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Abstract

Discriminating causal clustering in point processes is of high interest for a variety of applications. We propose a
simulation-based test evaluating the relative fit of Hawkes models, Neyman-Scott models, and inhomogeneous Poisson
models, and compare with the time reversal test of Cordi et al. (2017). Under general conditions, causal clustering can
be distinguished from inhomogeneity with high accuracy using these tests. The methods are applied to crime data on
reported shootings in Boston from 2015-2021, where strong evidence of retaliatory triggering of events is seen in certain

areas.

1. INTRODUCTION

Discriminating causal clustering from inhomogene-
ity is one of the key problems in point process
analysis. Indeed, Diggle(2014) [4] describes this
problem as one of the most important challenges
currently facing point process analysts. Both causal
clustering and inhomogeneity can lead to aggre-
gation of points in certain locations, though the
mechanisms for this aggregation have very differ-
ent implications. Causal clustering, or triggering,
refers to the situation where the occurrence of a
point causes other points to be more likely to occur
in the near vicinity of space-time. Inhomogene-
ity refers to the case where, because of differences
in the background spatial-temporal environment,
points are simply more likely to occur at certain
locations of space-time than others. Discriminating
between these two phenomena can be very difficult
in practice.

For example, suppose one is analyzing catalogues
of reported gang-related violent crimes, and many
occurrences are present in one spatial-temporal
area. Is this aggregation of points due to the socio-
economic and geographical circumstances in the
particular location, in which case the explanation is
inhomogeneity? Or is the aggregation due at least
partly to retaliation, where one such crime that just
happens to occur in the region may spark several
retaliations, each of which might yield further re-
taliations, and so on, in which the explanation is
triggering?

One approach suggested in Diggle(2014) [4] is to
observe the point process repeatedly and inspect
whether the clustering of points appears to occur
predominantly in the same spatial-temporal loca-
tions, in which case inhomogeneity is the dominant
paradigm. However, very often in practice, obtain-
ing repeatedly observed point process data is not
feasible. Furthermore, it is possible for a process,
such as a Neyman-Scott process, to exhibit aggre-
gation of points at certain random hot-spots, which
may be different in each realization, yet the aggre-
gation of points is still not causal in the sense of
individual points triggering others as in a Hawkes
process.

An approach taken in several papers including
Park et al. (2020) [8] is to attempt to fit a Hawkes
model with both inhomogeneity and triggering,
and where the spatially and temporally varying
background rate is modeled as accurately as possi-
ble, for instance using kernel smoothing of previ-
ously occurring points as well as covariate informa-
tion that may influence the background rate, such
as demographic information on each census tract.
The idea is that if the inhomogeneity is accurately
modeled via the background rate, then any trig-
gering estimated in the resulting Hawkes model
may be attributed to causal clustering. While this
idea is sensible, it can be difficult to assess whether
the background rate indeed accurately captures
all the inhomogeneity in the spatial-temporal envi-
ronment, and any inhomogeneity not adequately
captured by the model will leak into the triggering



function and be incorrectly characterized as causal
clustering.

An idea explored in Cordi et al. (2017) [2] is to
fit a Hawkes model to the data and another to the
data with the times reversed. If the model fits sig-
nificantly better to the forward time data, then this
suggests the aggregation of points may indeed be
causal, whereas if the model fits equally well with
the times reversed, then the aggregation is most
likely due to inhomogeneity. The idea is that typ-
ically in applications it would make no sense for
points to trigger the occurrence of prior points, so
the observation that a Hawkes model fits as well
to the time-reversed data as it does to the forward-
time data is incompatible with actual causal clus-
tering but is consistent with the notion that the
Hawkes model’s background rate term is not accu-
rately describing the inhomogeneity in the process
and thus incorrectly classifying some of the inho-
mogeneity as triggering. This is a clever idea but it
is not obvious how to extend it to the case where
the inhomogeneity may vary over space instead of
(or in addition to) time. Also, in some cases, it can
happen that a process with truly causal clustering
might result in a Hawkes model happening to fit
well to the data with times reversed.

Previous research in causality in point processes
has focused on different elements of causal infer-
ence compared to the causal ideas that this paper
explores. Xu et al(2016) studied learning Granger
causality within Hawkes processes [13]. This pa-
per, however, studies ways in which to determine
whether the events of a certain dimension(the re-
sult dimension) can be predicted by knowing the
history of a different dimension(the cause dimen-
sion). This method, however, still suffers the same
limitations of most Hawkes process analysis in that
the "causality" that is more accurately described as
correlations between different dimensions within
the point process.

An alternative idea explored here is to fit both
a Hawkes model with causal clustering as well
as non-causal models as similar as possible to the
Hawkes model but without causal clustering, such
as Neyman-Scott and inhomogeneous Poisson mod-
els, and compare how these models fit. This allows
one to quantify the degree of causal clustering in
the data, and, provided the models are sensible
and fit well, if the Hawkes model fits significantly
better than the alternative models without causal
clustering, then this is potentially strong evidence

that the causal triggering identified by the Hawkes
model is real.

We consider formal hypothesis tests using the
information gain statistic to determine if a Hawkes
model fits significantly better than Neyman-Scott or
inhomogeneous Poisson alternatives, and a similar
test is performed using the time-reversal method.
Both the time reversal test and the model compari-
son tests are applied to simulated spatial-temporal
point processes to quantify the accuracy in identify-
ing causal clustering models. Following this, these
methods are applied to reported shooting data from
Boston. The analysis for the simulated data show
that accuracy in correctly identifying causal struc-
tures can be very high under certain conditions.
The application to the reported Boston shootings
data suggest that there is indeed causal triggering
in certain locations, perhaps due to retaliatory crime
activity.

2. BACKGROUND ON INHOMOGEOEUS
PoissoN, HAwKkES, AND NEYMAN-SCOTT
PROCESSES

A spatial-temporal point process N on S = R? x R
is a random collection of points such that for any
bounded Borel subset B of S, the number of points
that are within B is some finite number, which is
denoted as N(B) [12]. A point process is simple if
with probability one, all its points are distinct. Such
point processes can be defined by their conditional
intensity, A(x,y, t|H;),
Ax,y, tHe) = 5x/(51y1,1}t1‘>0
E[N((x, x +0x) x (y,y +8y) x (£t + 1) [H)]
0x6y0t

where H; is defined as the history of the process
up to time ¢.

If A varies with x, y, and t but A(x,y,t) does not
depend on what points have occurred previously,
then N is an inhomogeneous Poisson process. Such
processes embody the notion that aggregation of
points is due to inhomogeneity only. In the con-
text of crimes, an inhomogeneous Poisson model
may allow the rate of points at any particular lo-
cation and time to depend on the socio-economic
features of the location in question, but would not
incorporate retaliatory behavior in the model.

A Hawkes process is referred to as a "self-
exciting" process, in that a point will trigger future




points in its spatial vicinity. This type of model has
often used to describe clustered phenomena such as
earthquakes and infectious diseases (see e.g. Ogata
1988 [14], Meyer et al. 2012, Reinhart 2018 [1]]). Par-
ent points occur according to a background inho-
mogeneous Poisson process, y(x,y,t). These parent
points then produce offspring according to some
triggering density h and some productivity value
x, the latter of which represents the expected num-
ber of points triggered by any given point. Once
the parent points have produced offspring, those
offspring trigger further offspring, and so on. The
conditional intensity is thus given by
My t) = p(xy b) +r Y h(x—xi,y —yit = ).
it <t

A Neyman-Scott process is a clustering model
defined in a two-part process. First, "parent” points
are distributed throughout the spatial-temporal do-
main. Each parent point creates a random num-
ber with mean A of offspring points according to
a specified triggering distribution, and the final
process consists only of the offspring points. [11]
Neyman-Scott processes have been used to describe
clustered spatial processes such as tree stands (Pent-
tinen et al. 1992), rainfall (Guttorp 1996), and galax-
ies (Snethlage et al. 2002), and typically the trig-
gering density is symmetric so that offspring are
distributed around their parents according to some
isotropic density. Here, we consider the spatial-
temporal context where the offspring points are
distributed around their parents isotropically in
space and time, meaning the parent points gener-
ate offspring occurring both before and after their
parents. Thus the aggregation in such a Neyman-
Scott process is causal but is not physically sensi-
ble for applications where a point cannot trigger
prior points, and we will be using such models not
for their physical plausibility but purely for pur-
poses of comparison with Hawkes processes. The
conditional intensity of a Neyman-Scott process is
difficult to write in condensed form (Meller and
Waagepetersen 2004, Zhang 2018), but can readily
be estimated via maximum likelihood, minimum
constrast, or other methods, despite occasional dif-
ficulties with convergence failure or numerical in-
stability (Baddeley et al. 2022).

3. METHODS

For a point process with conditional intensity
A(x,y,t) and with points, denoted as p; =

(x1,y1,t1), e Pn = (Xn,Yn, tn), the likelihood can
be expressed as

[T A(pi) exp < - / Alx,y, t)dxdydt)
1<i<n 5
where S is the spatial-temporal observation region.
Therefore, estimating the likelihood becomes a pro-
cess of calculating the intensity at each observed
point, then calculating the integral of the condi-
tional intensity over the state space. Calculating the
conditional intensity at each point is very simple,
however the integral can often be too complicated
to compute analytically. Approximation is typically
necessary to calculate this integral.

For formal comparison of models, a hypothesis
test method based on the expected information gain
per trial is performed. The expected information
gain per trial, described in Dayle(2016) [3], is a mea-
sure of the change in entropy scores from a null
model and an alternate model. This information
gain is a measure of the predictive performance of
a model in terms of predicting the next occurring
point within the point process, and is closely ap-
proximated by the mean log-likelihood ratio (Harte

2007 [5]),
.1, (L
én=xtos (1)

where L, is the likelihood of the alternate model,
Lo is the likelihood for the null model, and N is the
total number of points observed.

We consider a test with the following assump-
tions.

Hp: The data are generated from a Neyman-Scott
process.
Hji: The data are generated from a Hawkes process.

Suppose the significance level « = .05. By design,
if the data truly arise from a Neyman-Scott model,
then the test will reject the null hypothesis Hy with
probability 5%. The idea, however, is that such
a formal test may also be useful when the data
may arise from an inhomogeneous Poisson model,
since in such cases the Hawkes model would not be
expected to fit significantly better than the Neyman-
Scott model and thus the test may be expected
often to fail to reject the null hypothesis that the
Neyman-Scott process is the generating mechanism.
Using simulations, we consider the case where the
data are generated via an inhomogeneous Poisson
process and the above hypotheses are tested, as
well as when the data are generated according to a
Hawkes process.



4. SIMULATIONS

Hawkes processes are simulated in order to find the
power of the test, i.e. the fraction of times the test
correctly rejects the null hypothesis of a Neyman-
Scott process in favor of the Hawkes model. The
triggering density, h() is spatially a two dimen-
sional Gaussian distribution, and temporally a trun-
cated Gaussian distribution with a lower bound of
0. The u parameter is the mean number of first
generation points in the spatiotemporal region and
the ¢ parameter is the standard deviation for the
Gaussian triggering density. The spatial region is
[0,1] x [0,1] and the temporal region is [0, 1].

For each simulation, three likelihood values were
calculated: the likelihood for the standard Hawkes
process model, the likelihood for a Neyman-Scott
model, and then all the times were reversed and
the likelihood was found for the "backwards" or
"reversed" Hawkes process.

In order to obtain an approximate sampling dis-
tribution for the information gain statistic under
the null hypothesis, the following Monte Carlo tech-
nique is used. First, a Hawkes process is simulated,
and a Neyman-Scott model is fit to this Hawkes
process via maximum likelihood. Then, using the
parameters estimated for the Neyman-Scott process,
100 Neyman-Scott models are simulated. Then, the
likelihoods for the forward Hawkes process, re-
versed Hawkes process, and Neyman-Scott process
were calculated for each simulated Neyman-Scott
process. Finally, the information gain statistic for
both the Neyman-Scott comparison test and time re-
versal comparison test were calculated for each sim-
ulated Neyman-Scott process. These values were
then used to create estimate the sampling distribu-
tion of the information gain statistic.

A hypothesis test was performed on simulated
Hawkes processes using the information gain statis-
tic. By design, this test will fail to reject the null
hypothesis with probability 95% when the simu-
lated data come from a Neyman-Scott model. When
the simulated data come instead from an inhomo-
geneous Poisson model, the information gain test
failed to reject the null hypothesis approximately
95% of the time as well. A variety of different
Hawkes processes were simulated in order to inves-
tigate the power of the test. The three parameters
that were altered were the y parameter, the x pa-
rameter, and the ¢ parameter. Each of these were
tested over a range of values, and the other param-

eters were kept constant at ¢ = 18, x = .81, and
o = .0002. Both the value of ¢ in the temporal
triggering distribution(denoted as ¢;) and the value
of o in the spatial triggering distribution(denoted
as oyy) were allowed to vary. The range of tested
values was chosen to be similar to the fitted Hawkes
model for the application to crime data in Section 5
of this paper.

First, the x values were altered in the range of
(.75,9). The results can be seen in Figure[l. The
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Neyman-Scott test has much higher power than the
time reversal test for nearly all values of x. The
power for the time reversal method generally gets
higher as the value of x increases, although this
pattern is not fully consistent.

When the 0y, and 0} parameters were allowed to
vary on a logarithmic scale from .000005 to .1, the
resulting power of the tests is shown in Figures |2
and 3l
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The Neyman-Scott test appears to have very high
power for all values of o7, while the Neyman-Scott
test has lower power for higher values of oyy. For
the time reversal tests, increasing o; or Ty tends to
reduce power, most likely because as the variance
values increase, it is increasingly difficult to discern
any meaningful clusters, and the points simply ap-
pear random within the space. This potentially
makes distinguishing between different types of
clustering more difficult.

Finally, the background rate parameter y was
permitted to vary from 10 to 30, and the results
of these simulations are summarized in Figure 4.
The power of the tests does not appear to change
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very significantly as u varies. The two tests have
nearly equal power over all values of u, with the
Neyman-Scott test having slightly higher power
overall. Overall, the power of the Neyman-Scott

test is 84.4% and the power of the reversal test is
74.4%.

5. ArPLICATION TO CRIME DATA

5.1. Data

Recorded data on 8,862 reported illegal shootings
in Boston between 2015 and 2021 were collected
from the public data source for the Boston govern-
ment(https:/ /data.boston.gov/dataset/shootings).
Figure 5|shows a kernel smoothing of the locations
of these reported crimes.
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5.2. Methods

The data were divided into a 10 x 10 grid to analyze
individual sections more clearly. Grid cells includ-
ing less than 5 points were excluded from this anal-
ysis due to insufficient data. For each remaining
grid cell, a Neyman-Scott model was fit by maxi-
mum likelihood estimation to the data within the
cell, and then realizations of Neyman-Scott models
were simulated repeatedly with parameters equal
to these maximum likelihood estimates, to create
a sampling distribution for the information gain
statistic. For each simulation, the likelihood, L,
for a Hawkes model, and the likelihood L, for a
Neyman-Scott model, were calculated, and used to
calculate G,. This creates a sampling distribution
for the value of the information gain statistic, and
the value of G, for the actual data is then com-
pared to this sampling distribution. If the value of
Gy is above the 95% percentile for the simulated
sampling distribution, then we say the test rejected
the null hypothesis. For the time-reversal test this



procedure was repeated, but with L; as the likeli-
hood of the Hawkes model given the data and L as
the likelihood of the Hawkes model with the times
reversed.

5.3. Results

Figure |6 shows the results of the Neyman-Scott
hypothesis test. The results suggest that for the
majority of locations in Boston, there is significant
causal clustering present in the data on recorded
shootings. Of the grid sections that were included
within the analysis, 84.6% resulted in the test re-
jecting the null hypothesis, and these sections con-
tained 83.7% of the total reported shootings. At the
same time, there are several locations, especially on
the Northwest borders of the dataset, where the test
fails to reject the null hypothesis and suggests that
the local aggregation of points in these locations
may be entirely due to inhomogeneity.
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The time reversal test results, shown in Figure m
shows far more grid cells where the test fails to re-
ject the null hypothesis. The time reversal test only
rejected the null hypothesis in 44.2% of the grid
cells, corresponding to a total of 46.8% of the re-
ported shootings. The majority of grid cells where
the Neyman-Scott test failed to reject the null hy-
pothesis also had the time reversal test fail to reject
the null hypothesis, again suggesting inhomogene-
ity as the dominant cause of aggregation of points
in these areas.
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5.4. Analysis

The results of the Neyman-Scott test indicate that,
in the vast majority of locations within Boston, the
reported shooting data from 2015-2021 are signif-
icantly better fit by a Hawkes model with causal
clustering than by a Neyman-Scott model. This
suggests that the clustering in these points is truly
causal, i.e. is not well explained by inhomogeneity
alone, and may instead be at least partly explained
by triggering, perhaps via retaliatory criminal be-
havior.

The estimated values of x for the Hawkes models
fit to each grid cell had a mean of 0.4, suggest-
ing that according to the fitted model, about 40%
of the reported shootings were triggered by prior
shootings.

The results provide evidence that a Hawkes
model with causal clustering may be appropriate
for certain crime data. However, there are still some
areas, especially near the Northwestern borders
of the observation region, where causal clustering
is not indicated. This could possibly be due to
spatially varying covariates, differences in gang
territory, or other factors resulting in more causal
clustering in certain locations rather than others.

The Neyman-Scott and time reversal tests re-
sulted in substantially different classifications. One
possible explanation for this can be seen in the
power analysis indicated by the simulations, since
the Neyman-Scott test had higher power than the
time reversal test in most cases. Therefore, the rea-
son that so many more sections failed to reject the
null hypothesis using the time reversal test could



be because the power of this test was too low.

6. CONCLUSION

Distinguishing between causal clustering and in-
homogeneity in point processes is still a prob-
lem requiring much further study. Simulations
show that under certain conditions, a simulated
Hawkes model can be correctly distinguished from
a Neyman-Scott model using the information gain
statistic, and furthermore, the test appears to have
high power in distinguishing a Hawkes model from
an inhomogeneous Poisson model as well. The
time reversal test, by contrast, has somewhat lower
power. This power is affected by the parameters of
the simulation, with larger data sets and more in-
tense clustering resulting in higher power for both
tests.

Hawkes models have been used extensively in
crime data analysis, typically without much investi-
gation into whether or not the assumption of causal
clustering is indicated. Models without causal clus-
tering, such as inhomogeneous Poisson models or
Neyman-Scott models, may fit just as well to the
data in some situations. However, with regard to
the application to the recorded shooting data in
Boston, our results do suggest strong evidence of
causal clustering in most areas of the city.

Future research should investigate this evidence
of causal clustering further. Here, we considered
Gaussian triggering functions for both the Neyman-
Scott and Hawkes model, but alternative triggering
functions could be considered. In addition, we
allowed each spatial grid cell to have its own back-
ground rate, perhaps due to spatially varying co-
variates such as poverty levels or education levels.
Future work could alternatively model the back-
ground crime rate more more explicitly as a func-
tion of such socio-economic covariates, as in Park
et al. (2021). In addition, other types of reported
crime data should be analyzed and the relationship
between different types of crimes and the strength
of evidence of causal clustering should be studied.
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