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Abstract—Conventional Multi-Agent Path Finding (MAPF)
problems aim to compute an ensemble of collision-free paths
for multiple agents from their respective starting locations to
pre-allocated destinations. This work considers a generalized
version of MAPF called Multi-Agent Combinatorial Path Finding
(MCPF) where agents must collectively visit a large number of
intermediate target locations along their paths before arriving at
destinations. This problem involves not only planning collision-
free paths for multiple agents but also assigning targets and
specifying the visiting order for each agent (i.e. multi-target
sequencing). To solve the problem, we leverage the well-known
Conflict-Based Search (CBS) for MAPF and propose a novel
framework called Conflict-Based Steiner Search (CBSS). CBSS
interleaves (1) the conflict resolving strategy in CBS to bypass
the curse of dimensionality in MAPF and (2) multiple traveling
salesman algorithms to handle the combinatorics in multi-target
sequencing, to compute optimal or bounded sub-optimal paths
for agents while visiting all the targets. Our extensive tests verify
the advantage of CBSS over baseline approaches in terms of
computing shorter paths and improving success rates within a
runtime limit for up to 20 agents and 50 targets. We also evaluate
CBSS with several MCPF variants, which demonstrates the
generality of our problem formulation and the CBSS framework.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF), as its name suggests,
computes a set of collision-free paths for multiple agents from
their respective starting locations to designated destinations.
This article addresses a generalization of MAPF, referred to as
Multi-Agent Combinatorial Path Finding (MCPF), where the
agents are also required to visit a collection of target locations
before reaching their destinations while satisfying additional
agent-target assignment constraints (see Fig. 1 (a) for a toy
example). MAPF and its generalizations such as MCPF arise
in applications in logistics [41] and surveillance [12]. For
example, in a hazardous material warehouse, multiple mobile
robots equipped with various sensors need to collectively
measure temperature, humidity and detect potential leakage
of various hazardous chemicals at many predefined target
locations. These robots need to plan their paths such that
each target location is visited at least once by a robot and
the paths are collision-free. In addition, since robots may carry
different sensors, only a subset of robots may have the sensors
to measure the desired data at a target location; this introduces
agent-target assignment constraints that must be respected
while planning paths. Simpler versions of the MCPF without

Fig. 1: A feasible solution to a MCPF problem. There are
three agents; their starting locations are (vio, i = 1, 2, 3) and
destinations are (vid, i = 1, 2, 3). The two targets are denoted as
vt1 and vt2. The color of the targets and destinations indicates
the assignment constraints, (i.e., the subset of agents that are
eligible to visit the target or destination). For example, the
target vt2 can be visited by either the yellow or the blue agent.
Feasible paths for agents are shown using dashed lines. The
circular part of the yellow path indicates a wait-in-place action.

the robot-robot collision constraints have been addressed in
[20, 35], motivated by unmanned vehicle applications.

Solving MCPF with optimality guarantees is quite challeng-
ing as it requires handling both the curse of dimensional-
ity in multi-agent path planning as well as the multi-target
sequencing. If the set of (intermediate) targets to visit is
empty and each destination is pre-assigned to a unique agent,
MCPF reduces to MAPF [34] which is NP-hard [42]. On
the other hand, if the collisions between agents are ignored
and no agent-target constraints are present, MCPF reduces to
the Multiple Traveling Salesman Problem (mTSP) [20] which
is also NP-hard [21]. As such, solving MCPF to optimality
involves simultaneously addressing the challenges in both
MAPF and mTSP.

Unlike MAPF, where ignoring the conflicts between the
agents leads to a decoupled shortest path problem for each
agent, in MCPF, ignoring the conflicts between the agents
leads to an mTSP where the agents’ paths are still coupled.
In the special case where there are no agent-target assignment
constraints, an approach called MS* [26] has been proposed
based on the subdimensional expansion framework [39]. In
this paper, we present a new framework called Conflict-Based
Steiner Search (CBSS) for the general case that attempts to
bypass both the combinatorics in mTSP and the curse of
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dimensionality in MAPF to solve MCPF. CBSS interleaves
mTSP and MAPF algorithms by alternating between (1) gen-
erating new target sequences for the agents, and (2) generating
conflict-free paths for agents given the target sequences. To
compute conflict-free paths, CBSS conducts a two-level search
like CBS [31]: On the high level, CBSS generates a search
forest (of multiple trees) where each tree follows a fixed target
sequence for each agent. The key contribution of this paper is
in the generation of the search forest where we leverage the
transformation [20] and K-best partition [38] methods for the
TSP; the transformation method allows us to find a solution
for the mTSP by posing an equivalent TSP on a larger graph,
and the K-best partition method allows us to incrementally
generate K least-cost mTSP solutions. Each mTSP solution
allocates the targets among the agents and specifies a path
(thereby, also fixing the target sequence) for each agent to visit.
On the low level, CBSS runs constrained single-agent search
to plan a path for each agent following the target sequences
while satisfying the collision avoidance constraints.

We show that CBSS is guaranteed to compute an optimal
or an ϵ-bounded sub-optimal solution, where ϵ is a pre-defined
bound specified by the user. By varying ϵ from zero to infinity,
CBSS moves along a spectrum from computing an optimal
solution with heavy computational burden to a naive sequential
method that efficiently computes a feasible solution without
any theoretic optimality bounds.

To verify CBSS, we generate test instances with various
forms of assignment constraints based on an online dataset
[34]. We compare CBSS in various maps with several base-
lines including a greedy method and the recent MS* [26]. We
observe that CBSS computes shorter paths than the greedy
method and doubles the success rates in comparison with MS*.
By varying the form of assignment constraints, we show that
CBSS is widely applicable to solve different cases of MCPF.1

Finally, we carry out a multi-robot experiment to validate that
the planned paths are executable on physical robots.

The rest of the article is organized as follows. In Sec. II,
we review related problems and methods. We then formulate
the MCPF problem in Sec. III. The CBSS framework is intro-
duced in Sec. V with proofs in Sec. VI. Extensive numerical
results are presented in Sec. VII. Finally, we conclude our
work, summarize the contributions and outline possible future
directions in Sec. VIII.

II. RELATED WORK

Multi-Agent Path Finding algorithms tend to fall on a spec-
trum from coupled methods [33] to decoupled methods [32],
trading off completeness and optimality for scalability. In the
middle of this spectrum lies the popular dynamically-coupled
methods such as subdimensional expansion [39] and Conflict-
Based Search (CBS) [31]. These methods have been improved
and extended in many ways [1, 4, 7, 25, 27, 29], to name a
few. All of them aim to navigate each agent to its pre-assigned

1Our implementation is at https://github.com/wonderren/public pymcpf.

destination without visiting any intermediate targets along the
path, which differs from MCPF.

The Traveling Salesman Problem (TSP), which aims to
find a shortest path/tour for a single agent to visit each
node in a given graph, is one of the most well known NP-
hard problems in the literature [2]. A spectrum of methods
have been developed ranging from exact techniques (branch
and bound, branch and price) [2] to heuristics [9, 10] and
approximation algorithms [6] which trade off optimality for
computational efficiency.

The Multiple Traveling Salesman Problem (mTSP) [3] is
harder to solve compared to the (single-agent) TSP as the
nodes in the given graph must be allocated to each agent
in addition to finding an optimal sequence of the assigned
targets for each agent to visit. A variant of mTSP that is also
related to this work is the multiple-Steiner TSP2 [30] where
the agents are required to visit a subset of nodes in a graph.
While focusing on allocating and computing the visiting order
of targets for agents, mTSP methods [3, 17, 20, 24, 35] do not
consider the collision avoidance constraints among the agents.
In the MCPF problem investigated in this work, agent-agent
conflicts are also considered.

Combined Target Assignment/Sequencing and Path Find-
ing problems are investigated from different perspectives very
recently [11, 14, 15, 18, 36]. However, these methods ei-
ther consider target assignment only (without the need for
computing visiting orders of targets) [11, 14, 18], or require
computing the visiting order only as each agent is pre-allocated
a set of targets [36]. In addition, the multi-agent pick-up
and delivery problem [13, 16], which computes a set of
conflict-free paths for agents that fulfill a set of pick-up and
delivery tasks, also requires assigning a sequence of tasks for
each agent. However, these approaches [13, 16] address this
problem in two stages; in the first stage, a special TSP is
solved to find a suitable sequence of tasks for each agent,
and in the second stage, given the sequences of tasks, a
conflict-free path is found for each agent. This work aims
to simultaneously sequence the targets while finding conflict-
free paths in order to compute solutions with optimality (or
bounded sub-optimality) guarantees.

Other related problems that involve both target sequencing
and path planning for multiple agents have also been inves-
tigated by the robotics community [12, 37]. However, these
methods either over-simplify the collision avoidance, target
allocation/sequencing requirements, or provide no theoretical
guarantees on the solution quality. The developed CBSS
framework in this work is able to compute solutions with
optimality or bounded sub-optimality guarantees.

2The origin of Steiner problems are ascribed to mathematician Jakob
Steiner [5] where agents are not required to visit each and every vertex in the
given graph. The Steiner TSP has many variants which depend on whether
an agent is required to return to its initial location or end its path at a pre-
determined location; we will use Steiner TSP to refer to all these variants.
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III. PROBLEM DESCRIPTION

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a graph G =
(V,E) where the vertex set V represents the possible locations
for agents and the edge set E = V × V denotes the set of
all the possible actions that can move an agent between any
two vertices in V . An edge between u, v ∈ V is denoted as
(u, v) ∈ E and the cost of an edge e ∈ E is a positive real
number cost(e) ∈ (0,∞).

In this article, we use superscript i ∈ I over a variable to
represent the specific agent to which the variable belongs (e.g.
vi ∈ V means a vertex corresponding to agent i). Let vio ∈ V
denote the initial vertex (also called the start) of agent i and
Vo denote the set of all initial vertices of the agents. There are
N destination vertices in G denoted by the set Vd ⊆ V . In
addition, let Vt ⊆ V \ {Vo


Vd} denote the set of M target3

vertices that must be visited by at least one of the agents along
its path. For each vertex v ∈ Vt


Vd, let fA(v) ⊆ I denote

the subset of agents that are eligible to visit v; these sets are
used to formulate the (agent-target) assignment constraints.

Let πi(vi1, v
i
ℓ) denote a path for agent i that connects

vertices vi1 and viℓ via a sequence of vertices (vi1, v
i
2, . . . , v

i
ℓ)

in the graph G. Let gi(πi(vi1, v
i
ℓ)) denote the cost associated

with the path. This path cost is the sum of the costs of
all the edges present in the path (i.e., gi(πi(vi1, v

i
ℓ)) =

Σj=1,2,...,ℓ−1cost(v
i
j , v

i
j+1)).

All agents share a global clock. Each action, either wait or
move, requires one unit of time. Any two agents i, j ∈ I are
in conflict if one of the following two cases happens. The first
case is a vertex conflict where two agents occupy the same
vertex at the same time. The second case is an edge conflict
where two agents go through the same edge from opposite
directions between times t and t+ 1 for some t.

The MCPF problem aims to find a set of conflict-free paths
for the agents such that (1) each target v ∈ Vt is visited at least
once by some agent in fA(v), (2) the path for each agent i ∈ I
starts at its initial vertex and terminates at a unique destination
u ∈ Vd such that i ∈ fA(u), and (3) the sum of the cost of
the paths is a minimum.

Remark. MCPF generalizes several existing problems. When
M = 0 (i.e., no target is present) and fA maps each destination
to a single distinct agent, MCPF reduces to the standard
MAPF. When fA(v) = I, ∀v ∈ Vt


Vd, we get the fully

anonymous version of MCPF which has been solved by our
prior work using MS* [26]. Finally, if the conflicts between the
agents are ignored, and the destination of each agent is same
as its starting location (which is often called a “depot” in TSP
literature), then MCPF reduces to a variant of mTSP [22].

IV. REVIEW OF CONFLICT-BASED SEARCH

Conflict-Based Search (CBS) [31] is a two-level search
algorithm that computes a collision-free optimal solution (joint

3The term “targets” in this work represent static target locations, which are
also called waypoints within the robotics community.

path) to a MAPF problem. On the high level, every search node
P is defined as a tuple of (π, g,Ω), where:

• π = (π1, π2, . . . , πN ) is a joint path that connect starts
and destinations of agents respectively.

• g is the scalar cost value of π (i.e., g = g(π) =
Σi∈Ig

i(πi)).
• Ω is a set of (collision) constraints.4 Each constraint is

of form (i, v, t) (or i, e, t), which indicates agent i is
forbidden from entering node v (or edge e) at time t.

CBS constructs a search tree T with the root node Proot =
(πo, g(πo), ∅), where the joint path πo is constructed by
running the low level (single-agent) planner, such as A*, for
every agent respectively with an empty set of constraints while
ignoring any other agents. Proot is added to OPEN, a queue
that prioritizes nodes based on their g-values.

In each search iteration, a node P = (π, g,Ω) with the
minimum g-value is popped from OPEN for expansion. To
expand P , every pair of individual paths in π is checked for
vertex conflict (i, j, v, t) (and edge conflict (i, j, e, t)). If no
conflict is detected, π is conflict-free and is returned as an
optimal solution. Otherwise, the detected conflict (i, j, v, t)
is split into two constraints (i, v, t) and (j, v, t) respectively
and two new constraint sets Ω


{i, v, t} and Ω


{j, v, t} are

generated. (Edge conflict is handled in a similar manner and
is thus omitted.) Then, for the agent i in each split constraint
(i, v, t) and the corresponding newly generated constraint set
Ω′ = Ω


{i, v, t}, the low level planner is invoked to plan an

individual optimal path π′i of agent i subject to all constraints
related to agent i in Ω′. The low level planner typically runs
A*-like search in a time-augmented graph with constraints
marked as obstacles. A new joint path π′ is then formed by
first copying π and then updating agent i’s individual path
πi with π′i. Finally, for each of the two split constraints, a
corresponding high level node is generated and added to OPEN
for future expansion. CBS [31] is guaranteed to compute an
optimal solution for a given MAPF problem, if there exists a
feasible solution.

V. CONFLICT-BASED STEINER SEARCH

A. Basic Concepts

In MCPF, a path for agent i may also visit a sequence
of intermediate targets before reaching its destination. Let
γi = {vio, ui

1, u
i
2, . . . , u

i
ℓ, v

i
d} denote the sequence of targets

visited by agent i ∈ I where vio and vid are initial and
destination vertices of agent i, and ui

j is the jth intermediate
target visited by agent i for j = 1, · · · , ℓ. Let γ = {γi : i ∈ I}
denote a joint (target) sequence, which is a collection of the
individual target sequences of the agents. The cost incurred
in traveling between any two adjacent nodes in γi is simply
the minimum-cost path cost between the nodes in G. The cost
of an individual sequence cost(γi) is defined as the total cost
incurred in traversing all the nodes in γi. Similarly, the cost of
a joint sequence is defined as cost(γ) := Σi∈Icost(γ

i). Note

4For the rest of the work, we refer to collision constraints simply as
constraints, which differs from the aforementioned assignment constraint.
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that cost(γi) is computed ignoring all the conflicts between
the agents.

Following the same notations as in CBS, let P = (π, g,Ω)
denote a high level search node. We say a path πi follows γi if
πi visits all the assigned targets in the same order as specified
in γi. Similarly, a joint path π follows γ if each πi ∈ π follows
the corresponding γi ∈ γ.

Conflict-Based Steiner Search (CBSS) is a two-level search
framework similar to CBS, which is conceptually visualized
in Fig. 2. The key differences in the CBSS as compared to
CBS are in the high level. Specifically, in the high level,
CBSS constructs a search forest5 (rather than a single search
tree) where each tree Tj in the forest corresponds to a
fixed joint sequence γ∗

j . In other words, the joint path π
for any high level node P = (π, g,Ω) within the tree Tj
follows the same joint sequence γ∗

j . The joint sequences
(γ∗

1 , γ
∗
2 , γ

∗
3 · · · ) are generated ignoring the agent-agent con-

flicts using a sequencing6 procedure which ensures that the
costs of the joint sequences are monotonically increasing:
cost(γ∗

1) ≤ cost(γ∗
2) ≤ cost(γ∗

3 ) . . . . Given a joint sequence
γ∗
j and its corresponding tree Tj , conflicts are resolved in the

high level nodes through a similar branching and low level
search as in CBS.

Initially, CBSS starts with a joint sequence γ∗
1 . A high level

node corresponding to γ∗
1 is created first and forms the root

node for T1. If γ∗
1 does not lead to any conflicts between the

agents, then the search outputs the joint path corresponding to
γ∗
1 as an optimal solution and terminates. On the other hand,

if a conflict is present between any two agents following γ∗
1 ,

then new high level search nodes are created as in CBS, and
are added to OPEN. If the cost of the cheapest, high level
node, say P = (π, g,Ω), in OPEN is less than the cost of γ∗

2 ,
the search continues to check for conflicts in the P and expand
P if necessary. On the contrary, if γ∗

2 is cheaper, a new tree
denoted by T2 is created and a root node corresponding to γ∗

2 is
added to OPEN, and the search continues. Since cost(γ∗

1) is a
lower bound to the optimal cost of MCPF (because γ∗

1 ignores
the conflicts), and that the subsequent high level nodes are
systematically generated using a best-first search procedure,
the above process finds an optimal solution to the MCPF (a
detailed proof is later presented in section VI).

There are some crucial parts to this high level search
process. Generating a set of joint sequences with monoton-
ically increasing costs is non-trivial, especially for a mTSP
with agent-target assignment constraints. To address this, we
leverage a partition procedure given in for TSPs (i.e., K-
best partition [38]) which systematically forces a solution
to include some edges and exclude another set of edges to
generate the desired set of joint sequences. Given some edges
to include and another set of edges to exclude, the mTSP

5CBSS is not the first method that extends CBS to a search forest. For
example, CBS-TA [11] uses a search forest to combine task assignment and
path finding. In MO-CBS [27], a search forest is constructed to find the Pareto-
optimal front for multi-objective MAPF problems.

6In Fig. 2, this refers to the K-best Sequencing procedure. Here, K is a
parameter that specifies the number of the cheapest K solutions to be found.

Fig. 2: A conceptual visualization of the CBSS framework.

with agent-target assignment constraints is solved leveraging
a transformation method given in [20] that converts a mTSP
to a single-agent TSP. This transformation method guarantees
solution optimality while being able to leverage the state-
of-the-art single-agent TSP solvers. As finding an optimal
solution for MCPF can be time consuming, we also provide a
way to find bounded sub-optimal solutions which can handle
more agents and targets. Specifically, the user can specify an
approximation parameter ϵ prior to solving the problem and the
proposed approach will find a feasible solution (if one exists)
whose cost is at most (1+ ϵ) times the optimum. More details
on the above methods are provided in the ensuing subsections.

B. CBSS Overview

Let GT = (VT , ET , CT ) denote a target graph, which is a
complete undirected graph with vertex set VT = Vo


Vt


Vd

(|VT | = 2N + M ) and edge set ET . Here, CT represents a
symmetric cost matrix of size (2N + M) × (2N + M) that
defines the cost of each edge in ET . Each edge (u, v) ∈
ET represents a minimum-cost path connecting u, v in the
(workspace) graph G ignoring agent-agent conflicts and the
corresponding entry CT (u, v) in the cost matrix stores the cost
value of that path. Using GT and the assignment constraints,
the K-best partition procedure (Sec. V-C) is used to compute
K joint sequences with monotonically increasing costs.

An overview of the CBSS is shown in Alg. 1. To start with,
CBSS finds an optimal joint sequence γ∗

1 (lines 1-2) using
GT . CBSS then invokes the low level planner (lines 3-4) for all
agents i ∈ I with an empty set of constraints, which computes
π following γ∗

1 , as well as the cost value g of π. Finally, the
first root node Proot,1 is initialized and inserted into OPEN, a
queue that prioritizes high level nodes based on their g-costs.
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Algorithm 1 Pseudocode for CBSS
1: Compute GT = (VT , ET , CT )
2: γ∗

1 ← K-best-Sequencing(GT ,fA,K = 1)
3: Ω← ∅
4: π, g ← LowLevelPlan(γ∗

1 , Ω)
5: Add Proot,1 = (π, g,Ω) into OPEN
6: while OPEN not empty do
7: Pl = (πl, gl,Ωl)← OPEN.pop()
8: Pk = (πk, gk,Ωk)← CheckNewRoot(Pl, OPEN)
9: DetectConflict(πk)

10: if no conflict detected in πk then
11: return πk

12: Ω← Split the detected conflict
13: for all ωi ∈ Ω do
14: Ω′

k = Ωk ∪ {ωi}
15: P ′

k ← LowLevelPlan(γ(Pk), Ω′
k)

16: // In this LowLevelPlan, only agent i’s path is planned.
17: Add P ′

k to OPEN
18: return failure

In each iteration of the high level search (lines 6-17), a
node Pl with the least g value is popped from OPEN. Before
expanding node Pl, a procedure CheckNewRoot (see Sec. V-E,
Alg. 3) is invoked, where the cost gl of node Pl is compared
against some threshold to decide whether the next best root
node needs to be generated.

• If the next root does not need to be generated, the input
node Pl is returned by CheckNewRoot.

• If the next root (denoted as the r-th root Proot,r) needs to
be generated, a next best joint sequence γ∗

r is computed
by using the K-best Sequencing procedure with K = r.
The corresponding joint path as well as the path cost
is computed by calling LowLevelPlan(γ∗

r , ∅), which runs
the low level planner to plan an individual path for each
agent by following γ∗,i

r ∈ γ∗
r . All these individual paths

together form a joint path that follows γ∗
r . The resulting

new root node Proot,r is then returned by CheckNewRoot
and Pl (i.e., the input node to CheckNewRoot) is inserted
back into OPEN for future expansion.

The node returned by CheckNewRoot is denoted as Pk and
the joint path in Pk is then checked for conflicts (line 9). If no
conflict is detected, the algorithm terminates and an optimal
solution (joint path) is returned. Otherwise, CBSS splits the
detected conflict in the same way as CBS by generating two
constraints. Here, we abuse the notation a bit to simplify our
exposition: let γ(Pk) (line 15) denote the joint sequence that
πk (the joint path in Pk) follows. This can be computed by
first finding the root node Proot,r of the tree to which Pk

belongs, and then returning the joint sequence γ∗
r related to

root Proot,r. For each newly generated constraint ωi, CBSS
updates the constraint set (line 14) and invokes the low level
planner for agent i (line 15) to recompute its individual path
that satisfies the new set of constraints. Finally, the newly
generated high level nodes are inserted into OPEN for future
expansion (line 17).

C. K-best Joint Sequences

To find the K cheapest solutions to the mTSP with assign-
ment constraints, we build on a partition-based approach for
the TSP in [38]. The main idea here is to transform the mTSP
with assignment constraints into an equivalent TSP on an
augmented graph and then apply the partition-based approach
to find the K cheapest solutions. We will first discuss the
partition-based approach for the TSP, and the transformation
method will be presented in the next subsection.

Definition 1 (Restricted TSP (rTSP)): Given a graph G′ =
(V ′, E′, C ′), let Ie, Oe ⊆ E′ denote two disjoint subsets of
edges in G′, an rTSP requires computing an optimal tour τ∗

such that Ie ⊆ τ∗ ⊆ E′\Oe and τ∗ visits each node in G′.7

Intuitively, the rTSP is defined by two sets of edges Ie,
Oe, and requires computing an optimal tour with all edges
in Ie being included in the tour and the edges in Oe being
excluded from the tour. In practice, the rTSP can be solved
by modifying the cost of edges in Ie to a relatively small value
while modifying the cost of edges in Oe to a large positive
value, and then running a TSP solver in graph G′ with the
modified costs. Since the costs of the edges in Ie and Oe can
be chosen suitably, an optimal tour can be readily found for
the rTSP. We denote this solution process of the rTSP as τ∗ ←
rTSP-Solve(G′, Ie, Oe).

The partition-based method [38] solves a K-best TSP via a
best-first search by iteratively partitioning the set of feasible
tours while finding the optimal tour in each partitioned subset
(refer to Alg. 2). In Alg. 2, Ie(k), Oe(k), τ

∗(k) keeps track of
Ie, Oe and τ∗ as a function of the iteration number (k) of the
algorithm. At the start, k = 1, an optimal tour τ∗(1) in the
graph G′ with Ie(1), Oe(1) is first computed (lines 1-4). The
tuple (Ie(1), Oe(1), τ

∗(1)) with tour cost cost(τ∗(1)) is then
inserted into OPENrTSP which denotes a queue of tuples that
are prioritized based on their tour costs. Initially, the set of
K-best solutions S is empty.

In the k-th while-iteration, a tuple (Ie(k), Oe(k), τ
∗(k)) is

popped from OPENrTSP (line 6). The tour τ∗(k) is a k-th
best solution and is thus added into S (line 7). If k is equal
to K, then S contains the K-best solutions and the algorithm
terminates (lines 8-9). Otherwise, the algorithm continues by
indexing the edges in the tour τ∗(k) from 1 to ℓ, where ℓ is the
length of the tour. Then, the algorithm runs an inner for-loop
over all the edges iteratively to partition the set of remaining
feasible tours and generate a corresponding rTSP for each
partition. Specifically, we use notation [p], p ∈ {1, 2, . . . , ℓ}
to denote the p-th for-loop iteration (line 11). For each edge
ep, the subset of edges {e1, e2, . . . , ep−1} are then added to the

7We use G′ to differentiate the graph for rTSP from the graph G that
represents the workspace. Also note the difference between a set of edges
Ie and the index set I that represents all agents. Additionally, there are two
possible definitions of the rTSP problem: one requires finding a tour that visits
each node in G′ at least once (i.e., with repetition) and another that requires
visiting each node exactly once (i.e., without repetition). We will show in
the Appendix that these two versions are equivalent within the framework of
CBSS. For the rest of the presentation, we focus on finding a tour that visits
each node exactly once.
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Algorithm 2 Pseudocode for K-best-TSP
1: Ie(1), Oe(1)← ∅
2: τ∗(1)← rTSP(G′, Ie(1), Oe(1))
3: Add (Ie(1), Oe(1), τ

∗(1)) into OPENrTSP

4: S ← ∅
5: while OPENrTSP not empty do
6: (Ie(k), Oe(k), τ

∗(k))← OPENrTSP .pop()
7: Add τ∗(k) into S
8: if k = K then
9: return S

10: Index the edges in τ∗(k) as {e1, e2, . . . , eℓ}
11: for all p ∈ {1, 2, . . . , ℓ} do
12: Ie(k + 1)[p]← Ie(k)


{e1, e2, . . . , ep−1}

13: Oe(k + 1)[p]← Oe(k)

{ep}

14: τ∗(k+1)[p]← rTSP-Solve(G′, Ie(k+1)[p], Oe(k+1)[p])
15: if τ∗(k + 1)[p] is feasible then
16: Add (Ie(k + 1)[p], Oe(k + 1)[p], τ∗(k + 1)[p]) into

OPENrTSP

17: return failure

Fig. 3: An illustration of the running process of Alg. 2. (a)
shows an optimal solution to a TSP, whose edges are indexed.
To compute the second optimal solution (K = 2), (b), (c) and
(d) show the the Ie and Oe sets of the inner for-loop iterations
with p = 1, 2, 3 respectively. The iteration p = 4 is not shown.

set Ie(k), to form a new set of edges (denoted as Ie(k+1)[p])
that must be included in the tour. Additionally, a new set of
edges to be excluded (denoted as Oe(k + 1)[p]) is formed by
taking the union of {ep} and Oe(k) (line 13). An illustration
can be found in Fig. 3. Alg. 2 then solves the corresponding
rTSP defined by Ie(k + 1)[p] and Oe(k + 1)[p], verifies the
feasibility8 of the computed tour and adds the resulting tuple
into OPENrTSP if the tour is feasible (lines 14-16). Alg. 2
has the following property.

Theorem 1: Given a graph G′, Alg. 2 is guaranteed to
compute a set of K-best tours, if there exists one.

The correctness of this theorem relies on that (i) the partition

8Feasibility here means that the solution tour includes all edges in Ie and
excludes all edges in Oe. As an implementation detail, the feasibility check
is helpful in practice as we set the costs of edges in Oe to a large number,
which means the edges in Oe may still be used in the solution tour.

is complete, and (ii) the search runs in a best-first manner. We
refer the reader to [8, 38] for more details.

Remark. Solving a K-best TSP is expensive. In each iteration
of the while loop (lines 5-16), the algorithm needs to solve
ℓ rTSPs, where ℓ is the length of the tour. To find K-best
tours, the algorithm requires solving 1+ (K − 1)ℓ rTSPs. For
implementation details, a couple of techniques can be used
to improve the runtime efficiency, which is discussed in the
Appendix.

D. Transformation Method for Solving mTSP

In this subsection, we present our approach which takes
the target graph GT and assignment constraints fA as input,
and returns an optimal joint sequence for the mTSP.9 Our
approach is based on the transformation used in [20]. We note
that the transformation method described in our work differs
from the one in [20] in the following aspects: (1) Destinations
are explicitly introduced and they can be different from agents’
start locations in this work; (2) Agent-target assignment con-
straints are introduced in this work; (3) The concept about the
“heterogeneous costs” in [20] is not relevant in this work and
thus removed. The main steps in this transformation method
are the following:

• Step-1 converts the target graph GT into a transformed
graph GTF (subscript TF stands for “transformation”)
based on the assignment constraints fA, and defines the
edge costs in GTF with a set of rules which are elaborated
in the ensuing paragraphs;

• Step-2 invokes an off the shelf TSP solver to compute an
optimal (single-agent) tour in GTF (i.e., a path with both
ends being the same vertex while visiting all the vertices
in GTF exactly once);

• Step-3 divides the (single-agent) tour into N segments by
removing some special edges (that are defined in Step-1)
in the tour where each segment corresponds to a target
sequence for an agent.

We now elaborate these three steps and provide a toy
example in Fig. 4 to illustrate. Step-1 generates GTF =
(VTF , ETF , CTF ) based on GT and fA. The vertex set is
defined as VTF := Vo


U , where U is an “augmented”

set of targets and destinations: for each target or destination
v ∈ Vt


Vd, make a copy vi of v for agent i if i ∈ fA(v).

The purpose of this augmentation is to suitably represent
assignment constraints. Let U i denote the set of all copies
of targets and destinations that agent i is eligible to visit.
Clearly, U =


i∈I U

i. Additionally, let U(v), v ∈ Vt


Vd

denote an ordered list of all copies vi of vertex v where the
order is specified by sorting i from the smallest to the largest.
Based on this order in U(v), let Next(vi), vi ∈ U(v) denote
the next copy of v in U(v) and let Prev(vi) ∈ U(v) denote
the previous copy of v in U(v). As an edge case, when vi

9Using the terms from the TSP community, the sequencing problem in-
volved in MCPF is a Multi-Depot Multi-Terminal Hamiltonian Path Problem.
To simplify presentation without causing confusion, we simply refer to it as
a mTSP or a sequencing problem.
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Fig. 4: A visualization of the target sequencing procedure for the toy example in Fig. 1. (a) Transformed graph GTF with
edges from the starts and edges connected to destinations omitted to make the plot readable. (b) The solution TSP tour
{v1o , v1t2, v2t2, v1d, v2o , v2t1, v3t1, v1t1, v2d, v3o , v3d, v1o} in graph GTF . (c) The joint sequence γ = {γi, i = 1, 2, 3} returned by the
sequencing procedure, where γ1 : {v1o , v1t1, v1t2, v1d}, γ2 : {v2o , v2t1, v2d}, γ3 : {v3o , v3d}.

is the last one in U(v), let Next(vi) indicate the first copy
in U(v); And when vi is the first one in U(v), let Prev(vi)
indicate the last copy in U(v). As an example, in Fig. 4 (a), set
U = {v1t1, v2t1, v3t1, v1t2, v2t2, v1d, v2d, v3d} and U2 = {v2t1, v2t2}.
For target vt1, U(vt1) = {v1t1, v2t1, v3t1} (an ordered list) with
Next(v3t1) = v1t1 and Prev(v1t1) = v3t1.

The edge set ETF consists of several different types of
directed edges. The cost value of these edges are stored in
the corresponding cost matrix CTF .

• Type-1 Edges: the start vio of agent i is connected to
any other node ui ∈ U i with a cost value equal to the
minimum path cost in the workspace graph G, which is
the same value as CT (v

i
o, u

i).
• Type-2 Edges: the copy of each destination of agent

i is connected to the start of agent (i + 1) for i =
1, 2, . . . , (N − 1) with zero-cost edges, and the copy of
each destination of agent i = N is connected to v1o , the
starting node of agent i = 1, with zero-cost edges. The
intuition behind these zero-cost edges is to make sure
the optimal tour of GTF uses these zero-cost edges to
connect two subsequent agents’ destinations and starts,
and the tour can therefore be readily divided into N
individual segments by removing these zero-cost edges.

• Type-3 Edges: for each v ∈ Vt


Vd, an edge is

connected from vi ∈ U(v) to Next(vi) with cost Z,
a large constant number that is an over-estimate of
the cost of the optimal joint sequence. For example,
Z = 2(N +M)max(u,v)∈ET

CT (u, v).
• Type-4 Edges: for each v ∈ Vt


Vd and for each agent

i ∈ fA(v), connect an edge from Prev(vi) to agent i’s
copy ui of all other targets and destinations, (i.e., ∀ui ∈
U i, ui ̸= vi), with cost Z + CT (v

i, ui). In Fig. 4 (a),
take v1t2 as an example: i = 1, Prev(v1t2) = v2t2, and
“agent-i’s copies of all other targets and destinations” are
{v1t1, v1d}; Thus, v2t2 is connected with each of {v1t1, v1d}.
Note that in Fig. 4 (a), all edges connected to destinations
are omitted to make the figure readable.

Type-3 and Type-4 edges are related to Noon-Bean trans-
formation [19], which solves the so-called one-in-a-set TSPs.
The intuition behind the Type-3 and Type-4 edges as well as
their cost values is to ensure that when an optimal tour in
GTF visits a copy vi of a target or destination v ∈ Vt


Vd,

the tour must visit all other copies vj , j ̸= i before arriving
at the copy ui of a next vertex u ∈ Vt


Vd, u ̸= v. By doing

so, the copies of the same target can later be removed from
the tour to extract individual sequences (as shown in Fig. 4
(b) and (c)).

So far, we have finished the presentation about Step-1,
which generates a transformed graph GTF . In Step-2, a regular
(single-agent) TSP solver is invoked on GTF and a minimum
cost tour is computed. As shown in Fig. 4 (b), an optimal tour
is computed and visualized for the toy example in Fig. 1. In
Step-3, the computed optimal tour is post-processed to obtain
the corresponding joint sequence. First, all zero-cost edges
from destinations to starts are removed, which breaks the tour
into N segments. (In Fig. 4 (b), the dotted lines, which denote
the zero-cost edges, are removed.) Second, the copies of the
same targets are shortcut. (In Fig. 4 (b), the dashed lines in
yellow and blue are shortcut.) Third, the cost of the resulting
joint sequence can be obtained by sum up the cost of edges
present in the joint sequence with respect to the corresponding
values in cost matrix CT of the target graph GT . The resulting
joint sequence for the toy example is shown in Fig. 4 (c). The
property of the sequencing procedure is summarized with the
following theorem.

Theorem 2: Given GT and fA, the target sequencing proce-
dure computes an optimal (i.e., minimum-cost) joint sequence
that visits all targets and ends at destinations while satisfying
all assignment constraints.

We refer the reader to [20, 21] for a detailed proof, which
can be readily adapted to the transformation in this work.

Remark. As a special case of MCPF, if all targets and destina-
tions are anonymous (i.e., fA(v) = I, ∀v ∈ Vt


Vd), then this
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fully anonymous MCPF problem is called a MSMP problem
in [26]. For a MSMP problem, the sequencing procedure can
be simplified: There is no need to make copies of targets and
destinations for each eligible agent and the edge of the third
type is unnecessary. We refer the reader to [20, 26] for a
detailed description about the approach for MSMP.

E. Generation of New Roots

To compute an optimal solution, CBSS determines whether
a new root needs to be generated in the CheckNewRoot
procedure (line 8 in Alg. 1) during the search. Let r denote the
number of roots that have been generated during the search.
Note that each root corresponds to a joint sequence and all
joint sequences are generated with monotonically increasing
costs. Thus γ∗

r is a joint sequence with the largest cost
value cost(γ∗

r ) among all roots that have been generated. Let
ϵ ∈ [0,∞] denote a sub-optimality bound, a hyper-parameter
of CBSS: When ϵ = 0, CBSS is required to compute an
optimal solution; When ϵ = ∞, there is no optimality bound
required for the computed solution.

Algorithm 3 Pseudocode for CheckNewRoot

1: Input: Pl = (πl, gl,Ωl), OPEN
2: r ← number of roots generated so far.
3: if gl ≤ (1 + ϵ)cost(γ∗

r ) then
4: return Pl ▷ Defer the generation of the next root
5: γ∗

r+1 ← K-best-Sequencing(GT , fA,K = r + 1)
6: π, g ← LowLevelPlan(γ∗

r+1, ∅)
7: Proot,r+1 = (π, g, ∅)
8: if gl ≤ (1 + ϵ)cost(γ∗

r+1) then
9: Add Proot,r+1 into OPEN

10: return Pl ▷ Defer the expansion of the next root
11: Add Pl into OPEN
12: return Proot,r+1

As shown in Alg. 3, CheckNewRoot first checks if the
cost of the input node exceeds (1 + ϵ)cost(γ∗

r ). If not, Pl

is returned (for expansion) as the cost of Pl is still within the
sub-optimality bound. Otherwise, CheckNewRoot generates a
next best joint sequence γ∗

r+1 via procedure K-best-Sequencing
(line 5).

With γ∗
r+1, LowLevelPlan computes a joint path π as well

as its cost g following γ∗
r+1, and the next root node Proot,r+1

is generated. Finally, line 8 checks if the cost of the input
node Pl exceeds (1 + ϵ)cost(γ∗

r+1). If not, Pl is returned for
expansion as its cost is still within the sub-optimality bound.
Otherwise, Pl is inserted back to OPEN for future expansion
and the newly generated root Proot,r+1 is returned.

As shown in Alg. 1, CBSS invokes CheckNewRoot right
before the expansion of a node to defer the expensive com-
putation of a next best joint sequence until needed. CBSS
intentionally defers this computation by first comparing the
cost of the node to be expanded against the sub-optimality
bound and then computing a next best joint sequence until
absolutely necessary. Finally, it’s worthwhile to note that,

when ϵ =∞, CBSS becomes a “sequential” method in a sense
that the optimal joint sequence γ∗

1 is computed at first and
then CBSS plans a joint path following γ∗

1 without generating
a second best joint sequence (since ϵ = ∞). A collision-free
path may still be found but no optimality guarantee can be
provided (i.e., a bound of ∞).

VI. ANALYSIS

This section provides sketch proofs to show that CBSS is
guaranteed to find a solution if one exists (Theorem 3) and the
returned solution is guaranteed to be an ϵ-bounded sub-optimal
solution (Theorem 4). A solution (joint path) is feasible if it (i)
visits all the targets and ends at destinations while satisfying all
the assignment constraints, and (ii) is conflict-free. A MCPF
problem instance is feasible if there exists a feasible solution.

Theorem 3: For a feasible MCPF problem instance, CBSS
returns a feasible solution.

Proof: By Theorem 2 and the construction of the algo-
rithm (line 10 in Alg. 1), when CBSS terminates, the returned
solution is guaranteed to be feasible. During the search, CBSS
either generates a new root with monotonically increasing
costs (by Theorem 1), or expands a node within a certain
tree. There is a finite number of possible roots to be generated.
Additionally, within each tree, CBSS expands nodes with non-
decreasing costs (i.e., in a best-first manner), and there are
only a finite number of possible nodes with costs no larger
than a certain cost value [31]. Therefore, if there is a feasible
solution, CBSS terminates in finite time and finds a feasible
solution.

Theorem 4: Let g∗ denote the cost value of an optimal
solution for a MCPF problem instance. When ϵ < ∞, CBSS
is guaranteed to return a solution π with cost value g that is
no larger than (1 + ϵ)g∗.

Proof: Let P ∗ = (π∗, g∗,Ω∗), P = (π, g,Ω) denote the
search node corresponding to g∗ (the optimal solution cost)
and g (the cost of the solution returned by CBSS) respectively.
Also, let Proot,r′ = (π′, g′,Ω′) denote the root node of the
tree that contains P ∗. When P is expanded and solution π is
returned, the root node Proot,r′ is either (1) generated (i.e.,
r′ ≤ r) or (2) not generated (i.e., r′ > r).

For case (1), CBSS searches in a best-first manner, which
guarantees that P is the first conflict-free node being expanded
and g is the minimum cost among all un-expanded nodes in
OPEN. Node P ∗ must be an un-expanded node because other-
wise CBSS should have expanded it. Thus, g ≤ g∗ ≤ (1+ϵ)g∗.

For case (2), by Alg. 3, any nodes that are expanded by
CBSS cannot have a cost value that is greater than (1 + ϵ)g′,
because otherwise root Proot,r′ would have been generated.
Therefore, g∗ ≥ g′ ≥ g

(1+ϵ) . The first inequality holds because
node Proot,r′ has an empty constraint set Ω′ while node P ∗

has a constraint set Ω∗ that is a super set of Ω′. In summary,
for either case, we have g ≤ (1 + ϵ)g∗.
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VII. RESULTS

A. Implementation, Baselines and Test Settings

We implement CBSS framework in Python. We use LKH-
2.0.910 [10] as the single-agent TSP solver required by the
transformation method (Sec. V-D). We implement the low
level planner in CBSS by using SIPP [23] to search a time-
augmented (workspace) graph G× {0, 1, 2, . . . , T} subject to
vertex and edge constraints. It has been shown that SIPP runs
faster than A* as the low level planner for CBS-like algorithms
[28]. We use different grid maps from a online data set [34]
and make each of them four-connected with unit-cost edges.
All tests are run on a computer with an Intel Core i7-11800H
CPU and 16GB RAM. Each test instance has a time limit of
one minute. For subsequent sections, let N denote the number
of agents and M denote the number of targets. The number
of destinations are not included in M .

We select three baselines for comparison. The first one is
using A* to search the joint configuration space of agents,
where each search state encodes both the location of agents
as well as the visiting status of the targets. This A* method is
guaranteed to find an optimal solution. The second baseline
is MS* [26], which is a state-of-the-art multi-agent planner
leveraging subdimensional expansion [39] to solve the fully
anonymous version of MCPF problems, (i.e., each target or
destination can be assigned to any agent). The third baseline
is a greedy method. It begins by assigning targets and desti-
nations in a greedy manner, which is elaborated later. Then,
LKH is invoked for each agent to compute the visiting order of
the assigned targets. The computed joint sequence is then used
within the CBSS framework, and ϵ is set to ∞. As a result,
this greedy baseline planner runs in a sequential manner by
first computing a (greedy) joint sequence γ and then planning
conflict-free paths following γ. This greedy method can handle
arbitrary forms of assignment constraints.

The aforementioned greedy assignment procedure consists
of the following steps: (i) In each iteration, the procedure loops
over all unassigned targets v and the corresponding eligible
agents i ∈ fA(v) to find a pair (v, i) that has the minimum
path cost between the agent-i’s “current location” (which is
initialized as vio for each agent i) and the target v; (ii) The
procedure assigns target v to agent i and updates agent-i’s
current location to v; (iii) The procedure repeats (i) and (ii)
until all targets are assigned, and then runs the same greedy
assignment process for all destinations while ensuring that
each agent is assigned to a unique destination.

B. CBSS vs MS*

We begin our tests with fully anonymous MCPF problems.
We compare CBSS (ϵ = 0) against both MS* [26] and A* for

10LKH is a popular heuristic algorithm for the TSP, which has been shown
to be able to find an optimal solution for numerous TSP instances. More details
about the LKH solver can be found in http://akira.ruc.dk/∼keld/research/LKH.
This work uses LKH as the TSP solver due to its computational efficiency.
Other TSP solvers can also be used. Note that, since the solution tour returned
by LKH is not guaranteed to optimal, the resulting implementation of CBSS
(with ϵ = 0) is not guaranteed to return an optimal solution joint path.

Fig. 5: Numerical results of CBSS (this work) and MS*
(baseline). Color indicates different number of agents N and
the x-axis represents the number of targets M . CBSS (the
triangles markers) achieves up to 60% higher success rates
than MS* (the bars) within the one minute runtime limit.

N ∈ {5, 10, 20} and M ∈ {10, 20, 30, 40, 50}. We report the
success rates within the runtime limit.

The A* method can not solve any instances with N = 5
within the time limit due to the exponential growth of the joint
configuration space with respect to the number of agents, and
is thus omitted from the figure. For CBSS and MS*, as shown
in Fig. 5, CBSS achieves higher success rates than MS* in all
settings, and doubles the success rates in some settings. For
example, in Fig. 5 (c), when N = 10 (the red markers) and
M = 20, the success rate of MS* is less than 40% while the
rate of CBSS is 100%.

C. CBSS with Different Sub-optimality Bounds

This section investigates the effect of ϵ on CBSS. We use
the most challenging setting from the previous test (i.e., the
maze map with N = 20) and vary the ϵ among {0, 0.01, 0.1}.
All test instances are fully anonymous, same as the instances
in the previous section. All statistics in Fig. 6 are taken over
all instances (both solved and unsolved within the time limit).

1) Success Rates: As shown in Fig. 6 (b), increasing ϵ
from 0 to 0.01 can significantly increase the success rate. One
reason behind is that a small ϵ can help with tie-breaking:
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Fig. 6: Numerical results of CBSS with different sub-
optimality bounds ϵ. (a) shows the success rates. (b) shows
the number of TSP solver calls. (c) shows the number of high-
level nodes expanded by CBSS. There is a trade-off between
solution optimality bound and runtime efficiency: larger ϵ
tends to defer the generation of the next best joint sequence
and can lead to higher success rates within the time limit.

for problem instances with many equal-cost joint sequences,
setting ϵ to a smaller number (such as 0.01) can defer the
generation of those equal-cost joint sequences with tiny loss
in the optimality bound (1% loss). Similarly, increasing ϵ from
0.01 to 0.1 further improves the success rates.

2) Number of Calls on the TSP Solver: As shown in Fig. 6
(c), increasing ϵ leads to fewer TSP solver calls. This is
expected as a larger ϵ can defer the generation of the next
best joint sequence (Sec. V-E). For example, when ϵ = 0.1
and M = 30, 40, 50, only one joint sequence is generated
(Fig. 6 (c)).

3) Number of High Level Nodes Expanded: As shown in
Fig. 6 (d), increasing ϵ leads to more high level nodes expan-
sion in general. Combined with Fig. 6 (b) and (c), it indicates
that, with a large ϵ, CBSS tries to find conflict-free paths
by following the joint sequences that have been generated
and defers the (expensive) computation of the next best joint
sequence, which consequently leads to higher success rates
in general. However, note that using a larger ϵ to defer the
generation of the next best joint sequence can not theoretically
guarantee a higher success rate, since it’s possible that the
generated joint sequences lead to many conflicts between
agents and result in a large runtime. We will revisit this in
the next subsection.

To summarize, there is a trade-off between solution optimal-
ity bound and runtime efficiency, and a larger ϵ often leads to
higher success rates empirically.

D. CBSS for MCPF with Various Assignment Constraints

In the previous sections, CBSS is evaluated with fully
anonymous MCPF problems. This section evaluates CBSS

with various types of assignment constraints. Since the prob-
lem formulation of MCPF is very general, it’s impossible to
evaluate all different forms of assignment constraints within
this paper. We select the following cases to investigate.

• (Case-1) Each destination is assigned to a unique agent
while all targets are anonymous. This type is a strict
generalization of MAPF.

• (Case-2) Each agent has a pre-assigned target while the
remaining targets and all destinations are anonymous.

• (Case-3) A combination of Type-1 and Type-2: every
destination is assigned to a unique agent, and each agent
has a pre-assigned targets while the remaining targets are
anonymous.

All tests are run in the aforementioned random map with
N = 10, ϵ = 0.01. We compare CBSS and the aforementioned
greedy baseline (which can also handle arbitrary forms of
assignment constraints). We report in Fig. 7 both the success
rate and the cost ratio, which is defined as

cost ratio =
cost(πGreedy)− cost(πCBSS)

cost(πCBSS)
, (1)

where cost(πGreedy) is the solution cost computed by the
greedy method and cost(πCBSS) is the solution cost computed
by CBSS. The statistics of the cost ratio are computed over
all the instances that are solved by both methods within the
runtime limit.

Fig. 7: Numerical results of CBSS and the greedy baseline. (b)
(c) and (d) correspond to Case-1, Case-2, Case-3 of assignment
constraints respectively as explained in the text. The greedy
method achieves higher success rates than CBSS in general
but suffers from higher solution costs.

1) Success Rates: The greedy methods achieves higher
success rates than CBSS in general, especially when M is
large (e.g. in Fig. 7 (c) and (d)). This is expected since a
larger M leads to TSPs with more nodes, which is in general
computationally more expensive to solve. We observe from
the data that, in Fig. 7 (b) with M = 50, CBSS cannot
finish computing the first optimal joint sequence within the
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time limit, which demonstrates the computational burden of
sequencing the targets. In contrast, the greedy method can
sequence targets quickly and can achieve higher success rates.

There are also cases where CBSS achieves higher success
rates than the greedy method (e.g. in Fig. 7 (d) when M =
20). The reason is that the greedy method computes only one
joint sequence and then run CBS-like search by following this
(fixed) joint sequence. If this joint sequence leads to many
conflicts between agent, the greedy method has to resolve all
of them to return a solution. In CBSS, the next best joint
sequence is generated when needed, which can help bypass
the large number of conflicts caused by following only one
joint sequence.

2) Solution Cost: The black error bars in Fig. 7 show the
distribution of the cost ratios. Although the greedy baseline
runs fast, it can lead to solutions that are up to 50% more
expensive than the solutions computed by CBSS. It shows
the trade-off between solution quality and runtime: solving
computationally expensive TSPs in CBSS can lead to solutions
with cheaper cost.

E. Physical Robot Tests

To demonstrate the applicability of CBSS on physical
robots, we run CBSS using Robotarium [40], a remotely
accessible multi-robot testbed, with four mobile robots and
12 target locations with assignment constraints.11

VIII. CONCLUSION

This paper formulates a problem called Multi-Agent Com-
binatorial Path Finding (MCPF), which requires both planning
collision-free paths for multiple agents as MAPF does as well
as sequencing targets for agents as mTSP requires. The work
develops a framework called Conflict-Based Steiner Search
(CBSS) to solve MCPF with optimality guarantees. CBSS is
a general and flexible framework in the following sense. First,
by varying the sub-optimality bound ϵ ∈ [0,∞], CBSS moves
along a spectrum from computing optimal solutions with high
computational burden, to computing ϵ-bounded sub-optimal
solutions within a smaller amount of time, to computing un-
bounded sub-optimal solutions efficiently as a naive sequential
approach does. Second, different sequencing procedures (e.g.
greedy sequencing, K-best sequencing) can be used within
the CBSS framework, trading off solution quality for runtime
efficiency. This work also provides extensive numerical results
to corroborate the performance of CBSS in various settings
with different numbers of agents and targets.

For future work, one can extend CBSS to address the
uncertainty in the robot motion or the perturbation in the
environment, which are common in some applications but
not considered in the current work. In addition, one can
also expedite CBSS by leveraging approximation or heuristic
target sequencing methods, or by incorporating CBS-related
techniques to improve the multi-agent path planning process.

11https://youtu.be/xwLoCiJ2vJY
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APPENDIX

A. Improved K-best partition for CBSS

A few techniques can be introduced to improve the com-
putational efficiency of Alg. 2 within the CBSS framework.
First, the transformed graph GTF (which is the graph G′

in Alg. 2) contains special types of edges (the second and
the third type of edges as defined in Sec. V-D), which are
auxiliary edges that help with the transformation. These edges
should be skipped during the partition for-loop (lines 11-16 in
Alg. 2). For example in Fig. 4, only the solid edges in Fig 4 (b)
(i.e., {(v1o , v1t2), (v2t2, v1d), (v2o , v2t1), (v1t1, v2d), (v3o , v3d)}) need to
be indexed and looped over for partitioning.

Second, Alg. 2 can be readily modified to an incremental
version by saving OPENrTSP and S computed in the K-th call
for the future (K+1)-th call. In other words, when a set of K-
best tours is computed and a (K +1)-th best tour is required,
the search process can be resumed by reusing OPENrTSP and
S . This incremental version is helpful for CBSS since CBSS
always requires a next best joint sequence incrementally.

B. Visiting a node exactly once vs. at least once

Within the CBSS framework, the K-best sequencing pro-
cedure only needs to compute joint sequences that visit each
node in GT (the target graph) exactly once, instead of at least
once. In the ensuing paragraphs, we show that CBSS is able to
find an (1+ϵ)-bounded sub-optimal solution joint path (if one
exists) by considering only the joint sequences that visit each
node in GT (the target graph) exactly once (i.e., Theorem 4
holds).

Let L∗ = {γ∗
1 , γ

∗
2 , . . . , γ

∗
n} denote the (finite) list of all

joint sequences where each γ∗
i ∈ L∗ visits each node in GT

exactly once. The sequences in L∗ are ordered such that their
costs are non-decreasing (i.e., cost(γ∗

i ) ≤ cost(γ∗
i+1) for i =

1, 2, · · · , n − 1). Similarly, let L′ = {γ′
1, γ

′
2, . . . } denote the

(infinite) list of joint sequences where each γ′
j ∈ L′ visits

each node in GT for at least once. Since each γ∗
i ∈ L∗ also

visits each node in GT for at least once, it follows that L∗ ⊂
L′. The sequences in L′ are ordered such that their costs are
non-decreasing. In addition, if the cost of any two sequences
γ′
i, γ

′
j ∈ L′ are the same, they are ordered such that

• γ′
i appears before γ′

j in L′, if γ′
i, γ

′
j ∈ L∗ and γ′

i appears
before γ′

j in L∗;
• γ′

i appears before γ′
j in L′, if γ′

i ∈ L∗ and γ′
j /∈ L∗.

Lemma 1: For each γ∗
i ∈ L∗, there exists a corresponding

γ′
j ∈ L′ such that γ′

j = γ∗
i and j ≥ i.

For presentation purposes, we now use notation (γ∗
i , γ

′
j) to

denote such a pair of joint sequences in both lists as described
in Lemma 1. Let (γ∗

i , γ
′
j) and (γ∗

i+1, γ
′
j+ℓ) denote two adjacent

pairs such that cost(γ∗
i+1) > cost(γ∗

i ). Let L∗
i denote the list

of the i-best joint sequences {γ∗
1 , γ

∗
2 , . . . , γ

∗
i } (and i ≤ n−1).

Then, we have the following lemma.
Lemma 2: For any joint sequence γ′

k′ , k′ = j + 1, j +
2, . . . , j + ℓ − 1, γ′

k′ can be converted into a target sequence
γ∗
k for some k = 1, 2, · · · , i by taking shortcuts in GT so that

γ∗
k visits each node in GT exactly once.

This lemma holds because GT (the target graph) satisfies
triangle inequality (we can thus take shortcuts for nodes that
are visited multiple times), and γ∗

k must be the same as one
of the joint sequence in L∗

i , because otherwise L∗
i cannot be

the i-best joint sequences. Additionally, for the case where
i = n, the ℓ in Lemma 2 becomes infinity. In other words, let
(γ∗

n, γ
′
n′) denote the last pair. All joint sequences after γ′

n′ in
L′ can be shortcut to one of the sequence in L∗.

Next, we want to show that, by using L∗ (instead of L′)
to generate root nodes during the CBSS search (Alg. 3),
Theorem 4 still holds.

Definition 2 (CV-set): For a high level node P = (π, g,Ω),
let CV (P ) be a set of joint paths, such that for each π ∈
CV (P ), π (i) is conflict-free, (ii) follows γ(P ), and (iii)
satisfies all constraints in Ω.
Additionally, if π ∈ CV (P ), we say node P permits π.

Let γ′
k′ denote a joint sequence as discussed in Lemma 2 and

let γ∗
k denote a the corresponding sequence after the shortcut

as stated in Lemma 2. Let πk′ denote a joint path that follows
γ′
k′ while ignoring any agent-agent conflicts (and obviously

cost(πk′) = cost(γ′
k′)), and let Pk′ = (πk′ , cost(πk′), ∅)

denote a high level node. Similarly, let πk denote a joint path
that follows γ∗

k while ignoring any agent-agent conflicts, and
let Pk = (πk, cost(πk), ∅) denote a root node γ∗

k .
Lemma 3: For each π that is permitted by P ′, π is also

permitted by Pk.
To show this lemma, we need to verify the three conditions
in Def. 2. Condition (i) and (iii) are obvious given that π is
permitted by P ′. We now show condition (ii). π is permitted
by P ′, which means π follows γ′

k′ (where some of the nodes
are visited multiple times). Since γ′

k′ can be shortcut to γ∗
k

(i.e., skip the nodes that are visited multiple times), π also
follows the joint sequence γ∗

k . This justifies the condition (ii)
in Def. 2.

Lemma 3 shows that, during the CBSS search process, by
only generating root nodes that correspond to joint sequences
in L∗, Theorem 4 holds.
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