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Abstract. Hawkes point process models have been shown to forecast the
number of daily new cases of epidemic diseases, including SARS-CoV-2 (Covid-
19), with high accuracy. Here, we explore how accurately Hawkes models fore-
cast surges of Covid-19 in the United States. We use Hawkes models to esti-
mate the effective reproduction rate R; and transmission density parameters
for Covid-19 case counts in each of the 50 United States, then forecast R; in
future weeks with simple exponential smoothing. A classifier based on R; > x
is applied to predict upcoming surges in cases each week from August 2020 to
December 2021, using only data available up to that week. At false alarm rates
below 5%, the forecasts based on R; are correct more often than forecasts based
on smoothing the raw case count data, achieving a maximum accuracy of 88%
with R; > 1.75. The optimal decision boundary uses a combination of R; and
observed data.
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1 Introduction

Hawkes point process models and their slight variants such as the epidemic-
type aftershock sequence (ETAS) model (Ogata 1988, Ogata 1998), HawkesN
(Rizoiu et al. 2018, Bertozzi et al. 2020, Chiang et al. 2022), and the recur-
sive model (Schoenberg et al. 2019) have proven to be useful in modeling the
spread of a variety of epidemic diseases such as Ebola (Harrigan et al. 2019, Park
et al. 2022), Chlamydia (Schoenberg 2022), SARS (Wallinga and Teunis 2004,



Cauchemez et al. 2006), measles (Farrington et al. 2003), Meningococcal disease
(Meyer et al. 2012), Rocky Mountain Spotted Fever (Schoenberg et al. 2019),
and SARS-CoV-2 (Covid-19) (Mohler et al. 2020, Schoenberg 2023, Phillips and
Schoenberg 2024). Kresin et al. (2022) compared the accuracy of Hawkes mod-
els to that of compartmental models, such as SEIR, across various infectious
diseases, and found that Hawkes models offered substantially higher accuracy
than compartmental models, with errors in forecast case counts approximately
20-30% smaller on average than compartmental models in most cases.

Here, we explore how accurately Hawkes models can forecast surges of Covid-
19 in the United States. One way to evaluate the model’s forecasting efficacy
is to consider its accuracy in estimating the effective reproduction rate, which
is an important and widely used indicator for the transmission intensity of an
epidemic and an early warning signal for disease emergence (Anderson 1991,
Southall et al. 2020). This parameter, denoted Ry, represents the mean number
of secondary cases generated by a new infection at time ¢ (Cori et al. 2013). In
theory, R; is as an early warning statistic for outbreaks, with values above 1
indicating an emerging disease (Southall et al. 2020). Accurate estimates of R;
can be used to inform surveillance efforts and assess the impact of interventions
(Eichner et al. 2003, Ferguson et al. 2006, Domenech et al. 2018, Bertozzi et al.
2020, Chiang et al. 2022).

R; can be estimated retrospectively or in real time. Wallinga and Teunis
(2004) use an expectation maximization method to reconstruct the transmission
chains and count the estimated number of secondary cases per individual. This
method is only suitable for retrospective analysis as the estimates of R, at a
given time rely on subsequent case records, although modifications for real-time
estimation have been proposed (Cauchemez et al. 2006). Alternatively, Cori
et al. (2013) use Bayesian inference to estimate a posterior distribution for the
reproduction rate, assuming a gamma distribution on R; to obtain an analytical
expression for the posterior. Hawkes models represent the rate of infections as
a branching process, allowing for non-parametric estimation of the transmis-
sion density and reproduction number (Bertozzi et al. 2020). While Wallinga
and Teunis (2004) and Cori et al. (2013) also use point processes to estimate
R;, we avoid distributional assumptions on the parameter, and use a simpler
least-squares estimation method. We also present an alternating least-squares
procedure for estimating the transmission parameters.

In this paper, we examine the use of the estimated reproduction rate for fore-
casting outbreaks in incidence, using transmission parameters estimated from a
discrete Hawkes model with state-level Covid-19 incidence data from the first
six months of 2020. Case count data are incrementally added week by week and
Ry is sequentially re-estimated. We assess the forecast accuracy by observing
how frequently the estimated reproduction rate exceeding a threshold precedes
surges in cases, and compare with forecasts based solely on prior case counts.



The structure of the paper is outlined as follows. Statewide data on Covid-
19 case counts data are described in Section 2, followed by a description of the
model and estimation methods in section 3. These methods are applied to esti-
mate the transmission parameters and reproduction rate for all 50 states, and
the resulting estimates are further analyzed to see how well they could have
forecast surges in incidence. Results are detailed in Section 4, and a discussion
is given in Section 5.

2 Data Description

Daily counts of new Covid-19 cases were obtained for each state from the Johns
Hopkins Covid-19 Data Repository which sourced case data from the CDC and
state public health departments (Dong et al. 2020, JHU CSSE 2023). The case
counts include both cases confirmed by a positive PCR test and probable cases
defined by a combination of antigen testing and epidemiological criteria (CDC
2021). Positive tests are dated either according to the date of report or date of
sample collection (CDC 2021). Daily case counts for each state were obtained
for the period 2/1/2020 to 12/31/2021, covering a total of 100 weeks. We ended
the study period at the end of 2021 as many states shifted to less frequent report-
ing schedules in 2022, causing irregularities in the case count data (Dong et al.
2022). We model here only confirmed and suspected cases, though many Covid-
19 infections are asymptomatic or unrecorded (Ma et al. 2021). The data used
are publicly available from https://github.com/CSSEGISandData/COVID-19.

During the study period, most states experienced two major surges in re-
ported cases from November to March in both 2020 and 2021, though the tim-
ing, duration, and magnitude of these surges varied substantially between states.
The reported case counts for California, Texas, Vermont, and Hawaii are shown
in Figure 1 as examples. California, Texas, and Florida experienced the high-
est total number of new cases during the study period, with 5.3, 4.5, and 3.9
million cases respectively. North Dakota and Alaska experienced the highest
per capita incidence during this period, while Hawaii and Vermont experienced
both the lowest per capita incidence as well as the least total incidence, with
approximately 99,900 and 60,200 total cases, respectively, during this study pe-
riod. Hawaii and Vermont experienced modest increases in reported case counts
during 2020, whereas California and Texas had significant increases in both the
Summer and Winter of 2020. Sudden spikes in case count records, such as those
in Texas in early 2021 and in Vermont in late 2021, appear in several states
throughout the study period.
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Figure 1: Daily reported cases per 100,000 persons in California, Texas, Hawaii,
and Vermont. Population estimates are from the 2020 decennial census.

3 Methods

3.1 Discrete Hawkes model

The Hawkes self-exciting point process (Hawkes 1971) models the rate of infec-
tions A(t) conditional on previous infection times t; as

A(t) = n+ Y Riti)g(t - t:) (1)

t; <t

The transmission density g(¢) and productivity function R(t) are directly anal-
ogous to those in epidemiological models, and accommodate a variety of para-
metric and non-parametric forms. The parameter u represents the rate of new
cases immigrating into the location of interest, and is typically assumed to re-
main constant over time, though it can also be modeled as a function of time
and/or space.

In epidemiological applications, Hawkes models have demonstrated superior
forecasting accuracy and flexibility relative to traditional compartmental mod-
els (Bertozzi et al. 2020, Mohler et al. 2020, Chiang et al. 2022, Kresin et al.
2022). Following Phillips and Schoenberg (2024), we use a discrete approxima-
tion of the continuous time Hawkes model (1) to model the case count rather
than rate, as cases are reported as daily counts rather than precise event times.
Kirchner (2016) shows this binned form of Hawkes model corresponds to an
autoregressive model. We fit the model by finding parameters that minimize



the squared error between the observed and modeled daily case counts, as in
Schoenberg (2023).

3.2 Non-parametric estimation of R(t)

We fit the reproduction rate non-parametrically as a step function over weekly
intervals, thus estimating a total of 100 parameters for each state over the study
period. Each estimate represents the expected number of infections directly
transmitted by each case reported that week. The least-squares estimates for
R = (Ri...Rgg) can be obtained analytically using the method proposed for
continuous-time Hawkes processes in Schoenberg (2022) and for discrete case
counts in Phillips and Schoenberg (2024). We estimate the final estimate R1go
with exponential smoothing. Below, we describe the method for the general
case of estimating R(t) over T days using a window length 7, yielding T'/7
parameters to estimate.

We seek to minimize the error in estimating the case count N(t) for day ¢:

SN — - S R(s)glt — )N ()P 2)

Let N be the vector of observed daily counts excluding the first day, and G be
the (T'— 1) x (T'/T — 1) matrix with entries G;; = Zi;(j_l)Tﬂ g(i —.s)N(s).
G represents the total expected number of new cases on day 4 directly infected
from cases occurring in time interval j. With this notation, (2) can be expressed
as:

GR=N (3)

A column of 1s can be appended to G to estimate the baseline intensity p as an
intercept. When G is invertible, the estimates R can be computed quickly and
directly using standard least-squares solvers. However, the matrix G is typically
sparse and ill-conditioned as the transmission g(t) decays over relatively short
intervals. As in Phillips and Schoenberg (2024), to avoid issues with matrix
singularity and improve the stability of estimates, we regularize the system in
(3) by adding a penalty on the solution norm:

R= min ||N-p—GR|3+p|RI} (4)

Ri..Rr/r 4

The regularization parameter p controls the degree of smoothing. We incre-
mentally increase p until all estimates are non-negative, searching over values
of 107%1 (@), where o, is the largest singular value of G. The standard errors
for the regularized least-squares estimates can be calculated as:

Var(R) = s*(GTG + pI) 4, (5)
1 A
# = NG - )



where p = T'/7. The covariance matrix (5) can be calculated efficiently using
the Cholesky factorization of GTG + pI.

In order to emulate real-time forecasting, we apply simple exponential smooth-
ing to forecast Ry/, from the least-squares estimates R; ... Rp/,_; calculated
using (4). This method forecasts values by applying a weighted average of pre-
vious estimates, with weights that decay exponentially at a rate of a. We use
a = 0.5 here. The variance of the forecast value Ry, is calculated based on
the residual variance from earlier forecasts (Brown 1963).

3.3 Estimation of transmission density parameters

Transmission parameters are estimated for each state using data from 2/1/2020
to 7/31/2020. Since the transmission time density for statewide Covid-19 data
was shown in Schoenberg (2023) to be approximately normal, we model the
transmission time density parametrically using a truncated normal distribution:
g ~ N>¢(v,0), and estimate the mean v and standard deviation o for each state.

The reproduction rate R(t) is fit simultaneously with the transmission pa-
rameters as follows. Starting from initial estimates R(®) = <R§O) e Rg%)) and

19 a non-linear optimizer determines v and ¢ that minimize the squared error
in daily cases. For simplicity, we initialize R as a constant vector of 0.5 and
p©) = N(t), and use the BFGS routine in R’s optim. R and j are then cal-
culated analytically based on (4), with the matrix G formed using the current
estimates of v and o and augmented to include an intercept. The final estimate
of R is estimated with exponential smoothing as detailed in the previous section.
We iterate between these steps until the estimates of v, o, u, and R converge.
A penalty is added to the objective function in the non-linear optimization
step to constrain the support of the transmission density g(t) to a pre-specified
interval [0,s]. This penalty was found to improve convergence and stability
of estimates, resembling the effect of Bayesian priors. Here, we set the upper
bound on the time between reported cases to s = 21 days. We additionally
penalize values of the transmission standard deviation ¢ below 1 to prevent
overfitting. Although the L-BFGS-B algorithm allows for constrained optimiza-
tion, estimates often converge to the boundary, perhaps due to the irregular
loss function. Instead, the unconstrained BFGS algorithm is used with penalty

C(v,0):
Clv,0) =[)_glisv,0)] 2 + 072
i=1
v ¢ = min C(v,0) RMSE(v,o, R0™Y),

so that the loss is inflated for 6 < 1 or for parameter estimates placing mass
outside [0, s].



3.4 Forecasting surges using R,

To mimic estimation in real-time, we sequentially incorporate case data week
by week from 8/1/2020 to 12/25/2021, re-estimating R(t) using only data up
to the latest available date for a total of 72 forecast periods. For any time ¢, the
estimate of R(t) is used to forecast upcoming surges in cases just after time t.
We define a surge as the times when the smoothed weekly case count increases
by at least 10% or by at least 1,000 cases for more than three consecutive weeks.
This criterion effectively captures major outbreaks.

We use R; > x, where z is some threshold, as a classifier to predict whether
a surge, as defined above, will occur either one or two weeks after time ¢. This
method is compared to an “incidence-based” classifier based on the percent

change in weekly incidence: Lecw N(t)_ji(t_n > y, where N (¢) is the case count
2tew N(t=T)

at time ¢t and w represents a given week. It is also compared to a “random
guesser” null model that simply predicts surge times completely at random. We
evaluate the performance of each classifier using a receiver operator character-
istic (ROC) curve which reports the true positive and false rate across a range
of thresholds z, y.

A linear support vector machine (SVM) is used to determine the line that
maximally separates weeks during surges from non-surge weeks based on the
previous week’s predicted R; and change in incidence (Boser et al. 1992). The
SVM is trained to predict whether the 72 forecast periods in each state are
during a surge using the observed and estimated measures from the previous
week.

4 Results

4.1 Transmission density estimates

Estimates for transmission time parameters converged for all states in an aver-
age of 9 iterations using alternating least-squares, as described in Section 3.3,
applied to the first six months of Covid-19 case data for each state. Across the 50
states, the root mean squared error (RMSE) in predicted cases ranged from 6.5
cases/day in Vermont to 958 cases/day in Texas, with mean 184 cases. Louisiana
had the highest population-adjusted RMSE of 9.4 cases/day per 100,000 per-
sons.

As examples, the observed and modeled case counts for Texas and Louisiana
are shown in Figure 2. The high RMSE in these states is due to several spikes
in cases that are smoothed over by the model. Initially, there is significant
uncertainty in R(t), with estimates exceeding 4 in the early stage of the pan-
demic. Standard errors are large in both Texas and Louisiana when fewer than
1,200 cases had been reported, but decrease substantially later in the pandemic.
Eventually, R(t) fluctuates around 1, with estimates above 1 corresponding to
periods of increasing incidence.
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Figure 2: Left panel: Observed (black) and modeled (red) daily case counts in
2020. The ribbon indicates the range of estimated cases using the estimated
reproduction rate £ one standard deviation, calculated from (5). Right panel:
The reproduction rate R(t) estimated based on (4), with dashed lines indicat-
ing the interval £ one standard deviation around the estimates. Uncertainty
estimates are not displayed until the reported case count exceeds 1,200. For
reference, a dotted line indicates R = 1.

The estimated truncated normal transmission densities for all 50 states are
shown in Figure 3. The estimates for most states are centered at a mean of 10.5
days with standard deviation 3.75 days. New York, New Jersey, and Pennsylva-
nia have noticeably lower transmission means than the other states, with means
of 6.5, 6.7, and 7.0 days respectively. These states experienced initial outbreaks
in April 2020, which is several months earlier than the other states.



The estimated background rate of immigration p was less than 5 cases/day
in 38 of the states. New York is a notable exception with estimated rate of 158
cases/day, followed by Colorado and Ohio with rates of 67 and 45 cases/day,
respectively.

a(t)

Lag

Figure 3: Estimated transmission densities for all 50 states (gray lines), and
averaged across all states (thick black line). The transmission density here
reflects the time between reported cases and is assumed to follow a truncated
normal distribution.

4.2 Forecasting surges in cases

Figure 4 shows ROC curves for forecasts of surges, averaged over all 50 states,
using 3 methods: Hawkes estimates R, > z, an “incidence-based” model that
uses the percent change in weekly incidence, and a random guesser that predicts
surge weeks at random. The ROC curves for individual states using the Hawkes
model are also shown in Figure 4. Based on the averaged ROC curves, at a false
positive rate of 1%, the Hawkes model achieves a true positive rate of 37%, com-
pared to 16% for the incidence-based model and 2.8% for the random guesser.
These rates correspond to a decision boundary of Ry, > 1.75, and change in
incidence > 59%. With this false positive rate, the Hawkes model correctly pre-
dicts an average of 4 more surge weeks per state than the incidence-based model.
The incidence-based model captures more true positives than the Hawkes model
at false positive rates above 5%. The Hawkes model achieves its highest accu-
racy across all states of 88% using the decision boundary Ry, > 1.75 while
the highest average accuracy from incidence based model is 82% using percent
change > 55%.

Four states stand out with significantly lower true positive rates in Figure
4. These states are Kansas, South Dakota, Vermont, and Washington, which
experienced sustained periods of high incidence that did not meet our surge



criteria, unlike most states where case counts quickly decreased after peaking.
To illustrate this, Figure 5 shows the predicted surge weeks for Kansas and Ver-
mont, which had the lowest true positive rates among all 50 states. Vermont
had a long period of sustained incidence in the summer of 2020 that was not
correctly forecast by the Hawkes model, while Kansas had a similar period in
the summer of 2021. For the other 46 states, the Hawkes model forecast very
accurately: at a false positive rate of 5%, the average true positive rate of the
Hawkes model among these states is 65%.

Figure 6 shows the predicted R; and change in incidence for each of the
72 forecast weeks across all 50 states. A linear SVM is used to determine the
optimal separating line between the surge and non-surge weeks based on the
previous week’s change in incidence and predicted R;. This optimal boundary
achieves 81% accuracy at forecasting surge weeks, with a 5.3% false positive and
55% true positive rate.
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the Hawkes model (gray).
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Figure 5: Predicted surge weeks for the Hawkes model (left) and incidence-
based model (right) at a false alarm rate of 10%. The corresponding decision
boundaries are R; > 1.4 and change in incidence > 41% for Vermont and
R; > 1.67 and change in incidence > 19% for Kansas. Red dots indicate false
alarms while blue dots indicate surge weeks that were missed by the model.
The training period used to fit transmission parameters is indicated by the
thick black line, while red dashed lines indicate true surge periods.
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5 Discussion

The Hawkes model provides a simple analytic formula for both real-time and
retrospective estimation of the effective reproduction number R;. Estimates
can be calculated without distributional assumptions on R; and accommodate
a wide range of transmission densities. At a false positive rate of 1%, the real-
time Hawkes model had a 37% true positive rate over all 50 states, compared
to a 16% true positive rate for an incidence-based model. This represents the
correct detection of 4 more surges per state, on average, compared to forecasts
based solely on observed incidence during the 72 forecast periods in this study
(Figure 4).

We estimate considerable variation in R; over the study period (Figure 2).
Many factors such as seasonality, changes in social contacts, emergence of new
viral variants with higher transmissibility, control measures, vaccinations, and
growing herd immunity could influence R;. Future work should consider infer-
ence methods to disentangle these influences. Estimates of R; are also sensitive
to changes in case definitions and testing rates, highlighting the need for struc-
tured surveillance programs for accurate estimation and inference.
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The estimates of mean transmission time here (Figure 3) are somewhat
higher than in some other studies of Covid-19 transmission (Lauer et al. 2020,
Schoenberg 2023). The transmission time distribution estimated here reflects
the intervals between reported cases, delayed from the actual infection times by
the incubation period, which Lauer et al. (2020) estimated to have a median
of 5.1 days, and potentially further lagged by delays in testing after exposure.
For simplicity, we assumed the transmission time distribution was fixed over the
study period, but future work could extend this by using different transmission
parameters in different time periods.

The least-squares uncertainty estimates (5) are unstable at the start of the
pandemic when fewer than 1,200 cases were reported, but decrease significantly
once more data are available. This instability is due to the sparsity in the initial
columns of the transmission matrix whose inverse is used to calculate standard
errors. Future work should aim to somehow adjust standard errors at the begin-
ning of an outbreak when case counts are low and at the end of the observation
window to address uncertainty from right censoring. Additionally, methods to
propagate uncertainty in the transmission parameters should be considered in
future work.
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