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Abstract. In honor of our dear departed friends Yan Kagan, Dave Jackson and Ilya Zaliapin,
we propose a selection of broad questions regarding earthquake forecasting and especially the
Collaboratory for the Study of Earthquake Predictability (CSEP) in particular, and give our
thoughts on their answers. This article reflects our opinions, not necessarily those of Yan
Kagan, Dave Jackson, and Ilya Zaliapin, and not necessarily those of the seismological
community at large. Rather than to provide definitive answers, we hope to provoke the
reader to think further about these important topics. We feel that Dave Jackson in particular

might have liked this approach and may have seen this as an appropriate goal.
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1. Is the Collaboratory for the Study of Earthquake Predictability (CSEP) worthwhile? How

can it be improved?

While our response to the first question is unequivocally in the affirmative, we must first
admit that CSEP has not yet come close to achieving all that was initially hoped of it. When
CSEP was formed, many anticipated that the experiments would lead to clear and decisive
improvements in earthquake forecasting, would indicate which models are superior and
which are inferior, would highlight ways to improve models, and ultimately would lead to
marked improvements in our ability to forecast large earthquakes. Perhaps some of these
goals will be fulfilled in the future, but the steps so far in these directions have been very

small.

It can, at times, seem unclear if anyone is actually making any use of CSEP results in
practice, and how much seismic hazard models have been improved using CSEP results.
While the Uniform California Earthquake Rupture Forecast 3 (UCERF3) model (Field et al.
2017) has included the model of Helmstetter et al. (2007), which performed best in the 5-
year RELM experiment (Schorlemmer et al. 2010, Zechar et al. 2013, Bayona et al. 2022), as

one branch for the background seismicity part, UCERF3 remains driven by the fault-based
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forecasts of the large earthquakes (Field et al. 2017). CSEP has never, to our knowledge,

influenced the fault-based parts of hazard models that provide the bulk of the hazard.

On the other hand, from a statistical standpoint, CSEP is a most remarkable scientific
achievement. It is a kind of gold standard that other areas of statistical application can only
dream of achieving. In wildfire forecasting, for instance, many of the proposed models are
not even well-defined and would result in 0 likelihood given data. In epidemiology, the
models most often used to forecast the spread of diseases like Ebola or Covid-19 are at least
50 years old and scant attention is given to their goodness-of-fit (Kresin et al. 2021). Further,
one cannot reasonably expect government officials and industrial practitioners instantly to
make use of scientific advances. Scientific progress has almost always been painfully slow and
methodical. There are so many possible examples here, but a recent one is Dave Jackson and
Yan Kagan debunking the characteristic earthquake hypothesis (Kagan et al. 2012). It has
typically taken decades at least for most scientists and professionals adequately to accept and
employ the results of careful scientific work. It might be a bit naive to expect practitioners
and other researchers to adjust quickly to reports that a given model does not fit well to data.

Such testing is definitely progress nonetheless.

Analyses of CSEP results have pointed out that Epidemic-Type Aftershock Sequence (ETAS)
models tend to fit well, at least on relatively short-term scales. ETAS models were initially

proposed by Ogata (1988) to describe the times and magnitudes of earthquakes, and were
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subsequently extended to model spatial-temporal-magnitude catalogs in Ogata (1998).
Subsequently, a host of slight modifications have been proposed (e.g. Sornette and Sornette
1999, Helmstetter and Sornette 2002, Console et al. 2003, Ogata et al. 2003, Ogata 2004,
Ogata and Zhuang 2006, Marzocchi and Lombardi 2008, Ogata 2011, Zhuang 2012, Nandan
et al. 2017, Grimm et al. 2022, Tacoletti et al. 2022, Li and Pu 2022, Aso and Terai 2023). One
major problem, however, is that models such as ETAS typically do not help much in
forecasting the earthquakes we are most interested in. As their name indicates, ETAS models
are mostly useful for describing the frequency and spatial-temporal distribution of
aftershocks one expects to see following large earthquakes, or perhaps as a null model to
which alternative models might be compared. However, for purposes of planning, public
safety, building codes, and most other purposes, what is really sought is the accurate
forecasting of the very largest events, or at least the estimation of their long-term frequency,
and when it comes to these tasks, most versions of ETAS seem to be scarcely better than a
simple homogeneous Poisson model. Indeed, most formulations of the ETAS model assume a
Gutenberg-Richter distribution of earthquake magnitudes with the magnitude of each
earthquake drawn independently of what occurred previously, and thus essentially the
model makes no effort to pinpoint where or when the rate of the largest earthquakes may be

higher relative to the rate of smaller events.

This may be an area where more statistical work can be of assistance. Current methods for

assessing the fit of earthquake forecast models emphasize overall measures of fit such as the



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

log-likelihood, or total number of events, or other summaries that do not adequately take
into account what aspects of the model we care most about. If, for instance, we care
exclusively about the model's ability to forecast the largest events, then it may be appropriate
to choose a goodness-of-fit measure that properly emphasizes this feature. For instance,
suppose one is given data on the times, locations, and magnitudes of n events, (&, x, yi, m;)
for i = 1,..., n, and let A(¢.x,y,m) denote the modeled conditional intensity at spatial-temporal-
magnitude (z, x, y, m), with A representing the conditional intensity at point 7. The log-

likelihood,

L=Yi_,logA — f/l(t, x,y, m) dtdxdydm,

has a first term that properly rewards the model for accurately forecasting earthquakes
(where by "accurately forecasting”, we mean positing a high value of 1 where an earthquake
ends up occurring), and a second term that punishes the model for having high values of 4
elsewhere. However, the log-likelihood essentially rewards the model equivalently for
accurately forecasting a magnitude 3 event or a magnitude 7 event, despite the fact that

forecasting the latter event is so much more of interest.

Since forecasting the largest 5% of magnitudes are of most interest, one could instead use, as

a measure of fit, a summary such as the quotient
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_ mean{A;: mi>m['95])

Q=

mean{A(tx,y,m)}

for example, where m[°! is the 95th percentile of the magnitude distribution, perhaps
estimated based on prior seismicity, and the denominator mean{A(t,x,y,m)} may be estimated
e.g. using several thousand locations selected at random from the space-time-magnitude
observation region. The higher the value of @, the better the model appears to be forecasting
the spatial-temporal locations of the largest 5% of events. For a homogeneous Poisson model
with uniform magnitude density, Qwill be close to 1. Any model that adequately accounts
for the spatial inhomogeneity of seismicity will have Q> 1, as it should since such a model
will tend to vastly outperform a homogeneous Poisson model at forecasting the largest
events. Among competing models, the model that forecasts the larger events more accurately
will tend to be the model with higher @), especially if all the models are similarly calibrated
overall [i.e. mean{A(t,x,y,m)} is close to the overall rate of seismicity] which can readily be

checked via other methods, such as the N-test.

Forecasting large earthquakes as point sources as CSEP defines them for the purpose of
testing bears its problems. Modelers can employ the knowledge of faults and distribute the
hypocenter probabilities along the fault but this is making a model fit to the test design and
not the (preferred) other way around. This gets us back to the problem of whether CSEP can
influence the fault-based forecasts of hazard models. Clearly, adequate testing procedures for

such models are needed and were discussed many times within the CSEP community.
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However, the unambiguous identification of fault segments ruptured in earthquakes is
already a problem, not to mention the incompleteness of fault models. This is an unfortunate

disconnect between common practice in hazard modeling and testing possibilities.

Another problem with some CSEP results is that the observation that model A fits better
than model B does not necessarily directly tell us how to improve either of the models.
Further, if model A offers superior fit to model B over a 5-year period, it is unclear whether
this means model A is likely to outperform model B in the future. If not, then what does
testing tell us? We have often observed that models use any seemingly suitable statistical
distributions in fitting and then use such fitted models for forecasting. In one paper about
testing intensity-prediction equations, it was shown that the models fitted to functions
reproducing basic physical principles of wave propagation have higher forecasting
capabilities [Mak et al. 2015]. But is CSEP able to discriminate between overfitting and
physics-based fitting without very long forecast experiments in which the former are likely
to fail compared to the latter? Furthermore, there is a general tendency to increase the
complexity of models with more and more parameters. Given that in CSEP all models’
forecasts are fully specified with zero degrees of freedom, the number of input parameters
does not count into the result. But should it maybe? Again, an overfit model temporarily
might fit extremely well or a model might simply have been lucky to fit well in the short

term (Sornette et al. 2019), but in the long run the fit will likely deteriorate.
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While this criticism may be valid for many analyses of goodness-of-fit, residual methods
could perhaps help here, if they can provide useful graphics highlighting where exactly
model A seems to outperform model B. Voronoi deviance residuals and super-thinned
residuals (Clements et al. 2012, Bray and Schoenberg 2013, Bray et al. 2014, Gordon et al.
2015) seem potentially useful in this regard. Learning how to improve a complex model is no
easy task, so even a suggestion of a rather minor improvement should perhaps be seen as a
major achievement from a statistical procedure. As for the possibility of overfitting, or for
model A to outperform model B in CSEP over several years but not in the long term for
whatever reason, while such possibilities may be inevitable, CSEP seems ideally suited to
handle these types of problems. Overfitting and lack of reproducibility are enormous
problems in conventional research involving retrospective analyses of data. With CSEP and
its strict insistence on truly prospective testing, these problems may still exist but they are

minimized as much as possible.

2. Are ETAS models valuable?

ETAS models seem frequently to offer the best fit among the proposed models for earthquake
occurrences. While so many other models have been suggested based on retrospective
analyses, the fact that ETAS performs well in the sense of offering satisfactory fit to data even

when used prospectively is extremely impressive, and is solid evidence of its value.
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However, as mentioned previously, most versions of ETAS have very little value for
forecasting the largest events. (There are exceptions, however, that treat large earthquakes
fundamentally differently from smaller ones, such as Nandan et al. 2019, 2022).
Furthermore, what exactly is ETAS telling us that goes beyond the heuristic notion that large
earthquakes are followed by aftershocks and possibly even larger events? Reasenberg & Jones
(1989) have decades ago quantified the chance of a larger earthquake following an already
large shock. Does ETAS tell us significantly more despite the much heavier computational
load and its complexity? ETAS provides higher resolution, but in what sense is this really
useful? Does it change decisions in risk mitigation? Does it allow us to call an area "safe"

earlier?

An important topic that has been insufficiently explored is how to quantify a model's value,
for forecasting. Much attention has been paid to the quantification of a model's goodness-of-
fit to data, and this is certainly a component of a model's value, since the better a model fits,
the more confidence one has in its forecasting ability. However, goodness-of-fit does not tell
the whole story. While ETAS models, for instance, may fit very well to catalogs of
earthquakes including aftershocks, and while forecasts can be obtained using ETAS via
simulations (Omi et al. 2014, Shcherbakov et al. 2019, Petrillo and Zhuang 2024) or multi-
element probability formulas and other techniques (Ogata 2017a, Ogata 2022, Ogata2024),
most versions of the ETAS model typically have little value for forecasting the largest

earthquakes, which happen to be the ones we care most about (in synthetic tests,



184 Helmstetter and Sornette 2003 quantify that ETAS allows one to forecast about 20% of the
185 largest events). We should explore alternative measures, such as the measure Q proposed
186 above, or variants of the Brier score or information gain restricted to the subset of

187 earthquakes of most concern, perhaps weighting earthquakes differentially based on their
188 energy release, damage potential, or other measures. In particular, it would be of great

189 interest to agree on a measure of a model's forecasting value as a function of time horizon. It
190 may be, for instance, that ETAS has excellent forecasting value for forecasting seismicity
191 several hours or days into the future, but practically no value at forecasting several months or
192 years into the future. Other models possessing the opposite qualities might exhibit worse fit
193 to data overall, yet have more forecasting value in many situations. We believe that

194 including better quantifiers of a model's value into CSEP would be a great step toward

195 discovering and raising awareness about alternative models that are potentially more useful.
196

197 The ETAS model should perhaps be seen as the null model, to which alternatives could be
198 proposed and compared. Something similar was proposed by Stark (1997). Indeed, in the
199 original paper proposing ETAS, Ogata (1988) actually used ETAS as a kind of null model,
200 rather than a model to be directly used for forecasting. He identified times of quiescence,
201 which were essentially times when the model appeared to fit poorly, as potential indicators
202 of an impending future large event (even though the quiescence hypothesis has been

203 debunked by van Stiphout et al. 2011 employing a declustering algorithm using Southern

204 California data).
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There still seems to be some work to do at constructing a suitable null model, however.
Numerous models have been proposed, starting from the silly spatially uniform model (easy
to beat), via simple Poisson smoothed seismicity models, all the way to time-varying ETAS
models. Each model needs to be somehow calibrated and this creates a plethora of different
model flavors for each basic concept. There is presently not a single ETAS model, but rather
a host of different varieties, parameterizations, and implementations. Therefore, more
thought should go into how to create a suitable version of a null model, and what the

requirements should be for such a model.

3. Is ETAS the end?

On the one hand, looking at the collection of recent publications, the answer seems to be
yes. Few genuinely new model classes have recently been introduced to capture the time
dependence of earthquakes. Instead, more and more flavors of ETAS models have been
developed, mainly by attempting to fit the ETAS concept to local, regional, or sequence-
specific datasets, perhaps because of the 'because we can' effect: people doing what they
know they can achieve even if it is unlikely to lead anywhere substantial. Out of these many
ETAS flavors, no consensus model has been selected by the wider community. ETAS seems
to reproduce itself constantly without adding significant improvements to a solution of the

earthquake forecasting problem. Furthermore, it may be that earthquakes are a natural

11
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phenomena too complex to be modeled or forecast accurately, in CSEP or any type of
forecasting experiment. No predictability in the pattern of earthquake magnitudes has been
discovered, or at least none that has been consistently reproduced. It is possible, as Yan, Dave
and their collaborators posited, that earthquakes may be inherently unpredictable, and

simply cannot be predicted (Geller et al. 1997, Kagan 1997a).

On the other hand, there may be room for optimism. Some promising recently proposed
versions of ETAS take into account focal depth and rupture geometry, for instance (Guo et al.
2015, 2018, 2021, 2024), as well as other physical components such as the magnitude-
dependent Omori law (Sornette and Ouillon 2005, Ouillon and Sornette 2005, Ouillon 2009,
Tsai et al. 2012) or a two-branched Gutenberg-Richter distribution (Saichev and Sornette
2005, Nandan et al. 2019), but see also Petrillo and Zhuang (2023) for the opposite opinion.
Also, while ETAS may fit best among existing models, it has not been shown that ETAS fits
better than any possible alternative model. Certainly any simple model forecasting the
precise occurrence of future seismicity is highly elusive, but this does not mean
improvements will not be forthcoming. Scientific progress has often been slow and laborious,
and seismology is no exception. Perhaps increased emphasis on va/ue-based goodness-of-fit
statistics, as described above, may reasonably be anticipated to yield improved models that
optimize these more sensible and practical criteria, and CSEP has the potential to be an

important leader in this aim. If we increase our focus on models that improve forecasting in
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useful ways, and reward models for improving forecasting in useful ways, such models are

more likely to be discovered. As they say in Field of Dreams, "If you build it, he will come."

4. What are the best ways forward for earthquake forecasting?

This may be divided into practical, technical approaches as well as the overall big picture,
and we start with the former. While there may be advantages to looking at local results in
some situations, testing generally should be done on a global scale to increase the power of
the tests so we can have some confidence in the results. Only globally can we test a
sufficiently large number of significantly large earthquakes that matter. Yan Kagan
consistently advocated this (Kagan 2003, Kagan and Jackson 1991, Kagan and Knopoff 1981,
1987, Kagan et al. 2012). CSEP has, after its inception, expanded from testing earthquake
forecasts in California to further testing regions in Japan, Italy, New Zealand, the western
Pacific and finally to global tests. However, the majority of tested models were developed for

the regional testing regions and only a few are being tested globally.

All testing regions have been defined on 0.1 degree longitude/latitude grid cells
(Schorlemmer and Gerstenberger 2007). While this resolution has been chosen to match the
location uncertainty of local events, it backfired in the global experiment in which the
testing area consists of 6.4+M cells and 100+M bins. However, the grid size should be scaled

according to how much data one has. With millions of cells but just a handful of

13



267 earthquakes, the test has little to no power, so the grid cells should be chosen adaptively in
268 order to maximize the power of the tests. One pathway to solve this problem is to use a

269 multi-resolution grid, e.g. the Quadtree approach taken by Ogata et al. (1996) and Asim et al.
270 (2023), or using Delaunay tessellations (Ogata et al. 2003, Ogata et al. 2019). The forecasts
271 can have high spatial resolution (small cells) in areas with many earthquakes and low

272  resolution in areas with few earthquakes (large cells). This way, meaningful global forecasts
273  can be provided with a few ten thousand of cells, matching the number of observations in
274  the Global CMT catalog.

275

276  As far as the big picture and where and whether scientific progress is likely in the future,
277 when we first got interested in earthquakes, we imagined that the historical and modern,
278 high-resolution earthquake record might contain hidden information about when the next
279 big one would occur, and that if we just looked hard enough, we could find some pattern or
280 signal and successfully predict the next major event. Now we realize that was naive, and the
281 Earth tends not to resemble a cartoon villain leaving obvious clues about future calamities.
282 Many natural phenomena are exceedingly complex, and earthquakes seem to fit this mold, so
283 there seems little hope at finding some simple pattern that predicts when the next big event
284  will occur. On the other hand, there is something rather mysterious about large earthquakes.
285 They are, after all, major ruptures of the Earth, and sudden releases of enormous amounts of
286 tectonic energy. And they must be triggered by something and must experience a

287 preparation phase that should leave some hints to be observed. Does it not stand to reason
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that, as our knowledge of the Earth's structure deepens, we ought to be able to figure out and
possibly anticipate, or at least see some warning signs, of what is triggering these gigantic
outbursts? Naive as it may be, we still believe that a more precise understanding of the

Earth's structure should yield an improved ability to forecast major events.

This highlights another possibly important way that CSEP could be improved going forward:
by incorporating other types of signals apart from earthquake occurrences. If the information
content of earthquake catalogs does not allow for powerful tests and/or useful models, CSEP
should reach out to model developments that include further signals that can be observed;
potentially important efforts have been made in incorporating such signals recently (Zhuang
et al. 2005, Han et al. 2016, Kumazawa et al. 2016, Freund et al. 2021). CSEP has already
included models that use strain data as input, however these data have not been included as
an authoritative data source to ensure all models use the same strain data. Of course,
modelers can technically include any type of data in their models, but only if these data are
authoritative and provided by CSEP can comparative testing become really meaningful and

ensure full reproducibility of all forecasts generated by the model.

5. Can we use CSEP test results to improve models? Does CSEP provide a useful feedback

loop?

15
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The L-test and similar results typically assess the performance of the entire model. However,
models are typically compiled of different ingredients and their interplay can be complex.
We usually do not know if all components work well and contribute correctly; maybe one
component is not calibrated well and lowering the overall performance of the model, but test
results rarely indicate this. Instead, each metric typically tests a different feature of a
forecast, not a component of the underlying model. But do we know what part of the model
causes the feature to perform well or not? Do we know how to translate results of a specific

metric into model improvement? The answer is often no!

On the other hand, it definitely seems that, if any substantial progress is ever made at
forecasting seismicity, it is going to be largely the result of very careful and intricate model
evaluation. Put another way, it seems very unlikely we will ever have substantial
improvement without excellent model evaluation experiments like CSEP. Without this kind
of rigorous look at the models, seismology would be doomed to keep repeating the mistakes
of the 20th century, where model after model was proposed, based on retrospective analysis,
only to find out later that the models did not do well prospectively (Kagan and Jackson 1991,

Geller et al. 1997, Kagan 1997a, Jackson and Kagan 2006).

The situation is somewhat analogous to examples from statistics in medicine, where before
the proper emphasis was placed on randomized controlled experiments, it was almost

impossible to tell whether a drug or procedure was effective, and the literature was full of
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reports promoting procedures like the portacaval shunt, when later experiments clearly

showed them to be ineffective (Freedman et al. 1998 very nicely summarizes such examples).

In seismology, with CSEP already firmly in place, the field is poised to move in a positive
direction. Even though progress might be slow, we at least have a system in place that could
identify improved models once they are proposed, and we have a mechanism for more
efficiently sifting through and debunking poorer models. However, the power in medical
tests are often much higher, and the success criteria clearer, compared to earthquake
forecasting tests.

Will CSEP be as successful for earthquake forecasting as double-blind tests have been for

medical research? That remains to be seen.

As mentioned previously, statistical methods for model evaluation still need to be improved
so they can more readily lead to model improvements. Graphical methods, such as the
smoothed residual field (discussed by Baddeley et al. 2005 for the purely spatial case),
Voronoi residuals (Bray et al. 2014) and superthinned residuals (Clements et al. 2012), rather
than numerical summary statistics, seem to be the most promising for suggesting model
improvements. With superthinned residuals, points are added or removed at random
according to the model, so that in the end the residual points should be uniformly scattered if
the model fits well, and departures from uniformity indicate places where the model fit

poorly. With Voronoi residuals, the domain is divided into cells, one cell for each
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earthquake, such that each cell consists of all locations closer to the corresponding
earthquake than to any other earthquake. The fact that residuals on such an adaptive grid
allow one to pinpoint around which earthquakes a model fits well or poorly can sometimes
lead directly to ideas for model improvement (Clements et al. 2011, Gordon et al. 2015).
However, these methods have their problems as well. For one thing, given a host of
competing models, it is cumbersome and difficult to examine a collection of plots, and so for
comparing many models, sometimes the simplicity of a numerical summary is desirable.
Second, Voronoi residuals might be good for 2-dimensional data, but it remains unclear how
exactly to use them for the 3-d case, or even just for 2 spatial dimensions and time.
Currently, one typically just ignores time and depth and carves out Voronoi cells using just
the epicenters of earthquakes, but this should be improved. Superthinned residuals are easier
to implement and do not have the dimensional problem of Voronoi residuals, but because of
the randomness introduced in the generation of these residuals, often it is difficult to discern
clear patterns or ways to improve models from the superthinned residuals alone. Perhaps we
still need more improvements in the realm of visual summaries of goodness-of-fit for point

process models.

Some of the current tests in CSEP really are not useful for comparing competing models, and
should probably be removed from CSEP. If you are evaluating just one model, then maybe
the N-test, L-test, S-test, etc. might be useful (Schorlemmer et al. 2007, Zechar et al. 2010),

but when comparing 2 or more models, these tests can be very misleading, since a poorly-
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fitting but highly variable model will often have a higher p-value than a competing model
that actually fits better. So, since CSEP is mainly for model comparison, perhaps going
forward we should focus on methods that are better for this purpose. If an overall numerical
measure is desired, we think the log-likelihood score is probably best (Ogata 2017b, 2024), at
least among previously proposed measures, although the statistic Q mentioned in Section 1
seems potentially more informative. We should probably be content with a summary of the

overall fit and not be too concerned with p-values, for model comparison purposes.

6. How much information is in the system and how well is CSEP prepared to harvest it?

This is a tough question to answer. Dave Jackson believed that if strike angle estimates could
be improved in the future using more accurate seismometers, we could hope for some
substantial information to be gained in that area, since geophysical theory seems to suggest
such moment tensors should be extremely useful, though presently their use seems to be
somewhat limited. The main information we have seems to be the seismic record, which of
course also has errors and missing data, but this has quite thoroughly been studied especially
by Kagan (2003, 2004), and obviously is a wealth of information. Certainly the paleoseismic
record provides some useful information, and potentially geodetic information should be
useful to improve our models as well. While we might be somewhat pessimistic, we must
admire the positivity of Ilya Zaliapin, who never seemed to have any doubt that accurate

earthquake forecasting should be possible, and whose excellent paper with Ben-Zion
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highlights some promising avenues to explore, such as localization of seismicity before large

events (Ben-Zion and Zaliapin 2020).

The community has used the seismic record since decades to forecasts earthquakes but we
have not moved beyond rough statistical methods that are the more successful the smaller
the magnitude. Having said this, it seems that the overall number of events per magnitude is
the key criterion for successful forecasting. A consequence of this statement would be that
we have to wait very very long until we better forecast large events and that the forecast

horizons for these events will also be very long.

CSEP seems to be ideally prepared to harvest this type of information. CSEP offers
researchers a unique way to use their models to generate actual prospective forecasts in real
time, and to evaluate those forecasts as accurately as possible. One thing CSEP really needs
going forward is easy public access to these forecasts; currently they seem difficult to obtain
for some reason. In addition, we still face the issue of the meaning of test results and what

they tell us abut how to improve a model or which part of the model is right or wrong.

7. Can CSEP save us from bogus Articifical Intelligence (AI) forecasts?

It is to be expected that some Al researchers will attempt to forecast earthquakes by feeding

whatever they find into their Al algorithms. In addition, we pessimistically anticipate many

20



413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

papers where research simply average over multiple models, possibly in a Bayesian way,
forming complex ensemble models that perhaps fit well retrospectively but rarely
prospectively, and we do not foresee this being a useful or productive enterprise because the
increasingly complex ensemble models become increasingly difficult to improve using
residual analyses. In fact, in some sense the idea behind Bayesian ensemble models runs
counter to the central idea behind CSEP, which is to evaluate models prospectively and
rigorously in order to improve them and to distinguish the ones that seem to fit well from
those that do not. Rather than attempting to modify or improve individual aspects of a
model, Bayesian model averaging seems to make problems with the models more obscure
rather than clearer, and models that should be discarded become instead incorporated into
the ensembles, like rotten fruit in a milkshake. Even worse, these kind of models do not
contribute to our understanding of the physical processes and how they can be modeled in a
useful way. They are merely statistical stunts that are likely doomed to fail sooner rather
than later in prospective tests. And even if not, they do not provide any insight that let us
improve models that we understand and that mimic the physics we have discovered. CSEP
protocols might be the only guardian preventing us from false declarations of success, as

many researchers do not fully appreciate the necessity for truly prospective tests.

But what if the CSEP tests cannot provide any conclusive results? How can the wider CSEP

community argue against the plethora of Al forecasts that are expected? Serious thinking

21



433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

about the power and value of CSEP tests is needed and needs to be codified somehow in a

community process.

On the other hand, CSEP forecasts should be made easily publicly available to welcome
further analysis of the results, even if this may spur faulty analyses of the results using Al,
deep learning, Bayesian ensemble modeling, etc. Perhaps if CSEP eventually has so many
models that it becomes overwhelming, this could be a problem. But otherwise, the fact that
CSEP is fully prospective seems to guard against overfitting which is a main problem with Al
and deep learning models, and machine learning algorithms could be very useful to
incorporate information from various sources, as mentioned above. CSEP forecasts need to be
readily available online to enable easy statistical assessment because the statistical analysis of

the results will likely be very useful.

8. Are CSEP tests powerless?

On the one hand, we have seen that several of the tests, including the S-test, are not reliably
able to reject uninformative models on the global high-resolution grid with 6.5M cells and
many more bins because even the longest catalogs contain too few events (Asim et al. 2013,
Khawaja et al. 2013). In addition, it is unclear how to measure the power of a test if the true
distribution is unknown. It seems that CSEP is caught in the dilemma of either producing

powerful tests with low resolution that provide rather meaningless results or have powerless
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tests at high resolution, again resulting in meaningless results. How can CSEP find the sweet
spot and what does this sweet spot tell us about the overall information content of
earthquake occurrences and their testing? Much could potentially be gained by finding a
formulation that describes the overall information content and the resulting best-possible
power of CSEP tests and translate this into uncertainties of the forecasts or the test results.
Currently, it is unclear how to use CSEP results and to what extent to trust them given the
open question of the power of these tests. Quantifying the power/information content could
also help planning for more powerful tests by estimating what amount of input data is

needed or how to otherwise compensate with other types of data.

On the other hand, if we include data on lower magnitude events, we actually have plenty of
data already and in this context power is not a serious problem. This gets at one of the key
philosophical issues in seismology: do the largest earthquakes obey the same fundamental

properties as the moderate and small events?

If not, then it might be centuries before we can forecast large earthquakes in any meaningful
way. And there are some reasons to be skeptical, especially since so few large events have
been observed, their behavior seems difficult to characterize simply, and while small events
can reasonably be approximated as point sources, large events can rupture hundreds of
kilometers, so reducing them to point sources as done in CSEP may be unrealistic.

Incidentally, CSEP’s attempts to introduce fault-based testing have so far badly failed as no
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earthquake-to-fault segment association has ever been developed that could reasonably run

without case-by-case human intervention and decision.

But if so, then if we can find models to forecast the moderate earthquakes accurately using
the small to moderate events, these same models should be able to forecast the largest
earthquakes as well using moderate events. This seems likely and promising, especially since
we already have so much data on the moderate and smaller events. Yan Kagan and Dave
Jackson were critical of those who kept constantly claiming that we had insufficient data to
reject the characteristic earthquake hypothesis, at least for the largest events (Kagan 1997b,
Jackson and Kagan 2006). We should not make this same mistake going forward. We have

plenty of data. We just need to be scientific about how we use it.
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