at most𝑂 (𝑏4) poly(log 𝑛); this has runtime 𝑂̃ (𝑏9) poly(log 𝑛).
Overall, the runtime of the algorithm is 𝑂̃ (𝑏9) poly(log 𝑛). □

4 RUNTIME OF THE ALGORITHM
As usual, we set the notation

𝐿𝑥 (𝛼, 𝛽) = exp((𝛽 + 𝑜(1)) (log 𝑥)𝛼 (log log 𝑥)1−𝛼).
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We will now show that the algorithm is of runtime 𝐿𝑛 (1/2, 𝛽) for some constant 𝛽, which can be improved by
the use of many optimizations developed for the index calculus; see below. However, since this algorithm is of
academic, not practical, interest, we will not devote time to optimizing the constant 𝛽.

The runtime of the linear algebra and gcd phase is given in Theorem 4. The relation finding phase is exactly as for
the index calculus itself. If we use the standard notation 𝑢𝑢 for the number of trials to find one smooth integer, where
𝑢 = log 𝑛/log 𝑏, then, to find 𝑏 + 𝑐 smooth integers by trial division (time 𝑏𝑀 (𝑏 log 𝑏) = 𝑏 log 𝑏 log log 𝑏 per trial
division) the runtime is 𝑢𝑢 (𝑏 + 𝑐)𝑏 log 𝑏 log log 𝑏 with trial division. Thus, optimizing, we take 𝑏 = 𝐿𝑛 (1/2, 1/2)
(for the standard analysis of such runtimes, see [4, Chapter 6] or [7, Chapter 15]), and obtain a runtime for the
relation finding phase of 𝐿𝑛 (1/2, 1).

With this choice of 𝑏, the runtime of Theorem 4 becomes 𝐿𝑛 (1/2, 9). Thus, 𝛽 = 9 in our implementation. If
we use 𝑐 = 1 as discussed in the next section, the GCD phase would be dispensed with, so that we get 𝐿𝑛 (1/2, 4).

5 IMPROVEMENTS
The work of Ekerå provides an algorithm to factor 𝑛 given the order 𝑟 of an invertible residue 𝑎𝑖 . However,

after this article was accepted, the author was made aware that the method of Ekerå works on multiples of 𝑟 ′ of the
order 𝑟 , without any necessity to factor 𝑟 ′. This has an immediate effect on the algorithm presented in this paper,
namely that it is no longer necessary to collect several 𝛼𝑡 ; one will suffice. Instead of Hypothesis 3, we would only
need a heuristic on the probability that a certain number of randomly chosen relations in ΛB will form a full-rank
sublattice of ΛB . Once we have a full rank sublattice Λ′

B , the intersection with 𝑆𝑖 will be non-trivial, and obtain
at least one non-trivial 𝛼𝑡 , a multiple of the order 𝑟. The algorithm of Ekerå is also a Las Vegas algorithm, with a
probability of failure that can be made to approach 0, under the assumption that the element 𝑎𝑖 whose order we are
finding is chosen at random from the multiplicative group. This is not strictly the case in the present application
(since the 𝑎𝑖 are the factor base, chosen with other considerations in mind). Nevertheless, in practice this would
simplify the algorithm here.

Some other relevant implementation notes:

1. One might include −1 in the factor base.

2. One may use the linear sieve of Coppersmith, Odlyzko and Schroeppel [3]; this improves the relation-finding
phase.

3. For the linear algebra phase, one might use an algorithm of runtime 𝑂 (𝑏3) poly(log 𝑛) due to Mulders and
Storjohann [16].

4. One might use the elliptic curve method [13] to remove all prime factors below a bound before attempting
this algorithm. Having many small factors will result in the order of 𝑔 being smaller more often, which gives
a higher failure rate in using the order to obtain the factorization.

5. We might test for the existence of a non-trivial kernel periodically as we generate relations, since if the order
of 𝑔 is small, the algorithm actually requires fewer relations.

6. In the same vein, we might use a single kernel element, when it is found, to obtain a multiple of ord(𝑔) and
then do further linear algebra modulo that modulus.

7. We may need to return to the relation-finding and add more relations if we do not find enough elements of
the kernel which result in 𝛼𝑡 ≠ 0.

8. Many implementation tricks for the index calculus may apply in this situation, see for example [18].

9. The number field sieve as in [8, Section 3.1] can be adapted to speed up the relation-finding phase.

6 EXAMPLE
Let us compute the order of 𝑔 = 43 modulo 𝑛 = 62389 and use this to factor 𝑛. We will use 𝐵 = 50, resulting in

a factor base of 𝑏 = 15 primes 2 ≤ 𝑝 ≤ 47. We will need 25 relations (this assumes 𝑐 = 10). With 188 smoothness
tests, we find the relations:
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4355571 = 23 · 33 · 7 · 29,

4351344 = 54,

431724 = 2 · 53 · 7 · 23,

439399 = 3 · 13 · 37,

4356136 = 2 · 3 · 112 · 13,

4353393 = 54 · 41,

4324567 = 24 · 7 · 232,

432484 = 2 · 32 · 13 · 37,

4339818 = 72,

4341451 = 22 · 5 · 7 · 112,

4353596 = 33 · 11 · 43,

4312688 = 23 · 3 · 7 · 192,

4310480 = 23 · 33 · 5 · 13,

4319831 = 28 · 3 · 5 · 11,

4327853 = 26 · 32 · 5 · 7,

4325154 = 25 · 31 · 37,

439481 = 23 · 7 · 11,

4320 = 22 · 53 · 72,

4325418 = 25 · 3 · 17 · 19,

4350821 = 52 · 41,

4346106 = 2 · 3 · 7 · 112,

4314141 = 2 · 3 · 52 · 7 · 19,

4326246 = 2 · 33 · 5 · 41,

4310795 = 2 · 53 · 7 · 11,

4320889 = 5 · 11 · 37,

The relation matrix is (cols are relations):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 1 0 1 0 4 1 0 2 0 3 3 8 6 5 3 2 5 0 1 1 1 1 0
3 0 0 1 1 0 0 2 0 0 3 1 3 1 2 0 0 0 1 0 1 1 3 0 0
0 4 3 0 0 4 0 0 0 1 0 0 1 1 1 0 0 3 0 2 0 2 1 3 1
1 0 1 0 0 0 1 0 2 1 0 1 0 0 1 0 1 2 0 0 1 1 0 1 0
0 0 0 0 2 0 0 0 0 2 1 0 0 1 0 0 1 0 0 0 2 0 0 1 1
0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following matrix is made up of rows representing the right kernel:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 12 0 −23 3 0 14 18 0 −14 −13 0
0 0 2 0 0 0 −1 0 0 0 0 0 0 0 7 0 −12 1 0 8 10 0 −8 −8 0
0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 1 −1 0 −1 −1 0 1 2 −1
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 8 0 −15 2 0 8 10 0 −8 −7 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 13 0 −25 3 0 14 19 0 −15 −13 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 4 0 −7 0 0 4 5 0 −4 −2 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 −5 −1 0 3 3 0 −3 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 8 0 −16 2 0 9 11 0 −9 −8 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 −5 1 0 2 3 −2 −2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 −15 3 0 8 11 0 −8 −8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 −27 3 0 16 20 0 −16 −13 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The corresponding 𝛼𝑡 are:

1201200, 631400, −61600, 708400, 1232000, 323400, 277200, 754600, 169400, 662200, 1309000.

Their gcd is 15400. We check that

4315400 = 1, 4315400/2 = 51174 ≠ ±1 (mod 𝑛).

and therefore taking
gcd(51174 − 1, 62389) = 701

reveals a non-trivial factor. In fact, 62389 = 701 · 89.
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