DEPCOMM: Graph Summarization on System Audit Logs for Attack Investigation

Zhigiang Xu 12, Pengcheng Fang 3, Changlin Liu 3, Xusheng Xiao 3*, Yu Wen '*, Dan Meng 12
Hnstitute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China
3Department of Computer and Data Sciences, Case Western Reserve University, USA
Email: {xuzhigiang,wenyu,md} @iie.ac.cn
Email: {pxf109,cx11029,xusheng.xiao} @case.edu

Abstract—Causality analysis generates a dependency graph
from system audit logs, which has emerged as an important
solution for attack investigation. In the dependency graph, nodes
represent system entities (e.g., processes and files) and edges
represent dependencies among entities (e.g., a process writing
to a file). Despite the promising early results, causality analysis
often produces a large graph (> 100,000 edges) and it is
a daunting task for security analysts to inspect such a large
graph for attack investigation. To address challenges in attack
investigation, we propose DEPCOMM, a graph summarization
approach that generates a summary graph from a dependency
graph by partitioning a large graph into process-centric commu-
nities and presenting summaries for each community. Specifically,
each community consists of a set of intimate processes that
cooperate with each other to accomplish certain system activities
(e.g., file compression), and the resources (e.g., files) accessed
by these processes. Within a community, DEPCOMM further
identifies redundant edges caused by less-important and repetitive
system activities, and perform compression on these edges.
Finally, DEPCOMM generates the summary for each community
using the InfoPaths that represent the information flows across
communities. These InfoPaths are more likely to capture a set
of attack-related processes that work together to achieve certain
malicious goals. Our evaluations on real attacks (~ 150 million
events) demonstrate that DEPCOMM generates 18.4 communities
on average for a dependency graph, which is ~ 70x smaller
than the original graph. Our compression further reduces the
edges in each community to 32.1 on average. Compared with the
9 state-of-the-art community detection algorithms, on average,
DEPCOMM achieves a 2.29x better Fi-score than these algo-
rithms in detecting communities. Through cooperating with the
automatic techniques HOLMES, DEPCOMM can identify attack-
related communities by a recall of 96.2%. Our case studies on
the real attacks also demonstrate DEPCOMM’s effectiveness in
facilitating attack investigation.

Keywords-attack investigation; system auditing; graph summa-
rization; community detection

I. INTRODUCTION

Recent cyber attacks have penetrated into many well-
protected businesses, causing significant financial losses [1—
7]. To counter these attacks, causality analysis [8—15] based
on ubiquitous system monitoring has emerged as an important
approach for performing attack investigation [8, 9, 12, 13, 16—
19]. System monitoring observes system calls and generates
kernel-level audit events as system audit logs. These logs
enable causality analysis to identify entry points of intrusions

*Corresponding Author

(backward tracing) and ramifications of attacks (forward trac-
ing), which have been shown to be effective in assisting attack
investigation and timely system recovery [10, 11, 14, 20, 21].

While early results are promising for causality analysis,
existing approaches require non-trivial efforts of manual in-
spection [14, 22], which hinders their wide adoption. Causal-
ity analysis approaches consider system entities (e.g., files,
processes, and network connections) that are involved in
the same system call event (e.g., a process reading a file)
to have causal dependencies. Based on these dependencies,
these approaches represent system-call events using a system
dependency graph, where nodes represent system entities and
edges represent dependencies derived from system events.
Using a dependency graph, security analysts can investigate
the contextual information of an attack by reconstructing
the chain of events that lead to the POI (Point-Of-Interest)
event (e.g., an alert event reported by intrusion detection
systems [14, 23]). Such contextual information is effective in
revealing attack-related events such as distinguishing benign
uses of ZIP from ransomware [14, 24]. However, due to
the dependency explosion problem [25-27], it is hard for
security analysts to effectively extract the desirable contextual
information from a huge graph (typically containing >100K
edges [14, 22]).

Recognizing the challenges of using dependency graphs in
attack investigation, recent techniques have been proposed to
automatically filter irrelevant events and reveal attack-related
events [12-15, 28]. While these techniques achieve promising
results, manual attack investigation is still indispensable due
to three major reasons. First, in spite of being rare, there
are always residual risks in a system, which cannot be accu-
rately revealed by these automation techniques, especially for
techniques that heavily rely on system profiles [14]. Second,
threats are continually evolving to evade defence techniques,
such as emerging attack tactics and techniques lately devel-
oped by adversaries. Third, existing techniques mainly rely on
heuristic rules that cause loss of information [8, 9] and intru-
sive system changes [13, 15] such as binary instrumentation,
hindering their practical adoption.

Motivation. To effectively assist attack investigation, in this
paper, we aim to develop a graph summarization approach
that preserves the semantics of system activities in a
dependency graph while shrinking its size by hiding less-
important details. More specifically, we aim to generate a

summary graph by dividing a dependency graph into a number
of communities (i.e., sub-graphs) and presenting a succinct
summary for each community. Each community contains only
closely related processes, and they work together to accom-
plish certain system tasks (e.g., file compression). We then
compute the summary using these processes and their accessed
resources, which can represent high-level system activities that
jointly outline the skeleton of the original dependency graph.
Furthermore, our graph summarization can be combined with
existing automatic investigation techniques [12-15, 28] to
highlight attack-related communities.

Challenges. Graph summarization techniques [29-31] have
been shown to be effective in managing large-scale graphs
by generating a compact representation of a graph, i.e., a
summary graph. However, little has been studied on the
security implications of summary graphs for attack investi-
gation. In particular, the unique characteristics of dependency
graphs pose three major challenges for DEPCOMM to generate
summary graphs for dependency graphs.

® A dependency graph is a type of heterogeneous graph,
where nodes represent different types of system entities (i.e.,
processes, files, and network connections) and play different
roles in attack steps. A general purpose summarization tech-
nique that treats each node equally cannot effectively detect the
communities to represent major system activities. Additionally,
a domain-specific technique of a non-security domain, even if
it is designed for heterogeneous graphs, most likely leads to
loss of attack information.

@ Causality analysis [8, 9, 12, 14] relies on the event time
to identify causal dependencies (e.g., a process reading a file
after another process writing to it) and the dependency graph
contains lots of less-important dependencies that represent
irrelevant system activities such as chronicle system mainte-
nance tasks and irrelevant web browsing. These dependencies
become the majority parts of the dependency graphs and it is
a challenging task to compress and hide these activities.

® Graph summarization techniques [29-31] mainly deal with
the data stored in databases, and their schema and constraints
play an important role in the generated summary graphs. But
in dependency graphs, a sequence of edges that represent
system activities should be the core of the generated summary
graphs for attack investigation. How to summarize these edges
becomes another challenge for DEPCOMM.

Contributions. To address the aforementioned challenges in
graph summarization for dependency graphs, we propose
DEPCOMM, a graph summarization approach that detects
process-centric communities, compresses the less-important
edges inside each community, and summarizes each commu-
nity using top-ranked paths that represent information flows
among the communities. DEPCOMM is a general approach
that performs graph summarization on large-scale dependency
graphs and can cooperate with various automatic investigation
techniques [14, 32] to highlight and visualize attack-relevant
communities. The design of DEPCOMM is driven by the
following key insights.

First, in system audit logs, system activities (e.g., down-
loading a malicious script and executing the script) are often
represented as a set of process nodes that have either strong
correlation with each other or data dependencies through some
resource nodes. For example, a process tar spawns a child
process bzip2 and they work together to compress a file. By
carefully examining the cooperation of processes, we observe
that these processes (1) either have parent-child relationships
(i.e., a process spawning a set of children nodes) or (2) share
the same parent process (i.e., sibling processes) and have data
dependencies through some resources (e.g., files). We refer to
this type of closely related processes as intimate processes.
Thus, to address the challenge @, DEPCOMM partitions a
dependency graph into process-centric communities, where
each community includes a group of intimate processes and
the system resources accessed by these processes.

Second, as shown in recent studies [26, 27, 33], there are
many redundant edges caused by less-important and repetitive
system activities, such as chronicle tasks and backup file
updates. Thus, to addressing the challenge ®, DEPCOMM
identifies process-based and resource-based patterns and com-
presses the edges based on these patterns for each com-
munity. Rather than preserving dependencies as the existing
work [27, 33], our community detection allows aggressive
compression among multiple processes inside a community.

Third, by carefully inspecting the dependency graphs of
various attacks [12, 13, 15, 18], major system activities (e.g.,
compressing files) and attack behaviors (e.g., leaking data)
are often represented as information flows among attack-
related processes, such as compressing sensitive data and
leaking the compressed file. Such information flows are often
represented as the paths from the input nodes to the output
nodes in a community, referred to as InfoPaths. For exam-
ple, a malicious script leaks a sensitive file by packaging,
encrypting and uploading, and the corresponding InfoPath
is: .. /secret.doc—>tar—>../upload.tar—bzip2—>../upload.tar
.bz2—gpg—>. ./upload.gpg—>curl—>XXxX—>XXX. MOI'GOVCI', there
could be many InfoPaths from the inputs to the outputs in
a community, and not all of them are related to major sys-
tem activities. Thus, to address the challenge ®, DEPCOMM
prioritizes the InfoPaths inside each community and ranks the
InfoPaths that are more likely to represent attack steps and
major system activities at the top.

Approach. Based on these insights, DEPCOMM provides
novel techniques to detect process-centric communities, per-
forms compression inside the detected communities, and gen-
erates representative summaries for each community.

To detect process-centric communities (Section IV-C), DE-
PCOMM learns the behavior representations of a dependency
graph’s process nodes, and clusters the process nodes with
similar representations into a community. Specifically, DEP-
CoMM performs random walks [34] on each process node to
obtain walk routes and computes the behavior representation
for each process node by vectorizing these walk routes.
Particularly, as existing random walk algorithms [34-38] treat

each node equally, they are less effective to generate similar
behavior representations for intimate processes. Thus, we
design a series of novel hierarchical walk schemes, which
leverage both the information of the processes’ local neighbors
and the global process lineage trees [39] to choose the walk
routes that are more likely to find intimate processes. With
the learned representations for each process node, DEPCOMM
clusters these process nodes into communities, and further
classifies these processes’ accessed resource nodes into the
detected communities, producing process-centric communities.

To perform community compression (Section IV-D), DEP-
CoMM first computes a process lineage tree for each com-
munity, and associates each process node with the events
that access resource nodes. By searching this tree, DEP-
COMM can identify process-based patterns (e.g., a bash process
spawning multiple vim processes) and resource-based patterns
(e.g., multiple vim processes editing a source file). Based
on the identified process-based and resource-based patterns,
DEPCOMM merges all of the repeated edges and nodes to
compress a community.

After compressing communities, DEPCOMM generates In-
foPaths for each community, prioritizes the InfoPaths, and
presents the top-ranked InfoPaths as the summary of a com-
munity (Section IV-E). To do that, DEPCOMM first identifies
the input nodes and the output nodes of each community
according to the information flows among communities, and
then generates InfoPaths by finding paths for every pair of
input and output nodes. Next, DEPCOMM assigns a priority
score to each InfoPath based on its likelihood to represent
major system activities in the community (e.g., containing the
POI event). Finally, DEPCOMM ranks these InfoPaths based
on the priorities and shows the top-ranked InfoPaths as the
summary for a community. While top-2 InfoPaths can reveal
attack behaviors for most communities (Section V-E), security
analysts can decide the number of top InfoPaths shown in the
summary of a community based on their needs.

Evaluation. We evaluate DEPCOMM on 6 real attacks per-
formed in our lab setting and 8 attacks from the DARPA TC
dataset [40]. In total, there are ~150 million system audit
events and the generated dependency graphs consist of 1, 302.1
nodes and 7,553.4 edges on average. In our evaluations,
DEPCOMM generates 18.4 communities on average for a
dependency graph, which is ~ 70x smaller than the original
graph. These communities contain 43.1 nodes and 248.5 edges
on average. Compared with the 9 state-of-the-art community
detection algorithms [36, 38, 41-47], the Fi-score achieved by
DEPCOMM (94.1%) is averagely 2.29 times better than those
achieved by the algorithms. Next, DEPCOMM compresses
the communities based on the detected process-based and
resource-based patterns, and achieves a compression rate of
44.7% on average. The compressed communities have 15.7
nodes and 32.1 edges on average, which are reduced by 63.6%
and 87.1%, respectively. Moreover, all the attacks can be
effectively investigated by using the top-2 InfoPaths, i.e., 2 out
of the 15.7 found InfoPaths on average (12.7%). These results

show that these summary graphs require much less manual
effort for attack investigation. Furthermore, the evaluation of
cooperating with HOLMES [32] shows that all the attack-
related communities except two ones are mapped to the steps
in Kill Chain [48] (achieving a recall of 96.2%), and these
two unrevealed communities can be easily recognized by con-
sidering the adjacent attack communities. Our implementation
of DEPCOMM and the evaluation datasets are available at our
project website [49].

II. BACKGROUND AND MOTIVATION
A. System Event and Causality Analysis

System Audit Event: Monitoring and analyzing kernel-
level audit events are crucial for attack investigation and
detection. System auditing events describe the interactions
between two system entities, which are represented as 3-
tuple (subject, operation, object). According to the previous
work [8, 9, 12, 13, 16—-19], subjects represent process entities,
and objects represent process, file, or network entities. System
audit events are categorized based on the types of their objects:
process events, file events, and network events. Process events
record the operations of processes, such as fork and clone. File
events record the operations on files, such as files read, write,
and rename. Network events record the operations of network
accesses, such as send and receive messages from sockets.

Causality Analysis: Causality analysis has been widely
applied to attack investigation and detection [8—15]. It infers
the causal dependencies among system audit events, and
organizes them as a dependency graph. A dependency graph
is a directed graph, where nodes represent system entities (i.e.,
processes, files, and network connections) and edges represent
system audit events. In a dependency graph G(E, V), a system
audit event is denoted as a directed edge e(u,v), where
u e V,veV,ee E, and the direction of the edge represents
the direction of data flow (i.e., flowing from u to v). In
addition, the edge records the start time (e.st) and the end
time of the event (e.et). Given two nodes n; and no, no has
a causal dependency on n; if there exist two edges eq(n1,v1)
and ey (v, n2) such that v; = vo and e;.st < eg.et.

B. Motivating Example

We use a data exfiltration attack as an example to motivate
DEPCOMM. In this attack, the attacker downloads and exe-
cutes a backdoor program bdooz in a target system through an
Apache Sever, and opens a terminal (i.e., bash) via exploiting
the opened backdoor at the port 9999. The attacker then
downloads an executable script 1eak.sh, and exploits the root
access to run the script to collect sensitive files, which are
sent to a suspicious remote host. All these activities among
processes and OS resources are captured in the system audit
logs. We construct the dependency graph by applying causality
analysis from the suspicious event that sends the files to
the remote IP (i.e., the POI event). Fig. 1 shows a part of
the dependency graph. The complete dependency graph has
1,038 nodes and 4,039 edges, including attack-related and
benign events. As we can see, it requires non-trivial efforts

]

sshd
26442

===7=7
R} - o = -

g VA

1
1
1
1
S
1
1
1
1
1
1
1
1
1
1

[

-

Network

File
V) Node

o Node

:lhl\?:(;ss <«— Dependency <@

Attack-Related
Events

ON
&

[——

\

’
B ettt

!

Y AR A" -

= O

Information Flow
among Replicas

Repeated
Edges

Replica
of a Node

Repeated

Nodes -

Fig. 1: Partial dependency graph for a data exfiltration attack. The complete dependency graph has 1,038 nodes and
4,039 edges. DEPCOMM partitions the dependency graph into 10 process-centric communities, where the red dashed
frames are the communities with attack-related events (bold red edges), and the blue dashed frames are the communities
with only normal events. For the nodes that represent the inputs and the outputs of communities, we create replicas
of such nodes (blue nodes) and assign each copy to a community. These replicas are connected with directed edges
(dashed blue arrows), where the direction indicates the direction of the information flow across communities.

- ~ Master: sshd C4 Master: sshd C9
Master: apache2 Cl1 Master: cron c5 Time: 2020-05-31 18:12:33 ~ Master: sshd Cé Time: 2020-05-30 08:43:29 ~
Time: 2020-06-01 04:09:26 Time: 2020-06-01 04:05:01 2020-05-31 18:13:35 —— =< Time: 2020-05-31 18:06:28 ~ 2020-05-30 08:47:38
~2020-06-01 04:09:26 ~2020-06-01 04:10:01 o lnfoPaths:. xxx»>xxx~>.sshd /devimulll 2020-05-31 18:07:47 InfoPaths: xxx->xxx—sshd
InfoPaths: XXX->XXX— InfoPaths: cron—-../loginuid —bash—vim—../analysis.txt InfoPaths: xxx->xxx— sshd bash—wget —.. /data.csv—mv
curl—/tmp/bdoor—bdoor [0.6248] [0.4957] —bash—scp —../sys.log— —bash— python —../feature.csv

L [0.5705] &7 ’,sa(A\ - java—../result_java [0.4854] & [0.4912]

_@»/ /Wﬁ. . B - ' & \
bdoor—bash l A2 oo el B - =¥ S /devinulll A eVl
s 4 “ e 1 python \Z &7 * < c10
- S 8 H
Master: bash 2 Master: leak Sl e SEEE Etedtatte g Master: sshd C7]yt ¥22?20553$5-30 08:54:00
Time: 2020-06-01 04:09:26 ~ Time: 2020-06-01 04:11:06~ | 5 (" nagter: sshd C8) 4 Time: 2020-05-3110:00:54 ~2020-05-30 08:55:15
2020-06-01 04:10:01 leak | 2020-06-01 04:11:07 T | Time: 2020-05-30 18:09:52 so. | ~?2020-05-3110:02:30 InfoPaths: xxx->xxx—sshd
InfoPaths: bash—sudo—su [~ InfoPaths: leak—tar —../{ g | 50000530 18:10:42 §| InfoPaths: xxx->xxx— o] Sbashowget —../
— bash—xxx->xxx: 9999— upload.tar—bzip2—../uploadt 10 T 1 ynfopaths: xxx->xxx—sshd E sshd—bash—python r;y program.tar—tar—../data.csv
curl—../leak.sh—leak [0.7366] ar.bz2—gpg—../upload—curl —bash—scp—../statisti = | —-/result_python [0.4597] [0.4941]
\) — xxx ->xxx [0.8234] po cs.tar.bz2—tar—../userlist
[0.4914]
Community with Community without Edge-based Node-based
Attack-Related Events Attack-Related Events Dependency Dependency

Fig. 2: Summary graph for the dependency graph in Fig. 1

for security analysts to understand the dependencies among
nodes by inspecting such a large graph.

In this paper, we design DEPCOMM to summarize a large
dependency graph into a compact graph that can facilitate at-
tack investigation. DEPCOMM includes three key components:
(1) community detection, (2) community compression, and (3)
community summarization.

Community Detection. DEPCOMM first partitions the depen-
dency graph into 10 process-centric communities (C1-C10), as
shown in Fig. 1. Each community consists of a set of intimate
process nodes and their accessed resource nodes. For example,
in C3, 1leak Spawns tar, bzip2, gpg and cur1, and thus 1eak
has parent-child relationships with these child process nodes.
Moreover, the resource nodes . ./upload.tar,
, ../upload and xxx->xxx are accessed by these process nodes
and thus are classified into C3. Additionally, dependencies
betwen communities are either (1) edge-based dependencies

../upload.tar.bz2

that represent the inter-community edges (e.g., bdoor—bash
between C1 and C2) or (2) node-based dependencies (blue
ovals in Fig. 1) that indicate the input/output relationships
between communities (e.g., 1eak in C2 and C3).

Community Compression. To further decrease the size of
each community yet preserving their semantics, DEPCOMM
compresses less-important and redundant dependencies in a
community, including nodes and edges represented with the
stacked shapes and the hollow arrows in Fig. 1. For example,
in C9, bash repetitively spawns python (12 times) and vim (13
times) to read and write . ./adjust.py and /dev/nu11, wWhich can
be summarized as a process-based pattern (i.e., bash creating
many python and vim nodes) and a resource-based pattern (e.g.,
../adjust.py accessed by many python and vim nodes). After
compression, the number of edges of C9 decreases to 33 from
108 (69.4% compression rate). Similarly, C5 is compressed
into 2 edges from 58 edges (96.5% compression rate).

OS-level
Audit Events

Causality
Analysis

Dependency
Graph

Dependency Graph
Generation

InfoPaths

Extraction

InfoPaths
Prioritization

Community Summ arization

Summary
Graph

Be

Edge Merge

Read-only File

Dependency Graph
Pre-processing

Compressed
Process-centric
Community Graph

Intimate Process
Clustering
Resource

NodeAssociation

Community Detection

Pre-processed
Dependency
Graph

Filtering

Process-based
Pattern Compression

Process-centric
Community
Graph

Resource-based
Pattern Compression

Community Compression

Fig. 3: The architecture of DEPCOMM

Community Summarization. As shown in Fig. 2), for each
community, DEPCOMM generates a summary, which consists
of three parts: (1) a master process node that is the source
of a community’s behaviors (e.g., 1eak in C3), (2) the time
span between the start time of the earliest event and the end
time of the latest event in a community, and (3) the top-ranked
InfoPaths to show major information flows of a community.
The top-ranked InfoPath is a dependency path from 1eax
10 xxx->xxx. leak—rtar—>../ upload.tar—rbzip2—../upload.tar
.bz2—gpg—>. ./upload—>curl—>xxx—>XxXX, which has the highest
priority because it includes the POI event curi—rxxx->xxx.

Attack Investigation. We next show how to use the summary
graph in Fig. 2 to investigate an attack from the POI event cur1
—xxx->xxx in C3. First, by inspecting all of the edges from
other communities (C2, C4, C6, C7, C8) to C3, we find that the
edge from C2 is more relevant to the master process node 1eak
of C3 and the top-1 InfoPath of C3 than those from the other
communities. Thus, C2 is considered to have attack-related
events that lead to the POI event. Next, for the edges between
C2 and other communities, we identify the edge bdoor—bash
from C1 is more relevant than the edge from C5. Moreover,
there exists no dependencies from other communities to CI.
Therefore, CI1 is likely to represent the initial steps of the
attack. In summary, we identify 35 attack-related events by
inspecting only 53 nodes and 8 InfoPaths, which shows a great
reduction of manual efforts.

III. OVERVIEW AND THREAT MODEL

Fig. 3 shows the architecture of DEPCOMM. DEPCOMM
consists of five components: (1) Dependency Graph Genera-
tion, (2) Dependency Graph Pre-processing, (3) Community
Detection, (4) Community Compression, and (5) Community
Summarization.

The dependency graph generation component leverages
causality analysis to compute a dependency graph from sys-
tem audit events (Section IV-A). The dependency graph pre-
processing component processes the graph by merging the
same types of edges between two nodes and filtering out
read-only file nodes (Section IV-D). The community detection
component partitions the graph into multiple process-centric
communities and associates the resource nodes to the commu-

nities (Section IV-C). The community compression component
compresses the nodes and the edges in each community based
on the identified process-based patterns and resource-based
patterns (Section IV-D). The community summarization com-
ponent extracts InfoPaths for each community and prioritizes
these InfoPaths. Finallyy, DEPCOMM generates a summary
graph with top-ranked InfoPaths (Section IV-E).

Threat Model: We follow the same threat model as the
previous works on security investigation [8, 9, 25, 50, 51].
OS-level events are collected from the system kernel. We
assume that the system kernel is trusted and not tampered by
adversaries [52, 53]. Any kernel-level attacks that deliberately
compromise security auditing systems are beyond the scope
of this work, and existing software and kernel hardening
techniques [50, 54-56] can be used to better protect log
storage. We also do not consider the attacks performed using
side channels or inter-procedural communications (IPC) that
cannot be captured by the underlying provenance tracker.
Finer-grained auditing tools that capture memory traces or
side channel analysis techniques can be used to address these
attacks and they are not the focus of this work.

DEPCOMM clusters the system behaviors into communities
and prioritizes InfoPaths that represent the information flows
across communities. Thus, attackers who have full knowledge
of DEPCOMM’s summarization approach may deliberately
limit their attack within a few processes and files, minimizing
their traces within a community and across communities. Such
attacks typically compromise the processes by manipulating
the memories of the processes (e.g., code reuse attacks [57]),
and specialized techniques such as memory randomization [58,
59] can be applied to strengthen the memory protection.
Attackers may also flood system audit logs by performing
activities that generate a large amount of logs, e.g., creating
lots of temporary files. To defend against such attacks, existing
log compression techniques [26, 27, 33, 60] can be employed
to compress system audit logs, and DEPCOMM can work
seamlessly on the compressed logs since these compressed log
preserve the dependencies. Furthermore, anomaly detection
techniques [14, 61] can be deployed to raise alerts for such
unexpected spikes in log collection.

TABLE I: Attributes of system entities

Entity Attributes
Process PID, Name, User, Cmd
File Name, Path
Network | IP, Port, Protocol

TABLE II: Attributes of system events

Event Attributes
Process Event Start time, End time, Subject ID, Object ID,
Operations (execve, fork, clone)
Start time, End time, Subject ID, Object ID,
Operations (write, read, rename, readv, writev)
Start time, End time, Subject ID, Object ID,
Operations (write, read, recvmsg, sendto, recvfrom)

File Event

Network Event

IV. DESIGN oF DEPCOMM
A. Dependency Graph Generation

DEPCOMM uses system monitoring tools that run on main-
stream operation systems (e.g., Windows, Linux, Mac OS and
Android) to collect system audit events, including process
events, file events, and network events. For each collected
entity and event, DEPCOMM records the attributes that are
essential for security analysis (e.g., PID, file name and IP
for entities; start time, end time and operation for events),
as shown in Table I and Table II. Given a POI event (e.g., an
alert about a file download), DEPCOMM builds a dependency
graph by performing backward causal analysis to track the
dependencies. Starting from the POI event, the causal analysis
iteratively finds the events that have dependencies to the POI
event and happen before the POI event. These found events
(i.e., edges) form the dependency graph for the POI event,
such as the graph shown in Fig. 1.

B. Dependency Graph Pre-processing

Edge Merge: A dependency graph often has many paral-
lel edges between a process node and a file/network node,
indicating repetitive read/write operations in a short period.
This is because OS typically performs a read/write task by
distributing the data proportionally to multiple system calls.
As shown in the recent study [26], these parallel edges do
not offer extra useful information for attack investigation, and
thus DEPCOMM directly merges the parallel edges of the same
operation type into one edge.

Filtering Read-only file nodes: As shown in recent stud-
ies [33, 51], a dependency graph has many read-only files,
which are typically libraries, configuration files, and resources
(e.g., /1ib64/1ibdl.so0.2) for process initialization that do not
contain useful attack-related information [33]. Thus, DEP-
CoMM filters out read-only files and retains the processes to
preserve the semantics of major system activities.

C. Community Detection

DEPCOMM identifies a group of intimate processes as a
process-centric community. A process-centric community is
a graph that contains (1) one master process node, (2) a
set of child process nodes that represent a subset of the
master process’ spawned child processes such that these
child processes have data dependencies among each other,
and (3) a set of resource nodes accessed by the master
processes and these child processes.. For example, 1eak in

~

,
jm

(b) (©
Fig. 4: Three types of overlapping nodes

Fig. 1 is the master process of C3, which spawns the child
processes tar, bzip, gpg, and curl to compress and upload a
file. These child processes have data dependencies with at least
another child process, as reflected by the following path in the
dependency graph: tar—. . /upload.tar—bzip2 —../upload.tar
.bz2—>gpg— . . /upload—rcurl—xxx->xxx. Additionally, there are
processes or resources that can belong to more than one com-
munities and are referred as overlapping nodes. For example,
in Fig. 1, 1eak first cooperates with cur1l to accomplish the
execution of the script 1eak.sh in C2, and then spawns child
processes tar, bzip2, gpg and curl to compress and upload a
file in C3. In this case, 1eak is the overlapping node in both
C2 and C3. We categorize overlapping nodes into three types
as shown in Fig. 4:
(@ a process node that cooperates with different sets of child
processes for different system activities;
® a process node that cooperates with its siblings to ac-
complish a system activity, and meanwhile spawns child
processes to accomplish a different system activity;
(© a resource node accessed by process nodes from different
communities.
We next describe the two phases of the community detection
component of DEPCOMM: process-centric community detec-
tion and resource node association.

Process-Centric Community Detection. DEPCOMM per-
forms random walks on each process node based on our
proposed hierarchical walk schemes to generate walk routes,
and then applies a word2vec model [62] to learn the behavior
representation based on the walk routes for each process node.
Based on the behavior representations, DEPCOMM clusters
the process nodes with similar representations into the same
communities. We next describe each step in detail.

1) Hierarchical Random Walk. A random walk rooted
from a node v; generates a walk route of a specific length
W = {v1, -, v}, where v; € W is randomly chosen with a
transition probability [34]. The transition probability from v;
to its neighbor node n is Pr(v;,n) = w(vi, n)/ Wy (y,), Where
w(v;,n) denotes the walk weight from v; to n, and Wiy (,,)
denotes the sum of walk weights among all the neighbors of
v;. Unlike existing random walk algorithms that treat neighbor
nodes with equal probabilities [34], the walker in DEPCOMM
gives higher probabilities to v;’s neighbors that are more likely
to be its intimate processes.

Specifically, the walker considers both the processes’ neigh-

:I Previous

Node
I:I Current
Node
Neighbor

Node

D Process

Node

o Resource

Node

<4— Dependency

Previous
Step

—

- Next Possible
Step

(e) Walk scheme S5 (f) Walk scheme S6 (g) Walk scheme S7 (h) Walk scheme S8
_ . Walk Route — . yNeighbors of _ . Resources (e.g. Files and .
W"‘ =g Produced So Far N (RSN v; R=1{,n) Network Connections) W Walk Weight

Fig. 5: Hierarchical walk schemes, where w denotes the walk weight.

bors and the global process lineage trees to ensure that
intimate processes are more likely to be sampled into the
same walk route, and thus they will have the similar contexts.
For each process node p, DEPCOMM examines p’s one-hop
neighbor nodes, and associates p with: @ parent process node,
@ child process nodes, and @ accessed resource nodes. In
particular, we observe that for a process p, and its child
process p., if p. starts to spawn its own child processes
(typically more than one child processes), p. is very likely to
initiate a new system task and the spawned child processes
do not cooperate with p,. Thus, the child processes of p.
should be in a different community from p,.’s. To identify such
creations of child processes, DEPCOMM searches the global
process lineage trees and associates each process node with @
its lowest ancestor that has multiple child processes.

With the information collected from the neighbors of the
processes and the global process lineage trees (i.e.,0@®®),
DEPCOMM employs 8 hierarchical walk schemes to generate
walk routes. Specifically, when the walker starts at a process
node vy, it assigns equal weights to each of neighbors and
randomly move to one of them. After this initial step, the
walker chooses the next node based on 8 hierarchy walk
schemes, as shown in Fig. 5. Without loss of generality, we
assume that the walker is currently at the node v;, the walk
route produced so far is W,, = {v1,---,v;}, the neighbors
of v; is a set of nodes N = {nqy,---,ng}, R(v) returns
the resources accessed by a process node v, and L(v) finds
the process node v’s lowest ancestor that has multiple child
processes. We next describe the walk schemes in detail:

o Scheme S1: Consider that v;_; presents the parent process
of v;. If N contains other neighbor nodes except v;_1, the
walker will randomly walk to one of these neighbors, i.e.,
Vn; € Nyn; # vio1,w(vi,ng) = Lw(v,vi—1) = 0. If
v; has only one neighbor (i.e., v;_1), to avoid the early
termination of the walk, the walker will return to v;_1, i.e.,
U)(Ul',’Ui_l) =1.

o Scheme S2: Consider that v;_; represents a child process
of v;. In this case, other child processes of v; may not

belong to the same community as v;_1, unless they have
data dependencies with v;_1. Thus, if there are other child
processes that access the same resources as v;_1, the walker
will walk to the child process nodes with a high probability,
i.e., VTLJ‘ S N,TLJ' 7é Ui_l,R(le)m]R(’Ui_l) 7é @,’UJ('Ui,TLj) =
1,w(v;,vi—1) = 0. Otherwise, the walker will return to
vi—1, e, w(vi, vi—1) = 1,w(v;,n;) = 0.

Scheme S3: Consider that v;_; represents a child process
of v; and v;_1 is the only child process of v;. This indicates
that v; and v;_; cooperate to process some data, and thus
they belong to the same community. Thus, if there are other
neighbors except v;_1, the walker will continue to explore
without return, ie., Vn; € Nyn; # v,_1,w(v;,n;) =
1,w(v;, v;i—1) = 0. Otherwise, to avoid the early termi-
nation of the walk, the walker will return to v;_q, i.e.,
’U.)(Ui,’l}ifl) =1.

Scheme S4: Consider that v;_; is a process node and v;
is a resource node. The processes accessing v; may belong
to the v;_1’s community if v;_; and these processes have
a common parent process. Thus, we let the walker walk to
the neighbors that share the same parent process as v;_1
with a high probability, i.e., Vn; € N,n; # v;_1,L(n;) =
L(vi—1),w(v;,nj) = 1,w(v;,v;—1) = 0. Otherwise, the
walker will return to v;_1, i.e., w(v;, vi—1) = 1, w(v;, n;) =
0.

Scheme S5: Consider that v;_; is a resource node, v; is a
process node with more than one child processes, and v;_o
is the child process of v;. In this case, other child processes
of v; may not belong to the community as v;_s, unless they
have data dependencies with v;_o. Thus, the walker will
walk to v;_2 and the child process nodes that access the
same resources as v;_s, i.., Vn; € Nyn; # v;_q1,n; #
vi—2, R(n;) NR(v;—2) # 0, w(v;,nj) = 1, w(vs, vi—2) = 1,
and the weights of the other neighbors are set to 0.
Scheme S6: Consider that v;_; is a resource node, v; is a
process node with more than one child processes, and v;_2
is not the child process of v;. In this case, we treat v; as
a master process of a community, and the child processes

of v; and v, do not belong to the same community.
Thus, the walker will return to v;_1, i.e., Vn; € N,n; #
Vi—1, w(vi, nj) = 0, w(vi, ’Uifl) =1.

e Scheme S7: Consider that v;_; is a resource node, v; is
a process node with more than one child processes, and
vij_o = wv;. This indicates that v;_; is the end of an
information flow. To increase the efficiency of sampling
intimate processes, the walker will walk without return, i.e.,
an eN, n; 7é Ui_l,w(’l)i, ’I’L]‘) = 1,’11}(1]1‘,’()1‘_1) =0.

e Scheme S8: Consider that v;_; is a resource node and v;
is a process node with at most one child process. In this
case, if v; has other neighbor nodes except v;_1, the walker
will walk to the neighbor nodes without return, i.e., Vn; €
N, j 7’5 Ui,hw(vi,nj) =1, w(vi,vi,l) = 0. If v;_1 is the
only neighbor of v;, to avoid the early termination of the
walk, the walker will return to v;_1, i.e., w(v;,v;—1) = 1.

2) Process Node Representation. We make an analogy
by regarding nodes in a dependency graph as words and
walk routes as ordered sequences of words. DEPCOMM
employs SkipGram [62], a widely-used word representation
learning algorithm, to learn the behavior representation of
process nodes in walk routes. More specifically, given a
process node p and a contextual window size ¢, SkipGram
extracts the sub-sequence W, = {vi_y,---, 05, , Uit}
that consists of v; = p and its contextual nodes v;4
(k € (—t,t)) from each walk route containing p. Then, the
d-dimension vector ®(v;) of v; is learned by maximizing the
log-probability of any node appearing in the sub-sequences,
ie., logPr({vi—t, "+ ,0i—1,Vit1, -+ ,Vi+t }|®(v;)). The op-
timization process aims to learn similar behavior represen-
tations for intimate process nodes with the similar con-
textual nodes. However, the optimization problem is NP-
hard. To make the optimization problem tractable, we as-
sume that the probabilities of choosing each node are con-
ditional independent, and the objective function is con-

verted into: log II Pr(vigx|®(v;). Further, the ob-
o _tsRSnkA0 .
jective function is modeled using the softmax function:

log cap(®isr) 2(vi)) 1371 However, it is still
PR NS SR CIORIC)

expensive to solve this optimization for a large graph, and
thus we further use NEG (Negative Sampling) function [63]
to approximate it. The model parameters for ®(v;) is adjusted
using stochastic gradient ascent.

3) Process Node Clustering. To compute the overlapping
clustering for process nodes based on their behavior represen-
tations, DEPCOMM employs a soft clustering method, FCM
(Fuzzy C-Means) [64]. Unlike the hard clustering method
(i.e., K-means) that classifies a process node to only one
cluster, FCM outputs the membership degree of each process
node in each cluster by minimizing the objection function:
J = i |jc:‘|1 uzillvi — ¢j|[?, where w;; denotes the
degree of a process node v; belonging to a community c;.
v; is classified to c¢;, if u;; is higher than a given thresh-
old. Following the recent work [65], we set the threshold
A = 0.8 - maxj{u;;}. If a process node is labeled with

Fig. 6: Community compression based on (a) a process-
based pattern and (b) a resource-based pattern

multiple communities (i.e., overlapping), we create multiple
replicas of the node, and assign one replica to each com-
munity. In addition, DEPCOMM determines the number of
communities |C| according to the fuzzy partition coefficient
(EPC) F(|C)=1/|V,| S0 S2 1Y w2, [66), which is used to
measure the cluster validity for different numbers of clusters.
As a higher value of FPC indicates a better description for the
data distribution, DEPCOMM selects the number of clusters

|C| with the maximum FPC, i.e., |C|=argmaxz(F(|C|)).
Resource Node Association. Given a resource node r and a
process node p, if they are connected by an edge, then v is
associated to the community that p belongs to. If a resource
node are connected with multiple process nodes from different
communities, this resource node is an overlapping node, and
we create replicas of the resource node and assign a replica
to each community.

Dependencies across Communities. We categorize depen-
dencies across communities as edge-based dependencies (i.e.,
the dependency represented by an inter-community edge be-
tween communities) and node-based dependencies (i.e., the
dependency represented by overlapping nodes). As these nodes
lack visible information flow directions for security analysts,
DEPCOMM creates a directed edge to connect the replicas
(e.g., the blue dashed arrows in Fig. 1). Specifically, given
two replicas vy(;) and vy(2) of a node vy, where vy(qy is in
the community C; and vy(g) is in the community Cj, if vy(1)
has an in-edge e;, V1(2) has an out-edge es, and the start time
of e; is earlier than the end time of e,, then we create an
directed edge from vy(1) to vy(2).

D. Community Compression

Process-based Patterns. Process-based patterns describe
repetitive activities that spawn same set of processes to process
some resources. Fig. 6(a) shows an example: a process po
repetitively spawns the child processes named e1 and p2 to
write the file r1. But keeping repetitive activities do not provide
extra values for security analysts. Thus, DEPCOMM aims to
identify such patterns and merge the repeated nodes and edges.

This process includes the following four steps:

o Step 1: Building process lineage tree. Given a process-
centric community, DEPCOMM builds a process lineage tree
rooted from the master process of the community by travers-
ing the process nodes inside the community. The process
lineage tree can present processes’ spawning behaviors.

o Step 2: Association with Accessed Resources. To capture
the resource usage of each process in the process lineage

tree, DEPCOMM inspects the events inside the community
to identify the resources accessed by these processes. Specif-
ically, each process is associated with the representative
attributes of the accessed resources (i.e., file names for files
and IPs for network connections) and the operation types
on these resources.

o Step 3: Mining Process-based Patterns. A process-based
pattern in the process lineage tree is the repeated bottom-
up sub-trees [67]. , where a bottom-up sub-tree includes
a node and all its descendants. Unlike induced sub-tree
and embedded sub-tree that have partial descendants [68], a
bottom-up sub-tree can present a complete process spawning
activity. Specially, DEPCOMM uses the process lineage
tree to generate a sub-tree for each process node. Then,
DEPCOMM encodes a sub-tree to a string by appending
the associated resource attributes of the process nodes in
the sub-tree, and identifies identical strings (i.e., repeated
subtrees).

o Step 4: Compression based on the Patterns. The identified
repeated sub-trees may have different parent nodes. To
ensure the dependencies between the sub-trees and their
parent nodes are not broken, DEPCOMM selects only the
repeated sub-trees having the same parent node, and merges
the selected sub-trees into one sub-tree. The attributes of
each node and edge in the merged sub-tree are the unions
of the attributes of the original nodes and edges.

Resource-based Patterns. A resource pattern identifies re-
sources that are repetitively accessed by a same set of pro-
cesses. To identify such patterns, DEPCOMM first associates
the processes with their accessed resources, and then search
each resource to identify the repetitive accesses. Based on the
found patterns, the resource nodes are merged into one node,
and the attributes of the merged nodes are the union of the
attributes of the original resource nodes.

E. Community Summarization

For each community, DEPCOMM generates a summary that
consists of three parts: the master process, the time span, and
the top-ranked InfoPaths, as shown in Fig. 2). The master
process represents the root process for the system activities
in the community. The time span is computed using the
earliest start time and the latest end time among all the events
in the community (i.e., c.st = mine,c.{e;.st} and c.et =
maxe,c.{e;.et}), which provides the timing information for
tracing certain activities. InfoPaths indicate the information
flows from the inputs to the outputs in the community,
representing the major activities in the community.

InfoPaths Extraction. Given a process-centric community,
DEPCOMM first identifies its input and output nodes. An
input node represents the incoming information flow for a
community, which are the target node of an inter-community
edge (e.g., leak and ../analysis.txt of C3 in Fig. 1) and
network nodes with outgoing edges (e.g., xxx->xxx of Cl
in Fig. 1, representing the external IP which a community
receives files from). In addition, for the communities without

incoming edges (e.g., C5 in Fig. 1), we select the master
process as the input node. An output node represents the
outgoing information flow of a community, which are the
source node of an inter-community edge (e.g., 1eak of C2
in Fig. 1), network nodes with incoming edges (e.g., xxx->
xxx of C3 in Fig. 1, representing the external IP which a
community sends files to), and POI nodes. Then, for each pair
of input and output nodes, DEPCOMM uses Depth First Search
(DFS) algorithm to find a longest path without duplicate nodes
as an InfoPath. Such a path generally covers more activity
information than the shorter ones.

InfoPaths Prioritization. A community often contains mul-
tiple inputs and outputs, and thus has multiple InfoPaths.
DEPCOMM priorities the InfoPaths based on their likelihoods
to represent major activities (e.g., attack behaviors). The
priority score of an InfoPath Py : vo—vi—---—vp, _1 is
computed based on the following four key features:

(a) POI Event (fpo;). An InfoPath that contains the POI event
is directly related to the attack. Thus, fy; is 1 if an InfoPath
contains the POI event, and is 0 otherwise.

(b) Input/Output Type (fior). As processes drive the attack
execution, an security analyst is more likely to find another
attack stage through process nodes. For example, in Fig. 1,
tracking the attack from C3 to C2 can be done through the
input process node 1leak but not through the input file node
../analysis.txt. Thus, f;,; gives an InfoPath whose input or
output node is a process a higher priority:

fior = 5(5(00) + 8(v1p,1 1)) 0

where d(v;) is 1 if v; is a process and 0 otherwise.

(c) Event Uniqueness (f,n;). File events that appear in fewer
communities are more likely to represent the major activities
in the community, such as the event vim write
that occurs only in C4, while file events that are frequently
observed in different communities often represent irrelevant
chronicle tasks running in the background. Based on this
observation, we design the feature f,,,; to measure the unique-
ness of file events:

funi =

../analysis.txt

1 1
_ _ 2
Bt (Py)] eiePk,eZieEvtf Comm(en] P
where |Evt(Py)| denotes the number of file events in P,
e; € Evty denotes file events, and |[Comm/(e;)| denotes the
number of communities in which e; occurs. fy,; has a larger
value when |Comm(e;)| is smaller.
(d) Time Span (fsparn)- Intuitively, an InfoPath whose time
span is similar to the time span of the community is more
likely to represent the major activities in the community. We
design the feature fgp,qy, to model this intuition:

e(vip,|—2,Vp,|-1)-et — e(vg,v1).5t
fspan: [Pl [l (3)

c.et —c.st

where the numerator denotes the time span of the InfoPath,
and the denominator denotes the time span of the community.

TABLE III: Statistics of the attacks’ dependency graphs

Pre-processed

Attack Cases Dep. Graph Dep. Graph Attack |1C|
VT T 1Bl [VI [[E] VI[IE]

Al: Email Penetration 527 24,470 201 476| 42| 65 8
A2: Compile Crash 369 4,675 160 351 9 9| 17
A3: Files Tamper 5,810| 387,086 787| 1,613| 63| 94| 16
A4: Data Exfiltration 1,038 24,094 203 620| 23| 35| 10
A5: Password Crack 557 10,917 43 82| 39| 77 4
A6: VPN Filter 22,358 275917 518| 1,424 79| 130| 12
D1: Phishing Email (C.S.) 7,72412,174,649| 2,545| 6,483 5| 6| 48
D2: Phishing Email (E.D.) 2,3111,007,062 815| 18,858 | 12| 17| 20

D3: Firefox Backdoor (ED.) 7,645(1,598,642| 5,210| 34,047| 14| 18| 43
D4: Browser Extension (ED.) 9,533(1,900,715| 7,056| 38,419 9| 18| 45
D5: Browser Extension (Theia)| 3,302 37,109 172 750 12| 15| 11
DG6: Firefox Backdoor (Theia) 3,501 37,468 205 819| 13| 17| 13

D7: Phishing Email (Theia) 2,745 29,987 123 559 5 6| 8
D8: Pine Backdoor (Trace) 2,945 133,890 192 1,247 16| 23 7
Average 5,026.1|546,191.5|1,302.1(7,553.4|24.3|38.3|18.7

Based on these features, we compute the priority score of
Py by giving equal weights to each feature. According to the
assigned priority scores, we sort the InfoPaths and select the
top-n paths as the summary, where security analysts have the
flexibility to choose the value of n.

V. EVALUATION

DEPCOMM includes ~15k lines of python code and is
deployed on a server with two Intel Xeon E5-2630 v3 2.4GHz
CPUs (32 processors) and 128GB memory. The evaluation
dataset includes 6 attacks performed in our test environment
deployed with system monitoring tools and 8 attacks in the
DARPA TC (Transparent Computing) dataset [40]. In the eval-
uations, we aim to answer the following research questions:
« RQ1: What is the overall effectiveness of DEPCOMM in

summarizing dependency graphs?

« RQ2: How does DEPCOMM cooperate with the automatic

investigation technique HOLMES [32]?

« RQ3: How effective is DEPCOMM in community detection,
compared with other state-of-the-art approaches?

« RQ4: How effective is DEPCOMM in community compres-
sion?

« RQS5: How effective is DEPCOMM in generating community
summaries using top-ranked InfoPaths?

« RQ6: What is the turnaround performance of DEPCOMM
in summarizing dependency graphs?

A. Evaluation Setup

Attack Dataset: We adopt Sysdig [69] to collect the attack
dataset from 6 Linux hosts that have 10 active users. Routine
system tasks on these hosts include web browsing, text editing,
code development, and some other services (e.g., databases).
On these hosts, we performed 6 multi-step attacks based on
the known exploits [12, 13, 26, 70] and Kill Chain [71]. The
collected dataset contains ~ 100 million events for three days.
Below are the details of these attacks:

o Al: Penetration into Email Server. An attacker inside a
corporation inserts malicious code into a normal software
and uploads this modified software to the corporation’s
resource server. One employee downloads this modified
software and executes it, and the malicious code creates a
connection to the attacker’s host that allows the attackers to
easily hijack emails.

= Communities without
attack-related events

50 48 = Communities with

41 4-2 attack-related events

Nnumber of Community |C|
12
=

Al A2 A3 A4 A5 A6 DI D2 D3 D4 D5 D6 D7 DS
Fig.7:C . i Fbyv-DEPE

100 -
90
80
70
60
> 50 -
40
30

ASLAET 8804

0

Distribution of Community Size

Al A2 A3 A4 A5 A6 D1 D2 D3 D4 D5 D6 D7 D8

Fig. 8: Community sizes

e A2: Crashing Compiler. An insider attacker uploads a
malicious C code to the internal resource server. When
an employee downloads and compiles the source code, the
malicious code causes the compiler to crash, and at last the
compiler generates an incorrect executable file.

o A3: Tampering Sensitive Files. During a three-day period,
an insider attacker logs into an employee’s host using
the stolen password several times, and then collects and
tampers some sensitive files. Finally, the attacker sends these
sensitive files back by email.

o A4: Data Exfiltration. An attacker penetrates into a victim
host via exploiting the Shellshock vulnerability [72] to set
up a backdoor, and exflitrate sensitive data by installing
malware into the host. This attack is shown in Section II-A.

o AS: Cracking Password. After the shellshock penetration,
the attacker downloads a password cracker payload from the
C&C server, and then obtains the root’s password by running
the cracker. The attacker then penetrates to other hosts inside
the same network using the root privilege obtained via the
cracked passwords.

o A6: VPN Filter To launch a more persistent and stealthy
attack, the attacker uses a more sophisticated multi-stage
VPN Filter malware [73] After the shellshock penetration,
the attacker downloads the Stage 1 executable from the
C&C server. When triggered, the Stage 1 executable will
download the Stage 2 executable, which will gather sensitive
documents and establish a stealthy connection to the C&C
server for data exfiltration.

DARPA TC Dataset: DARPA TC dataset [40] is an effort
to develop forensics analysis and detection of Advanced
Persistent Threats (APT) [74-76]. This dataset records the
attack traces of various vulnerability exploits on different
operating systems (e.g., Linux and Windows). Based on the
attack descriptions, we exclude the failed attacks and use 8
attacks in our evaluations (~ 50 million events).

Labeling Ground Truth: We build system dependency
graphs via the cross-host backward causality analysis [9] from

TABLE IV: Statistics of edges generated by DEPCOMM and NoDoze

Al A2 A3 A4 A5 A6 D1 D2 D3 D4 D5 D6 D7 D8 | Average
Nodoze 538 157 2,403 1,641 612 198 727 3,135 5,337 7,160 2,752 2,631 2257 1,744 | 2,235.14
DepComM (Top-1) | 74 68 86 70 27 47 77 69 122 127 44 45 36 33 66.07
DepComM (Top-2) | 93 82 123 91 30 56 109 94 171 180 68 65 45 40 89.07
DepComM (Top-3) | 115 84 147 114 32 68 121 119 202 208 76 81 55 52 105.28

the POI events. We use the attack scripts and the attack
descriptions to identify the POI events and the attack-related
events for the attacks performed in our test environment and
DARPA TC dataset, respectively. The detailed statistics of the
dependency graphs are shown in Table III. Column “Dep.
Graph” shows the number of nodes and edges of original de-
pendency graphs. Column “Pre-processed Dep. Graph” shows
the number of nodes and edges of graphs after the pre-
processing (i.e., merging edges and filtering read-only file).
Column “Attack™ shows the number of attack-relevant nodes
and edges. Finally, we manually partition each dependency
graph into communities. Specially, we first identify the pro-
cesses that are created by the identical parent processes and
are related to each other by checking whether they have data
dependencies through resources. Each group of the related
processes are put into a community. We then label the parent
process as the master process of the community, and associate
the resource nodes to the found communities according to their
dependencies with the process nodes. To further obtain more
objective ground truths, three independent experts are asked
to verify our ground truths. These experts have Ph.D. degrees
of computer sciences and have been conducting research in
computer system field for more than ten years. We revise our
ground truths if at least two experts consider certain nodes
should belong to different communities. All these results are
available at our project website [49]. Column “|C|” shows the
number of communities that are manually partitioned.

B. RQI: Overall Effectiveness of DEPCOMM

We applied DEPCOMM to generate summary graphs for
the dependency graphs shown in Table III, and measured
the number of the detected communities and their sizes to
demonstrate the effectiveness of DEPCOMM. Fig. 7 shows
the results of the detected communities. We can see that
DEPCOMM partitions the dependency graphs into 18.4 com-
munities on average. Compared with the original dependency
graphs, which have 1, 302.1 nodes on average, it is 70.7 times
smaller. These results indicate that with the much smaller
number of communities, it is feasible to visualize all the
communities for security analysts to easily see the overview of
all the related system activities. We can also see that the largest
number of communities is 48 for Phishing Email (C.S), which
includes different system tasks (e.g., browsing web pages in
Firefox, sending or receiving E-mail and calendar service).

We next show the distributions of community sizes (the
number of nodes in each community) for the 14 attacks in
Fig. 8. As we can see, the community sizes are relatively
small (15.7 nodes on average), which greatly reduce security
analysts’ efforts in inspecting each community. Compared with
the original dependency graphs, these results also show that the
community compression is quite effective in compressing the

redundant edges, reducing 216.4 redundant edges on average
for each community. Furthermore, the summary graphs need
only 2.26MB on average to store the summary graphs, while
the original dependency graphs need 344.32MB on average.

We also compare against the state-of-the-art dependency
graph reduction approach, NoDoze [14]. Nodoze learns an
execution profile from benign system behaviors and reduces
a dependency graph based on the anomaly scores computed
using the profile for each path in the dependency graph. We
use the events collected when the hosts are not under attack
to generate the execution profile. We compare the number
of events in the top-1, top-2, and top-3 InfoPaths for all the
communities with the events identified by NoDoze, as shown
in Table IV. Top-3 InfoPaths of DEPCOMM have averagely
~ 21x less edges than NoDoze. NoDoze achieves poor per-
formances since its effectiveness heavily depends on whether
an execution profile can cover all the benign events and is
representative, which is very difficult due to the versatility
of runtime environment of most systems. Thus, the execution
profile learned from one system is difficult to generalize to
other systems. DEPCOMM does not suffer from the same
limitations as DEPCOMM does not require extra execution
profiles.

Case Study. We here illustrate how summary graphs can
be used to facilitate attack investigation. Fig. 9 shows the
summary graph generated by DEPCOMM for the attack D5
in the DARPA dataset. DEPCOMM partitions the dependency
graph into 13 process-centric communities. Fig. 9(a) shows 4
communities (C1-C4), and Fig. 9(b) shows the corresponding
summary graph, where the top-1 InfoPath is used as the
community summary. C2 contains the POI event, and thus
is an attack-related community. From the 8 events in C2,
we can easily identify 8 attack events (red edges). These
attack events represent the attack behaviors that open an
backdoor to the attacker’s console using mail. Based on the
InfoPaths of C1 and C2, we can see that C1 is another attack-
related community. Similarly, it is easy to identify another 7
attack-related events from 17 events in C1, which represents
the attack behavior of downloading the malicious file /home
/admin/profile. By inspecting the InfoPaths, we can further
identify C3 and C4 via their dependencies on C1. However,
the outputs of their InfoPaths are not the same as the input
of C1’s InfoPaths. Thus, C3 and C4 are not attack-related
communities. In summary, we reveal the attack-related events
of the attack D5 by inspecting only 25 events out of the 37,109
events in the original graph.

C. RQ2: Cooperation with HOLMES

We next illustrate how DEPCOMM cooperates with one of
the state-of-the-art investigation technique, HOLMES [32].
HOLMES builds a high-level scenario graph (HSG) that

XXX->XXX

profile
14370

XXX->XXX

~Tglobal-messages-
db.sqlite

Process File
- Node S Node Dependency - Events
O Replica - Information Flow

of a Node among Replicas

(a) Process-centric communities

1)
Master: fluxbox C1

Time: 2018-04-11 02:53:23
~2018-04-11 02:56:32
InfoPaths: (XXX->XXX)—
fluxbox—firefox—firefox—/
home/admin/profile [0.4743]

T
/home/admin :
/profile +

~N
Master: clean 2
Time: 2018-04-13 01:16:49 ~
2018-04-13 01:17:04

InfoPaths: /home/admin/profile
—profile—profile—/var/log/ma
il—mail—(xxx->xxx) [0.7368]

Master: fluxbox C3
Time: 2018-04-11 01:28:17
~2018-04-1101:28:17
InfoPaths: (XxX->XXX)—
flubox—firefox—../cookies
.sqlite[0.4591]

Master: fluxbox C4
Time: 2018-04-11 01:07:25
~2018-04-11 01:08:07
InfoPaths: (XxxX->XXxX)—
fluxbox—firefox—../global-
messages-db.sqlite [0.4259]

Attack-Related

POI

S

J

Community with D Community without
Attack-Related Events Attack-Related Events

Edge-based
Dependency

Node-based

«~- Dependency

(b) Summary graph

Fig. 9: Communities and summary graph for the attack D5
TABLE V: Kill Chain Steps for attack-related communities

Attack Case

Kill Chain Steps for Attack-Related Communities (AC)

Al: Email Penetration

ACI: Initial Compromise (Top-2); AC2: -; AC3: Complete Mission (Top-1); AC4: Complete Mission (Top-1); AC5: Complete Mission (Top-1)

A2: Compile Crash

ACT: Initial Compromise (Top-1); AC2: -; AC3: Complete Mission (Top-1)

A3: Files Tamper
Recon (Top-1); AC6: Complete Mission (Top-1)

ACI: Initial Compromise (Top-1); AC2: Internal Recon (Top-2); AC3: Internal Recon (Top-2); AC4: Internal Recon (Top-2); ACS: Internal

A4: Data Exfiltration
(Top-1)

ACT: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Internal Recon (Top-2), Complete Mission

A5: Password Crack

ACT: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Complete Mission (Top-1)

A6: VPN Filter

ACT: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1), Privilege Escalation (Top-1); AC3: Privilege Escalation (Top-1), Internal
Recon (Top-1); AC4: Initial Compromise (Top-1); ACS: Complete Mission (Top-1); AC6: Internal Recon (Top-2), Complete Mission (Top-1)

D1: Phishing Email (C.S.) ACT: Initial Compromise (Top-1), Establish Foothold (Top-1)

D2: Phishing Email (ED.) ACI: Initial Compromise (Top-1), Establish Foothold (Top-1)

D3: Firefox Backdoor (E.D.) ACI: Initial Compromise (Top-1), Establish Foothold (Top-1), Internal Recon (Top-2)

D4: Browser Extension (ED.) |ACI: Initial Compromise (Top-1), Complete Mission (Top-1)

D5: Browser Extension (Theia) | AC1: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

D6: Firefox Backdoor (Theia) |ACI: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

D7: Phishing Email (Theia) ACI: Initial Compromise (Top-1), Establish Foothold (Top-1)

D8: Pine Backdoor (Trace) ACT: Initial Compromise (Top-1); AC2: Establish Foothold (Top-1)

integrates the TTP (Tactics, Techniques, and Procedures) [77],
an important indicator for describing the steps of Advanced
Persistent Threats (APT), and uses the HSG to map the
low-level event information flows to the steps in the Kill
Chain [48]. In this evaluation, we first build the HSGs for the
14 attack cases, and then use the HSG to map the top-ranked
InfoPaths to the steps in the Kill Chain.

Table V shows the mapping results for attack-related com-
munities. We can observe that the Top-2 InfoPaths are suffi-
cient to find the Kill Chain. We also manually inspect these
InfoPaths to create the mappings, and confirm that most of
the mappings found by the HSGs agree with our manual
mappings. In total, HOLMES identifies 35 out of the 37 attack-
related communities, achieving a recall of 96.2%. HOLMES
fails to map two attack-related communities (AC2 of Al and
AC2 of A2) to the Kill Chain. The attack behavior in AC2 of
Al is to download a modified software application to the host
of a victimized employee from the corporation’s resource web
and executing the software application, where the resource
server has a trusted IP and the modified software application
has a trusted file name. Therefore, the activities in AC2 cannot
be captured by the TTP rule of HOLMES. Nevertheless, while
HOLMES’s rules fail to map AC2, the InfoPaths computed by

DEPCOMM can be used to complement HOLMES’s rules. In
fact, AC2 has an InfoPath from the attack-related community
AC1, which represents the attack behavior of uploading the
modified software application to the resource web, and has an-
other InfoPath that leads to another attack-related community
AC3, which represents the attack behavior of tampering the
system files /ete/mail.xe for email server. Thus, the activities
in AC2 form an indispensable step of the attack A1, and can be
easily inferred as an attack-related community after inspecting
these InfoPaths. HOLEMS fails to map the attack behaivor in
AC2 of A2 for the similar reason. AC2 of A2 describe the
actitivies that a compiler cc1 reads an anomaly file that is
created by AC1 and generates an incorrect binary file that
is the input node of AC3. Unfortunately anomaly file access
activities are not included in the TTP rules of HOLMES, and
thus AC2 cannot be mapped. Similarly, AC2 has two InfoPaths
that connect to two attack-related communities, AC1 and AC3,
which makes the activities in AC2 an indispensable step of
the attack A2 as well. These results show that DEPCOMM can
easily cooperate with other automatic techniques to highlight
the attack-related communities and help security analysts to
recognize residual attack-related communities missed by the
automatic techniques.

TABLE VI: Results of community detection for 14 attack cases

NISE |EgoSpliter| NMNF | DANMF | PMCV CGAN |VGRAPH| CNRL |DeepWalk | DEPCOMM
Attack Cases 2016 2017 2017 2018 2019 2019 2019 2019 2014
FTICT B TICT] B JICT] Fa JICT] Fa [ICT] Fi JICT] Fi JICT] Fi JICT] Fi JICT[F1 [C]
Al: Email Penetration 0.459| 5)0.327 6[0.553| 5]0.696| 6(0.509| 5(0.302| 8|0.354| 8[0.521| 5/0.674| 5/0.928 8
A2: Compile Crash 0492 9(0.273 910.376| 7]0.320| 8|0.274| 10{0.219| 17|0.343| 17|0.730| 8|0.413| 7|0.952| 16
A3: Files Tamper 0.301 710.242 710.455| 9]0.522| 11[0.359| 8(0.174| 16/0.204| 16|0.672| 12|0.645| 110.958 16
A4: Data Exfiltration 0.426| 60516 810.509| 90.684| 7|0.327| 5/0.329| 10|/0.300| 10|0.642| 7|0.647| 7(0937| 10
AS5: Password Crack 0.666| 3(0.622 310.756| 3/0.847| 3|0.711| 40505 4|0487| 40910 4|0988| 4| 1.0 4
A6: VPN Filter 0.629| 7/0.705 710.675| 6]0.604| 6(0.343| 5({0.305| 12|0.315| 12|0.686| 7|0.650| 70915 11
D1: Phishing Email (C.S.) 0.164| 6]0.244| 10{0.109| 7]0.251| 10| 0.0| 1|0.113| 48]0.452| 48|0.234| 9(0.384| 10[0.944| 48
D2: Phishing Email (F.D.) 0.235| 6]0.168 5/0.206| 6]0.314| 8|0.187| 6(0.136| 20|0.161| 20|0.353| 7|0.266| 6/0.955| 19
D3: Firefox Backdoor (FD.) [0.357| 7]0.203 810293 8[0.399| 9]0.227| 6(0.175| 43]0.128| 43|0.316| 9|0.391 910930 41
D4: Browser Extension (FED.) [0.242| 60.212 710213 9]0.298| 9(0.297| 8[0.091| 45|0.139| 45|0.447| 12|0.403| 11|0.923| 42
D5: Browser Extension (Theia) |0.464| 6]0.356 5(0.453| 7]0.406| 8(0.413| 7(0.179| 11|0.221| 11|0.600| 8|0.508| 8|0.911 13
D6: Firefox Backdoor (Theia) [0.396| 6]0.321 510393| 6]0.485| 8|0.388| 7(0.194| 13/0.234| 13|0.608| 8|0.529| 9|0.887| 14
D7: Phishing Email (Theia) 0.307| 5|0.458 6[0.505| 5]0.507| 6(0.286| 4(0.231| 8|0.283| 8|0.694| 6|0.698| 6|0.966 9
D8: Pine Backdoor (Trace) 0.537| 4)0.623 510.449| 40481 4103181 3103401 7104181 710.7731 510.758 510.971 7
1
D. RQ3: Comparison of Community Detection g
. 2 o8
We compare DEPCOMM with other state-of-the-art com- £g
munity detection algorithms to show the effectiveness of g% o8
DEPCOMM’s community detection technique. Considering the z o4
overlapping nature of dependency graphs, we select 9 typical Eé 02
overlapping community detection algorithms as the baselines, E 0 i,
including NISE (2016) [36], EgoSpliter (2017) [41], NMNF Al A2 A3 A4 A5 A6 DI D2 D3 D4 D5 D6 D7 DS
(2017) [42], DANMF (2018) [43], PMCV (2019) [44], CGAN L__Fig. 10: Community compression rate for nodes
(2019) [45], VGRAPH (2019) [46], CNRL (2019) [47] and . ¢
DeepWalk (2014) [38]. We use F}-score [78] to evaluate the % 0.8
overall correspondence between the detected communities and E'gn 06
the ground-truth communities labeled by us. E;ﬁ
= 04
Table VI shows the F}j-score and the number of detected g2
communities |C| for DEPCOMM and the baselines. The results £% 02 IL
show that F-score achieved by DEPCOMM is averagely 2.29 2 o S
times higher than those achieved by the baselines. This shows Al A2 A3 A4 A5 A6 DI D2 D3 D4 DS D6 D7 D8

that our community detection algorithm is effective to detect
the process-centric communities, while the other baselines
have poorer performance due to the following reasons: (1)
they mainly focus on homogeneous graphs, and are oblivious
to the types of system events. Thus, they cannot effectively
distinguish process nodes and resource nodes, and mix these
nodes in a community, causing a community to contain
multiple irrelevant system activities or spread a system activity
across multiple communities; (2) they depend on a common
assumption that edges inside a community are more than the
edges linking with the nodes of other communities. Thus,
they fail to split two master process nodes connected with
information flows into two communities, even though the two
processes represent distinct system activities.

Furthermore, even though DEPCOMM and DeepWalk both
use SkipGram to learn the node representation from the
walk routes, DEPCOMM outperforms DeepWalk by 1.65x
on average. This shows that DEPCOMM’s hierarchical walk
schemes are more effective than the random walk scheme
adopted by DeepWalk, which treats each node equally.

E. RQA4: Effectiveness of Community Compression

To evaluate the effectiveness of community compression, we
compute the compression rates as v = 1—Sizepost/Siz€pre,
where Size,,. denotes the number of nodes or edges of a
community before applying compression and Sizep,s; is the

Fig. 11:.C . . f 1
number of nodes or edges after using compression. The box
plots in Fig. 10 and Fig. 11 show the distributions of the
compression rates for the nodes and the edges, respectively.
We can see that for a community, the number of nodes and the
number of edges are reduced averagely by 38.4% and 44.7%,
respectively, with the maximum reduction being 97.3% for the
nodes and 98.9% for the edges. In addition, we verify that the
InfoPaths are not changed after compression. The reason is
that the repeated activities have a same information flow that
often enters the subgraph formed by the repeated activities
through a single node and leave the subgraph via another
single node, and thus compressing the repeated activities will
not change the events inside InfoPaths. In a word, compressing
these repeated activities still preserves the semantics for the
task represented by a community.

F. RQS5: Effectiveness of InfoPath Ranking

For each community, DEPCOMM extracts InfoPaths based
on its input and output nodes. On average, a community has
4.3 input nodes and 3.9 output nodes, forming 15.7 InfoPaths.
We manually inspect the top-3 InfoPaths for each community
and confirm that the top-2 InfoPaths are sufficient to represent
system activities and attack behaviors. That is, we only need
to inspect 12.7% of the extracted InfoPaths.

TABLE VII: Top 3 InfoPaths of the community C3 with attack-related events and C8 without attack-related events

InfoPaths Priority Score

C3 | Top-1: leak—tar—> . ./upload.tar—bzip2—../upload.tar.bz2—gpg— . . /upload—>cur—xxx—>xxx 0.8234
Top-2: ../analysis.txt—tar—../upload.tar—bzip2— ../upload.tar.bz2—gpg— . ./upload—cur—>xxx—>xxx 0.7141
Top-3: ../userlist—tar—../upload.tar—bzip2—../upload.tar.bz2—gpg— . ./upload—cur—xxx—>xxx 0.7137

C8 | Top-1: xxx—>xxx—sshd—bash—scp—../statistics.tar.bz2—tar—../userlist 0.4914
Top-2: xxx->xxx—>scp—../statistics.tar.bz2—tar—../userlist 0.3839
Top-3: /dev/null—bash—scp—../statistics.tar.bz2—tar—../userlist 0.1830

We next use two communities to illustrate the effectiveness
of the top-ranked InfoPaths. Table VII shows the top 3 In-
foPaths of an attack-related community C3 that contains attack
behaviors and a community without attack-related events C8
for the attack A4. The events in C3 show that an attacker
runs a malicious script to compress, encrypt, and upload the
sensitive files to a remote server. We can see that these attack
behaviors can be effectively represented by using the top-
1 InfoPath whose priority score is 0.8234. While the top-2
and the top-3 can also cover the behaviors, the input node
of the top-1 InfoPath is a malicious script process (i.e., leak
) and it is easier to help security analysis further trace the
community that creates the malicious script. The events in
C8 show that a user logs into a host using sshd, transfers a
compressed file from a server to the host, and decompresses
the file. We can see that the top-1 InfoPath with the highest
priority score (0.4914) can represent all these activities, while
the top-2 InfoPath lacks the events for sshd login, and the top-
3 InfoPath lacks the sshd login event and contains a file event
(/dev/null—bash) that appears in many communities.

G. RQ6: Turnaround Time Performance of DEPCOMM

To understand the turnaround time performance of DE-
PCOMM, we measure the turnaround time of each phase
in DEPCOMM for the 14 attack cases. As the hierarchical
walks and vectorization in the community detection phase are
independent to each other, it is feasible to parallelize all the
hierarchical walks and vectorization. We use multi-processes
(20 processes) in a host to realize the parallelization. The
results are shown in Table VIII. On average, DEPCOMM takes
1,148.90s to generate a summary graph, which is ~ 6x
faster than running in a single process. More specifically,
dependency graph construction uses 32.12s, dependency graph
pre-processing uses 256.72s, and community detection uses
858.48s. For community detection, hierarchical walks uses
581.28s and vectorization uses 269.26s, which are ~ 7x and
~ 4x faster than running in a single process. Finally, commu-
nity compression uses 1.41s and community summarization
uses 0.17s. We can observe that (1) the community detection
phase takes up most of the time due to the walking sampling
and representation learning, and they can be accelerated by
parallelization; (2) DEPCOMM takes less time to compress
process-centric communities due to the highly efficient fre-
quent pattern mining algorithm; (3) the community summa-
rization phase requires the lest time because of the small
community sizes after compression. In a word, the turnaround
time performance of DEPCOMM can be further improved by
parallelizing the hierarchical walks and vectorization.

VI. DISCUSSION

Cooperation with Other Investigation Techniques. Besides
highlighting attack-related communities, visualization tech-
niques can be applied on the summary graphs generated by
DEPCOMM to show the overview of system activities, and
provide on-demand zoom in (zoom out) functionality to show
(hide) the detailed events in the communities. Additionally, by
integrating with other causality analysis techniques [12, 14,
28], DEPCOMM can generate a heat map that highlights the
communities that are likely to contain suspicious behaviors.

Forensics of Real-World Attacks. Recent real-world attacks,
such as Advanced Persistent Threat (APT) [75, 76], are sophis-
ticated (multi-step attacks that exploit various vulnerabilities)
and stealthy (staying dormant for a long period). With the
advances of log compression techniques [26, 27, 33, 60] and
the continuing decreases of storage costs, it is affordable to
store system audit logs for months or even years. Furthermore,
recent distributed database solutions [18, 19, 79, 80] show
promising results to improve the search performance of the
logs, which can be used to generate dependency graphs for
massive amount of logs. By working together with these
solutions, DEPCOMM can be applied on the generated de-
pendency graphs to detect communities, and integrate with
other detection techniques [14, 32] to highlight attack-related
communities.

Analysis Turnaround Time. Our current implementation
of DEPCOMM takes averagely 1,148.90s (in Table VIII) to
generate a summary graph. As the hierarchical walks and
vectorization are independent to each other, it is feasible to
parallelize all the hierarchical walks and vectorization [63].
By working with intrusion detection systems [11, 23] that
can provide real-time alerts and defenses, DEPCOMM can
be applied to identify the attack entry points and impacts,
enabling quicker turnaround time for system recovery and
preventing future compromises.

Limitations of DEPCOMM. Hierarchical graph embedding
is a novel graph embedding technology for system depen-
dency graphs. However, there are still some hyper-parameters
(e.g., the walking length, the window size for sub-sequence
extraction, and the dimension of vectors) that need to be set
manually. We adjust them based on the existing sensitivity
analysis [38], where the walking length is set to 200, the
window size is 20, and the dimensions is 20. There are still
some less-important events that cannot be compressed by
DEPCOMM, such as some interactions with system files (e.g.,
bash—/dev/null). By inspecting the communities, these events
can be found in different communities, and thus mining dis-
criminative patterns [81, 82] may help identify such patterns.

TABLE VIII: Turnaround Time of DEPCOMM

Dep. Graph

Dep. Graph

Community

Community

Community

Attack Cases Construction(s) | Preprocess(s) | Detection(s) | Compr (s) | Summarization(s) Total(s)
Al: Email Penetration 1.15 7.14 186.72 0.032 0.054 195.09
A2: Compile Crash 0.23 1.4 78.38 0.0096 0.089 80.11
A3: Files Tamper 30.64 147.13 740.28 0.029 0.13 918.21
Ad4: Data Exfiltration 1.11 6.55 172.24 0.027 0.074 180.00
AS: Password Crack 0.80 3.19 20.54 0.0075 0.0085 24.54
A6: VPN Filter 13.42 111.9 1,463.45 0.049 0.17 | 1,588.99
D1: Phishing Email (C.S.) 141.63 1,028.32 110.77 0.0052 0.060 | 1,280.78
D2: Phishing Email (ED.) 60.72 486.57 2,247.12 4.53 0.31 | 2,799.25
D3: Firefox Backdoor (F.D.) 83.38 780.93 2,968.01 7.36 0.47 | 3,840.15
D4: Browser Extension (ED.) 93.06 953.06 2,846.95 7.70 0.41 | 3,901.18
D5: Browser Extension (Theia) 5.87 10.21 135.69 0.017 0.16 151.95
D6: Firefox Backdoor (Theia) 5.76 104 159.11 0.025 0.16 175.45
D7: Phishing Email (Theia) 5.86 8.27 105.28 0.011 0.11 119.53
D8: Pine Backdoor (Trace) 6.06 38.97 784.18 0.022 0.17 829.40
Average 32.12 256.72 858.48 1.42 0.17 | 1,148.90

VII. RELATED WORK

Causality Analysis via System Audit Logs. Causality anal-
ysis was initially proposed by King et al. [8, 9], which aims
to automatically reconstruct a series of events that represent
attack steps. As causality analysis suffers from the depen-
dency explosion problem [26, 27, 33, 51], recent research has
proposed techniques to perform fine-grained causality analy-
sis [13, 15, 25, 83, 84] and prioritize dependencies [12, 14].
Also, Gui et al. [85] proposed an approach that presents
updates of causality analysis periodically and involves human
in the loop to provide heuristics in reducing the generated
dependency graphs. Unlike these techniques that aim to re-
veal attack-related events, DEPCOMM generates a summary
graph from the dependency graph, and can work with these
techniques to highlight the attack-related communities.

Behavior Analysis via System Audit Logs. Gao et al. [18, 19]
proposed domain-specific languages that query system audit
logs for efficient attack investigation. Milajerdi et al. [32]
proposed to rely on the correlation of suspicious information
flows to detect ongoing attack campaigns, and used the knowl-
edge from cyber threat intelligence (CTI) reports to align the
attack behaviors recorded in system audit logs [86]. Pasquier
et al. [87] proposed a runtime analysis of provenance by com-
bining runtime kernel-layer reference monitor with a query
module. Hossain et al. [28] proposed a tag-based technique
to perform real-time attack detection and reconstruction from
system audit logs. The summary graphs generated by DEP-
CoMM can be integrated with these techniques to facilitate the
understanding of attack behaviors and provide better defenses.
Furthermore, recent approaches [14, 88] leverage alerts from
threat detection systems or software applications’ runtime
logging activities [89] to generate compact graphs. Unlike
these approach whose quality heavily depend on the detected
alerts and the generalizability of the learned system profiles,
DEPCOMM is a general approach that leverages only the
information inside dependency graphs to detect communities,
and can easily cooperate with various automatic investigation
techniques [32] to detect attack-related communities.

Community Detection. NISE [36] is a local-expansion al-
gorithm, which expands a initialized seed set into clusters
with overlaps. EgoSplitter [41] first build a node-decoupling
graph through splitting nodes into multiple replicas, then

applies some classic methods for disjoint community detection
to the build graph. NMNF [42] uses non-negative matrix
factorization to learn node representation with mesoscopic
community structure. DANMF [43] proposed a novel deep
NMF model for overlapping community detection, which
models the non-negative matrix factorization process by auto-
encoder network. PMCV [44] detects overlapping communi-
ties through searching and joining adjacent k-cliques sharing
k-1 nodes. CGAN [45] uses the Generative Adversarial Nets
to learn the membership strength of nodes to communities.
VGRAPH [46] uses neural networks to model the generation
of node neighbors, which joins community detection and node
representation learning. CNRL [47] applies the Latent Dirich-
let Allocation model (LDA) to the random walk sequences to
learn the community membership. DeepWalk [38] joins ran-
dom walk schemes and word2vec to learn node representation
with community structure. These existing algorithms mainly
focus on homogeneous graphs and treat each node equally,
while DEPCOMM gives priorities for neighbor nodes that are
more likely to represent intimate processes.

Graph Summarization. Graph summarization produces a
compact representation of a large-scale graph, facilitating the
identification of structure and meaning in data [29-31]. It
has extensive applications, such as clustering, classification,
community detection, and outlier detection. Unlike these tech-
niques whose target data is mainly stored in databases, DEP-
CoMM processes dependency graphs, a type of heterogeneous
graphs where process nodes and other resource nodes represent
different steps of system activities.

VIII. CONCLUSION

We have presented DEPCOMM, which clusters intimate
processes that cooperate with each other to accomplish cer-
tain system tasks into a community and compresses the
repeated events inside each community. For each commu-
nity, DEPCOMM further identifies InfoPaths that represent
the information flows across communities, and ranks these
InfoPaths based on their likelihoods to reveal attack behaviors.
The top-ranked InfoPaths are then used as the summary for
each community. Our evaluations on real attacks demonstrate
the effectiveness of DEPCOMM in detecting process-centric
communities, compressing repeated events, and prioritizing
InfoPaths to assist attack investigation.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
the constructive comments and suggestions to improve the
manuscript. Zhigiang Xu, Yu Wen, and Dan Meng are par-
tially supported by the Strategic Priority Research Program
of Chinese Academy of Sciences, Grant No.XDC02010300.
Pengcheng Fang, Changlin Liu, and Xusheng Xiao are par-
tially supported by the National Science Foundation under the
grants CNS-2028748 and CCF-2046953.

(1]

(2]

3

—

(4]

[5

—

[6

—_

[7

—

(8]

(91

[10]

(11]

[12]

(13]

(14]

REFERENCES
Ebay, “Ebay Inc. to ask Ebay wusers to change pass-
words,” 2014, http://blog.ebay.com/ebay-inc-ask-ebay-users-

change-passwords/.

CNN, “OPM government data breach impacted 21.5 mil-
lion,” 2015, http://www.cnn.com/2015/07/09/politics/otfice-of-
personnel-management-data-breach-20-million.

New York Times, “Target data breach incident,” 2014,
http://www.nytimes.com/2014/02/27/business/target-reports-on-
fourth-quarter-earnings.html? _r=1.

NPR, “Home Depot Confirms
Breach At u.S., Canadian Stores,”
http://www.npr.org/2014/09/09/347007380/home-depot-
confirms-data-breach-at-u-s-canadian-stores.
Techcrunch, “Yahoo discloses hack of 1 billion accounts,”
2016, https://techcrunch.com/2016/12/14/yahoo-discloses-hack-
of-1-billion-accounts/.

Federal Trade Commission, “The equifax data breach,” 2017,
https://www.ftc.gov/equifax-data-breach.

Federal Trade Commission, “The marriott data breach,” 2018,
https://www.consumer.ftc.gov/blog/2018/12/ marriott-data-
breach.

S. T. King and P. M. Chen, “Backtracking intrusions,” in
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2003, pp. 223-236.

S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen,
“Enriching intrusion alerts through multi-host causality,” in
Proceedings of the Annual Network and Distributed System
Security Symposium (NDSS). 1SOC, 2005.

A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The
taser intrusion recovery system,” in Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP). ACM,
2005, pp. 163-176.

T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion
recovery using selective re-execution,” in Proceedings of the
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, 2010, pp. 89-104.
Y. S. Liu, M. Zhang, D. Li, K. Jee, Z. C. Li, Z. Y. Wu, J. Rhee,
and P. Mittal, “Towards a timely causality analysis for enterprise
security,” in Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS). 1SOC, 2018.

Y. Kwon, F. Wang, W. H. Wang, K. H. Lee, W. C. Lee, S. Q. Ma,
X. Y. Zhang, D. Y. Xu, S. Jha, G. F. Ciocarlie, A. Gehani, and
V. Yegneswaran, “MCI : Modeling-based causality inference in
audit logging for attack investigation,” in Proceedings of the
Annual Network and Distributed System Security Symposium
(NDSS). 1SOC, 2018.

W. U. Hassan, S. J. Guo, D. Li, Z. Z. Chen, K. K. Jee, Z. C.
Li, and A. Bates, “Nodoze: Combating threat alert fatigue with
automated provenance triage,” in Proceedings of the Annual

Data
2014,

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

Network and Distributed System Security Symposium (NDSS).
ISOC, 2019.

S. Q. Ma, X. Y. Zhang, and D. Y. Xu, “Protracer: towards
practical provenance tracing by alternating between logging and
tainting,” in Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS). 1SOC, 2016.

X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and
Y.-M. Wang, “Provenance-aware tracing of worm break-in and
contaminations: A process coloring approach,” in Proceedings
of the IEEE International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2006, pp. 38-38.

S. Q. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Y. Zhang, G. E
Ciocarlie, A. Gehani, V. Yegneswaran, D. Y. Xu, and S. Jha,
“Kernel-supported cost-effective audit logging for causality
tracking,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC). USENIX Association, 2018, pp.
241-254.

P. Gao, X. S. Xiao, Z. C. Li, F. Y. Xu, S. R. Kulkarni, and
P. Mittal, “AIQL: Enabling efficient attack investigation from
system monitoring data,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC). USENIX Association,
2018, pp. 113-125.

P. Gao, X. S. Xiao, D. Li, Z. C. Li, K. K. Jee, Z. Y. Wu, C. H.
Kim, S. R. Kulkarni, and P. Mittal, “SAQL: A stream-based
query system for real-time abnormal system behavior detection,”
in Proceedings of the USENIX Security Symposium (USENIX
Security). USENIX Association, 2018, pp. 639-656.

G. P. Spathoulas and S. K. Katsikas, “Reducing false positives
in intrusion detection systems,” Computers & Security, vol. 29,
no. 1, pp. 35-44, 2010.

T. Pietraszek, “Using adaptive alert classification to reduce
false positives in intrusion detection,” in Proceedings of the
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID). Springer, 2004, pp. 102-124.

W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer,
“Towards scalable cluster auditing through grammatical infer-
ence over provenance graphs,” in Proceedings of the Annual
Network and Distributed System Security Symposium (NDSS).
ISOC, 2018.

C. Kruegel, F. Valeur, and G. Vigna, Intrusion Detection and
Correlation - Challenges and Solutions, ser. Advances in Infor-
mation Security. Springer, 2005, vol. 14.

A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and
E. Kirda, “UNVEIL: A large-scale, automated approach to
detecting ransomware,” in Proceedings of the USENIX Security
Symposium (USENIX Security), T. Holz and S. Savage, Eds.
USENIX Association, 2016, pp. 757-772.

K. H. Lee, X. Y. Zhang, and D. Y. Xu, “High accuracy attack
provenance via binary-based execution partition,” in Proceed-
ings of the Annual Network and Distributed System Security
Symposium (NDSS). 1SOC, 2013.

Z.Xu,Z. Y. Wu, Z. C. Li, K. K. Jee, J. Rhee, X. S. Xiao, F. Y.
Xu, H. N. Wang, and G. F. Jiang, “High fidelity data reduction
for big data security dependency analyses,” in Proceedings of
the ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). ACM, 2016, pp. 504-516.

Y. T. Tang, D. Li, Z. C. Li, M. Zhang, K. Jee, X. S. Xiao,
Z.Y. Wu, J. Rhee, F. Y. Xu, and Q. Li, “Nodemerge: Template
based efficient data reduction for big-data causality analysis,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2018, pp. 1324-1337.
M. N. Hossain, S. M. Milajerdi, J. A. Wang, B. Eshete,

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

R. Gjomemo, R. Sekar, S. D. Stoller, and V. N. Venkatakrishnan,
“SLEUTH: real-time attack scenario reconstruction from COTS
audit data,” in Proceedings of the USENIX Security Symposium
(USENIX Security). USENIX Association, 2017, pp. 487-504.
Y. K. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summa-
rization methods and applications: A survey,” ACM Computing
Surveys, vol. 51, no. 3, pp. 1-34, 2018.

K. A. Kumar and P. Efstathopoulos, “Utility-driven graph
summarization,” Proceedings of the International Conference
on Very Large Data Bases (VLDB), vol. 12, no. 4, pp. 335—
347, 2018.

J. Ko, Y. Kook, and K. Shin, “Incremental lossless graph
summarization,” in Proceedings of the ACM International Con-
ference on Knowledge Discovery and Data Mining (KDD).
ACM, 2020, pp. 317-327.

S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and
V. Venkatakrishnan, “HOLMES: real-time APT detection
through correlation of suspicious information flows,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy
(S&P). 1EEE, 2019, pp. 1137-1152.

M. N. Hossain, J. A. Wang, R. Sekar, and S. D. Stoller,
“Dependence-preserving data compaction for scalable forensic
analysis,” in Proceedings of the USENIX Security Symposium
(USENIX Security). USENIX Association, 2018, pp. 1723—
1740.

F. Spitzer, Principles of random walk.
Business Media, 2013, vol. 34.

J. R. Xie, B. K. Szymanski, and X. M. Liu, “Slpa: Uncovering
overlapping communities in social networks via a speaker-
listener interaction dynamic process,” in [EEE International
Conference on Data Mining Workshops (ICDM). 1EEE, 2011,
pp. 344-349.

J. J. Whang, D. F. Gleich, and 1. S. Dhillon, “Overlapping com-
munity detection using neighborhood-inflated seed expansion,”
IEEE Transactions on Knowledge & Data Engineering (TKDE),
vol. 28, no. 5, pp. 1272-1284, 2016.

A. Grover and J. Leskovec, “Node2vec: Scalable feature learn-
ing for networks,” in Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining (KDD).
ACM, 2016, pp. 855-864.

B. Perozzi, R. Al Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in Proceedings of the ACM
International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 2014, pp. 701-710.
Symantec, “Process lineage,” 2020,
help.symantec.com/cs/ATP__SAAS/ATP/v128100935_ -
v128439210/Process-lineage-example?locale=EN _ US.
DARPA, “Transparent computing engagement 3 data release,”
https://github.com/darpa-i2o/Transparent-Computing.

A. Epasto, S. Lattanzi, and R. Paes Leme, “Ego-splitting
framework: From non-overlapping to overlapping clusters,” in
Proceedings of the ACM International Conference on Knowl-
edge Discovery and Data Mining (KDD). ACM, 2017, pp.
145-154.

X. Wang, P. Cui, J. Wang, J. Pei, and S. Q. Yang, “Community
preserving network embedding,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). AAAI, 2017, pp.
203-209.

F. Ye, C. Chen, and Z. Zheng, “Deep autoencoder-like nonnega-
tive matrix factorization for community detection,” in Proceed-
ings of the ACM International Conference on Information and
Knowledge Management (CIKM). ACM, 2018, pp. 1393-1402.

Springer Science &

https://

[44]

(45]

[46]

[47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

N. Kasoro, S. Kasereka, E. Mayogha, H. T. Vinh, and
J. Kinganga, “Percomcv: A hybrid approach of community
detection in social networks,” in The International Conference
on Ambient Systems, Networks and Technologies (ANT). EL-
SEVIER, 2019, pp. 45-52.

Y. T. Jia, Q. Q. Zhang, W. N. Zhang, and X. P. Wang, “Commu-
nitygan: Community detection with generative adversarial nets,”
in In Proceedings of the 2019 World Wide Web Conference
(WWW). ACM, 2019, pp. 784-794.

E. Y. Sun, M. Qu, H. Jordan, C. W. Huang, and J. Tang, “vgraph:
A generative model for joint community detection and node rep-
resentation learning,” in Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurlPS). MIT
Press, 2019.

C. C. Tu, X. K. Zeng, H. Wang, Z. Y. Zhang, Z. Y. Liu, M. S.
Sun, B. Zhang, and L. Y. Lin, “A unified framework for com-
munity detection and network representation learning,” IEEE
Transactions on Knowledge and Data Engineering (TKDE),
vol. 31, no. 6, pp. 1051-1065, 2019.

“Cyber Kill Chain,” http://www.lockheedmartin.com/us/ what-

we-do/information-technology/cybersecurity/ tradecraft/cyber-
kill-chain.html.
Anonymous, “Project website for depcomm,” 2021,

https://github.com/ieeesp2021sub/depcomm.

A. M. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustwor-
thy whole-system provenance for the linux kernel,” in Proceed-
ings of the USENIX Security Symposium (USENIX Security).
USENIX Association, 2015, pp. 319-334.

K. H. Lee, X. Y. Zhang, and D. Xu, “Loggc: garbage collecting
audit log,” in Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS). ACM, 2013,
pp- 1005-1016.

Microsoft, “ETW events in the common language
runtime,” 2017, https://msdn.microsoft.com/en-
us/library/ff357719(v=vs.110).aspx.

Redhat, “The linux audit framework,” 2017,

https://github.com/linux-audit.

S. A. Crosby and D. S. Wallach, “Efficient data structures for
tamper-evident logging,” in Proceedings of the USENIX Security
Symposium (USENIX Security). USENIX Association, 2009,
pp. 317-334.

R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. Fletcher,
A. Miller, and D. Tian, “Custos: Practical tamper-evident audit-
ing of operating systems using trusted execution,” in Proceed-
ings of the Annual Network and Distributed System Security
Symposium (NDSS). 1SOC, 2020.

R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging
to the danger zone: Race condition attacks and defenses on
system audit frameworks,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).
ACM, 2020, pp. 1551-1574.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in c++ applications,”
in Proceedings of the IEEE Symposium on Security and Privacy
(S&P). IEEE, 2015, pp. 745-762.

K. J. Lu, W. K. Lee, S. Niirnberger, and M. Backes, “How
to make aslr win the clone wars: Runtime re-randomization.”
in Proceedings of the Annual Network and Distributed System
Security Symposium (NDSS). 1SOC, 2016.

K. J. Lu, C. Y. Song, T. Kim, and W. K. Lee, “Unisan: Proactive
kernel memory initialization to eliminate data leakages,” in

https://github.com/darpa-i2o/Transparent-Computing

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]
[69]
[70]
(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2016, pp. 920-932.
N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and
A. Bates, “On the forensic validity of approximated audit logs,”
in Proceedings of the Annual Computer Security Applications
Conference (ACSAC). 1EEE, 2020, pp. 189-202.

F. C. Liu, Y. Wen, D. X. Zhang, X. H. Jiang, X. Y. Xing,
and D. Meng, “Log2vec: A heterogeneous graph embedding
based approach for detecting cyber threats within enterprise,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2019, pp. 1777-
1794.

T. Mikolov, K. Chen, and J. Dean, “Efficient estimation of word
representations in vector space,” in arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS). MIT Press,
2013, pp. 3111-3119.

J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Cybernet, vol. 3,
no. 3, pp. 32-57, 1973.

S. H. Zhang, R. S. Wang, and X. Zhang, “Identification of
overlapping community structure in complex networks using
fuzzy-means clustering,” Physica A: Statistical Mechanics and
its Applications, vol. 374, no. 1, pp. 483—490, 2007.

E. Trauwaert, “On the meaning of dunn’s partition coefficient
for fuzzy clusters,” Fuzzy Sets and Systems, vol. 25, no. 2, pp.
217-242, 1988.

F. Luccio, L. Pagli, A. M. Enriquez, and P. O. Rieumont,
“Bottom-up subtree isomorphism for unordered labeled trees,”
International Journal of Pure and Applied Mathematics, vol. 38,
no. 3, pp. 325-343, 2007.

Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok, “Frequent
subtree mining — an overview,” Fundamenta Informaticae,
vol. 66, no. 1-2, pp. 161-198, 2004.

Sysdig, “Sysdig,” 2017, https://sysdig.com/.

Exploit Database, “Exploit Database,”
https://www.exploit-db.com/.

L. Martin, “cyber kill chain,” https://www.lockheedmartin.com/
en-us/capabilities/cyber/cyber-kill-chain.html.
“CVE-2014-6271: bash: specially-crafted environment
variables can be used to inject shell commands.” 2014,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
6271.

“VPNFilter: New Router Malware with Destructive Capabili-
ties,” 2018, https://symc.ly/2IPGGVE.

E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-
driven computer network defense informed by analysis of
adversary campaigns and intrusion kill chains,” Leading Issues
in Information Warfare & Security Research, vol. 1, p. 80, 2011.
Fireeye, “Anatomy of Advanced Persistent Threats,” 2017,
https://www.fireeye.com/current-threats/anatomy-of-a-cyber-
attack.html.

Symantec, “Advanced Persistent Threats: How They Work,”
2017, https://www.symantec.com/theme.jsp? themeid=apt-
infographic-1.

“Adversarial tactics, techniques and common knowledge,”
https://attack.mitre.org/wiki/Main Page.

G. Rossetti, L. Pappalardo, and S. Rinzivillo, “A novel approach
to evaluate community detection algorithms on ground truth,”
in Proceedings of the Workshop on Complex Networks (Com-

2017,

[79]

(80]

(81]

(82]

(83]

[84]

[85]

(86]

(87]

(88]

(89]

pleNet). Springer, 2016, pp. 133-144.

P. Gao, X. Xiao, D. Li, K. Jee, H. Chen, S. R. Kulkarni,
and P. Mittal, “Querying streaming system monitoring data for
enterprise system anomaly detection,” in Proceedings of the
IEEE International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 1774-17717.

P. Gao, X. S. Xijao, Z. C. Li, K. Jee, F. Y. Xu, S. R. Kulkarni, and
P. Mittal, “A query system for efficiently investigating complex
attack behaviors for enterprise security,” Proceedings of the
International Conference on Very Large Data Bases (VLDB),
vol. 12, no. 12, pp. 1802-1805, 2019.

Z. Bo, X. S. Xiao, Z. C. Li, Z. Y. Wu, Z. Y. Qian, X. F. Yan,
A. K. Singh, and G. F. Jiang, “Behavior query discovery in
system-generated temporal graphs,” Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), vol. 9,
no. 4, pp. 240-251, 2015.

X. F. Yan, P. S. Yu, and J. W. Han, “Graph indexing based on
discriminative frequent structure analysis,” ACM Transactions
on Database Systems (TODS), vol. 30, no. 4, pp. 960-993, 2005.
Y. Ji, S. H. Lee, E. Downing, W. R. Wang, M. Fazzini, T. Kim,
A. Orso, and W. K. Lee, “Rain: Refinable attack investigation
with on-demand inter-process information flow tracking,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2017, pp. 377-390.
Y. Ji, S. H. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim,
A. Orso, and W. K. Lee, “Enabling refinable cross-host attack
investigation with efficient data flow tagging and tracking,”
in Proceedings of the USENIX Security Symposium (USENIX
Security). USENIX Association, 2018, pp. 1705-1722.

J. P. Gui, D. Li, Z. Z. Chen, J. Rhee, X. S. Xiao, M. Zhang,
K. Jee, Z. C. Li, and H. F. Chen, “APTrace: A responsive system
for agile enterprise level causality analysis,” in Proceedings
of the IEEE International Conference on Data Engineering
(ICDE). 1IEEE, 2020, pp. 1701-1712.

S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrish-
nan, “Poirot: Aligning attack behavior with kernel audit records
for cyber threat hunting,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).
ACM, 2019, pp. 1795-1812.

T. Pasquier, X. Y. Han, T. Moyer, A. Bates, O. Hermant,
D. Eyers, J. Bacon, and M. Seltzer, “Runtime Analysis of
Whole-system Provenance,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).
ACM, 2018, pp. 1601-1616.

W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance
analysis for endpoint detection and response systems,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy
(S&P). IEEE, 2020, pp. 1172-1189.

W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates,
“Omegalog: High-fidelity attack investigation via transparent
multi-layer log analysis,” in Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS). 1SOC,
2020.

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://symc.ly/2IPGGVE

	I Introduction
	II Background and Motivation
	II-A System Event and Causality Analysis
	II-B Motivating Example

	III Overview and Threat Model
	IV Design of DepComm
	IV-A Dependency Graph Generation
	IV-B Dependency Graph Pre-processing
	IV-C Community Detection
	IV-D Community Compression
	IV-E Community Summarization

	V Evaluation
	V-A Evaluation Setup
	V-B RQ1: Overall Effectiveness of DepComm
	V-C RQ2: Cooperation with HOLMES
	V-D RQ3: Comparison of Community Detection
	V-E RQ4: Effectiveness of Community Compression
	V-F RQ5: Effectiveness of InfoPath Ranking
	V-G RQ6: Turnaround Time Performance of DepComm

	VI Discussion
	VII Related Work
	VIII Conclusion

