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Abstract The emergence of nonlinear and nonstationary dynamics is common when multiple
entities collaborate, compete, or interfere in manufacturing and service operations.
Operational management calls upon effective monitoring, modeling and control of
in-process nonlinear dynamics. This, in turn, can result in significant economic and
societal benefits. Nevertheless, traditional reductionist approaches often fall short in
comprehending nonlinear dynamical systems. Also, the theory of nonlinear dynamics
is mainly studied in mathematics and physics. A critical gap remains in the knowledge
base that pertains to integrating nonlinear dynamics research with operations engi-
neering. The need to leverage nonlinear dynamics has become increasingly urgent for
the development of high-quality products and services. This tutorial presents a review
of nonlinear dynamics methods and tools for real-time system informatics, monitoring
and control. Specifically, we discuss the characterization and modeling of recurrence
dynamics, network dynamics, and self-organizing dynamics hidden in operational data
for process improvement. Further, we contextualize the theory of nonlinear dynamics
with real-world case studies and discuss future opportunities to improve the moni-
toring and control of manufacturing and service operations. We posit this work will
help catalyze more in-depth investigations and multi-disciplinary research efforts at
the intersection of nonlinear dynamics and data mining for operational excellence.
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1. Introduction

Manufacturing and service operations often involve multifarious entities that cooperate,
compete, or interfere with each other. As a result, sensor observations of these operations
exhibit nonlinear and nonstationary dynamics. For example, Figure 1(a) shows nonlinear
waveforms of power consumption signals when a lathe machine is removing metal from a
workpiece [62, 75]. Figure 1(b) shows nonlinear variations of electrocardiogram (ECG) sig-
nals when the human heart maintains blood circulation through orchestrated depolarization
and repolarization of cardiac cells [69, 72]. As complex systems evolve over time, sensor
signals exhibit dynamic behaviors. Whether the system settles down to the steady state,
undergoes incipient transitions, or deviates into high-order variations, sensor signals help
analyze system dynamics. Operational management calls upon effective monitoring, mod-
eling and control of in-process nonlinear dynamics which can result in significant economic
and societal benefits. For example, manufacturing processes can make products achieving
better quality and higher throughput. Heart disease is one leading cause of death in the
world, amounting to an annual loss of $448.5 billion in the US [61]. Improving the quality
of cardiac operations will reduce healthcare costs and increase the health of our society.
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Figure 1. (a) Sample power consumption signals from a machining process. (b) Ensemble
visualization of multiple ECG cycles from a human heart. Each ECG cycle consists of a
PQRST complex, which is segmented into the P wave, QRS complex, and T wave to delin-
eate atrial depolarization (and systole), ventricular depolarization (and systole), and ventric-
ular repolarization (and diastole), respectively [25, 69]. A software package for ECG ensem-
ble visualization is available via https://www.mathworks.com/matlabcentral/fileexchange/

77993-ensembles-and-waterfall-visualization-of-ecg-heart-beats.

Nonlinear dynamics, however, pose significant challenges to data mining for operations
management (e.g., the extraction of useful information from sensing data, and the devel-
opment of data-driven intelligence). The traditional reductionist approach, which involves
analyzing individual components separately and then combining them to understand a sys-
tem’s behavior, is limited in its ability to handle and comprehend nonlinear dynamical
systems [50]. For example, it is often assumed that drugs which significantly reduce arrhyth-
mic behaviors in isolated cardiac cells would have a similar effect in the heart, but later
this concept was shown inadequate in two large clinical trials [30, 31]. In order to cope with
system complexity, modern industries are investing in advanced sensing modalities (e.g., dis-
tributed sensor networks and imaging technology) for process monitoring [22, 23]. Real-time
sensing gives rise to large amounts of data. Realizing the full potential of big data for qual-
ity control requires fundamentally new methodologies to harness and exploit complexity.
However, there is a critical gap in the knowledge base that pertains to integrating non-
linear dynamics research with operations engineering. Specifically, the theory of nonlinear
dynamics has been primarily studied within the domain of mathematics and physics [41, 58].
Available nonlinear dynamics techniques are either not concerned with specific objectives
in operations engineering or fail to effectively analyze big data to extract useful information
for process control. There is an urgent need to mine nonlinear dynamics in operational data
for process monitoring and control.
This tutorial presents a review of nonlinear dynamics methods and tools for real-time

system informatics, monitoring and control. To demonstrate general applicability of these
methods, we use examples from two disparate disciplines, manufacturing and healthcare.
Specifically, this tutorial consists of the following three sections:

(1) Mining nonlinear recurrences for process modeling, monitoring and control : This section
reviews a suite of nonlinear methods to characterize and quantify multi-scale, hetero-
geneous recurrence dynamics in high-dimensional sensor signals. Specifically, statistical
process control is realized by real-time computing and modeling of latent states hidden
in the variations of process recurrences.

(2) Network modeling and analysis of industrial imaging data: This section focuses on the
analysis of 3D images over time, also called 4D image profiles. Each 3D image is repre-
sented as a network and then structured into local communities. The evolving dynamics
in community patterns of networks, rather than in the stream of raw images, are inves-
tigated for process monitoring and quality control.
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(3) Self-organizing dynamics for data visualization, topology learning and variable clustering :
High-dimensional variables (e.g., variation patterns of predictor variables or multi-lead
sensor signals) are embedded as network nodes in the space. These nodes are then driven
by nonlinear-coupling forces (i.e., measured between sensing variables) to form a self-
organizing network. The resulting network topology helps the learning of geometrical
structures, the clustering of sensing variables, the identification of anomaly patterns,
and also the analysis of root causes.

Finally, we contextualize the theory of nonlinear dynamics with prior works and real-
world case studies to improve the monitoring and control of manufacturing and service
operations. Specifically, as shown in Figure 1, we will use sensor signals collected from
machining operations and human heart studies to demonstrate the important concepts in
nonlinear dynamics. Software packages and YouTube videos are also included for public
dissemination. Sensor-based modeling in the contexts of manufacturing and healthcare will
enrich the theory of nonlinear dynamics. We posit that this work will help bring nonlinear
thinking into advanced sensing, system informatics and control, and further catalyze more
in-depth investigations and multi-disciplinary research efforts at the intersection of nonlinear
dynamics and data mining for operational excellence.

2. Background

Advanced sensing provides in-process observations of system dynamics and results in large
amounts of data. In general, “informatics” refers to the extraction of useful information
about system dynamics from the data [83]. We naturally embrace and accept data that are
linear, stationary, or clean. However, real-world data are often nonlinear, nonstationary, and
noisy. A linear dynamical system is often defined in the form of differential equations as:{

Ẋ=AX
X(0) =X0

;X∈Rn (1)

Note that the system’s evolution is linear, and the general solution can be obtained analyt-
ically. In other words, the solution is explicitly known for any time t:

X(t) = eAtX0 (2)

The stability of linear systems is determined by the eigenvalues of matrix A. If Re(λ)< 0,
the system is stable; but if Re(λ)> 0, it is unstable [19, 20].
On the other hand, nonlinear systems are difficult or impossible to solve analytically. The

system’s evolving dynamics form an attractor. Therefore, the attractor is also called the
basin of attraction, which is defined as a set of states toward which nonlinear systems are
dynamically evolving under a variety of initial conditions. A nonlinear dynamical system is
often modeled in the form of differential equations as:

Ẋ(t) =
dX

dt
= F (X), F ∈Rn →Rn (3)

where F (·) is a nonlinear function. The states of a nonlinear system Ẋ consist of interde-
pendent components. The space in which “states” are evolving is called a phase space (or
state space) in the dynamical systems theory. For example, Eq. 4 shows the Lorenz model
of atmospheric convection [3, 56]. Each state includes the x, y and z components that are
are mixed and interdependent. Although the Lorenz model is deterministic, it is nonlinear.
Figure 2 shows that the system’s evolving dynamics form the Lorenz attractor. Time series
observations of x, y and z components exhibit chaotic behaviors⎧⎨

⎩
ẋ= 10(y−x)
ẏ= x(28− z)− y
ż = xy− 3

8z
(4)
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Figure 2. An example of the Lorenz attrator.

If stochastic components (e.g., random noise) are added into the Lorenz model (e.g., in
any of the x, y or z dimensions), then it will become a nonlinear stochastic system. An
attractor is formed when the dynamical system is evolving over time in the phase space. In
a d-dimensional space, the state of a dynamical system is defined as a d-dimensional vector
at time t −→x = [x1(t), x2(t), . . . , xd(t)]

T (5)

The dynamics or equations of motion provide the causal relation between the present state
and the next state, as shown in the Lorenz model (also see Eq. 4). This gives a rule for
time evolution in the state space and helps predict what happens in the next step. Sensor
observations of system dynamics often show complexity, e.g., randomness and irregularity.
As a result, complex-structured models (e.g., high-order statistical models or stochastic pro-
cesses) are generally developed to better fit the data and cope with the complexity.

An example of logistic map: However, it is not uncommon that complex behaviors
(e.g., randomness and nonstationarity) can be exhibited from simple nonlinear systems.
The logistic difference equation (or logistic map) is represented as xt+1 = rxt(1−xt), which
is widely used in ecology to describe the behavior of a population under the constraint
of limited resources (e.g., food, water, space). The growth rate is not constant but rather
proportional to the remaining capacity (1 − xt). As shown in Figure 3, the observation
xt can reach steady state, exhibit periodic or chaotic behavior when its parameter r is
varied. Figure 3(a) shows the observation xt evolves into a steady state when r= 2.8, while
Figure 3(b-c) shows xt reaches period 2 when r= 3.14, and period 4 when r= 3.5. Figure 3(d)
shows that logistic map exhibits chaotic behaviors when r = 3.8. See more details about
chaotic behaviors of the logistic map in [27, 28].
Clearly, the logistic map shows more complex behaviors than the traditional linear growth

model, xt+1 = rxt, where the growth rate is constant. The next generation is linearly propor-
tional to the population in the present generation. For example, if the population of fish in
a lake grows by 10% in every generation, then the linear growth is modeled as xt+1 = 1.1xt,
where r= 1.1 is the constant growth rate. If the initial population is x0 = 100, then the pop-
ulation sequence will be 100,110,121,133, and so on. Further, it is worth noting that logistic
map possesses different characteristics from the exponential growth model, which uses the
linear differential equation to describe that the rate of population change is proportional to
the present population size as:

ẋ=
dx

dt
= rx, ln

x(t)

x0
= rt, and x(t) = x0e

rt (6)

Both linear growth and exponential growth models are predictable with analytical solutions.
However, for logistic growth, a small difference in the value of r or x0 can make a huge dif-
ference in the system behavior at time t. As shown in Figure 3(d), when r= 3.8, the simplest
form of nonlinear system exhibits chaotic behaviors. The system has sensitive dependence
on initial conditions (i.e., x0 = 0.2,0.3). It becomes difficult to predict the value of xt when
there is a small perturbation in the initial conditions.
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(a)      (b)  
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Figure 3. Examples of time series from the logistic difference equation (or logistic map) xt+1 =
rxt(1− xt): (a) r=2.8, (b) r=3.14, (c) r=3.5, (d) r=3.8. A small difference in the value of r or x0

can make a huge difference in the system behavior at time t.

Figure 4 shows the bifurcation diagram of logistic map, which gives long-term system
behaviors as a function of the parameter r. The x-axis represents different values of the
parameter r, while the y-axis represents a set of states (or possible xt values) towards
which the logistic map evolves into. Self-similarity can be observed when zooming into the
bifurcation diagram at different scales; also see the successive magnified views of the red
rectangle regions in Figures 4a to 4c. In mathematics, self-similarity, also called fractal, is
defined as a geometric object looking similar or approximately similar to a part of itself
when you zoom in using different scales [51, 81]. Interestingly, there are narrow windows of
order in the chaotic region (i.e., white vertical strips when 3.5< r < 4 in Figures 4a to 4c).

Furthermore, nonlinearity is not uncommon in real-world dynamical systems, e.g., the
human heart [65] or the lathe machine [7]. Near-periodical beatings of the human heart
provide nourishment to all parts of the body. Lathe machines cyclically process workpieces
during production. Advanced sensing brings the proliferation of in-situ measurements of
process dynamics (e.g., sensor signals, or functional profiles). There is an urgent need to har-
ness and exploit nonlinear complexity underlying sensing signals for quality improvements
in both cardiac and machining operations. Although the lathe machine and human heart
are disparate in disciplines, both systems exhibit nonlinear dynamics phenomena as follows:

• Nonlinear Dynamics: Figure 1 shows nonlinear waveform signals of a single sensor from
machining and cardiac operations. Distributed sensing allows for the deployment of mul-
tiple sensors at different locations and thereby offers multi-directional measurements of
nonlinear dynamics present in the underlying processes [54]. Traditional linear method-
ologies mainly focus on analyzing individual components separately and then combining
them to understand a system’s behavior. Principal component analysis (PCA), Fourier
analysis, and factor analysis are examples of such methods. These methods tend to be
limited in their ability to capture nonlinear, nonstationary and high-order variations.
In contrast, Poincaré proposed geometric analysis of nonlinear trajectories in the phase
space (see Figure 5). This is known as geometric thinking of nonlinear dynamical systems
in nonlinear theory. In other words, when analytical solutions are difficult or impossible
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(a) Bifurcation diagram of the logistic map.
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Figure 4. Bifurcation diagram of the logistic difference equation xt+1 = rxt(1−xt). This diagram
gives long-term system behaviors as a function of the parameter r.
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to reach for nonlinear systems, Poincaré’s way of nonlinear thinking focuses more on
invariant properties of nonlinear attractors in the phase space.

• Recurrence: Nonlinear dynamical systems exhibit recurrence characteristics in the phase
space. Figure 1 shows that the time-domain waveforms change significantly within one
cycle. However, they are similar to each other between cycles, albeit with variations.
Figure 5 shows an example of the ECG phase space constructed from multi-lead ECG
signals using the Takens’ embedding theorem [64]. The Poincaré recurrence theorem shows
that if a dynamical system has the measure-preserving transformation, its trajectories
eventually reappear in the ε-neighborhood of former states (see Figure 5) [42]. In other
words, let T be a measure-preserving transformation of a probability space (X, P ) and
let A⊂X be a measurable set. Then, for any natural number N ∈N, the trajectory will
eventually reappear at neighborhood A of former states:

Pr({x∈A|{Tn(x)}n≥N ⊂X\A}) = 0 (7)

Heterogeneous recurrence variations are closely pertinent to dynamic transitions in com-
plex systems (e.g., disease conditions, machine faults, product defects). There is an urgent
need to investigate the variations of phase-space recurrences and link this with quality
control objectives such as anomaly detection, process monitoring and fault diagnostics.

• Self-organization: As shown in Figure 5, the evolution of a dynamical system is self-
organizing to form an attractor. The attractor is a set of states defining the basin of
attraction in the phase space when complex systems are dynamically evolving in the long
term. Self-organizing dynamical systems have the ability to adapt their behaviors to ran-
dom perturbations and automatically evolve in the vicinity of the attractor. Examples of
self-organizing processes include self-assembly of nanoparticles – a “bottom-up” nanoman-
ufacturing technique to fabricate nanostructure materials [29], and electrical conduction in
the heart – an orchestrated function of cardiac cells to generate heartbeats [24]. Notably,
a simple interrelationship between entities (e.g., electrostatic force between nanoparticles,
reaction/diffusion between cells) generates systems of enormous complexity. However, lit-
tle has been done to exploit the knowledge of bio-inspired self-organization for the purpose
of quality monitoring and diagnosis of root causes.

Vx

Vy

Vz Phase-space recurrences 
in the -neighborhood

Attractor

Figure 5. An example of nonlinear and nonstationary ECG trajectories in the 3-dimensional phase
space. Here, the three dimensions are the Frank XYZ orthogonal ECG signals that capture geo-
metric characteristics of the heart dynamics, as opposed to traditional time series observations.
(Software package is available via https://www.mathworks.com/matlabcentral/fileexchange/

58238-electrocardiogram-animation-and-state-state-representation).

Increasing levels of system complexity calls upon the development of new sensor-based
models for better predictability and control. Nonetheless, there is limited work on studying
phase-space nonlinear dynamics underlying sensing data for quality control. A review of
literature pertinent to sensor-based modeling and analysis is detailed in the next section.
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2.1. Manufacturing

Complex data structures (e.g., time series, image profiles) are commonly encountered in real-
time sensing. Traditional statistical process control (SPC) methodologies primarily focus
on monitoring key product or process characteristics and are not specifically designed to
handle complex data structures. Therefore, in-process quality improvement is increasingly
concerned with complex data structures (e.g., linear or nonlinear profiles, sensor signals,
imaging data) over the past two decades [57]. For example, statistical monitoring of linear
profiles was addressed in [40, 43]. In the case of nonlinear profiles, quality features are
typically extracted for the purpose of monitoring and diagnosis. Koh and Shi et al. [44]
leveraged wavelet transformation to analyze tonnage signals and detect faults in stamping
processes. Zhou et al. [84] designed an SPC monitoring system specifically for near-periodic
waveform signals. This system not only has the capability to detect a process change but
also estimates the location and magnitude of mean shifts within the signal. Jin et al. [32] also
developed new wavelet methods for “feature-preserving” compression of tonnage signals,
and further decomposed tonnage signals into constituent parts at individual stations [33].
Paynabar et al. [55] developed wavelet mixed-effect models to characterize both within-
profile and between-profile variations. Also, Gebraeel et al. [26] investigated sensor-based
modeling and analysis of system degradation for reliability improvements and maintenance
logistics. Bukkapatnam et al. [5, 6, 7] showed the existence of low-dimensional chaos in the
machining process and further studied chatter control and fault diagnosis.
Despite these important advances, little has been done in the literature to investigate

nonlinear dynamics in sensor signals for on-line quality monitoring. In general, there is
little adoption of nonlinear thinking in quality engineering. Most existing works are more
concerned with time-domain signals from a single sensor to extract quality characteristics.
Although underutilized, multi-sensing capabilities provide a higher level of flexibility to
reconstruct the phase-space attractor for the analysis of nonlinear dynamics. One advan-
tageous feature of nonlinear thinking is that geometric segmentation is adaptive to system
configuration, which circumvents the need to detect and select windows in segmenting time-
domain signals. In other words, time windows are often required to segment time-domain
signals, but are not necessary for geometric segmentation in the multi-dimensional space.

2.2. Healthcare

Quality is also the lifeline for electro-mechanical operations of the heart. However, there
exists a substantial gap between quality engineering and cardiovascular science due to the
isolation of individual disciplines as well as a lack of understanding of cardiovascular bio-
physics. ECG signals are rich in dynamic information that is highly relevant to cardiac
operations and is thereby crucial for improving cardiac care. For instance, real-time ECG
monitoring is conducive to early diagnosis and prognosis of cardiac ailments, thereby pro-
viding a new sensor-based framework for smart health management. However, a 1-lead ECG
only captures 1-dimensional temporal view of space-time cardiac electrical activity. Multi-
lead ECG systems (e.g., 12-lead ECG and vectorcardiographic (VCG) lead systems) deploy
a distributed network of sensors (or electrodes) on the body surface. This helps to provide
multi-directional views of such space-time dynamics [21, 69].
In the time domain, a normal ECG tracing is often segmented into the P wave, QRS com-

plex, and T wave (see Figure 1b) to delineate atrial depolarization (and systole), ventricular
depolarization (and systole), and ventricular repolarization (and diastole), respectively [74].
Most existing work has focused on the analysis of time-domain ECG signals from a single
sensor. Time-domain algorithms were usually developed to quantify the characteristics of
ECG wave deflections (i.e., P, QRS and T waves) [4]. Examples of ECG features include
PR interval, RR interval, ST elevation/depression, QT interval, R amplitude. Also, Fourier
analysis was utilized to transform time-domain ECGs to extract hidden features in the
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frequency domain [2, 60]. However, Fourier analysis does not provide temporal location of
frequency components, and assumes spectral components exist at all times (i.e., stationar-
ity). Nonstationarity in cardiovascular systems fueled increasing interests in wavelet analysis
of ECG signals to delineate local time and frequency information for applications such as
adaptive representation [64], PQRST segmentation [45], noise cancellation [1], and arrhyth-
mia recognition [46]. Further, nonlinear methods were developed to reconstruct the phase
space from 1-lead ECG and then characterize the dynamics of cardiovascular systems [82].
Notably, statistical control charts were also designed to monitor time-domain features (e.g.,
ST interval) extracted from 1-lead ECG signals [8, 59].

However, one limitation of existing methodologies is that they underutilize multi-lead
ECG signals and overlook spatio-temporal dynamics in the heart. Multiple sensors at vari-
ous locations on the human body respond to process changes differently. Time-domain ECG,
i.e., a projected view of space-time cardiac electrical activity, diminishes important spatial
information pertinent to faults in cardiovascular systems (e.g., myocardial infarction). Most
existing methods are influenced by such an information loss, thereby failing to extract effec-
tive ECG biomarkers sensitive to cardiac malfunctions. Another issue is pertinent to root
cause diagnosis in electromechanical operations of cardiac processes. Heart disease is com-
plex and heterogeneous. Most existing studies focused on the binary interpretation of cardiac
conditions, e.g., asking whether the heart is healthy or not. Nonetheless, heart disease can
take place at different locations of the heart and with different temporal severity. Disease
complexity results in variable patterns in multi-lead ECGs and poses significant challenges
to root cause diagnosis. As a result, existing methodologies fall short of effectively addressing
fundamental issues important to cardiac process monitoring and fault diagnostics. The exis-
tence of such methodological barriers hampers the transformation from clinic-centered care
to patient-centered care that extends to the home, workplace, and community. Although an
ECG is always obtainable in real time, cardiologists are not always available or able to ana-
lyze big data for warning signs. The challenges call upon the development of sensor-based
models to address the complexity in cardiovascular systems.

3. Mining nonlinear recurrences in operational data for process
modeling, monitoring and control

Recurrence (i.e., approximate repetitions of a certain event) is one of the most common
phenomena in natural and engineering systems. The Complex Systems Lab at Penn State has
done extensive research to design and develop recurrence methods for modeling and analysis
of nonlinear dynamics in automotive assembly lines [66, 68] and cardiovascular systems
[12, 65, 67]. The recurrence plot (RP) is a graphical tool to characterize the recurrence
patterns of states in the phase space. As shown in Figure 5, a 3D ball that defines the
ε-neighborhood is moving along the trajectory to capture phase-space recurrences. In other
words, a recurrence plot characterizes the proximity of two states −→x (i) and −→x (j), i.e.,

R(i, j) :=Θ(ε−‖−→x (i)−−→x (j)‖) (8)

where Θ(·) is the Heaviside function∗, and ‖ · ‖ is a distance measure. The “rules of thumb”
for choosing the ε-neighborhood include: (i) a fixed percentage of the maximum diameter of
the state space; (ii) a fixed recurrence rate (i.e., the proportion of black dots in an RP); (iii)
the number of neighbors for every state; (iv) the standard deviation of observational data.
It is worth mentioning that if ε is too small, there will be few recurrence dots in the RP. As
a result, RP patterns can not be observed and learned. If ε is too large, then almost every
state will be a recurrence of every other state. There will be too many recurrence dots in

∗The Heaviside function Θ(ν) = 1, if ν > 0, and Θ(ν) = 0, if ν < 0
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the RP. In a nutshell, the choice of ε depends on the geometric shape and diameters of the
attractor from a nonlinear system [52].
As shown in Figure 6, recurrence plot is an effective graphical tool that can reflect distinct

structures of time series observations from dynamical systems. Here, we show RP examples
for three types of different systems, including sine-wave observations from a linear system,
Lorenz time series from a nonlinear system, and random noise from a randomized system.
The pattern differences can be captured via both small-scale and large-scale structures. In
small-scale structures, we can see the difference from single dots, diagonal and vertical lines.
Single dots are signs of random fluctuation in the process. The RP of random noise shows a
scattering of isolated dots, which indicates an uncorrelated random process. Diagonal lines
are observed when the system is periodic and the system’s states are recurring at different
times. For example, the RP of sine waves shows regular lines along the diagonal direction,
which indicate periodicity in the system dynamics. On the other hand, the RP of a Lorenz
system only shows intermittent diagonal lines along with the scatter of isolated dots. Also,
the RP of a Lorenz system shows intermittent vertical lines. This indicates that, for some
time, the system’s states do not change or change slowly. In large-scale structures, there
are different homogeneous, periodic and disruptive patterns. If large-scale homogeneity is
observed in RPs, then the system is stationary (e.g., diagonal lines in sine waves, and the
homogeneous scatter of single dots in random noises). The period patterns correspond to
the cyclicity. The period is correlated to the distance between diagonal lines. The disruptive
patterns (e.g., vertical disruptions in the Lorenz RP) often indicate nonstationarity due to
switching or transitional behaviors in the system’s evolving dynamics.

Linear System Nonlinear System Random System
0 200 400 600 800 1000

0

200

400

600

800

1000

Time Index

Ti
m

e 
In

de
x

0 200 400 600 800 1000
0

200

400

600

800

1000

Time Index

Ti
m

e 
In

de
x

0 200 400 600 800
0

200

400

600

800

Time Index

Ti
m

e 
In

de
x

200 400 600 800 1000
-20

0

20

Lorenz time series

0 200 400 600 800 1000
-1

0

1
Sine Waves

0 200 400 600 800 1000
-5

0

5
Random noise

Figure 6. Illustrations of distinct RP patterns (e.g., either small-scale or large-scale structures)
for sine waves, Lorenz time series, and random noise.

In addition to simulation datasets, Figure 7 is an example of recurrence plot that captures
geometric recurrences in the ECG phase space of Figure 5. Recurrence quantification analysis
(RQA) measures intriguing structures and patterns in the recurrence plot [63]. Examples
of RQA measures include recurrence rate, determinism, entropy, and laminarity; see the
detailed definitions in [53, 79]. Chen and Yang et al. [12, 65, 67] also developed a multi-scale
framework to characterize and quantify the dynamics of transient, intermittent and steady
recurrences within wavelet scales. Multi-scale analysis facilitates the prominence of hidden
recurrence properties that are usually buried in a single scale. Shorter wavelet subseries also
make expensive recurrence computations not only plausible but also more effective within
wavelet scales. Moreover, Yang et al. [66, 68] developed a local recurrence modeling approach
to delineate time-varying recurrence characteristics in multi-stage manufacturing systems.
Specifically, local recurrence patterns were investigated for real-time performance prediction
under highly nonstationary conditions.
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Figure 7. The recurrence plot characterizes the proximity of two states −→x (i) and −→x (j), i.e.,
R(i, j) :=Θ(ε−‖−→x (i)−−→x (j)‖), where Θ is the Heaviside function and ‖ · ‖ is a distance measure.
Software package is available via https://www.mathworks.com/matlabcentral/fileexchange/

58246-tool-box-of-recurrence-plot-and-recurrence-quantification-analysis.

Further, our prior work has developed a new approach to investigate heterogeneous recur-
rence variations and link with quality control objectives, namely “heterogeneous recur-
rence analysis (HRA)”[15, 71]. Cardiovascular and manufacturing operations are more
concerned with heterogeneous recurrences and their variations hidden in nonlinear and non-
stationary sensor signals. Traditional recurrence plots treat all recurrence states homoge-
neously using the Heaviside function. As shown in Figure 7, the color code of all recurrence
states is black and non-recurrence is white. In other words, if there is a spatial partition of
the phase space (e.g., Figure 8), recurrences in one box are treated the same as in other
boxes. In the state of the art, little has been done to delineate and characterize heteroge-
neous types of recurrence behaviors (e.g., different kinds of recurrence patterns in vicinity
regions in the phase space). As shown in Figure 8, recurrence patterns can be different in
kind because of state properties (e.g., state values and relative locations due to the spa-
tial partition of the phase space) and the evolving system dynamics (e.g., sequential state
transitions before and after a present state) [71].

Vx

Vy

Vz

Figure 8. An example of spatial partition of the ECG phase space.

If a categorical index k is assigned to each box in Figure 8, then the states �x(n) tend to
make transitions between these boxes when the system is dynamically evolving. The HRA
framework starts with the design of a fractal representation of Markov states via the iterative
function system (IFS), which was originally developed for fractal analysis of categorical time
series. For a finite state space, the IFS sequentially maps each Markov state �x(n) to an
address (i.e., a point [cx(n), cy(n)]) in the 2D coordinate system using

�x(n)−→ k ∈K= {1,2, . . . ,K} (9)

[
cx(n)
cy(n)

]
=ϕ

(
k,

[
cx(n− 1)
cy(n− 1)

])
=

[
α 0
0 α

][
cx(n− 1)
cy(n− 1)

]
+

[
cos(k× 2π

K )
sin(k× 2π

K )

]
(10)
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where the initial address is

[
cx(0)
cy(0)

]
=

[
0
0

]
. See more mathematical details in [71]. Figure 9

illustrates the representation of a stochastic Markov process with 8 states (i.e., K = 8). Each
circle in Figure 9a shows the recurrence of one of the 8 states. Zooming into circle 1 leads to
Figure 9b. Every circle in Figure 9b provides information on heterogeneous recurrences in
state 1 (i.e., all two-state sequences that end in state 1). Figure 9c shows a magnified view
of category 21. Each circle represents the recurrence of one of the three-state sequences (i.e.,
121, 221, 321, 421, 521, 621, 721, 821). Notably, the density and distribution of points in
each circle characterize heterogeneous recurrence variations, which have a direct association
with conditions and settings of process operations.

(a) (b) (c)

Figure 9. Multi-scale fractal representation of a Markov process with 8 discrete states via the
iterative function system: (a) addresses of mono-state; (b) addresses of two-state sequences; (c)
addresses of three-state sequences, where the x-axis represents cx(n) and the y-axis is cy(n).
Software package is available via https://www.mathworks.com/matlabcentral/fileexchange/

58250-heterogeneous-recurrence-analysis-toolbox.

The novel HRA approach has found diverse applications in disparate disciplines of manu-
facturing and healthcare. For example, our prior work investigated heterogeneous recurrence
variations in the nonlinear state space from a time series of heart rate variability (i.e.,
extracted from single-channel ECGs) [18]. Experimental results showed that heterogeneous
recurrence analysis is an effective tool to detect obstructive sleep apnea using one-lead ECG
signals. Also, we reconstructed the state space of in-situ vibration signals that are collected
during the ultraprecision machining (UPM) process. Heterogeneous recurrence variations
were then studied and demonstrated to effectively capture dynamic transients for monitoring
the quality of UPM surface finishes [35]. Further, Chen et al. [10] leveraged the heterogeneous
recurrence analysis to delineate disease-altered spatiotemporal patterns in multi-channel
cardiac signals. In addition, Yang et al. [70] extended the heterogeneous recurrence approach
for spatial data analysis. Spatial data were traversed with the Hilbert Space-Filling Curve to
transform the variations of recurrence patterns from the spatial domain to the state-space
domain. The spatial HRA approach was evaluated and demonstrated in a real-world case
study to analyze microscopic images for manufacturing quality control.
Finally, our prior work has developed a multivariate strategy of sparse particle filtering

(SPF) for on-line monitoring and predictive control of process recurrences [11, 14]. This is
realized by real-time computing, recursive predicting and updating of latent states hidden
in the variations of process recurrences. Specifically, SPF tackles two main challenges: (i)
Nonlinear and non-Gaussian properties : To effectively model the dynamics of process recur-
rences, one has to consider measurement and process functions in nonlinear forms and model
the hidden states in a non-Gaussian distribution. However, most existing methods are only
effective when the state space model is linear and the posterior density follows a Gaussian
distribution. For example, the Kalman filter assumes a linear state-space model. Dynamic
factor analysis requires the assumption of a Gaussian distribution. The SPF can effectively
model the evolving dynamics of latent states, as well as represent complex distributions (e.g.,
non-Gaussian, multi-modal) with particles generated by sequential Monte Carlo sampling.
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(ii) Curse of dimensionality : It is also worth noting that the dimensionality of recurrence
variables is very large. This poses a serious “curse of dimensionality” problem for estimation
and prediction steps. However, traditional latent-variable methodologies (e.g., PCA, ICA,
nonlinear factor analysis) do not account for the dynamics of hidden variables even though
complex systems evolve dynamically. The SPF approach identifies a compact set of latent
variables sufficient to model the nonlinear dynamic process.

4. Dynamic network modeling of industrial imaging data

Rapid advances in 3D metrology now bring the increasing availability of imaging data for
quality inspection and process improvement. For example, the quality of a 3D-printed part
is pertinent to melt pool geometry variations (also see Figure 10a) in the laser powder
bed fusion (LPBF) process [49, 80]. Ultra-precision machining (UPM) is equipped with
air-bearing spindles and diamond tools for high-end manufacturing applications such as
aerospace and semiconductor manufacturing. UPM is capable of generating optical surface
finishes with an average roughness ≤ 10nm (see Figure 10b). Time-varying 3D images can
be captured through optical mapping techniques to observe the propagation and conduction
of electrical waves in the whole heart (Figure 10c). Cardiac imaging is critical to studying
the mechanisms of heart diseases and observing real-time feedback in the course of cardiac
surgeries [17, 73]. The laser-scanning video microscopy captures in-vivo 4D images of living
cells (Figure 10d) during the synthesis of biopharmaceutical products [34, 39]. Dealing with
3D and time-varying 3D (4D) imaging data is a general problem facing both traditional and
next-generation innovation practices in manufacturing and biotechnology.

(a) melt pool from the 
laser powder bed fusion

(c) whole-heart 
electrical mapping

High activeLow active

Normal active

(d) 3D cell imaging(b) surface profile from 
ultra-precision machining 

Stylus

Figure 10. Examples of industrial imaging data from manufacturing and healthcare domains. See
our software package for whole-heart simulation via https://www.mathworks.com/matlabcentral/

fileexchange/78194-simulating-spatiotemporal-dynamics-in-the-whole-heart.

However, traditional studies tend to focus more on statistical modeling and analysis of 2D
surface profiles, and are limited in the ability to model and analyze complex spatiotemporal
patterns in 3D (4D) imaging data. When there is a stream of 3D images dynamically evolving
over time, we obtain a new 4D “image” – a sequence of 3D images for every point in
time (e.g., whole-heart electrical mapping and 3D cell imaging in Figures 10c and d). This
section will present our previous research works in the design and development of dynamic
network methods for monitoring and control of high-dimensional imaging streams [9, 37,
38, 70]. Notably, dynamic networks have the following advantageous features: (i) Network
nodes can effectively represent high-dimensional data (e.g., either 3D or 4D imaging). (ii)
Network edges preserve complex spatial structures and patterns in the time-varying stream
of images. The dynamic network methodology is evaluated and validated with real-world case
studies for quality monitoring of cardiac operations and surface finishes in manufacturing
processes. Our prior work has developed a novel two-phase greedy procedure for automatic
detection and characterization of calcium sparks in living cells [39]. Time-varying imaging
data are taken at different times in a biomanufacturing process that produces genetically-
engineered cells. Each image contains complex patterns of disease-altered cellular behaviors
(e.g., density, activity).
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4.1. Dynamic network representation and community detection

Our prior work [37, 38] proposed to represent industrial imaging data as dynamic networks
and then detect subnetwork structures in the network. As shown in Figure 11, each image
will be cast as a weighted and undirected network. Each node represents a pixel or a group of
pixels in the image. The edge Ei,j = 1 if node i is linked to node j and Ei,j = 0 otherwise, i.e.,
Ei,j =Θ(ε−‖vi−vj‖)−δi,j , where vi is the intensity/color of node i, and δi,j is the Kronecker
delta used to avoid self-loops. Each edge is assigned a weight Wij , which depends on both
spatial and intensity factors, i.e.,Wij = α exp (‖si − sj‖/smax)+(1−α) exp (‖vi − vj‖/vmax).
The regularization term α controls the balance between spatial and intensity similarities,
si is the spatial location of pixel i, vmax is the maximal intensity and smax is the maximal
spatial distance. Thus, two connected nodes in an image have a smaller weight if their
intensities and geometric locations are closer to each other.

Network 
Representation

Community
Detection

Process
Monitoring

Y
X

Time

Calcium Sparks

Cells

Present community as a 
prior for the next frame

Figure 11. Dynamic network modeling and monitoring of biomanufacturing imaging data.

However, the challenge lies in computing Ei,j and Wi,j for a large image or improving
the computational speed for a moderate-size image. Traditionally, an image is resized (or
compressed) by imposing a coarse grid to compute local averages. This unavoidably leads
to information loss and influences the performance of fault detection. Our prior work [70]
investigated a wavelet network casting approach to improve computational efficiency, and
extract hidden properties that are usually buried in the single-scale image. Notably, wavelet
transforms model irregular image patterns such as abruptions and intermittences better
than the Fourier transform and standard statistical methods (e.g., splines or polynomials).
Multi-scale decomposition and subsampling reduce the image size significantly, but do not
lose any information. The original image can be perfectly reconstructed from the set of
wavelet sub-images.
After the image is represented as a network, there are sub-groups or sub-communities

to be identified in the next step. Each community is characterized as a group of tightly
connected nodes within the network. As such, these sub-communities provide pixel clusters
that correspond to different types of inherent patterns in the image. We use a “Potts type”
variable gi to denote the community label of node i. If there are K communities in the
network, then 1≤ gi ≤K. The vector of {gi}i=1,. . . ,N denotes the community labels for all
the N nodes. A subgroup of nodes with the same value, e.g., gi = k and 1≤ k ≤K, belong
to the same community Ck. For a specific partition of the network into K communities, the
Hamiltonian function is introduced to define the total energy function of the network as:

H({gs}Ns=1) =
1

2

K∑
k=1

∑
i,j∈Ck

(Wij −W )[Θ(W −Wij)+ γΘ(Wij −W )]δ(gi, gj) (11)

where W is the average of all weights, γ is a regularization parameter, δ(gi, gj) is the
Kronecker delta, and i, j ∈Ck denote nodes i and j belonging to the same community Ck.
If the Hamiltonian function is minimized, mingi,gjH({gs}Ns=1), then the total energy of the
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network is reduced to a minimal state. The network tends to be more stable. As a result, the
Hamiltonian minimization process favors strongly-connected nodes and penalizes loosely-
related nodes appearing in the same community. In other words, if strongly-connected nodes
are in the same community, network energy will be reduced. If loosely-related nodes are in the
same community, network energy will be increased. Similarly, the Hamiltonian minimization
process penalizes strongly connected nodes and favors loosely related nodes being in different
communities. See mathematical details in [38]. This optimization problem is analogous to
community detection for social or metabolic networks. However, traditional studies have
been limited to networks and did not specifically consider industrial imaging data. This
section focuses on community detection in a stream of dynamic images for process monitoring
and quality control, which is even more challenging.

4.2. Dynamic network process monitoring and quality control

Solving this optimization model requires considerable time for an image, which can be
longer than the sampling rate of dynamic images. In this case, it will be computationally
infeasible for on-line process monitoring. Thus, we propose an adaptive learning approach
that recursively updates the network communities, as shown in Figure 11. In other words,
community detection does not start from scratch for every frame of image, but utilizes a
priori information in previous frames. Notably, the difference between successive frames is
small in functional image data. This is because the functional image tracks fine-grained
details of the initiation and progression of events. As a result, adaptive learning will make
on-line monitoring computationally efficient and feasible.
Further, we propose to develop community statistics on the basis of the state of subgraph

structures and further design multivariate network control charts for process monitoring.
The variations of community densities distinctly mark the emergent properties of anomalies
in the functional image. Most importantly, each pixel (or node) has a “Potts type” vari-
able that represents the community label. This offers a great advantage for fault pattern
detection, including the time, location, and size factors. Our prior work [38] evaluates the
performance of the dynamic network methodology under various uncertainty factors (e.g.,
fault types, nonstationary movements of subjects, and noisy background) in the functional
image and how they influence process monitoring and fault pattern detection. Experimen-
tal results show that new dynamic network monitoring schemes are adaptive to nonlinear
and nonstationary variations, and are generally applicable to research problems in diverse
fields such as biomanufacturing quality control, whole-heart imaging analysis, surface profile
monitoring, as well as laser processing of metal powders.

5. Self-organizing dynamics for data visualization, topology learn-
ing and variable clustering

This section discusses the exploitation of self-organizing dynamics for the purpose of data
visualization, topology learning and variable clustering. Self-organizing dynamical systems
possess the capability to adjust their actions in response to unexpected disturbances and nat-
urally evolve in the proximity of a nonlinear attractor. The attractor is a set of states defining
the basin of attraction in the phase space when complex systems are dynamically evolving in
the long term. For example, the human heart is an autonomous and self-organizing dynam-
ical system. The orchestrated function of cardiac cells leads to the propagation and conduc-
tion of electrical waves and generates near-periodic heartbeats [24]. Also, the self-assembly
of nanoparticles is used as a “bottom-up” nanomanufacturing technique to fabricate nanos-
tructure materials [29]. A simple interrelationship between entities (e.g., an electrostatic
force between nanoparticles, or a reaction/diffusion between cells) often generates system
dynamics of enormous complexity.
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Our prior work [77] leveraged the self-organizing principles to derive and learn the unique
topology of a recurrence network. See an example of the self-organizing process for Lorenz
nonlinear systems at this site https://youtu.be/bhcj4ljKjYs. As shown in Figure 7, the
recurrence plot characterizes the state space of a nonlinear dynamical system via a binary
matrix with “zeros” and “ones” as

Rij :=Θ(ε−‖−→x (i)−−→x (j)‖) (12)

This binary matrix is further leveraged to derive the adjacency matrix Aij of a complex
network, as shown in Figure 12. A unifying framework to define the recurrence network is
given by Aij =Rij − δij , where the Kronecker delta δij is used to avoid self loops.

Figure 12. The construction of ε−neighborhood recurrence networks.

However, the adjacency matrix only provides connectivity information for nodes and can-
not determine the relevant spatial locations among nodes. From a recurrence adjacency
matrix, we have a variety of possible topological structures for the network; also see Fig-
ure 13. A common question is “how to learn a unique and stable topological structure for
a recurrence network?” To derive the geometric structure, we simulate the recurrence net-
work as a physical system by treating edges as springs with the attractive force, fa(i, j) =
|−→x i −−→x j |2/K, when nodes i and j are connected by an edge i↔ j, and treating nodes as
electrically-charged particles with the repulsive force fr(i, j) =−CK3/|−→x i −−→x j |2, i �= j.
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Figure 13. Two different topological structures from the same network adjacency matrix.

Therefore, the combined force on a node i from all other nodes is

f(i,−→x ,K,C) =
∑
i �=j

− CK3

|−→x i −−→x j |3 (
−→x i −−→x j)+

∑
i↔j

|−→x i −−→x j |
K

(−→x i −−→x j) (13)

where K is the natural spring length, C regulates the relative strength of repulsive and
attractive forces, and (−→x i − −→x j) is the force-directional vector, which is separated from
fr(i, j) and fa(i, j) to define the direction of the combined force. The objective function is
to minimize the network Hamiltonian (or energy): argminx

∑
i f

2(i, x,K,C). See the details
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of optimization algorithms in [77]. Our prior work also carried out the experiments to inves-
tigate the impact of parameters K,C, and self-organized network topology of nonlinear
dynamical systems such as Lorenz and Rossler systems [77]. As an example, Figure 14 illus-
trates the self-organization of a network with 292 nodes, which are first randomly distributed
in space from two different initial conditions. Although the initial layouts are different,
the network topology is self-organizing and converges to a unique and stable topological
structure when the network Hamiltonian is iteratively minimized.
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Figure 14. Self-organizing processes until convergence from two random initial conditions, i.e.,
layout A https://youtu.be/AF-WyYJeIbU vs. layout B https://youtu.be/utKWbof6yRw.

Further, our prior work developed self-organizing methods for variable clustering [16,
47, 48] that are aimed at detecting the subsets of homogeneous variables (i.e., time-series
variables or predictor variables). In other words, variable clustering identifies the subgroups
of variables that have stronger interrelations with each other. If two variables are weakly
interrelated, they are categorized into different groups or clusters. It is important to note
that variable clustering is different from data clustering. In the literature, “clustering” is
generally referred to as “data clustering”. Figure 15a illustrates that data clustering involves
grouping or partitioning samples into clusters based on similarities in their attributes or
characteristics. Each point represents a data sample with two coordinates, e.g., (0.36, 0.39)
in the 2-dimensional space. To cluster data samples, a distance measure such as Euclidean
distance is often used to determine the similarities and dissimilarities between samples.
Data clustering is an unsupervised technique that involves partitioning data samples into
clusters that are internally homogeneous and externally heterogeneous. However, Figure 15b
illustrates the clustering of 20 variables. Each point in Figure 15b is a variable (e.g., x11

is a predictor variable with the dimensionality 1000× 1) instead of a data sample (e.g., 2
dimensions in the example of Figure 15a). As shown in Figure 15c, for the table-form data,
data clustering is more concerned about the samples in rows (i.e., s1, s2, . . . , sN ), but variable
clustering focuses more on the variables in columns (i.e., x1,x2, . . . ,xK , where K 	N).

Variable clustering takes into account the interdependence structure among variables,
rather than just their individual attributes, when grouping them into clusters. Traditionally,
such interrelationships are estimated with methods such as correlation, mutual information,
and dynamic time warping. Yet, correlation is a second-order quantity evaluating merely
linear dependency among data. Mutual information quantifies both linear and nonlinear
dependency between variables but requires stationarity in the computation [16]. Dynamic
time warping measures the pattern similarity between two univariate time series [36, 74].
Our prior work [53, 76] exploited cross recurrences between two nonlinear tra-

jectories (i.e., −→x and −→y ) in the state space for nonlinear coupling analysis.
See the relevant literature and software package for Cross Recurrence Quantifica-
tion Analysis (CRQA) in https://www.mathworks.com/matlabcentral/fileexchange/
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Figure 15. (a) Data clustering of samples; (b) variable clustering; (c) table-form data with vari-
ables arranged in columns and samples in rows.

100164-cross-recurrence-plot-and-quantification-analysis-crp-crqa. As such,
there will be a K ×K nonlinear coupling matrix for K geometric trajectories (i.e., con-
structed from multi-sensor signals or predictor variables such as x1, x2, . . . , xK in Figure 15c).
A new idea is to embed nonlinear trajectories as nodes in a complex network, and move
the nodes with nonlinear-coupling forces to derive a self-organizing topology of the network.
As such, the geometric map of networks pinpoints each symptom to root causes (or heart
diseases) in subnetwork communities and also gradually learns the emerging causes. Note
that this is different from the Kohonen map in neural networks, which learns self-organizing
positions of neurons based on distance measures in the data space [13]. In contrast, our
prior work [53, 76] seeks to self-organize the multi-lead sensor signals (e.g., high-dimensional
nonlinear trajectories) for signal processing and fault identification. Furthermore, a “self-
organizing network” provides an effective variable-grouping strategy that maximizes redun-
dancy within a group and minimizes redundancy between groups, thereby greatly improving
the performance of group variable selection [16, 48].
In addition, our prior work [78] developed a new self-organizing network representation

of 3D objects (e.g., computer-aided designs (CAD) or 3D scanned objects), also called an
“intra-design network” that is shown to effectively characterize both topological and geo-
metrical information of 3D models in a sparse form. Industrial scanners can easily convert
real-world 3D objects into digital CAD models, which can then be fabricated using opti-
mized process plans for subtractive manufacturing or newer additive manufacturing (AM)
technologies that build the object layer by layer. In order to create a searchable database for
engineering designs that allows for effective matching and retrieval, there is a dire need to
develop new analytical methods that can represent and reconstruct real-world 3D objects.
Nonetheless, 3D models are often stored in different formats (or in different representations)
on the internet. Thus, it is impractical to directly input heterogeneous formats of these mod-
els for retrieval, matching and search. This self-organizing “intra-design network” is shown
to effectively unify the input format of each 3D design (or CAD model). As shown in Fig-
ure 16, when the self-organizing process converges and reaches a stable period, the resulting
recurrence network closely resembles the geometric structure of a chair. See also the exam-
ples of a self-organizing process for a 3D drone model https://youtu.be/ac2bLZEmUco and
a 3D ant model https://youtu.be/X1Knc70vbBQ.

Figure 16. The self-organizing process of a recurrence network for the 3D design of a chair
(YouTube video demo: https://youtu.be/FHI3eN5X6po).
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6. Conclusions

Modern industries are investing in advanced sensing modalities such as wearable body area
sensor networks, internet-of-things sensors, 3D(4D) imaging and scanning technologies. The
emergence of extraordinary sensing capabilities has resulted in the accumulation of vast
amounts of data, commonly referred to as “big data”. To fully exploit the potential of ”big
data” for operations engineering, it is imperative to develop fundamentally new methodolo-
gies that can effectively harness and leverage the inherent complexity of high-dimensional
sensor signals. Therefore, this tutorial presents a review of nonlinear dynamics methods and
tools for real-time system informatics, monitoring and control.
Specifically, this tutorial consists of a series of research outcomes by students, collab-

orators and faculty members from the Complex Systems Lab at the Pennsylvania State
University, which include: (1) A novel nonlinear recurrence methodology, which effectively
characterizes and models multi-scale, heterogeneous recurrences in the phase-space domain
of multi-sensor signals (rather than single-scale recurrences in time-domain signals); (2) A
new sparse particle filtering method that compactly models nonlinear dynamic processes in
a data-rich environment, and provides on-line quality monitoring and predictive control for
process improvement (rather than off-line simulation and quality inspection); (3) An innova-
tive dynamic network methodology to tackle the emerging challenges in real-time monitoring
and control of time-varying 3D (4D) imaging profiles (rather than low-dimensional qual-
ity variables or profiles); and (4) A new bio-inspired self-organizing methodology for data
visualization, topology learning and variable clustering (rather than only change detection).
This tutorial reflects an effective integration of recurrence dynamics, network dynamics and
self-organizing dynamics with operations engineering.
Our prior work and continued research aim to (1) advance the state of the art in mod-

eling and control of complex systems by contributing new “nonlinear dynamics” concepts,
methods and algorithms; (2) bridge the gap between cardiovascular research which is in dire
need of enabling quality technologies for smart health, and quality engineering that tends to
overlook electro-mechanical operations in the heart; and (3) enrich the theory of nonlinear
dynamics and expand its research domain to interdisciplinary applications in both manufac-
turing and healthcare. In this tutorial, we contextualize the theory of nonlinear dynamics
with prior work and real-world case studies on a wide variety of complex systems exhibit-
ing nonlinear dynamics, e.g., heart, brain, sleep apnea, precision machining, multi-stage
assembly line, biomanufacturing, and additive manufacturing.
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