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1. Is the Collaboratory for the Study of Earthquake Predictability (CSEP) worthwhile? How 21 

can it be improved?  22 

 23 

While our response to the first question is unequivocally in the affirmative, we must first 24 

admit that CSEP has not yet come close to achieving all that was initially hoped of it. When 25 

CSEP was formed, many anticipated that the experiments would lead to clear and decisive 26 

improvements in earthquake forecasting, would indicate which models are superior and 27 

which are inferior, would highlight ways to improve models, and ultimately would lead to 28 

marked improvements in our ability to forecast large earthquakes. Perhaps some of these 29 

goals will be fulfilled in the future, but the steps so far in these directions have been very 30 

small.  31 

 32 

It can, at times, seem unclear if anyone is actually making any use of CSEP results in 33 

practice, and how much seismic hazard models have been improved using CSEP results. 34 

While the Uniform California Earthquake Rupture Forecast 3 (UCERF3) model (Field et al. 35 

2017) has included the model of Helmstetter et al. (2007), which performed best in the 5-36 

year RELM experiment (Schorlemmer et al. 2010, Zechar et al. 2013, Bayona et al. 2022), as 37 

one branch for the background seismicity part, UCERF3 remains driven by the fault-based 38 
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forecasts of the large earthquakes (Field et al. 2017). CSEP has never, to our knowledge, 39 

influenced the fault-based parts of hazard models that provide the bulk of the hazard.  40 

 41 

On the other hand, from a statistical standpoint, CSEP is a most remarkable scientific 42 

achievement. It is a kind of gold standard that other areas of statistical application can only 43 

dream of achieving. In wildfire forecasting, for instance, many of the proposed models are 44 

not even well-defined and would result in 0 likelihood given data. In epidemiology, the 45 

models most often used to forecast the spread of diseases like Ebola or Covid-19 are at least 46 

50 years old and scant attention is given to their goodness-of-fit (Kresin et al. 2021). Further, 47 

one cannot reasonably expect government officials and industrial practitioners instantly to 48 

make use of scientific advances. Scientific progress has almost always been painfully slow and 49 

methodical. There are so many possible examples here, but a recent one is Dave Jackson and 50 

Yan Kagan debunking the characteristic earthquake hypothesis (Kagan et al. 2012). It has 51 

typically taken decades at least for most scientists and professionals adequately to accept and 52 

employ the results of careful scientific work. It might be a bit naive to expect practitioners 53 

and other researchers to adjust quickly to reports that a given model does not fit well to data. 54 

Such testing is definitely progress nonetheless.  55 

 56 

Analyses of CSEP results have pointed out that Epidemic-Type Aftershock Sequence (ETAS) 57 

models tend to fit well, at least on relatively short-term scales. ETAS models were initially 58 

proposed by Ogata (1988) to describe the times and magnitudes of earthquakes, and were 59 
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subsequently extended to model spatial-temporal-magnitude catalogs in Ogata (1998). 60 

Subsequently, a host of slight modifications have been proposed (e.g. Sornette and Sornette 61 

1999, Helmstetter and Sornette 2002, Console et al. 2003, Ogata et al. 2003, Ogata 2004, 62 

Ogata and Zhuang 2006, Marzocchi and Lombardi 2008, Ogata 2011, Zhuang 2012, Nandan 63 

et al. 2017, Grimm et al. 2022, Iacoletti et al. 2022, Li and Pu 2022, Aso and Terai 2023). One 64 

major problem, however, is that models such as ETAS typically do not help much in 65 

forecasting the earthquakes we are most interested in. As their name indicates, ETAS models 66 

are mostly useful for describing the frequency and spatial-temporal distribution of 67 

aftershocks one expects to see following large earthquakes, or perhaps as a null model to 68 

which alternative models might be compared. However, for purposes of planning, public 69 

safety, building codes, and most other purposes, what is really sought is the accurate 70 

forecasting of the very largest events, or at least the estimation of their long-term frequency, 71 

and when it comes to these tasks, most versions of ETAS seem to be scarcely better than a 72 

simple homogeneous Poisson model. Indeed, most formulations of the ETAS model assume a 73 

Gutenberg-Richter distribution of earthquake magnitudes with the magnitude of each 74 

earthquake drawn independently of what occurred previously, and thus essentially the 75 

model makes no effort to pinpoint where or when the rate of the largest earthquakes may be 76 

higher relative to the rate of smaller events. 77 

 78 

This may be an area where more statistical work can be of assistance. Current methods for 79 

assessing the fit of earthquake forecast models emphasize overall measures of fit such as the 80 
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log-likelihood, or total number of events, or other summaries that do not adequately take 81 

into account what aspects of the model we care most about. If, for instance, we care 82 

exclusively about the model's ability to forecast the largest events, then it may be appropriate 83 

to choose a goodness-of-fit measure that properly emphasizes this feature. For instance, 84 

suppose one is given data on the times, locations, and magnitudes of n events, (ti, xi, yi, mi) 85 

for i = 1,..., n, and let !(t,x,y,m) denote the modeled conditional intensity at spatial-temporal-86 

magnitude (t, x, y, m), with li representing the conditional intensity at point i. The log-87 

likelihood,  88 

  89 

 L = ∑ #$%	!!"
!#$ − ∫!(*, ,, -,.) 0*0,0-0., 90 

 91 

has a first term that properly rewards the model for accurately forecasting earthquakes 92 

(where by "accurately forecasting", we mean positing a high value of ! where an earthquake 93 

ends up occurring), and a second term that punishes the model for having high values of ! 94 

elsewhere. However, the log-likelihood essentially rewards the model equivalently for 95 

accurately forecasting a magnitude 3 event or a magnitude 7 event, despite the fact that 96 

forecasting the latter event is so much more of interest.  97 

 98 

Since forecasting the largest 5% of magnitudes are of most interest, one could instead use, as 99 

a measure of fit, a summary such as the quotient    100 
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 Q = 
%&'"{)!:	%!,%[.$%])	
%&'"{)(/,1,2,%)} ,  101 

for example, where .[.67] is the 95th percentile of the magnitude distribution, perhaps 102 

estimated based on prior seismicity, and the denominator mean{!(t,x,y,m)} may be estimated 103 

e.g. using several thousand locations selected at random from the space-time-magnitude 104 

observation region. The higher the value of Q, the better the model appears to be forecasting 105 

the spatial-temporal locations of the largest 5% of events. For a homogeneous Poisson model 106 

with uniform magnitude density, Q will be close to 1. Any model that adequately accounts 107 

for the spatial inhomogeneity of seismicity will have Q > 1, as it should since such a model 108 

will tend to vastly outperform a homogeneous Poisson model at forecasting the largest 109 

events. Among competing models, the model that forecasts the larger events more accurately 110 

will tend to be the model with higher Q, especially if all the models are similarly calibrated 111 

overall [i.e. mean{!(t,x,y,m)} is close to the overall rate of seismicity] which can readily be 112 

checked via other methods, such as the N-test.  113 

 114 

Forecasting large earthquakes as point sources as CSEP defines them for the purpose of 115 

testing bears its problems. Modelers can employ the knowledge of faults and distribute the 116 

hypocenter probabilities along the fault but this is making a model fit to the test design and 117 

not the (preferred) other way around. This gets us back to the problem of whether CSEP can 118 

influence the fault-based forecasts of hazard models. Clearly, adequate testing procedures for 119 

such models are needed and were discussed many times within the CSEP community. 120 
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However, the unambiguous identification of fault segments ruptured in earthquakes is 121 

already a problem, not to mention the incompleteness of fault models. This is an unfortunate 122 

disconnect between common practice in hazard modeling and testing possibilities. 123 

 124 

Another problem with some CSEP results is that the observation that model A fits better 125 

than model B does not necessarily directly tell us how to improve either of the models. 126 

Further, if model A offers superior fit to model B over a 5-year period, it is unclear whether 127 

this means model A is likely to outperform model B in the future. If not, then what does 128 

testing tell us? We have often observed that models use any seemingly suitable statistical 129 

distributions in fitting and then use such fitted models for forecasting. In one paper about 130 

testing intensity-prediction equations, it was shown that the models fitted to functions 131 

reproducing basic physical principles of wave propagation have higher forecasting 132 

capabilities [Mak et al. 2015]. But is CSEP able to discriminate between overfitting and 133 

physics-based fitting without very long forecast experiments in which the former are likely 134 

to fail compared to the latter? Furthermore, there is a general tendency to increase the 135 

complexity of models with more and more parameters. Given that in CSEP all models’ 136 

forecasts are fully specified with zero degrees of freedom, the number of input parameters 137 

does not count into the result. But should it maybe? Again, an overfit model temporarily 138 

might fit extremely well or a model might simply have been lucky to fit well in the short 139 

term (Sornette et al. 2019), but in the long run the fit will likely deteriorate.  140 

 141 
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While this criticism may be valid for many analyses of goodness-of-fit, residual methods 142 

could perhaps help here, if they can provide useful graphics highlighting where exactly 143 

model A seems to outperform model B. Voronoi deviance residuals and super-thinned 144 

residuals (Clements et al. 2012, Bray and Schoenberg 2013, Bray et al. 2014, Gordon et al. 145 

2015) seem potentially useful in this regard. Learning how to improve a complex model is no 146 

easy task, so even a suggestion of a rather minor improvement should perhaps be seen as a 147 

major achievement from a statistical procedure. As for the possibility of overfitting, or for 148 

model A to outperform model B in CSEP over several years but not in the long term for 149 

whatever reason, while such possibilities may be inevitable, CSEP seems ideally suited to 150 

handle these types of problems. Overfitting and lack of reproducibility are enormous 151 

problems in conventional research involving retrospective analyses of data. With CSEP and 152 

its strict insistence on truly prospective testing, these problems may still exist but they are 153 

minimized as much as possible.  154 

  155 

2. Are ETAS models valuable?  156 

 157 

ETAS models seem frequently to offer the best fit among the proposed models for earthquake 158 

occurrences. While so many other models have been suggested based on retrospective 159 

analyses, the fact that ETAS performs well in the sense of offering satisfactory fit to data even 160 

when used prospectively is extremely impressive, and is solid evidence of its value.  161 

 162 
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However, as mentioned previously, most versions of ETAS have very little value for 163 

forecasting the largest events. (There are exceptions, however, that treat large earthquakes 164 

fundamentally differently from smaller ones, such as Nandan et al. 2019, 2022).  165 

Furthermore, what exactly is ETAS telling us that goes beyond the heuristic notion that large 166 

earthquakes are followed by aftershocks and possibly even larger events? Reasenberg & Jones 167 

(1989) have decades ago quantified the chance of a larger earthquake following an already 168 

large shock. Does ETAS tell us significantly more despite the much heavier computational 169 

load and its complexity? ETAS provides higher resolution, but in what sense is this really 170 

useful? Does it change decisions in risk mitigation? Does it allow us to call an area "safe" 171 

earlier?  172 

 173 

An important topic that has been insufficiently explored is how to quantify a model's value, 174 

for forecasting. Much attention has been paid to the quantification of a model's goodness-of-175 

fit to data, and this is certainly a component of a model's value, since the better a model fits, 176 

the more confidence one has in its forecasting ability. However, goodness-of-fit does not tell 177 

the whole story. While ETAS models, for instance, may fit very well to catalogs of 178 

earthquakes including aftershocks, and while forecasts can be obtained using ETAS via 179 

simulations (Omi et al. 2014, Shcherbakov et al. 2019, Petrillo and Zhuang 2024) or multi-180 

element probability formulas and other techniques (Ogata 2017a, Ogata 2022, Ogata2024), 181 

most versions of the ETAS model typically have little value for forecasting the largest 182 

earthquakes, which happen to be the ones we care most about (in synthetic tests, 183 
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Helmstetter and Sornette 2003 quantify that ETAS allows one to forecast about 20% of the 184 

largest events). We should explore alternative measures, such as the measure Q proposed 185 

above, or variants of the Brier score or information gain restricted to the subset of 186 

earthquakes of most concern, perhaps weighting earthquakes differentially based on their 187 

energy release,  damage potential, or other measures. In particular, it would be of great 188 

interest to agree on a measure of a model's forecasting value as a function of time horizon. It 189 

may be, for instance, that ETAS has excellent forecasting value for forecasting seismicity 190 

several hours or days into the future, but practically no value at forecasting several months or 191 

years into the future. Other models possessing the opposite qualities might exhibit worse fit 192 

to data overall, yet have more forecasting value in many situations. We believe that 193 

including better quantifiers of a model's value into CSEP would be a great step toward 194 

discovering and raising awareness about alternative models that are potentially more useful.  195 

 196 

The ETAS model should perhaps be seen as the null model, to which alternatives could be 197 

proposed and compared. Something similar was proposed by Stark (1997). Indeed, in the 198 

original paper proposing ETAS, Ogata (1988) actually used ETAS as a kind of null model, 199 

rather than a model to be directly used for forecasting. He identified times of quiescence, 200 

which were essentially times when the model appeared to fit poorly, as potential indicators 201 

of an impending future large event (even though the quiescence hypothesis has been 202 

debunked by van Stiphout et al. 2011 employing a declustering algorithm using Southern 203 

California data).  204 
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 205 

There still seems to be some work to do at constructing a suitable null model, however. 206 

Numerous models have been proposed, starting from the silly spatially uniform model (easy 207 

to beat), via simple Poisson smoothed seismicity models, all the way to time-varying ETAS 208 

models. Each model needs to be somehow calibrated and this creates a plethora of different 209 

model flavors for each basic concept. There is presently not a single ETAS model, but rather 210 

a host of different varieties, parameterizations, and implementations. Therefore, more 211 

thought should go into how to create a suitable version of a null model, and what the 212 

requirements should be for such a model.  213 

 214 

3. Is ETAS the end? 215 

 216 

On the one hand, looking at the collection of recent publications, the answer seems to be 217 

yes. Few genuinely new model classes have recently been introduced to capture the time 218 

dependence of earthquakes. Instead, more and more flavors of ETAS models have been 219 

developed, mainly by attempting to fit the ETAS concept to local, regional, or sequence-220 

specific datasets, perhaps because of the 'because we can' effect: people doing what they 221 

know they can achieve even if it is unlikely to lead anywhere substantial. Out of these many 222 

ETAS flavors, no consensus model has been selected by the wider community. ETAS seems 223 

to reproduce itself constantly without adding significant improvements to a solution of the 224 

earthquake forecasting problem. Furthermore, it may be that earthquakes are a natural 225 
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phenomena too complex to be modeled or forecast accurately, in CSEP or any type of 226 

forecasting experiment. No predictability in the pattern of earthquake magnitudes has been 227 

discovered, or at least none that has been consistently reproduced. It is possible, as Yan, Dave 228 

and their collaborators posited, that earthquakes may be inherently unpredictable, and 229 

simply cannot be predicted (Geller et al. 1997, Kagan 1997a).  230 

 231 

On the other hand, there may be room for optimism. Some promising recently proposed 232 

versions of ETAS take into account focal depth and rupture geometry, for instance (Guo et al. 233 

2015, 2018, 2021, 2024), as well as other physical components such as the magnitude-234 

dependent Omori law (Sornette and Ouillon 2005, Ouillon and Sornette 2005, Ouillon 2009, 235 

Tsai et al. 2012) or a two-branched Gutenberg-Richter distribution (Saichev and Sornette 236 

2005, Nandan et al. 2019), but see also Petrillo and Zhuang (2023) for the opposite opinion. 237 

Also, while ETAS may fit best among existing models, it has not been shown that ETAS fits 238 

better than any possible alternative model. Certainly any simple model forecasting the 239 

precise occurrence of future seismicity is highly elusive, but this does not mean 240 

improvements will not be forthcoming. Scientific progress has often been slow and laborious, 241 

and seismology is no exception. Perhaps increased emphasis on value-based goodness-of-fit 242 

statistics, as described above, may reasonably be anticipated to yield improved models that 243 

optimize these more sensible and practical criteria, and CSEP has the potential to be an 244 

important leader in this aim. If we increase our focus on models that improve forecasting in 245 
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useful ways, and reward models for improving forecasting in useful ways, such models are 246 

more likely to be discovered. As they say in Field of Dreams, "If you build it, he will come."  247 

 248 

4. What are the best ways forward for earthquake forecasting?  249 

   250 

This may be divided into practical, technical approaches as well as the overall big picture, 251 

and we start with the former. While there may be advantages to looking at local results in 252 

some situations, testing generally should be done on a global scale to increase the power of 253 

the tests so we can have some confidence in the results. Only globally can we test a 254 

sufficiently large number of significantly large earthquakes that matter. Yan Kagan 255 

consistently advocated this (Kagan 2003, Kagan and Jackson 1991, Kagan and Knopoff 1981, 256 

1987, Kagan et al. 2012). CSEP has, after its inception, expanded from testing earthquake 257 

forecasts in California to further testing regions in Japan, Italy, New Zealand, the western 258 

Pacific and finally to global tests. However, the majority of tested models were developed for 259 

the regional testing regions and only a few are being tested globally. 260 

 261 

All testing regions have been defined on 0.1 degree longitude/latitude grid cells 262 

(Schorlemmer and Gerstenberger 2007). While this resolution has been chosen to match the 263 

location uncertainty of local events, it backfired in the global experiment in which the 264 

testing area consists of 6.4+M cells and 100+M bins. However, the grid size should be scaled 265 

according to how much data one has.  With millions of cells but just a handful of 266 
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earthquakes, the test has little to no power, so the grid cells should be chosen adaptively in 267 

order to maximize the power of the tests. One pathway to solve this problem is to use a 268 

multi-resolution grid, e.g. the Quadtree approach taken by Ogata et al. (1996) and Asim et al. 269 

(2023), or using Delaunay tessellations (Ogata et al. 2003, Ogata et al. 2019). The forecasts 270 

can have high spatial resolution (small cells) in areas with many earthquakes and low 271 

resolution in areas with few earthquakes (large cells). This way, meaningful global forecasts 272 

can be provided with a few ten thousand of cells, matching the number of observations in 273 

the Global CMT catalog.  274 

 275 

As far as the big picture and where and whether scientific progress is likely in the future, 276 

when we first got interested in earthquakes, we imagined that the historical and modern, 277 

high-resolution earthquake record might contain hidden information about when the next 278 

big one would occur, and that if we just looked hard enough, we could find some pattern or 279 

signal and successfully predict the next major event. Now we realize that was naive, and the 280 

Earth tends not to resemble a cartoon villain leaving obvious clues about future calamities. 281 

Many natural phenomena are exceedingly complex, and earthquakes seem to fit this mold, so 282 

there seems little hope at finding some simple pattern that predicts when the next big event 283 

will occur. On the other hand, there is something rather mysterious about large earthquakes. 284 

They are, after all, major ruptures of the Earth, and sudden releases of enormous amounts of 285 

tectonic energy. And they must be triggered by something and must experience a 286 

preparation phase that should leave some hints to be observed. Does it not stand to reason 287 
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that, as our knowledge of the Earth's structure deepens, we ought to be able to figure out and 288 

possibly anticipate, or at least see some warning signs, of what is triggering these gigantic 289 

outbursts? Naive as it may be, we still believe that a more precise understanding of the 290 

Earth's structure should yield an improved ability to forecast major events.  291 

 292 

This highlights another possibly important way that CSEP could be improved going forward: 293 

by incorporating other types of signals apart from earthquake occurrences. If the information 294 

content of earthquake catalogs does not allow for powerful tests and/or useful models, CSEP 295 

should reach out to model developments that include further signals that can be observed; 296 

potentially important efforts have been made in incorporating such signals recently (Zhuang 297 

et al. 2005, Han et al. 2016, Kumazawa et al. 2016, Freund et al. 2021). CSEP has already 298 

included models that use strain data as input, however these data have not been included as 299 

an authoritative data source to ensure all models use the same strain data. Of course, 300 

modelers can technically include any type of data in their models, but only if these data are 301 

authoritative and provided by CSEP can comparative testing become really meaningful and 302 

ensure full reproducibility of all forecasts generated by the model. 303 

    304 

5. Can we use CSEP test results to improve models? Does CSEP provide a useful feedback 305 

loop?  306 

 307 
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The L-test and similar results typically assess the performance of the entire model. However, 308 

models are typically compiled of different ingredients and their interplay can be complex. 309 

We usually do not know if all components work well and contribute correctly; maybe one 310 

component is not calibrated well and lowering the overall performance of the model, but test 311 

results rarely indicate this. Instead, each metric typically tests a different feature of a 312 

forecast, not a component of the underlying model. But do we know what part of the model 313 

causes the feature to perform well or not? Do we know how to translate results of a specific 314 

metric into model improvement? The answer is often no! 315 

 316 

On the other hand, it definitely seems that, if any substantial progress is ever made at 317 

forecasting seismicity, it is going to be largely the result of very careful and intricate model 318 

evaluation. Put another way, it seems very unlikely we will ever have substantial 319 

improvement without excellent model evaluation experiments like CSEP. Without this kind 320 

of rigorous look at the models, seismology would be doomed to keep repeating the mistakes 321 

of the 20th century, where model after model was proposed, based on retrospective analysis, 322 

only to find out later that the models did not do well prospectively (Kagan and Jackson 1991, 323 

Geller et al. 1997, Kagan 1997a, Jackson and Kagan 2006).  324 

 325 

The situation is somewhat analogous to examples from statistics in medicine, where before 326 

the proper emphasis was placed on randomized controlled experiments, it was almost 327 

impossible to tell whether a drug or procedure was effective, and the literature was full of 328 
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reports promoting procedures like the portacaval shunt, when later experiments clearly 329 

showed them to be ineffective (Freedman et al. 1998 very nicely summarizes such examples).  330 

 331 

In seismology, with CSEP already firmly in place, the field is poised to move in a positive 332 

direction. Even though progress might be slow, we at least have a system in place that could 333 

identify improved models once they are proposed, and we have a mechanism for more 334 

efficiently sifting through and debunking poorer models. However, the power in medical 335 

tests are often much higher, and the success criteria clearer, compared to earthquake 336 

forecasting tests.  337 

Will CSEP be as successful for earthquake forecasting as double-blind tests have been for 338 

medical research? That remains to be seen.  339 

 340 

As mentioned previously, statistical methods for model evaluation still need to be improved 341 

so they can more readily lead to model improvements. Graphical methods, such as the 342 

smoothed residual field (discussed by Baddeley et al. 2005 for the purely spatial case), 343 

Voronoi residuals (Bray et al. 2014) and superthinned residuals (Clements et al. 2012), rather 344 

than numerical summary statistics, seem to be the most promising for suggesting model 345 

improvements. With superthinned residuals, points are added or removed at random 346 

according to the model, so that in the end the residual points should be uniformly scattered if 347 

the model fits well, and departures from uniformity indicate places where the model fit 348 

poorly. With Voronoi residuals, the domain is divided into cells, one cell for each 349 
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earthquake, such that each cell consists of all locations closer to the corresponding 350 

earthquake than to any other earthquake. The fact that residuals on such an adaptive grid 351 

allow one to pinpoint around which earthquakes a model fits well or poorly can sometimes 352 

lead directly to ideas for model improvement (Clements et al. 2011, Gordon et al. 2015). 353 

However, these methods have their problems as well. For one thing, given a host of 354 

competing models, it is cumbersome and difficult to examine a collection of plots, and so for 355 

comparing many models, sometimes the simplicity of a numerical summary is desirable. 356 

Second, Voronoi residuals might be good for 2-dimensional data, but it remains unclear how 357 

exactly to use them for the 3-d case, or even just for 2 spatial dimensions and time. 358 

Currently, one typically just ignores time and depth and carves out Voronoi cells using just 359 

the epicenters of earthquakes, but this should be improved. Superthinned residuals are easier 360 

to implement and do not have the dimensional problem of Voronoi residuals, but because of 361 

the randomness introduced in the generation of these residuals, often it is difficult to discern 362 

clear patterns or ways to improve models from the superthinned residuals alone. Perhaps we 363 

still need more improvements in the realm of visual summaries of goodness-of-fit for point 364 

process models.  365 

 366 

Some of the current tests in CSEP really are not useful for comparing competing models, and 367 

should probably be removed from CSEP. If you are evaluating just one model, then maybe 368 

the N-test, L-test, S-test, etc. might be useful (Schorlemmer et al. 2007, Zechar et al. 2010), 369 

but when comparing 2 or more models, these tests can be very misleading, since a poorly-370 
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fitting but highly variable model will often have a higher p-value than a competing model 371 

that actually fits better. So, since CSEP is mainly for model comparison, perhaps going 372 

forward we should focus on methods that are better for this purpose. If an overall numerical 373 

measure is desired, we think the log-likelihood score is probably best (Ogata 2017b, 2024), at 374 

least among previously proposed measures, although the statistic Q mentioned in Section 1 375 

seems potentially more informative. We should probably be content with a summary of the 376 

overall fit and not be too concerned with p-values, for model comparison purposes.  377 

 378 

6. How much information is in the system and how well is CSEP prepared to harvest it? 379 

 380 

This is a tough question to answer. Dave Jackson believed that if strike angle estimates could 381 

be improved in the future using more accurate seismometers, we could hope for some 382 

substantial information to be gained in that area, since geophysical theory seems to suggest 383 

such moment tensors should be extremely useful, though presently their use seems to be 384 

somewhat limited. The main information we have seems to be the seismic record, which of 385 

course also has errors and missing data, but this has quite thoroughly been studied especially 386 

by Kagan (2003, 2004), and obviously is a wealth of information. Certainly the paleoseismic 387 

record provides some useful information, and potentially geodetic information should be 388 

useful to improve our models as well. While we might be somewhat pessimistic, we must 389 

admire the positivity of Ilya Zaliapin, who never seemed to have any doubt that accurate 390 

earthquake forecasting should be possible, and whose excellent paper with Ben-Zion 391 
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highlights some promising avenues to explore, such as localization of seismicity before large 392 

events (Ben-Zion and Zaliapin 2020).  393 

 394 

The community has used the seismic record since decades to forecasts earthquakes but we 395 

have not moved beyond rough statistical methods that are the more successful the smaller 396 

the magnitude. Having said this, it seems that the overall number of events per magnitude is 397 

the key criterion for successful forecasting. A consequence of this statement would be that 398 

we have to wait very very long until we better forecast large events and that the forecast 399 

horizons for these events will also be very long.  400 

 401 

CSEP seems to be ideally prepared to harvest this type of information. CSEP offers 402 

researchers a unique way to use their models to generate actual prospective forecasts in real 403 

time, and to evaluate those forecasts as accurately as possible. One thing CSEP really needs 404 

going forward is easy public access to these forecasts; currently they seem difficult to obtain 405 

for some reason. In addition, we still face the issue of the meaning of test results and what 406 

they tell us abut how to improve a model or which part of the model is right or wrong.   407 

 408 

7. Can CSEP save us from bogus Articifical Intelligence (AI) forecasts?  409 

 410 

It is to be expected that some AI researchers will attempt to forecast earthquakes by feeding 411 

whatever they find into their AI algorithms. In addition, we pessimistically anticipate many 412 
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papers where research simply average over multiple models, possibly in a Bayesian way, 413 

forming complex ensemble models that perhaps fit well retrospectively but rarely 414 

prospectively, and we do not foresee this being a useful or productive enterprise because the 415 

increasingly complex ensemble models become increasingly difficult to improve using 416 

residual analyses. In fact, in some sense the idea behind Bayesian ensemble models runs 417 

counter to the central idea behind CSEP, which is to evaluate models prospectively and 418 

rigorously in order to improve them and to distinguish the ones that seem to fit well from 419 

those that do not. Rather than attempting to modify or improve individual aspects of a 420 

model, Bayesian model averaging seems to make problems with the models more obscure 421 

rather than clearer, and models that should be discarded become instead incorporated into 422 

the ensembles, like rotten fruit in a milkshake. Even worse, these kind of models do not 423 

contribute to our understanding of the physical processes and how they can be modeled in a 424 

useful way. They are merely statistical stunts that are likely doomed to fail sooner rather 425 

than later in prospective tests. And even if not, they do not provide any insight that let us 426 

improve models that we understand and that mimic the physics we have discovered. CSEP 427 

protocols might be the only guardian preventing us from false declarations of success, as 428 

many researchers do not fully appreciate the necessity for truly prospective tests.  429 

 430 

But what if the CSEP tests cannot provide any conclusive results? How can the wider CSEP 431 

community argue against the plethora of AI forecasts that are expected? Serious thinking 432 
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about the power and value of CSEP tests is needed and needs to be codified somehow in a 433 

community process.  434 

 435 

On the other hand, CSEP forecasts should be made easily publicly available to welcome 436 

further analysis of the results, even if this may spur faulty analyses of the results using AI, 437 

deep learning, Bayesian ensemble modeling, etc. Perhaps if CSEP eventually has so many 438 

models that it becomes overwhelming, this could be a problem. But otherwise, the fact that 439 

CSEP is fully prospective seems to guard against overfitting which is a main problem with AI 440 

and deep learning models, and machine learning algorithms could be very useful to 441 

incorporate information from various sources, as mentioned above. CSEP forecasts need to be 442 

readily available online to enable easy statistical assessment because the statistical analysis of 443 

the results will likely be very useful.  444 

 445 

8. Are CSEP tests powerless? 446 

 447 

On the one hand, we have seen that several of the tests, including the S-test, are not reliably 448 

able to reject uninformative models on the global high-resolution grid with 6.5M cells and 449 

many more bins because even the longest catalogs contain too few events (Asim et al. 2013, 450 

Khawaja et al. 2013). In addition, it is unclear how to measure the power of a test if the true 451 

distribution is unknown. It seems that CSEP is caught in the dilemma of either producing 452 

powerful tests with low resolution that provide rather meaningless results or have powerless 453 
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tests at high resolution, again resulting in meaningless results. How can CSEP find the sweet 454 

spot and what does this sweet spot tell us about the overall information content of 455 

earthquake occurrences and their testing? Much could potentially be gained by finding a 456 

formulation that describes the overall information content and the resulting best-possible 457 

power of CSEP tests and translate this into uncertainties of the forecasts or the test results. 458 

Currently, it is unclear how to use CSEP results and to what extent to trust them given the 459 

open question of the power of these tests. Quantifying the power/information content could 460 

also help planning for more powerful tests by estimating what amount of input data is 461 

needed or how to otherwise compensate with other types of data.  462 

 463 

On the other hand, if we include data on lower magnitude events, we actually have plenty of 464 

data already and in this context power is not a serious problem. This gets at one of the key 465 

philosophical issues in seismology: do the largest earthquakes obey the same fundamental 466 

properties as the moderate and small events?  467 

 468 

If not, then it might be centuries before we can forecast large earthquakes in any meaningful 469 

way. And there are some reasons to be skeptical, especially since so few large events have 470 

been observed, their behavior seems difficult to characterize simply, and while small events 471 

can reasonably be approximated as point sources, large events can rupture hundreds of 472 

kilometers, so reducing them to point sources as done in CSEP may be unrealistic. 473 

Incidentally, CSEP’s attempts to introduce fault-based testing have so far badly failed as no 474 
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earthquake-to-fault segment association has ever been developed that could reasonably run 475 

without case-by-case human intervention and decision.  476 

 477 

But if so, then if we can find models to forecast the moderate earthquakes accurately using 478 

the small to moderate events, these same models should be able to forecast the largest 479 

earthquakes as well using moderate events. This seems likely and promising, especially since 480 

we already have so much data on the moderate and smaller events. Yan Kagan and Dave 481 

Jackson were critical of those who kept constantly claiming that we had insufficient data to 482 

reject the characteristic earthquake hypothesis, at least for the largest events (Kagan 1997b, 483 

Jackson and Kagan 2006). We should not make this same mistake going forward. We have 484 

plenty of data. We just need to be scientific about how we use it.  485 
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