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Abstract

We revisit the question of whether the functions defined on the real m × n
matrices that are convex along rank-one directions are also quasi-convex in the
sense of Morrey. Using the linearity of the map f →

∫
Tn f(∇u(x)) dx, we propose

to study the question as a problem in convex optimization. This might be useful
when trying to resolve the open cases, such as the case m = 2, or various cases
with symmetries.

1 Introduction

We consider variational integrals of the form∫
Ω
f(∇u(x)) dx (1.1)

where Ω ⊂ Rn is an open set, u : Ω → Rm is a Lispchitz function, ∇u denotes the
m×n matrix of the partial derivatives of u, and f is a continuous function on the set
Mm×n of all real m× n matrices. We recall that f is Morrey quasi-convex if∫

Rn

(f(A+∇φ(x))− f(A)) dx ≥ 0 (1.2)

for each compactly supported φ : Rn → Rm and each A ∈ Mm×n. Condition (1.2)
was introduced by Ch. B. Morrey in [12], see also [13]. This will be the only notion of
quasi-convexity discussed in this note, and therefore we can use the term quasi-convex
instead of Morrey quasi-convex in what follows. Denoting by Tn the n−dimensional
torus Rn/Zn, it is well-known (and not hard to see) that an equivalent definition of
quasi-convexity is ∫

Tn

(f(A+∇φ)− f(A)) dx ≥ 0 (1.3)

for each φ : Tn → Rm and A ∈ Mm×n. A necessary condition for quasi-convexity is
the convexity of f along any line in Mm×n the direction vector of which is a rank-one
matrix. This is called rank-one convexity. For a C2−function f this amounts to

∂2f(X)

∂X i
α∂X

j
β

ξαξβη
iηj ≥ 0 , X ∈ Mm×n , ξ ∈ Rn , η ∈ Rm . (1.4)
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It is known that in general, this condition is not sufficient for quasi-convexity when
n ≥ 2 an m ≥ 3, see [16, 5]. The case m = 2 seems to be open, although we would like
to draw the attention of the reader to the recent preprint [6] where a numerical method
for constructing a potential counterexample is discussed. The question also seems to
be open for certain cases with m ≥ 3 when we restrict the class of the admissible
functions f by symmetries. In addition to [6], previous numerical exploration of the
relations between rank-one convexity and quasi-convexity can be found for example
in [8]. Important theoretical results relevant to Morrey quasi-convexity can be found
for example in [1, 7, 10, 11, 14].

In this note, we wish to explore the fact that, for a fixed deformation φ, determin-
ing whether the basic quasi-convexity inequality (1.3) holds for all rank-one convex
functions f essentially amounts to convex optimization. At a conceptual level, this is
a straightforward consequence of the linearity of the expression in (1.3) with respect
to f , and the fact that the set of rank-one convex functions forms a convex cone. In
practice, convex optimization is most effective when optimizing over compact convex
sets. For numerical experiments, these sets should be finite-dimensional as well.

A key notion in this context is that of a convex cone with a compact base. We say
that a closed cone Y in a locally convex (Hausdorff) topological linear space E (over
the real numbers) has a compact base if there exists a continuous linear functional
ℓ : E → R that is strictly positive on Y such that the set X = Y ∩ {ℓ = 1} is compact.
(There are various definitions of the notion of the base of a cone in the literature, see,
for example, [2, 4]. The definition above seems to be suitable for our purposes here.)
When µ is another continuous linear functional on E and Y is a closed convex cone with
a compact base X , one can reduce the study of the question of whether µ is positive
on Y to the minimization of µ over the compact set X . This is a classical problem
of convex optimization and we have various tools at our disposal in that situation.
In particular, we can try to use finite-dimensional approximations, approximations by
polytopes, and linear programming.

Rank-one convexity is often considered to be easier than quasi-convexity because
its definition is local. While this is no doubt a valid viewpoint, there also seems to
be some truth in the statement that the challenge of deciding the validity of (1.3)
is often related to our incomplete understanding of the cone of the rank-one convex
functions. Our effort will be directed toward finding a suitable setup in which the
cone of rank-one convex functions, after suitably factoring out the rank-one affine
functions1, becomes as close to a cone with a compact base as possible. While we
do not quite achieve this goal (at least not without some form of “completion”), we
do obtain a satisfactory setup for polynomial approximations. The setup should be
applicable to various other approximation methods as well. Our main results are
Theorem 1 and Corollary 1. We also mention Lemma 6 that concerns approximations
by polytopes. Various forms of the lemma can be probably found in the literature,
but we include it here for completeness.

The main idea is that, after factoring out the rank-one affine functions, the suitable

1also known as null Lagrangians
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linear functional ℓ on rank-one convex functions on a unit ball B in Mm×n that almost
results in a compact base (although not quite) is

1

|S|

∫
S
f(X) dX , S = ∂B . (1.5)

It turns out that rank-one convex functions are sub-harmonic, and one can use this
fact in combination with simple representation formulae for harmonic functions and
elementary estimates to obtain the desired results, utilizing the convexity properties
of the cone of rank-one convex functions.

2 Compactness

Clearly the expression (1.3) is linear in f and the class of rank-one convex functions
forms a cone. However, for optimization it is good to have compactness, in addition
to convexity. Identifying a suitable class of the functions f where one can obtain
compactness will be our next task.

Let us recall some terminology. Let Y be a closed convex cone in a locally convex
(Hausdorff) topological vector space E . As discussed in the introduction, we will say
that Y has a compact base if there exists a continuous linear functional l : E → R that
is strictly positive on Y \ {0} such that the set X = Y ∩ {l = 1} is compact. This is
a favorable situation in which one can essentially work with X rather than Y, using
the compactness of X . As we mentioned in the introduction, our definition here is
closely related to that in [4], but other definitions are used in the literature, see [2],
for example.

2.1 A 1d Toy Model with convex functions

As a very simple example, consider the cone Ycf in C[−1, 1] of the convex functions
on the interval [−1, 1]. One obstacle to the existence of a suitable base for this cone
is that Ycf is not proper (using the terminology in [4]), in the sense that it contains a
non-trivial linear subspace. We can replace Ycf by the cone Y of convex functions on
[−1, 1] that satisfy f(0) = 0 and f ≥ 0. The cone Y is proper. Defining

l(f) =
1

2
(f(−1) + f(1)) , (2.1)

the set X = Y ∩{l = 1} almost works, the only minor issue is that to obtain compact-
ness, we have to extend our set of functions by relaxing the continuity requirement:
instead of requiring our functions to be continuous on [−1, 1], we require them to
be continuous only on (−1, 1), while still imposing the convexity and the conditions
f(0) = 0 and f ≥ 0 on [−1, 1]. We denote by Ȳ the cone of such convex functions f
and let X̄ = Ȳ ∩ {l = 1}. The set X̄ then can be identified with the set of probability
measures on [−1, 1] via the representation

f(x) =

∫
F (x, t) dν(t) , (2.2)
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where F is defined for t ∈ [0, 1) by

F (x, t) =

{
0 when x < t

2(x− t)/(1− t) when x ∈ [t, 1] ,
(2.3)

F (x, 1) =

{
2 when x = 1

0 when x ∈ [−1, 1) ,
(2.4)

and analogously for t ∈ [−1, 0). The measures ν which charge the set {−1, 1} have to
be added to the original continuous functions setup to obtain compactness.

When we restrict our attention to suitable finite-dimensional subspaces, no com-
pletion is necessary. For example, letting YN to be the set of polynomials f of degree
≤ N such that f(0) = 0 , f ≥ 0 in [−1, 1] and f ′′ ≥ 0 in [−1, 1], the set

XN = YN ∩ {ℓ = 1} (2.5)

will clearly be a closed compact subset of a finite-dimensional linear space over the
real numbers.

If our goal is to optimize some linear functionals over X , we can try to avoid the
issues related to the infinite-dimensionality by working in XN . (For the simple model
above one can probably deal directly with X̄ in many problems.) In case one wishes
to deal with finite-dimensional approximations, the simplicity of the toy model gives
us many reasonable possibilities for finite-dimensional approximations. For example,
instead of polynomials, one could use continuous piece-wise affine functions.2 This
aspect becomes more subtle when we work in the more complicated setting of rank-
one convex functions in (subsets of) Mm×n.

Another way to factor out the affine functions from Ycf and obtain a proper cone
is to choose two points −1 < α < β < 1 and restrict our attention to the cone
Yz = Ycf ∩{f , f(α) = 0 , f(β) = 0} . Starting with Yz, one can then proceed similarly
as with Y. This choice may be in fact more suitable for the polynomial approximations.
We leave the details for interested readers. Below we will employ a similar choice in
the context of the rank-one convex functions.

2.2 Convex functions in dimensions d ≥ 2

One can adapt the model above to Rn in a natural way as follows. We replace the
unit interval [−1, 1] by the unit ball Bn = {x ∈ Rn , |x| ≤ 1} and the functional l
above by

ℓ(f) =
1

|Sn−1|

∫
Sn−1

f(x) dx , Sn−1 = ∂Bn . (2.6)

2In fact, this choice would make the description of XN easier than it would be when we work with
polynomials. This is because, for piece-wise linear approximations on a fixed grid, one can easily
identify the extremal points in the cone of the piece-wise affine convex functions. They are essentially
the functions F (x, t) above for suitable values of t. The situation for polynomials is more difficult
because in terms of the terminology used in [4], for the polynomial approximation, the set XN is no
longer a simplex.
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One can now consider the cone Y of non-negative convex Borel-measurable functions
on Bn that are finite in the interior of Bn, vanish at x = 0, but are not necessarily
finite or continuous at the boundary of Bn. We can try to take X = Y∩{ℓ = 1} as the
base of the cone. However, to obtain compactness, we would need to compactify X by
allowing the restrictions of the functions on Bn to Sn−1 to be probability measures.
One important difference with the case d = 1 is that it is not clear whether one has
a nice representation similar to (2.2). The difficulty is that the set X or its suitable
completion is presumably no longer a simplex in the sense of the Choquet theory.

We will not go into the technicalities, as our main interest will again be in the
case when Y is replaced by the intersection of Y with some finite-dimensional space
of functions, such as polynomials of degree ≤ N . The situation is then quite similar
to the case d = 1, except for the fact that we are not dealing with simplices.

We remark that we could also factor out the affine functions by restricting our
attention to convex functions that vanish at some given n+1 points in the interior of
B that are “affinely independent”. We leave the details to the interested reader.

2.3 Rank-One Convex Functions on Mm×n

We now turn our attention to the rank-one convex functions. Our first task is to show
that the problem with the existence/non-existence of a suitable base of the cone of
the rank-one convex functions is somewhat similar to the simple situation with the
convex functions above.

Although ultimately we will be dealing with finite-dimensional submanifolds of the
rank-one convex functions in which each function is finite and well-defined everywhere,
for more general considerations it makes sense to allow functions with values in the
extended real line R = R ∪ {∞}. A function f : [a, b] → R is convex if the usual
convexity condition f((1 − t)x1 + tx2) ≤ (1 − t)f(x1) + tf(x2) is satisfied for each
x1, x2 ∈ [a, b] and each t ∈ [0, 1], with the usual conventions that we have ∞ + x =
∞, 0∞ = 0 , t∞ = ∞ and x < ∞ for any x ∈ R, t ∈ [0, 1].

Definition 1 (a) Let O ⊂ Mm×n be a convex set with a non-empty interior. A func-
tion f : O → R is rank-one convex in O if it is finite in the interior of O and convex
on the intersection of O with any line in a rank-one direction.

(b) A function f defined on an open subset of Mm×n is locally rank-one convex if it
is rank-one convex on each ball contained in the set.

The following observation will be useful:

Lemma 1 Let O ⊂ Mm×n be an open set and let f : O → R be locally rank-one
convex. Then f is subharmonic in the sense that ∆f ≥ 0 in distributions, where ∆ is
the standard Laplace operator in Mm×n ∼ Rmn.

Proof: Writing a matrix X in coordinates Xij we can write the Laplacian as

∆ =
∑
i,j

∂2

∂X2
ij

. (2.7)
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Assume first that f is twice differentiable. Each direction ∂/∂Xij is a rank-one direc-
tion, and hence f is convex along it, by the local rank-one convexity. The general case
of possibly non-smooth functions f can be handled for example by approximation: We
replace f by fε = f ∗ ϕε for suitable mollifiers ϕε. (The function fε will be defined
on a set Oε that is slightly smaller than O, but the sets will Oε will approach O as
ε ↘ 0.) The mollification will preserve the rank-one convexity and hence fε will safisfy
∆fε ≥ 0, and this will be preserved in the limit (in the distributional sense).

Lemma 2 Let B ⊂ Mm×n be a closed ball and let f : B → R be rank-one convex.
Then f is bounded from below.

Proof: We can assume that B is centered at X = 0. Since any locally rank-one convex
function is continuous in the interior of B, the function f must be bounded on any
compact subset of the interior of B. In particular, for each R < 1 we have

sup{|f(X)| , |X| < R} ≤ c(R, f) < ∞. (2.8)

Let X ∈ B and let us write X =
∑m

j=1 ej ⊗ aj where aj are n−vectors and ej is the

j−th vector of the canonical basis of Rm. Choosing j0 so that that |aj0 | ≥ |X|/
√
m,

we see that the cosine of the angle between the rank-one matrix ej0 ⊗ aj0 and X
is ≥ 1/

√
m. Now the convexity of f on the line X + tej0 ⊗ aj0 together with the

bound (2.8) give the desired result.

Lemma 3 Let B ⊂ Mm×n be a closed ball with center X and let f : B → R be a
Borel measurable rank-one convex function. Then

1

|∂B|

∫
∂B

f(X) dX ≥ f(X) . (2.9)

Moreover, the equality holds if and only if f is rank-one affine (in the sense that both
f and −f are rank-one convex).

Proof: We can assume that X = 0 and the radius of B is one. The function f
is bounded below on ∂B by Lemma 2, so there is no issue with the definition of
the integral. When f is continuous up to the boundary, the inequality (2.9) is a
consequence of f being bounded below, and subharmonic. In the general case one can
use the rank-one convexity of f “up to the boundary” to show that

lim sup
R↗1

∫
∂BR

f(X) dX ≤
∫
∂B

f(X) dX . (2.10)

Let us sketch an argument by which one can obtain (2.10). First, we note that a
convex R-valued function g on a closed interval [a, b] satisfies

g(b) ≥ lim sup
x→b−

g(x) . (2.11)
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If we take a small piece Σ of the boundary of B and move it inside along a rank-
one line, we can establish a local version of (2.10) for Σ. (Note that we can use the
rank-one line from the proof of Lemma 2 for this purpose.) Putting together the local
pieces, we obtain (2.10).

In the case of equality, the function f has to be harmonic (as we know that it
is subharmonic) and therefore it is smooth in the interior of B. Assume that f is
not affine along some rank-one line with direction a ⊗ b ̸= 0. Let Q1, Q2 be matrices
in SO(m) and SO(n), respectively, such that Q1a = (1, 0, . . . , 0) ∈ Rm and Q2b =
(1, . . . , 0) ∈ Rn, respectively. Let g : B → R be defined by g(X) = f(Q−1

1 XQ2).
Then ∂2g/∂X11

2 > 0 on some open set. Since the map X → Q1XQ−1
2 is an isometry

of Mm×n and preserves the cone of rank-one matrices, we see that ∆g > 0 on an open
subset of B. Hence also ∆f > 0 on an open subset of B and the inequality in (2.9)
has to be strict. We see that we can only have equality when f is rank-one affine, as
claimed.

We will use the following well-known statement.

Lemma 4 Let O ⊂ Mm×n be open and connected and let f : O → R be locally affine
along rank-one lines in O. Then f is a linear combination of minors, in the sense
that f(X) is of the form a1M1(X) + a2M2(X) + . . . arMr(X) + b, where X → Mj(X)
is either a suitable subdeterminant of X or a constant.

Proof: We refer the reader for example to [5].

We will denote the set of all rank-one affine functions (also known as null Lagrangians)
by L. Let r = dimL.

Let us now choose a finite set of matrices 0 = A(1), A(2), . . . , A(r) ∈ Mm×n with
|A(k)| ≤ 1

2 , k = 1, 2, . . . r so that the map

f →
(
f(A(1)), f(A(2)), . . . , f(A(r)

)
is a linear space isomorphism of L and Rr.

In what follows we will fix the notation

B = {X ∈ Mm×n , |X| ≤ 1} , S = {X ∈ Mm×n , |X| = 1} , (2.12)

RC(B) = {f : B → R , f is Borel measurable and rank-one convex in B} (2.13)

and
RC0(B) = {f ∈ RC(B) , f(A(j)) = 0 , j = 1, 2, . . . , r} . (2.14)

We also define

X = {f ∈ RC0(B) ,
1

|S|

∫
S
f(X) dX = 1 } . (2.15)

The set X seems to be the right analog of the set X from subsection 2.1.
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Theorem 1 For f ∈ X we have

sup
BR

|∇f | ≤ c(R) < ∞ , 0 < R < 1 , (2.16)

where BR = {X ∈ Mm×n , |X| ≤ R} .

Proof: Let us first show that the functions in X have a common uniform bound from
below:

inf{f(X) , f ∈ X , X ∈ B} > −∞ . (2.17)

Arguing by contradiction, let us assume that this is not the case and that from some
sequence fn ∈ X there are Xn ∈ B such that fn(Xn) ↘ −∞. Let us set gn =
fn/(− infB fn). Then infB gn = −1, and

1

|S|

∫
S
gn(X) dX = εn ↘ 0 . (2.18)

Clearly
1

|S|

∫
S
|gn| ≤ 2 + εn . (2.19)

The functions gn are subharmonic by Lemma 1. For sub-harmonic functions h on
B we have

h(X) ≤
∫
S
h(Y )P (X,Y ) dY , (2.20)

where

P (X,Y ) =
1

|S|
1− |X|2

|X − Y |mn
(2.21)

is the Poisson kernel for the unit ball B. This gives

gn(X) ≤
∫
S
gn(Y )P (X,Y ) dY ≤ (2 + εn) sup

Y ∈S

1− |X|2

|X − Y |mn
= (2 + εn)

1− |X|2

(1− |X|)mn
.

(2.22)
This upper bound together with the convexity along the rank-one lines and infB gn =
−1 easily give an upper bound

sup
BR

|∇gn| ≤ C(R) , 0 ≤ R < 1 , (2.23)

where C(R) is a finite increasing function on [0, 1) . Recalling that fn and hence also
gn belong to RC0, we have gn(0) = 0. The functions gn are sub-harmonic and

1

|S|

∫
S
gn(X) dX = εn ↘ 0 . (2.24)

In view of (2.23) and the Arzela-Ascoli Theorem, we can assume that gn converge
locally uniformly in the interior of B to some continuous function g. The function
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g clearly belongs to RC0, and is rank-one convex and hence subharmonic, due to
Lemma 1. Denoting by GR(X,Y ) the Green’s function of the Laplacian in the ball
BR, we can write for 0 < R < 1

0 = gn(0) =
1

|∂BR|

∫
∂BR

gn(Y ) dY +

∫
BR

GR(0, Y )∆gn(Y ) dY (2.25)

and therefore∫
BR

GR(0, Y )∆gn(Y ) dY = − 1

|∂BR|

∫
∂BR

gn(Y ) dY ≥ −εn ↗ 0 . (2.26)

Since ∆gn ≥ 0 in B and GR(0, ·) ≤ 0 in B, we see that ∆g = 0, and by Lemma 3
this means that g is rank-one affine. Being also a member of RC0 we see that g ≡ 0.
The functions gn, therefore, converge locally uniformly to g ≡ 0 in the interior of the
ball B. Now the condition infB gn = −1 easily leads to a contradiction of the convexity
of gn along rank-one lines.

Theorem 1 shows that one can in some sense take X as a reasonable base of
the rank-one convex functions, at least if we consider them modulo rank-one affine
functions. One could try to compactify X by allowing the function f |∂B to be in a
suitable class of measures. However, when we work with suitable finite-dimensional
subspaces, we get compactness without any additional technicalities. For example, let
us define

XN = X ∩ {f : Mm×n → R , f is a polynomial of degree ≤ N} . (2.27)

Corollary 1 The set XN is convex and compact for each positive integer N . More-
over, it can be considered as a base of the convex cone of the rank-one convex polyno-
mials of degree ≤ N , taken modulo rank-one affine functions.

Proof: This follows from the more general considerations above, but can also be proved
more directly using the finite-dimensional nature of XN . Indeed, let us consider XN as
a subset of the finite-dimensional space PN of polynomials of degree ≤ N on Mm×n.
Consider a norm [| · |] on PN . We can take for example [| f |] = supB |f |, although the
exact form of the norm is unimportant for our purposes here (and we know that for a
fixed N all norms of PN are equivalent). We claim that XN is bounded. If not, assume
that fn ∈ XN is an unbounded sequence of polynomials. Setting gn = fn/[| fn |], we
can assume gn → g ∈ XN . Since

∫
S gn(X) dx → 0+ we have

∫
S g(X) dX = 0 and since

g(0) = 0 and g is subharmonic, we see — as before — that g must be rank-one affine
and being in RC0 it must vanish, a contradiction with [| g |] = 1.
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3 A convex optimization problem

3.1 Gradient Young measures

It is convenient to introduce the following notation. For φ : Tn → Rm and A ∈ Mm×n

we will define the measure µ = µA,φ on Mm×n by

⟨µ, f⟩ = 1

|Tn|

∫
Tn

f(A+∇φ) dX . (3.1)

We will also use the notation µ̄ for the center of mass of µ. In the situation above we
clearly have

µ̄A,φ = A. (3.2)

Any measure µ arising in this way from a Lipschitz function φ will be called a gradient
Young measure. One can generate the gradient Young measure numerically simply by
generating the smooth mappings φ : Tn → Rm, for example by using trigonometric
polynomials, piece-wise polynomial approximations (finite-elements), and other meth-
ods of representing functions.

Clearly, a continuous function f : Mm×n → R is quasi-convex if and only if

⟨µ, f⟩ ≥ f(µ̄) (3.3)

for each gradient Young measure µ on Mm×n.
It can be shown by a Hahn-Banach type argument, see [9], that every probability

measure satisfying (3.3) for all continuous quasi-convex functions f : Mm×n → R is a
gradient Young measure, but we will not need this statement in what follows.

3.2 Optimization

With the terminology introduced above, one can now formulate the question of whether
rank-one convexity implies quasi-convexity on Mm×n as the question of whether (3.3)
holds for each gradient Young measure µ and each rank-one convex function f . There-
fore it is natural to consider the following question:

(∗) Given a gradient Young measure µ on Mm×n, do we have ⟨µ, f⟩ ≥ f(µ̄) for each
rank-one convex function?

By applying suitable shifts and rescalings to the functions f we can restrict our at-
tention to the case µ̄ = 0 , supp (µ) ⊂ B and f(0) = 0.

4 Finite-dimensional Approximations

Let us consider a gradient Young measure µ with supp(µ) ⊂ B (where, as above,
B is the closed unit ball in Mm×n) and µ̄ = 0. Let XN be the finite-dimensional
approximation of the set X defined in (2.27) by polynomials on Mm×n of degree ≤ N .
Recall that B = {X ∈ Mm×n , |X| ≤ 1}.
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Lemma 5 Let µ be a probabilistic measure in B ⊂ Mm×n and let O ⊂ Mm×n be
an open ball such that B ⊂ O. If ⟨f, µ⟩ < f(µ̄) for some rank-one convex function
f : O → R, then there also exists an integer N ≥ 0 and g ∈ XN such that

⟨µ, g⟩ < g(µ̄) . (4.1)

Proof: Replacing f by its suitable mollification (defined on a set slightly smaller that
O but still containing B), if necessary, we can assume that f is smooth. Given η > 0,
we can find a polynomial h : B → R such that supB

(
|f − h|+ |D2f −D2h|

)
< η. We

can now take
g(X) = h(X) + ε|X|2 + L(X) . (4.2)

for a suitable ε = ε(f, h, η) and a suitable null-Lagrangian L, assuming η is sufficiently
small (relatively to the quantity f(µ̄) − ⟨µ, f⟩. The null Lagrangian can be used to
make sure that the condition g(A(k)) = 0 is satisfied for k = 1, 2, . . . , r. We leave the
standard technical details to the reader.

Remarks: (i) The above proof can no doubt lead to g ∈ XN with a large N . On
the other hand, for possible numerical experiments, it is desirable to take N as low
as possible. For general m,n and a fixed N one can very likely have, a situation
with ⟨g, µ⟩ ≥ ⟨g, µ̄⟩ for any g ∈ XN but ⟨f, µ⟩ < ⟨f, µ̄⟩ for some rank-one convex
f : Mm×n → R.

(ii) In general, a polynomial P that is rank-one convex in B may of course not be
rank-one convex in Mm×n. However, it is not hard to find a rank-one convex function
f : Mm×n → R that is as close to P on B as we wish, and this is sufficient. A suitable
extension method can be found for example in [15]. (This is one of the situations in
which the locality of the rank-one convexity is important.)

4.1 Possible numerical experiments

The simplest approach might be the following.

1. Generate a “random” gradient Young measure µ supported in B with µ̄ = 0.

2. Minimize the linear functional f → ⟨f, µ⟩ over the compact convex set XN .

If the minimum found in step 2 drops below zero, we of course have a counterexample.
In principle, one could consider the minimal value obtained in step 2 as function F(µ)
of µ and perform some steepest descend algorithm on F over some chosen finite-
dimensional set of admissible gradient Young measures µ.

The dimension of the space of polynomials of degree ≤ N in Mm×n is

d = d(N,m, n) =

(
N +mn

N

)
.
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The first interesting case seems to be N = 4,m = n = 2 and

d(4, 2, 2) =

(
8

4

)
= 70.

The null Lagragians in that case are of the form

L(x) = a11X11 + a12X12 + a21X21 + a22X22 + b det(X) + c ,

hence of dimension 6. Therefore the set X4 can be considered as a compact convex set
in R64.

The corresponding numbers for N = 4, n = 2,m = 3 are

d(4, 3, 2) =

(
10

4

)
= 210

and the dimension of the null Lagrangians to be 6+3+1 = 10 hence for n = 2,m = 3
the set X4 can be considered as a compact convex subset of R200. The evaluation of
the linear functional

ℓ(X) =
1

|S|

∫
S
f(X) dX

should not present a problem.
The interesting question is how one should impose the requirement of the rank-

one convexity of the polynomials numerically. For a C2-function f : Mm×n → R this
amounts to the condition

f ′′(X) (a⊗ b, a⊗ b) ≥ 0 (4.3)

for each X ∈ Mm×n and each rank-one matrix a⊗ b. When f is a quartic polynomial,
the expression X → f ′′(X) (a⊗ b, a⊗ b) is a quadratic form and one could use some
effective algorithms for verifying the positive definiteness of quadratic forms. However,
in order to be able to use off-the-shelf linear programming3 software, it may be natural
to try the following method. Let us choose at random matrices X1, X2, . . . , Xp ∈ B
and unit vectors a1, a2, . . . aq, b1, . . . , bq′ and use the condition

f ′′(Xi)(aj ⊗ bk, aj ⊗ bk) ≥ 0 , 1 ≤ i ≤ p, 1 ≤ j ≤ q , 1 ≤ k ≤ q′ (4.4)

as an approximation for rank-one convexity. For example, for N = 4, n = 2, m =
2, p = 1000, q = 40, q′ = 40 one would end up with a linear programming problem in
64 variables and 1.6 · 106 constraints. This might still be feasible with some efficient
algorithms.

It would be interesting to see how the linear programming algorithms will per-
form. There are also some theoretical questions related to these approximations, see
subsection 4.2 below.

3We refer the reader for example to [3] for details concerning linear programming.
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Remark on invariant functions

As we already mentioned, for n ≥ 2,m ≥ 3 one has rank-one convex functions that
are not quasi-convex. However, the question whether rank-one convexity is sufficient
for quasi-convexity remains open for various classes of functions with symmetries.
For example, in non-linear elasticity one often deals with stored energy functions
W : M3×3 → R that are frame-indifferent and isotropic. These two requirements
mean that W (Q1XQ2) = W (X) for all Q1, Q2 ∈ SO (3) and all X. By replacing the
set XN above with their natural symmetric variants, such as

X sym
N = {f ∈ XN , f has a desired symmetry} (4.5)

one could test whether the rank-one convexity might imply quasi-convexity in some
of the natural symmetry classes.

4.2 Topics related to approximations

For each Xi, aj , bk as in (4.4) let us consider the linear functional

ℓi,j,k : f → f ′′(Xi)(aj ⊗ bk, aj ⊗ bk) (4.6)

In particular, the functional ℓi,j,k is well-defined on the (compact) set XN .
We will use the notation

ℓ0(f) =
1

|S|

∫
S
f(X) dX . (4.7)

Let us also denote by B the set of all functionals of the form

ℓ : f → f ′′(X)(a⊗ b, a⊗ b) (4.8)

with X ∈ B and unit vectors a ∈ Rm , b ∈ Rn . Here and in what follows we will use
ℓ for the generic functional from B, a slight change of notation in comparison with the
meaning of ℓ used in the previous section, where it was used for what is now denoted
ℓ0. As above, we will use PN to denote the set of all polynomials of degree ≤ N on
the set Mm×n. (Strictly speaking, we should write PN,m,n but the values of m,n will
be clear from the context.)

Recalling the definition of the matrices Aj , j = 1, 2, . . . , r after Lemma 4, we have,
by definition,

XN = { f ∈ PN , l0(f) = 1, f(Aj) = 0 , j = 1, 2, . . . , r , l(f) ≥ 0 for each ℓ ∈ B} (4.9)

The following lemma suggests that the approximation scheme leading to linear
programming discussed above should be reasonable.

Lemma 6 Let E be a finite-dimensional normed space and let E∗ be its dual space.
Let ℓ0 be a non-zero element of E∗ and let K be a compact subset of E∗ such that the
set

K = { x ∈ E , l0(x) = 1 and l(x) ≥ 0 for each ℓ ∈ K }
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is non-empty and compact. Then there exist finite sets K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ K
such that the sets

Kj = { x ∈ E , l0(x) = 1 and l(x) ≥ 0 for each ℓ ∈ Kj }

are compact and their intersection is K.

Proof: It is enough to show that there exists a finite set K1 as above, the rest then
follows by letting Kj = K1 ∪ {ℓ1, . . . , ℓj−1} for j=2, 3,. . . , where ℓ1, ℓ2, . . . is a dense
subset of K. Arguing by contradiction, let us assume that K1 is non-compact for
each finite set K1 ⊂ K. This means that the set Z1 = {y ∈ E ; ||y|| = 1 , ℓ0(y) =
0 , ℓ(y) ≥ 0 for each ℓ ∈ K1} is non-empty for each finite K1 ⊂ K. However, by stan-
dard compactness arguments, this means that it is also non-empty for K1 = K. Let
y ∈ E with ||y|| = 1 , ℓ0(y) = 0, and l(y) ≥ 0 for each ℓ ∈ K. Then for any x ∈ K the
ray x+ ty , t ∈ [0,∞) is a subset of K, a contradiction with K being bounded.

The number of elements in K1 has to be equal at least to the dimension of the affine
set {x ∈ E , ℓ0(x) = 1} .

Assuming the set K = XN has a non-empty interior in the affine space A = {f ∈
PN , f(Aj) = 0 , j = 1, 2, . . . , r , ℓ0(f) = 1} the discrepancy between Kj and K could
in principle be measured by |Kj−K|/|K|, where we denote by |K| the Lebesgue measure
in the affine space A.

Ideally, we would like to perform optimization on the set K = XN . However, if
we wish to use existing linear programming software, we probably will have to use
approximations of the form Kj . In the situation we consider here, it can be expected
that the set K = XN cannot be described by finitely many linear functionals and the
minimizers we get when we replace K with Kj will probably not be in K. We can hope
that if we achieve ⟨f, µ⟩ < f(µ̄) for some f ∈ Kj (with K = XN ) with j sufficiently
large, the gap will be large enough to move f into XN while still preserving some gap.
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