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Lie-algebra centers via de-categorification

Alexandru Chirvasitu

Abstract. Let g be a Lie algebra over an algebraically closed field k of char-
acteristic zero. Define the universal grading group C(g) as having one generator
gρ for each irreducible g-representation ρ , one relation gπ = g−1

ρ
whenever π is

weakly contained in the dual representation ρ∗ (i.e. the kernel of π in the envelop-
ing algebra U(g) contains that of ρ∗ ), and one relation gρ = gρ′gρ′′ whenever ρ is
weakly contained in ρ′ ⊗ ρ′′ .

The main result is that attaching to an irreducible representation its central
character gives an isomorphism between C(g) and the dual z∗ of the center z ≤ g

when g is (a) finite-dimensional solvable; (b) finite-dimensional semisimple. The
group C(g) is also trivial when the enveloping algebra U(g) has a faithful irreducible
representation (which happens for instance for various infinite-dimensional algebras
of interest, such as sl(∞) , o(∞) and sp(∞)). These are analogues of a result of
Müger’s for compact groups and a number of results by the author on locally
compact groups, and provide further evidence for the pervasiveness of such center-
reconstruction phenomena.
Mathematics Subject Classification 2010: 17B05; 17B10; 16D60; 16T05.
Key Words and Phrases: Lie algebra; primitive ideal; enveloping algebra; central
character; induced representation; solvable; nilpotent; semisimple; Hopf algebra.

Introduction

The initial motivation for the material below is a phenomenon noted in [14], which it
will be instructive to summarize. Consider a compact group G , and define its chain
group C(G) by generators and relations, as follows:

• there is a generator gV for every irreducible unitary G-representation V ;

• and a relation gU = gV gW whenever U is contained as a summand in V ⊗W .

The main result of [14] (namely [14, Theorem 3.1]) says that assigning to an irre-
ducible representation its central character implements an isomorphism of C(G) onto

the discrete abelian group Ẑ(G), i.e. the Pontryagin dual of the compact (abelian)
center Z(G) ≤ G .

In other words, the dual center Ẑ(G) can be recovered from the category of
G-representations by a process of de-categorification (hence this paper’s title):

• objects (i.e. G-representations) are demoted to elements (of C(G));
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• the tensor product bifunctor becomes multiplication;

• and for good measure, dualization in the category of representations corre-
sponds to taking inverses in C(G): it turns out that the element gV ∗ cor-
responding to the dual (or contragredient) representation V ∗ automatically
equals g−1V .

Note also the general “Tannakian” [19, 20, 6, 23] flavor about the discussion: recov-
ering structure from monoidal categorical data.

The theme is taken up in [3] in the context of locally compact groups, where a
chain group can be defined analogously (generators again given by irreducible unitary
representations), with only the obvious sensible modifications: one imposes a relation
gU = gV gW whenever U is weakly contained in V ⊗W in the sense of [2, Definition
F.1.1] (actual containment would be too much to ask for).

The phenomenon turns out to be remarkably robust: one again has isomor-

phisms C(G) ∼= Ẑ(G) of (this time topological) groups for broad interesting classes
of locally compact groups G : discrete countable with infinite conjugacy classes, con-
nected nilpotent Lie groups, connected semisimple Lie groups, etc.

The present iteration of the project investigates the natural purely algebraic
analogues of the above-mentioned objects, constructions and results. Much of the
discussion makes sense for Hopf algebras (in place of groups), and we do give
definitions in that generality (Definition 2.11), but the substance of the paper mostly
concerns Lie algebras. Hence:

Definition 0.1. Let g be a Lie algebra over a field k . The chain group C(g) is
defined by

• generators gρ for irreducible g-representations ρ ;

• and relations gρ = gρ′gρ′′ whenever ρ is weakly contained in ρ′⊗ ρ′′ (Definition
2.1): the kernel of ρ , regarded as a morphism from the enveloping algebra
U(g), contains that of ρ′ ⊗ ρ′′ ;

• together with relations gπ = g−1ρ whenever π is weakly contained in the
contragredient representation ρ∗ .

One might hope, by analogy to everything recalled above, that

• irreducible g-representations ρ admit central characters, and in particular give
functionals z(g) → k , where z(g) ≤ g is the center of the Lie algebra (this is
frequently the case, e.g. for finite-dimensional Lie algebras over algebraically
closed fields of characteristic zero [5, Proposition 2.6.8]);

• and that this then gives an isomorphism C(g) ∼= z(g)∗ , so that again, the dual
center z(g)∗ is a de-categorification of the category of g-representations.

The main results of the paper confirm that this holds in all cases I have been able to
check (i.e. I do not know of any Lie algebras for which it is not true). Summarizing
Proposition 2.14, Corollary 2.15 and Theorems 2.26 and 2.32:
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Theorem 0.2. Let g be a Lie algebra over an algebraically closed field k of
characteristic zero and z ≤ g its center.

(a) Associating to an irreducible representation its central character provides an iso-
morphism C(g) ∼= z∗ if g is finite-dimensional and either solvable or semisimple.

(b) Furthermore, C(g) is trivial if the enveloping algebra U(g) has a faithful simple
module.

(c) So as a particular case of the previous item, we again have an isomorphism
C(g) ∼= z∗ (both sides being trivial) when g is one of the infinite-rank complex
Lie algebras sl(∞), o(∞) or sp(∞).

0.2. * Acknowledgements

This work is partially supported by NSF grant DMS-2001128

Exchanges with M. Lorenz and I. Penkov on the present material and related
matters has been very helpful and inspiring.

1. Preliminaries

We make occasional reference to general ring-theoretic material for which [11, 10],
say, are good reference. Coalgebras, bialgebras and Hopf algebras (over fields) will
also feature sporadically; [22, 13, 18] all provide good background, which we reference
with more specificity where appropriate. All rings are assumed unital.

The phrase ‘representation’ will be employed as a synonym for ‘left module’,
appropriately linear when working over a field. Additionally, modules are left unless
specified otherwise.

Recall that a proper two-sided ideal I ⊴ A of a ring is

• primitive (e.g. [11, Definitions 11.2 and 11.3], [5, §3.1.4]) if it is the kernel of
an irreducible A-representation.

• prime ([11, Definition 10.1], [5, §3.1.1]) if for ideals Ji , i = 1, 2 with J1J2 ≤ I ,
I must contain one of the Ji .

• and semi-prime ([11, Definition 10.8], [5, §3.1.3]) if for any ideal J with J2 ≤ I
we have J ≤ I .

We apply the term ‘primitive’ universally, whether in the purely algebraic or
analytic setting (where algebras are C∗ , ideals are closed, representations are on
Hilbert spaces with the appropriate notion of irreducibility, etc.).

The following construction features prominently in the discussion below.

Definition 1.1. Consider a set (S, ◁) equipped with a ternary relation, written

s ◁ (s′, s′′).
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• The chain semigroup C = C(S, ◁) associated to ‘◁ ’ is defined as having one
generator gs for each s ∈ S and relations

gs = gs′gs′′ whenever s ◁ (s′, s′′).

It will occasionally be convenient to enrich the structure of C as follows.

• If in addition S is equipped with a distinguished element s0 , the chain monoid
C = C(S, ◁, s0) is defined as above, with the additional constraint that gs0 be
the trivial element of the monoid.

• Finally, if S is also equipped with a binary relation ‘∼ ’, the chain group
C = C(S, ◁, s0,∼) is the chain monoid, with the additional constraint that

gs′ = g−1s whenever s ∼ s′.

2. Chain groups and center reconstruction

We will soon specialize the discussion to Lie algebras, but some of it goes through
more generally. k always denotes a field that algebras, Hopf algebras, Lie algebras
and so on are understood to be linear over. Additional assumptions will be in force
throughout most of the paper, but the reader will be warned when they come into
effect.

2.1. Generalities on weak containment for Hopf and Lie algebras

For an arbitrary ring A , Prim(A) is its space of primitive ideals. It can be
equipped with the familiar Jacobson topology ([5, §3.2.2] or [15, §7.1.3]): for an ideal
I ⊴ A , set

V (I) := {P ∈ Prim(A) | I ≤ P}.

The V (I) are precisely the closed sets of the topology. For a Lie algebra g with
enveloping algebra U = U(g) the notation Prim(g) := Prim(U) is an alternative.

We also borrow the usual language of weak containment from functional
analysis [4, §3.4.5];

Definition 2.1. Let π and ρ two representations of a ring A .

• We say that π is weakly contained in ρ (written π ⪯ ρ) if ker π ⊇ ker ρ .

• π and ρ are weakly equivalent (written π ≈ ρ) if each of them weakly contains
the other.

The terms apply to Lie-algebra representations, where A is taken to be the enveloping
algebra.

When convenient, we might also commit mild notational abuse in writing M ⪯
N if M and N are the left A-modules carrying the two respective representations.

Remark 2.2. When the kernel of a representation ρ : A → End(V ) is an
intersection of primitive ideals, we have a weak equivalence

ρ ≈
⊕

π, irreducible π ⪯ ρ.
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When A = U(g) is the envelope of a finite-dimensional Lie algebra, this is the case
precisely if ker ρ is semi-prime [5, Proposition 3.1.15].

There are alternative characterizations of weak containment, parallel to their
analytic counterparts ([4, Theorem 3.4.4], [2, Theorem F.4.4]). First, we need

Definition 2.3. Let V be a k-vector space. The weak∗ topology on V ∗ is the
weakest topology making all maps

V ∗ ∋ f 7→ f(v) ∈ k, v ∈ V

continuous (with k topologized discretely).

There is also the following notion (following [5, §2.7.8], for instance).

Definition 2.4. Let ρ : A → End(V ) be a representation of a k-algebra on a
vector space. The space MC(ρ) of matrix coefficients (or just plain ‘coefficients’) of
ρ is

MC(ρ) := span{f(ρ(·)v) | v ∈ V, f ∈ V ∗} ≤ A∗.

We follow standard practice (e.g. [5, §1.2.20]) in denoting, with a ‘⊥ ’ super-
script, annihilators of vector spaces with respect to a pairing/bilinear form. Specifi-
cally, if

W ⊗ V
b

−−−−→ k

is such a pairing and V0 ≤ V ,

V ⊥0 := {w ∈ W | b(w, V0) = {0}}.

The pairing will always be understood, and in fact it will typically be the standard
one between a vector space V and its full dual V ∗ .

We now have the following simple analogue of [4, Theorem 3.4.4].

Lemma 2.5. For representations ρi : A → End(Vi), i = 1, 2 of an algebra, the
following conditions are equivalent.

(a) ρ1 ⪯ ρ2 in the sense of Definition 2.1.

(b) We have the inclusion
MC(ρ1) ≤MC(ρ2)

in A∗ , with the bar denoting the weak∗ closure and MC as in Definition 2.4.

(c) Similarly, we have the inclusion

MC(ρ2)
⊥ ≤MC(ρ1)

⊥

in A.

Proof. The central observations are:
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(I) For any vector space V , if

id : End(V )→ End(V )

is the standard representation of its endomorphism algebra, MC(id) is weak∗ -
dense in End(V )∗ .

(II) For any W ≤ V ∗ , the weak∗ closure of W is nothing but the annihilator of
W⊥ ≤ V , i.e. W⊥⊥ .

This latter remark immediately implies the equivalence of (b) and (c), while (I) shows
that (c) reads

ker ρ2 ≤ ker ρ1

and hence is equivalent to (a).

We use the language of induced representations of [5, Chapter 5].

Notation 2.6. Let h ≤ g be an inclusion of Lie algebras, and denote the
enveloping-algebra construction by U(·).

(a) For a representation ρ : U(h)→ End(W ) the corresponding induced representa-
tion

Ind(ρ) or Indg(ρ) or Indg
h(ρ)

is U(g)⊗U(h) W , with its obvious left U(g)-module structure.

(b) Assume now that g is finite-dimensional.

• In general, for an inclusion F ≤ E of finite-dimensional vector spaces left
invariant by an operator T ∈ End(E), write trE/F (T ) for the trace of the
operator induced by T on the quotient space E/F .

• For x ∈ h set

θg,h(x) :=
1

2
trg/h ad(x),

where ad : g→ End(g) is the adjoint representation.

• For a representation ρ : h→ End(V ), its twist ρ̃ is defined by

h ∋ x
ρ̃

−−−−→ ρ(x) + θg,h(x) id ∈ End(V ).

Regarding the functional θg,h ∈ h∗ as a 1-dimensional h-representation
(which it is, since it vanishes on [h, h]), we also have

ρ̃ ∼= ρ⊗ θg,h.

• Finally, twisted induction Ĩnd is defined by

Ĩnd
g

h(ρ) := Indg
h(ρ̃).
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Remark 2.7. When g is nilpotent all traces making a difference between in-
duction and twisted induction in Notation 2.6 vanish, so in that case there is no
distinction between Ind and Ĩnd.

As in the analytic case, the familiar operations of tensoring, induction, etc.
respect weak containment (see e.g. [2, §F.3] for the versions pertaining to locally
compact groups).

Proposition 2.8. The weak containment relation ⪯ of Definition 2.1 is compat-
ible with the following operations.

(a) Direct sums, in the sense that if πi ⪯ ρi for a family i ∈ I of representations of
a ring A, we also have ⊕

I

πi ⪯
⊕

I

ρi.

(b) Tensor products, for bialgebras over fields:

πi ⪯ ρi, i = 1, 2⇒ π1 ⊗ π2 ⪯ ρ1 ⊗ ρ2

for representations πi and ρi of a bialgebra H over any field.

(c) Scalar extension (or induction), for free ring extensions: suppose A → B is a
ring embedding with B/A free as a right A-module. If M and N are two left
A-modules,

M ⪯ N =⇒ B ⊗A M ⪯ B ⊗A N.

(d) Induction, for Lie algebras: if h ≤ g is an inclusion of Lie algebras and π ⪯ ρ
are h-representations, then

Indg(π) ⪯ Indg(ρ).

(e) Twisted induction: same as in (d), but with Ĩnd in place of Ind (assuming g is
finite-dimensional).

Proof. Considering the claims in the stated order:

(a) follows from the fact that

ker

(
⊕

I

πi

)
=
⋂

I

ker πi

and similarly for the ρi , so if ker πi ≥ ker ρi the same goes for I -fold intersections.

(b) Consider a bialgebra H as in the statement. We then have

ker(π1 ⊗ π2) = ker π1 ∧ ker π2,

where
V ∧W := ker

(
H

∆
−−−−→ H ⊗H −→ (H/V )⊗ (H/W )

)

is the wedge product of two subspaces V,W ≤ H ([22, p.179] or [13, proof of
Theorem 5.2.2]). That “wedging” respects inclusion is elementary, hence the
conclusion.
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(c) Let JM and JN be the respective kernels of the module-structure maps

A→ End(M) and A→ End(N),

the freeness assumption ensures that the proof of [5, Proposition 5.1.7 (i)] repli-
cates to show that

AnnB(M) = BJM

and similarly for N , where

M ≤ B ⊗A M, N ≤ B ⊗A N

via the canonical maps. But as in [5, Proposition 5.1.7 (ii)], the annihilators of
M ≤ B ⊗A M in B are the largest two-sided ideals contained in

AnnB(M) = BJM and AnnB(N) = BJN :

this is an instance of the general remark that for any set S of generators for a
left R-module V , the annihilator of V is the largest bilateral ideal contained in
the annihilator of S .

The assumption
JM ≥ JN =⇒ BJM ≥ BJN

then implies the same ordering between the largest 2-sided ideals respectively
contained in the two, and we are done.

(d) is a consequence of (c), applied to the ring inclusion U(h) ≤ U(g), the free-
ness assumption being a consequence of the Poincaré-Birkhoff-Witt theorem ([5,
Theorem 2.1.11] or [15, Theorem 6.1.1]).

(e) follows from points (b) and (d), given the definition

Ĩnd
g
(π) = Indg(π ⊗ θg,h)

of Notation 2.6 and its ρ analogue.

This concludes the proof.

Remark 2.9. (1) An alternative proof of Proposition 2.8 (b) could have used
Lemma 2.5: we are assuming

MC(πi) ≤MC(ρi),

whence also
MC(π1)⊗MC(π2) ≤MC(ρ1)⊗MC(ρ2).

The conclusion then follows from the fact that in general, V ∗ ⊗W ∗ is weak∗ -
dense in (V ⊗W )∗ .

(2) In reference to Proposition 2.8 (c), the issue of weak-containment permanence
under scalar extension is a bit delicate. On the one hand that statement made
a fairly strong freeness assumption. On the other hand though, even faithful
flatness [10, §4I] of B as a right A-module would not quite have been sufficient,
as Example 2.10 shows.
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Example 2.10. Let p ̸= q be two prime numbers, and denote by A the localiza-
tion [1, Chapter 3] of Z away from the prime ideals (p) and (q): the ring obtained
from Z by inverting all primes distinct from p and q .

We consider two A modules:

pM :=
⊕

n

A/pnA

and similarly for qM (with q in place of p). Both are faithful, in the sense that their
annihilators are trivial. In particular, pM ≈ qM (Definition 2.1).

The ring extension A → B will now be the (pq)-adic completion of [1,
discussion following Proposition 10.5]:

B := lim
←−
n

A/(pq)nA.

That A → B is faithfully flat follows, say, from [1, Chapter 10, Exercise 7]. But B
is easily computed to be the product

B ∼= Zp × Zq

of the rings of p-adic and q -adic integers ([1, p.105, Example 2]) respectively.
Because p is invertible in Zq , the ideal

Zq ⊴ B ∼= Zp × Zq

annihilates pM and hence B ⊗A pM . With just a trace amount of additional effort
one can show that in fact

AnnN(B ⊗A pM) = Zq and AnnN(B ⊗A qM) = Zp.

In particular, the two modules have annihilators that are incomparable under con-
tainment, so the weak containment relation has not survived the faithfully flat scalar
extension along A→ B .

Definition 2.11. (1) Let H be a Hopf algebra over a field k . The chain group
C(H) is that of Definition 1.1, for

• the set S of isomorphism classes of simple H -modules;

• the ternary relation

ρ ◁ (ρ′, ρ′′)⇐⇒ ρ ⪯ ρ′ ⊗ ρ′′; (1)

• the distinguished element of S corresponding to the trivial H -module k
induced by the counit ε : H → k ;

• and the binary relation ‘∼ ’ defined by

ρ ∼ any irreducible representation weakly contained in the dual ρ∗.
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(2) Similarly, the chain group C(g) of a Lie algebra g is that of its universal
enveloping algebra with its usual Hopf-algebra structure [13, Example 1.5.4]:
C(g) := C(U(g)).

Remark 2.12. (1) References in Definition 2.11 to primitive ideals containing
arbitrary ideals are unproblematic, so that C(H) is indeed a well-defined group:
every proper ideal is contained in a maximal one (for any unital ring, by Zorn’s
lemma), and in turn maximal ideals are primitive [5, §3.1.6].

(2) Suppose the Lie algebra g of Definition 2.11 is finite-dimensional, and let ρ be
an irreducible g-representation.

The kernel of ρ∗ is easily seen to be S(ker ρ), where S : U(g) → U(g) is the
antipode. Since S is an anti-automorphism (the principal anti-automorphism
x 7→ xT of [5, §2.2.18]), ker ρ∗ is semi-prime and thus an intersection of primitive
ideals (Remark 2.2). But this means that

ρ∗ ≈
⊕

π

for irreducible π ⪯ ρ∗ as in Remark 2.2. There are, in particular, “enough”
irreducible representations that play the role of the inverse to ρ in Definition
2.11.

(3) And in fact, if furthermore g is solvable (as well as finite-dimensional), the
primitive ideals of its enveloping algebra U := U(g) are precisely those prime
ideals I ⊴ U for which the intersection of the primes I ′ ⊋ I contains I strictly
[5, Theorem 4.5.7].

It follows from this characterization that any anti-automorphism of U sends
primitive ideals to primitive ideals, and hence ker ρ∗ is primitive (as opposed to
just (semi-)prime). The same remark is made in [7, Chapitre I, §8], along with
related comments.

(4) The generator gρ ∈ C(H) of the chain group does not actually depend on the
isomorphism class of ρ , but rather only on the primitive ideal ker ρ . This is
immediate from Proposition 2.8 (b), which implies that

ρ ⪯ ρ′ ⊗ ρ′′

entails the same relation upon substituting for ρ′′ (say) any irreducible repre-
sentation weakly equivalent to it (i.e. having the same kernel).

We will often take this observation for granted in the sequel, and extend the
notation gρ (for irreducible representations ρ) to gJ (for primitive ideals J =
ker ρ).

In reference to Remark 2.12 (4), we observe that passing to the chain group
obliterates the distinction between primitive ideals ordered by inclusion:

Lemma 2.13. Let J ≤ J ′ ⊴ H be two primitive ideals of a Hopf algebra. In the
notation of Remark 2.12 (4), we have

gJ = gJ ′ in C(H).
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Proof. Let ρ and ρ′ be irreducible representations with kernels J and J ′ respec-
tively. We have ρ ⪯ ρ′ by assumption, so that

ρ⊗ ρ′ ⪯ ρ′ ⊗ ρ′

by Proposition 2.8 (b). But then irreducible representations weakly contained in the
left-hand side are also weakly contained in the right-hand side, whence

gJgJ ′ = gρgρ′ = gρ′gρ′ = gJ ′gJ ′

in C(g). Since the latter is a group, this indeed implies gJ = gJ ′ .

As a simple consequence, chain groups are easy to understand for Hopf alge-
bras with a “large” simple representation.

Proposition 2.14. The chain group C(H) of a Hopf algebra with a faithful simple
module is trivial.

Proof. Since {0} is primitive and contained in any other primitive ideal J ⊴ H ,
Lemma 2.13 says that gJ = g{0} for all J . In short, the chain group is a singleton
(and hence trivial).

In particular, Proposition 2.14 applies to infinite-dimensional Lie algebras
that have gained some recent attention: the infinite-rank sl(∞), o(∞) and sp(∞)
obtained by embedding sl(n) ⊂ sl(n + 1) in the obvious fashion, as upper left-
hand corner matrices (and similarly for orthogonal and symplectic matrices). The
primitive ideals of their enveloping algebras are classified in [16, 17], and as observed
in [16, Introduction], these enveloping algebras have (many) faithful simple modules;
consequently:

Corollary 2.15. The infinite-rank classical complex Lie algebras sl(∞), o(∞)
and sp(∞) of [16, §1] have trivial chain groups.

The significance of this remark in the present context will become apparent
later, when we seek to identify (typically for finite-dimensional Lie algebras) the
chain group C(g) with the dual z∗ of the center z ≤ g . Because sl(∞), o(∞) and
sp(∞) have trivial centers, Corollary 2.15 fits into the same pattern as Theorems
2.26 and 2.32 below.

Remark 2.16. Although Corollary 2.15 focuses on a few specific infinite-dimensional
Lie algebras, finite-dimensional examples fitting into the mold of Proposition 2.14
exist: according to [5, Theorem 6.1.1 and Lemma 6.1.2 (i)], for instance, the non-
abelian 2-dimensional Lie algebra has the requisite property.

Convention 2.17. We henceforth focus on

• finite-dimensional Lie algebras;

• over algebraically closed fields k of characteristic zero.
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Unless specified otherwise (e.g. in reverting to the general case by explicitly mention-
ing ‘arbitrary fields’ or some such phrase), these assumptions are in place throughout
the sequel.

The next few subsections are titled for the various classes of Lie algebras under
consideration therein.

2.2. Nilpotent

Assume until further notice that g is finite-dimensional. Because furthermore
the ground field is algebraically closed, every irreducible representation has a central
character [5, §2.6.7 and Proposition 2.6.8]: the center Z(g) of the enveloping algebra
U(g) acts via an algebra morphism χ : Z(g) → k . In particular, the center z(g) of
g acts via a linear functional

χ|z(g) ∈ z(g)∗;

this provides a canonical group morphism

can = cang : C(g)→ z(g)∗, (2)

and it will be of interest to determine when/whether this map is a group isomorphism.
Its additivity is clear, and moreover surjectivity is unproblematic:

Lemma 2.18. For any finite-dimensional Lie algebra g over the algebraically
closed field k the morphism (2) is onto.

Proof. Consider an arbitrary functional f on the center z := z(g), regarded as a
1-dimensional representation of z . Any irreducible g-representation

ρ ⪯ Indg
z (f)

(such representations do exist by Remark 2.12 (1)) will then be acted upon by z via
f , so f is the image of gρ through (2).

The main result to be discussed here is

Theorem 2.19. Let g be a finite-dimensional nilpotent Lie algebra over the alge-
braically closed field k of characteristic zero.

The canonical map (2) is an isomorphism.

We need some preparation. First, the following simple observation is an
analogue of sorts (albeit a much less precise and powerful one) for the usual induction-
restriction result on unitary representations of locally compact groups [12, Theorem
12.1].

Lemma 2.20. Let h, g′ ≤ g be inclusions of Lie algebras and ρ : h → End(W )
an h-representation. We then have the inclusion

ker Indg
h(ρ)|g′ ≤ ker Indg′

h∩g′(ρ|h∩g′) (3)
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Proof. We write Wg and Wg′ for the carrier spaces of the two representations

Indg
h(ρ)|g′ and Indg′

h∩g′(ρ|h∩g′)

respectively, and denote by J ≤ U(h) the kernel of ρ .

According to [5, Proposition 5.1.7 (i)], the annihilator of W ≤ Wg in U(g) is
the left ideal U(g)J . Choose an ordered basis for g consisting, in this order, of

• a basis for a subspace of g supplementing h+ g′ ;

• a basis for a subspace of g′ supplementing h ∩ g′ ;

• one for h ∩ g′ ;

• and finally, one for a subspace of h supplementing h ∩ g′ .

Plugging that basis into the PBW theorem ([5, Theorem 2.1.11] or [15, Theorem
6.1.1]), it will follow easily that an element of U(g′) annihilates W ≤ Wg if and only
if it belongs to the left ideal

U(g′) · (kernel of ρh∩g′) . (4)

But that means that the kernel of the left-hand side of (3) is a bilateral ideal of
U(g′) contained in the right-hand side of (4), whereas by [5, Proposition 5.1.7 (ii)]
the right-hand side of (3) is the largest such ideal. The inclusion (3) follows.

Recall now, briefly, how the classification of primitive ideals for solvable Lie
algebras proceeds (the process is summarized in [5, §6.1.5]); this will also serve to fix
some notation.

Construction 2.21. Throughout, g is assumed solvable (as always, over an
algebraically-closed characteristic-0 field).

• Consider an element f ∈ g∗ , i.e. a linear functional on g .

• To it, associate any polarization h ≤ g ; recall [5, 1.12.8] that this means

– h is subordinate to f in the sense that f |[h,h] ≡ 0;

– and its dimension achieves the theoretical maximum:

dim h =
1

2

(
dim g+ dim gf

)
,

where
gf := {x ∈ g | f([x, y]) = 0, ∀y ∈ g}

is the Lie subalgebra of g leaving f invariant under the coadjoint action.

Polarizations always exist for solvable Lie algebras over algebraically closed
fields [5, Proposition 1.12.10].

• Being f -subordinate, h carries a one-dimensional representation induced by
f ; we denote it by the same symbol (i.e. ‘f ’).
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• Now form the twisted induced representation Ĩnd
g

h(f) as in Notation 2.6.

• Set

I(f) := ker Ĩnd
g

h(f).

This turns out to be a primitive ideal of U(g).

• That primitive ideal does not actually depend on the polarization h or indeed
even on f itself, but only on the orbit of f under the action of the algebraic
adjoint group A attached to g .

• And the resulting map

I : g∗/A → Prim(U)

is bijective.

Notation 2.22. As a matter of convenience, we occasionally write ρf for an
irreducible representation with kernel I(f) as in Construction 2.21. Such a repre-
sentation is in general not unique subject to this condition, but this will not matter
whenever the notation is in use.

In reference to all of this, we now have

Lemma 2.23. Let g′ ≤ g be an inclusion of finite-dimensional nilpotent Lie
algebras and f ∈ g∗ . In the notation of Construction 2.21, we have the inclusion

I(f) ∩ U(g′) ≤ I(f |g′). (5)

Proof. Because we are working with nilpotent Lie algebras, twisted induction is
just plain induction (Remark 2.7). Choose a polarization h for f , so that

I(f) = ker Indg
h(f).

By Lemma 2.20, its intersection with U(g′) (i.e. the left-hand side of (5)) is contained

in the kernel of the induced representation Indg′

h∩g′(f |h∩g′). But because

h ∩ g′ ≤ g′

is subordinate to f |g′ , that kernel is in turn contained in the right-hand side of (5)
by [5, Lemma 6.4.3].

Lemma 2.24. Let g be a finite-dimensional nilpotent Lie algebra and f, f ′ ∈ g∗

two functionals with respective polarizations h, h′ ≤ g.

We then have the inclusion

ker
(
Indg

h(f)⊗ Indg
h′(f

′)
)
≤ I(f + f ′). (6)

Proof. This is a fairly straightforward application of Lemma 2.23 to the diagonal
inclusion g ≤ g⊕ g :
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• The enveloping algebra U(g ⊕ g) is the tensor square U(g)⊗2 [5, Proposition
2.2.10].

• The subalgebra
h⊕ h′ ≤ g⊕ g

is a polarization for f + f ′ ∈ g∗ ⊕ g∗ .

• Induction plays well with external tensor products:

Indg⊕g
h⊕h′(f + f ′) ∼= Indg

h(f)⊗ Indg
h′(f

′)

as modules over
U(g⊕ g) ∼= U(g)⊗ U(g).

• And finally, the internal tensor product appearing on the left-hand side of (6) is
the restriction of that same tensor product regarded as a (U(g)⊗U(g))-module
along the comultiplication [5, §2.7.1]

U(g)→ U(g)⊗ U(g)

that lifts the diagonal embedding g→ g⊕ g .

This proves the claim.

Remark 2.25. Lemma 2.24 is an additivity result of sorts for the map

g∗ ∋ f 7→ I(f) ∈ Prim(U(g))

for nilpotent g (where “addition” on the right-hand side corresponds to tensoring
representations). The same map (under the same hypotheses) is also compatible
with respect to “taking inverses”: according to [7, Lemme 8.1], for nilpotent g we
have

I(−f) = S(I(f)),

where S is the antipode of the enveloping algebra U := U(g). If I is the kernel of
a U -representation ρ then S(I) is that of the dual ρ∗ : the representation-theoretic
analogue of an “inverse”.

Proof of Theorem 2.19. The classification of the primitive ideals of U := U(g)
via coadjoint orbits outlined in [5, §6.1.5] and recalled in Construction 2.21 goes
through. By Lemma 2.24 the composite map

g∗ ∋ f 7→ I(f) 7→ gI(f) ∈ C(g)

is additive, and since it sends 0 ∈ g∗ to the trivial element it must in fact be a group
morphism. Since on the other hand it also factors through the orbit space g∗/A for
the action of the algebraic adjoint group A of g (Construction 2.21), it must descend
to a group morphism

g∗A → C(g) (7)
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from the group (also vector space) of coinvariants in g∗ under the coadjoint action.
That morphism, composed with (2), is nothing but the usual identification

g∗A
∼=
(
gA
)∗ ∼= z∗, z := the center of g, (8)

with the dual to the vector space gA ∼= z of A-invariants in g (i.e. the latter’s
center). Since (7) is surjective and its composition with (2) is the isomorphism (8),
(2) itself must be an isomorphism.

2.3. Solvable

The following result supersedes Theorem 2.19, but that earlier argument is
useful to have as a reference.

Theorem 2.26. Let g be a finite-dimensional solvable Lie algebra over the alge-
braically closed field k of characteristic zero.

The canonical map (2) is an isomorphism.

Once more, some preparatory remarks are necessary.

Lemma 2.27. Let

• g be a finite-dimensional solvable Lie algebra over the algebraically closed field
k;

• f, λ ∈ g∗ with λ annihilating [g, g];

• and ρf and ρf+λ irreducible representations as in Notation 2.22.

We then have
ρf+λ ⪯ ρf ⊗ λ, (9)

where λ : g→ k is regarded as a 1-dimensional representation.

Proof. The claim is that the kernel I(f + λ) of ρf+λ contains that of the right-
hand side of (9).

Let h ≤ g be a polarization for f , so that

I(f) = ker Ĩnd
g

h(f) = ker Indg
h(f ⊗ θg,h)

(see Construction 2.21). The same Lie algebra h is then also subordinate to f + λ
(because λ by assumption vanishes on [g, g] ≥ [h, h]), so by [5, Lemma 6.4.2] we
have

ker Indg
h(f ⊗ θg,h ⊗ λ) = ker Ĩnd

g

h(f + λ) ≤ I(f + λ) (10)

Now, because the h-representation λ is restricted from g , the push-pull formula
for induction/restriction of Hopf-algebra modules shows that the leftmost induced
representation in (10) is

Indg
h(f ⊗ θg,h)⊗ λ :

Apply Lemma 2.28 with
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• H = U(g) and H ′ = U(h);

• with modules/representations W = f ⊗ θg,h and V = λ .

We thus have
ρf+λ ⪯ Indg

h(f ⊗ θg,h)⊗ λ,

hence (9), via Proposition 2.8 (b), since the left-hand tensorands have the same
kernel.

Lemma 2.28. Let H ′ ≤ H be an inclusion of Hopf algebras over an arbitrary
field, W a left H ′ -module and V a left H -module. We then have an isomorphism

H ⊗H′ (W ⊗ V ) ∼= (H ⊗H′ W )⊗ V

of left H -modules.

Proof. Using Sweedler notation x 7→ x1 ⊗ x2 for Hopf algebra comultiplications
([13, Notation 1.4.2]) and ‘S ’ for antipodes, we leave it to the reader to check that

H ⊗H′ (W ⊗ V ) (H ⊗H′ W )⊗ V

h⊗w⊗v 7−→h1⊗w⊗h2v

h1⊗w⊗S(h2)v←− [h⊗w⊗v

are mutually inverse module morphisms.

Note, incidentally, the following consequence of Lemma 2.28 on the relation
between Ind and Ĩnd. The statement refers to the nilradical n ≤ g , i.e. the largest
nilpotent ideal of g (discussed e.g. in [5, Proposition 1.4.9]). When g is solvable the
nilradical contains the derived ideal [g, g] [21, Corollary V.5.3].

Lemma 2.29. Let h ≤ g be an inclusion of finite-dimensional solvable Lie alge-
bras over a field k of characteristic zero and ρ : h→ End(W ) an h-representation.

(1) If σ ∈ h∗ is a functional vanishing on h ∩ [g, g] then

Ĩnd
g

h(ρ⊗ σ) ∼= Indg
h(ρ)⊗ λ

for some functional λ ∈ g∗ annihilating [g, g] + (n ∩ ker σ), where n := n(g) is
the nilradical.

(2) In particular,

Ĩnd
g

h(ρ)
∼= Indg

h(ρ)⊗ λ

for some λ ∈ g∗ annihilating the nilradical n ⊴ g.

Proof. Part (2) is indeed an instance of (1): simply take σ = 0. We thus focus
on (1).

By definition (Notation 2.6), we have

Ĩnd
g

h(ρ⊗ σ) ∼= Indg
h(ρ⊗ θg,h ⊗ σ).
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All eigenvalues of ad(x) for x ∈ n vanish, so the trace defining θg,h ∈ h∗ vanishes on
h ∩ n . It follows that θg,h and σ both vanish on

h ∩ ([g, g] + (n ∩ ker σ)) = (h ∩ [g, g]) + (n ∩ ker σ),

so θg,h+λ can be extended to a functional λ ∈ g∗ vanishing on the target space [g, g]+
(n ∩ ker σ). In particular λ can be regarded as a 1-dimensional g-representation,
and the conclusion then follows from the push-pull formula again: Lemma 2.28 with

H = U(g), H ′ = U(h), V = the 1-dimensional g-module attached to λ.

Solvable analogues of Lemmas 2.23 and 2.24, needed below:

Lemma 2.30. Let g be a finite-dimensional solvable Lie algebra over an alge-
braically closed field of characteristic zero.

(1) Let g′ ≤ g be a Lie subalgebra, f ∈ g∗ and f ′ := f |g . Recalling Notation 2.22,
we have

ker ρf ∩ U(g′) ≤ ker (ρf ′ ⊗ λ)

for some 1-dimensional representation λ ∈ (g′)∗ annihilating the intersection
g′ ∩ n with the nilradical n := n(g) ⊴ g.

(2) For two functionals f, f ′ ∈ g∗ we have

ker (ρf ⊗ ρf ′) ≤ ker (ρf+f ′ ⊗ λ)

for some 1-dimensional representation λ ∈ (g)∗ annihilating the nilradical of g.

Proof. The arguments are minor adaptations of those respectively employed in
the proofs of Lemmas 2.23 and 2.24.

(1) Following the same line of reasoning as in Lemma 2.23: choose a polarization
h ≤ g for f , giving

I(f) = ker Indg
h(f ⊗ θg,h).

Then, by Lemma 2.20 again,

I(f) ∩ U(g′) ≤ ker Indg′

h∩g′(f ⊗ θg,h) = ker Ĩnd
g′

h∩g′(f ⊗ θg,h ⊗ θ∗g′,h∩g′), (11)

where as usual, the ‘∗ ’ superscript denotes the dual representation.

Now note that both θg,h|h∩g′ and θg′,h∩g′ vanish on h ∩ g′ ∩ n , so they extend to
functionals on g′ vanishing on [g′, g′] + (g′ ∩ n). But now, by Lemma 2.29 (1),
the rightmost representation in (11) is

Ĩnd
g′

h∩g′(f ⊗ θg,h ⊗ θ∗g′,h∩g′)
∼= Ĩnd

g′

h∩g′(f)⊗ λ

for some λ ∈ (g′)∗ as in the statement.
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(2) This follows from part (1) the same way Lemma 2.24 follows from Lemma 2.23,
taking into account the fact that for the diagonal embedding g ≤ g ⊕ g the
intersection

g ∩ n(g⊕ g)

is nothing but the nilradical n(g).

This concludes the proof of the two claims.

We will prove Theorem 2.26 by induction on the dimension of g , with the
following result carrying the brunt of the iterative load.

Proposition 2.31. Let g be a finite-dimensional solvable Lie algebra over the
algebraically closed field k, and assume the conclusion of Theorem 2.26 holds for all
solvable Lie algebras of smaller dimension.

The following conditions are equivalent.

(a) Theorem 2.26 holds for g.

(b) The canonical map (2) is injective.

(c) For every 1-dimensional g-representation λ ∈ g∗ annihilating the center z :=
z(g) the generator gλ ∈ C(g) is trivial.

(d) Same as (c), but only for those 1-dimensional representations λ ∈ g∗ annihilating
the nilradical n ⊴ g.

Proof. That (a) and (b) are equivalent is a general remark (Lemma 2.18). Natu-
rally, (b) implies (c), and the latter is formally stronger than (d) (since the center is
contained in the nilradical, so fewer functionals will annihilate it). It thus remains
to prove (d) =⇒ (a), which implication we henceforth focus on.

By Lemma 2.30 (2), Lemma 2.24 holds with the caveat that one might have
to tensor by 1-dimensional representations λ ∈ g∗ annihilating the nilradical n ⊴ g .
Since we are assuming

1 = gλ ∈ C(g) for all such λ,

we can conclude as in the proof of Theorem 2.19: the map

g∗ ∋ f 7→ I(f) 7→ gI(f) ∈ C(g)

is additive, gives an isomorphism (8) upon further composition with (2), and we are
done.

Proof of Theorem 2.26. As announced, we proceed by induction on dim g ,
with the base case(s) being simple exercises. This leaves the induction step which,
per Proposition 2.31, amounts to showing that

1 = gλ ∈ C(g), ∀λ ∈ n⊥ ≤ g∗

(where as before, n ⊴ g is the nilradical).
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Fix such a functional λ ∈ n⊥ (non-zero, or there is nothing to prove). Because
the chain group is functorial for surjections, the induction hypothesis (together with
Proposition 2.31) tells us that λ cannot annihilate the center of any proper quotient
of g . Since kerλ contains some 1-dimensional ideal

k := kz ⊴ g,

because we are working over an algebraically closed field (e.g. [5, 1.3.12]). It follows
that the quotient g/k splits as

g/k =
(
kerλ|g/k

)
⊕ (image of kx)

for some x ∈ g not annihilated by λ .

If x were to commute with z then λ would fail to annihilate the nilpotent ideal
span{x, z} , contradicting the choice λ ∈ n⊥ . We can thus assume that [x, z] = z ;
because z commutes with kerλ modulo z , we have a decomposition

kerλ = kz ⊕ y, y := Ckerλ(x) = {x
′ ∈ kerλ | [x, x′] = 0}.

There are now some possibilities to consider:

(a) The Lie algebra y centralizes z . In this case y is an ideal in g , and
the quotient g/y is (isomorphic to) the non-nilpotent 2-dimensional Lie algebra
generated by x and z . This is the g2 of [5, Lemma 6.1.2 (i)], and has faithful
irreducible representations.

It follows from Proposition 2.14 that all irreducible (g/y)-representations (in
particular λ) are trivial in the chain group, hence also in C(g) by the above-
mentioned chain-group functoriality under quotients.

(b) [y, z] ̸= {0}. In this case there is some y ∈ y ≤ kerλ with [y, z] = z , and λ fails
to annihilate the g-central element x− y . This contradicts our assumption that
λ ∈ n⊥ , and finishes the proof.

2.4. Semisimple

The main result we address here is

Theorem 2.32. Let g be a finite-dimensional, semisimple Lie algebra over the
algebraically closed field k of characteristic zero.

The chain group C(g) is trivial, and hence (2) is an isomorphism.

We use some of the language familiar in the theory of semisimple Lie algebras
as covered, say, in [9], [5, Chapter 1], etc. In particular:

• h ≤ g will be a Cartan subalgebra of g ([9, §15], [5, §1.9]).

• This then induces a root-space decomposition for g [9, §8], for which we assume
we have chosen a base ∆ ⊂ h∗ [9, §10.1].



Chirvasitu 21

• We denote by δ ∈ h∗ the half-sum of the positive roots [9, §10.1] attached to
the choice of ∆. This element is discussed in [9, §13.3] as well as [5, §11.1.13],
where it is denoted by the same symbol.

• Let λ ∈ h∗ . Following [5, §7.1.4] or [8, §I.1], we denote by M(λ) the Verma
module of highest weight f − δ . For comparison: in [9, §20.3] M(λ) would
rather be denoted by Z(λ− δ).

• The simple quotient of M(λ) is L(λ), again following either [5, §7.1.12] or [8,
§I.1]. [9, §20.3] would set L(λ) = V (λ− δ).

• We write W for the Weyl group of g ([9, §10.3], [5, §1.10.10]); it is a finite
group of linear automorphisms of h∗ , generated by reflections.

Proof of Theorem 2.32. The notation outlined above is in force throughout.
We will also (somewhat abusively) identify representations with their carrier spaces
(e.g. by referring to a representation of U := U(g) on V as just plain V , regarded
as a U -module). Finally, recall from Remark 2.12 (4) that we may as well attach
generators gJ of the chain group to primitive ideals J ≤ U (rather than actual
representations); we do this below.

According to [5, Theorem 8.4.4 (iv)], the respective kernels Jλ of M(λ),
λ ∈ h∗ are precisely the minimal primitive ideals of U . An arbitrary primitive ideal
J will thus contain some Jλ , and by Lemma 2.13 we have

J ≥ Jλ ⇒ gJ = gJλ ∈ C(g). (12)

[5, Theorem 8.4.4 (ii)] moreover shows that Jλ = Jλ′ whenever λ′ is in the
Weyl-group orbit Wλ ; the same must be true of chain-group generators then:

gJλ = gJ
λ′
, ∀λ′ ∈ Wλ.

One last observation: the tensor product M(λ) ⊗M(λ′) (for arbitrary λ, λ′ ∈ h∗ )
contains a highest-weight vector of weight λ+λ′−2δ , so it has a submodule surjecting
onto the simple module L(λ + λ′ − δ). Because the latter’s kernel contains Jλ+λ′−δ

(and hence is identified to it in C(g) by (12)), and writing gλ := gJλ for better
readability, we have

gλgλ′ = gλ+λ′−δ, ∀λ, λ
′ ∈ h∗. (13)

In summary:

• The map
h∗ ∋ λ 7→ gλ := gJλ ∈ C(g)

is onto;

• and invariant under the Weyl-group action:

gwλ = gλ, ∀w ∈ W, ∀λ ∈ h∗; (14)

• and “δ -shifted-additive” in the sense of (13).
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Applying (13) to wλ and wλ′ instead, using (14) once and absorbing λ + λ′ into a
single λ , we obtain

gλ−w−1δ = gwλ−δ = gλ−δ, ∀w ∈ W, ∀λ ∈ h∗. (15)

Because the longest element w0 ∈ W ([5, §7.2.3]; this is the σ of [9, Exercise 10.9])
sends δ to −δ , the leftmost term of (15) can be set to gλ+δ . But then the right-
hand side of (13) also holds with ‘+δ ’ in place of ‘−δ ’, whereupon the substitutions
λ 7→ λ− δ and λ′ 7→ λ′ − δ yield

gλ−δgλ′−δ = gλ+λ′−δ, ∀λ, λ
′ ∈ h∗.

Together with (15), this finally tells us that

h∗ ∋ λ 7→ gλ−δ ∈ C(g)

descends to a surjection from the group

h∗/⟨wλ− λ, w ∈ W, λ ∈ h∗⟩.

of coinvariants under the action of the Weyl group. That group of coinvariants
is of course trivial, because the representation of W on h∗ contains no copies of
the trivial representation (obviously: by definition, W is generated by non-trivial
reflections).

Remark 2.33. Note, incidentally, that in none of the proofs thus far have we had
to make direct use of dual representations (via the binary relation ‘∼ ’ of Definition
2.11): additivity in the form of (1) was enough, essentially for the familiar reason
that if a semigroup happens to be a group, that group structure is unique.
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[23] S. L. Woronowicz. Tannaka-Krĕın duality for compact matrix pseudogroups.
Twisted SU(N) groups. Invent. Math., 93(1):35–76, 1988.

Alexandru Chirvasitu
Department of Mathematics
University at Buffalo
Buffalo, NY 14260-2900, USA
achirvas@buffalo.edu


