Survey of Hardware Acceleration of Genomic
Analysis

Zhuren Liuf, Shouzhe ZhangT, Hui Zhao
Department of Computer Science and Engineering, University of North Texas
{zhurenliu, shouzhezhang}@my.unt.edu, {hui.zhao}@unt.edu
"Both authors contributed equally to this work.

Abstract—As the Next-Generation Sequencing (NGS) tech-
niques need to process enormous amounts of data, cost-efficient
and high-throughput computational analysis is essential in ge-
nomics study. Conventional computing platforms face great
challenges to meet these demands due to their limited pro-
cessing speed and scalability. Hardware accelerators, such as
Graphics Processing Units (GPUs), Field-Programmable Gate
Arrays (FPGAs), and Application-Specific Integrated Circuits
(ASICs), offer transformative solutions to these computational
challenges. This paper provides a state-of-the-art review of the
roles of hardware accelerators in genomic analysis. We performed
a comprehensive and in-depth analysis of cutting-edge genomics
hardware accelerators, such as GPUs, FPGAs, and ASICs, in the
context of the specific algorithms they aim to enhance. Besides
reviewing opportunities in hardware genome acceleration, we also
provide insights into the challenges regarding processing speed,
cost efficiency, and scalability.

Index Terms—genome analysis, genome sequencing, hardware
accelerator, GPU, FPGA, ASIC, accelerated computing.

1. INTRODUCTION

Genome analysis is the study of an organism’s DNA sequence.
This technique has numerous vital applications, including
tracing pandemic outbreaks, early cancer detection [1], dis-
ease cause recognition [2], medication development [3], and
protein identification [4]. Next-generation technologies, such
as sequencing by synthesis (SBS) [5], Single Molecule Real-
Time (SMRT) [6], and nanopore sequencing [7], enable faster
and cheaper DNA and RNA sequencing [8]-[10], resulting in
an exponential increase in genetic data. Despite these develop-
ments, however, genomic data analysis remains difficult; one
of the major challenges is the inability to read an organism’s
entire genome [11]. Therefore, sequencing machines can only
extract a small fragment of the organism’s DNA sequence, and
this is known as short-read alignment [12].

A genome analysis pipeline involves a series of steps
that affect the precision, swiftness, and energy efficiency of
genome analysis [13]. Such steps include: 1) Basecalling:
translating the raw sequencing data produced by HTS into
genomic characters such as A, C, G, and T in DNA; 2) Real-
time analysis: Known as reads, analyzes the raw sequencing
data in real-time when they are being sequenced using specific
sequencing technology, such as Nanopore [7] sequencing;
3) Read mapping: identifying similarities and differences
between genomic sequences, e€.g., between sequenced reads
and reference genomes of one or more species. This stage
comprises several steps, including indexing, seeding, and

alignment; 4) The subsequent steps of further genome analysis.

Figure 1 (a) illustrates the genome analysis pipeline. The
pipeline contains two key steps: basecalling and read mapping.
Some state-of-the-art basecallers use deep neural networks for
translating raw signals into nucleotide bases, e.g., Bonito [14].
The basecaller needs to return a read quality score based on
the accuracy of the translation of each nucleotide base. To
start with, the basecaller first needs to split the long read from
the raw data into smaller fragments before basecalling these
fragments. Next, the basecaller needs to reassemble them back
into a long read sequence [15].

Read mapping maps the reads from basecalling to a ref-
erence genome. Some state-of-the-art read mappers, such as
Minimap?2 [16], contain at least 3 phases. As shown in Figure
1. DIndexing allows queries to find matches between a read
and reference genome. During indexing, minimizers [17], [18]
generated from the reference genome are inserted into a key-
value hash table. In this table, minimizers serve as the keys,
while their locations in the reference genome contain the
values [15]. @Seeding generates minimizers from a basecalled
read, then it searches the generated minimizers in the hash
table to find matching regions between the read and refer-
ence genome. (3)Sequence alignment identifies the similarity
between the read and each candidate region in the reference
genome. It uses an alignment score to represent the difference
between the two sequences. Sequence alignment generally
uses a computationally expensive dynamic programming (DP)
algorithm [15] to perform approximate string matching (ASM)
between two sequences. Figure 1 (b) describes the different
approaches to speed up each step of read mapping.

Since software techniques alone are not efficient enough
to deal with large amounts of genome data, hardware tech-
niques have been explored to provide solutions for these
challenges. Specialized hardware, such as graphics processing
units (GPUs), field-programmable gate arrays (FPGAs), and
application-specific integrated circuits (ASICs), can dramati-
cally decrease the processing time and improve the efficiency
of genomic data analysis. These specialized hardware are
well known for their parallel processing capabilities compared
with conventional central processing units (CPUs). Their high
throughput, multitasking, and parallel processing capabilities
work well with the data-intensive and repetitive activities
common in genomics, such as variant calling, genome assem-
bly, and sequence alignment. A comprehensive comparison

Translates raw electrical
signals into nucleotide bases

Identify similarities
between sequences

[
£
“E’ > Read Mapping > Genome Variants
o
B eoemtTTT L entlloe-eenemntTTTTTTT O TTTTTTTeeeneell
[Sequence
(a) § Raw S*ignals @ Indexing @ Seeding Alignment
<
° Read Read
5 Hash Table 8%
g Basecaller [§§ DP
o Locations ..g 2 Matrix
T Read Reference]
ongpieacs Substrings
g
'g Accelerating Indexing [Reducing number of seeds] [Reducing data movement]
©
= : : e
- g-gram filtering Pigeonhole principle
© - .
é Accelerating Seeding
(b) o Base counting Sparse DP
=
g
% Accelerating Accurate Heuristic-based
g Sequence Alignment alignment accelerators alignment accelerators
<

Fig. 1.
Alignment. (b) Overview of approaches to accelerate read mapping [11]

between different accelerators, detailing their architectural
features, advantages, constraints, processing power (FLOPS),
price, and energy, is shown in Table 1 [19]-[21].

This paper aims to explore the current state, challenges, and
future research trends of hardware acceleration in genomic
analysis. We will examine several hardware acceleration so-
lutions, evaluating their effectiveness, adaptability, and cost-
effectiveness through a thorough review of current state-of-
the-art research. This survey seeks to highlight the potential
of hardware-accelerated genomics study to help researchers
develop a perspective of the area and evaluate future trends.
The paper is structured as follows: Sections 2, 3, and 4 review
research on accelerating genome analysis with GPUs, FPGAs,
and ASICs, respectively. In these sections, we provide reviews
of specific hardware accelerators, categorizing them according
to the phases of read mapping. Finally, Section 5 presents a
discussion about our perspectives. Table 2 lists the hardware-
accelerated genome analysis tools covered in this survey.

2. ACCELERATING GENOME ANALYSIS USING GPUs

GPUs have been widely used in accelerating parallel appli-
cations [22]. GPU-based frameworks can significantly reduce
the execution time for genomic analysis [23]. General Purpose
Graphics Processing Units (GPGPUs) are a type of general-
purpose accelerator that is very efficient in executing SIMD
commands. For instance, DeepVariant, a convolutional neural
net-based variant caller, has a speedup of over 80x than CPUs
when running certain tasks on GPU-accelerated platforms [24].
In this section, we review the prior work of accelerating
genomic analysis using GPUs.

(a) The typical pipeline of Genome analysis. The basics steps of Basecalling. Three steps of Read Mapping: (D) Indexing, @ Seeding, and Q)

2.1 Accelerating Indexing

Zhang et al. [25] evaluated BaseNumber, a GPU-accelerated
tool for germline variant calling using whole-genome se-
quencing (WGS) data. The study showed that BaseNumber
can identify genetic variants with increased speed and effi-
ciency. To address the growing demand for high-throughput
software when aligning large numbers of short DNA reads,
Liu et al. proposed SOAP3 [26], which is the first GPU
implementation of compressed index data known as Burrows-
Wheeler Transform (BWT). SOAP3 tackles challenges such
as reducing the memory accesses to the index from individual
threads (cores) and avoiding idle time by controlling the
branch and divergence of the threads. Masher [27] is a tool
that streamlines read mapping on long genomics, leveraging
a hash-based indexing strategy implemented on GPUs. It
addresses the computational difficulties that arise from the
increasingly complex and lengthy genomic data. Masher uses
a hash-based indexing framework. It enables fast look-up and
alignment of genomic sequences, significantly speeding up the
mapping process for reads longer than 500.

In an effort to optimize the alignment of biological se-
quences, Franklin et al. [28] optimized the BLAST algorithm.
Their algorithm consists of a heuristic seed indexing phase and
an extension phase with sequence comparison. They proposed
a two-dimensional matrix as a hash table and leveraged GPU’s
parallel capability to process the hash table. Encarnaccao et
al. [29] utilized suffix array-based indexing to accelerate DNA
sequence alignment on GPUs. They modified the construction
and search algorithms of suffix arrays to enable parallel
execution on GPUs. This approach greatly improves the speed
and effectiveness of DNA searches.

TABLE 1
COMPARISON OF HIGH-PERFORMANCE COMPUTING ARCHITECTURES

Type Description Advantages Disadvantages Price Power
GPU Graphics Processing Units de- Highly parallel processing ca- High cost and require special- $500 - $10,000+ 100W - 300W
signed for parallel processing pabilities, ideal for machine ized programming knowledge.
and computational acceleration. learning, simulations, and ren-
dering tasks.
FPGA Field-Programmable Gate Ar- Reconfigurable, offering flexi- Complex to program and recon- $100 - $5,000+ 10W - 100W
rays are reconfigurable inte- bility and high performance for figure, and may not match the
grated circuits that can be pro- specific applications. performance of dedicated hard-
grammed for specific tasks. ware for certain tasks.
ASICs Custom-built integrated circuits ~ Highly efficient for their in- High development costs and $10,000+ 10W - 100W

designed for specific applica-
tions or tasks.

tended tasks, offering superior
performance and lower power

lack of flexibility once manu-
factured.

consumption.

2.2 Accelerating Sequence Alignment

Sequence alignment is the process of finding the best align-
ment of a pair of DNA sequences, RNA sequences, or proteins.
It is one of the most fundamental tasks in genomic analysis
and one of the most compute-intensive kernels for genomic
data analysis, taking up over 90% of the overall time for
bioinformatics workloads [30]. In recent years, GPUs have be-
come widely used to speed up sequence alignment, achieving
significant performance improvement and energy reduction.

Ren et al. [31] tackle the NGS data problem by presenting
a GPU-accelerated version of the GATK HaplotypeCaller
(GATK HC), a commonly used DNA variant caller. They
also proposed a load-balanced multi-process optimization to
overcome the limitations that force sequential execution of the
program. Taylor et al. [32] focused on the scalability of ge-
nomic analyses using GPUs. They showed that high efficiency
at low cost can be achieved using general-purpose libraries like
PyTorch and TensorFlow on GPUs, demonstrating significant
improvement in runtime and cost-efficiency compared to CPU-
based processing.

GASAL2 [33] is a specialized GPU sequence alignment
library for aligning DNA and RNA sequences, offering various
alignment kernels such as local alignment, global alignment,
and semi-global alignment. Genomics-GPU [23] extends these
kernels by incorporating 10 widely used genomic analysis
applications into one benchmark suite, covering genome com-
parison, matching, and clustering for both DNAs and RNAs. It
also created updated versions of these applications to leverage
CUDA Dynamic Parallelism (CDP) to further improve parallel
execution throughput.

Multiple works have been proposed on the optimization
of the Smith-Watersman (SW) [34] algorithm on GPUs. The
Smith-Watersman algorithm is known for its precision in
sequence alignment, and it is very computationally intensive.
This is a dynamic programming algorithm that can provide
conserved regions between two sequences and align two
partially overlapping sequences [23], [34], [35]. The rapid
growth in genomic data makes it necessary to develop efficient
computational techniques tailored to the Smith-Watersman
algorithm. CUDAIlign [36] tackled this problem by focusing
on Megabase Genome Sequencing Acceleration using GPUs.
It optimizes the Smith-Waterman algorithm to utilize the
parallel computing capabilities on GPUs. Sandes et al. [37]
then proposed CUDAlign 2.1, which focuses on the Smith-

Waterman algorithm for aligning megabase-sized biological
sequences using GPU. They observed that they could achieve
up to 41.64x speedup when comparing GPU with the Z-
align cluster solution [38], a CPU cluster solution for large
sequences pairwise alignments. CUDASW++ 3.0 [39] further
improved CUDAlign by presenting a hybrid approach to
enhance the performance of the Smith-Waterman algorithm
by coupling the SIMD (Single Instruction, Multiple Data)
instructions on CPUs and GPUs. CUDAlign 4.0 [40] aims
to address the exact chromosome-wide alignment, one of the
most challenging aspects of genomic sequence analysis, by
introducing an incremental speculative traceback mechanism
that allows for the handling of large datasets.

Wang et al. [41] improved the transfer and processing
of data on the GPU for sequence alignment by identifying
the communication bottlenecks between the CPU and GPU
and showcases using register shuffle in sequence alignment
algorithms, such as SW and Pairwise-Hidden-Markov-Model
(PairHMM) [42]. Guo et al. [43] focused on the detection
of overlaps between any pair of input reads. They modify
Minimap?2 [16], [44], the state-of-the-art overlapping tool, to
run on both GPUs and FPGAs. To further improve Minimap2
on hardware, Feng et al. [45] proposed manymaps. They
redesigned the memory layouts of dynamic programming (DP)
matrices to eliminate intra-loop data dependency in the base-
level alignment step to accelerate Minimap2 on accelerators.

Striemer et al. [46] explored using GPUs to accelerate
the SW algorithm. They observed performance bottlenecks in
memory bandwidth, data parallelism, and algorithmic com-
plexity. To remove these bottlenecks, they proposed several
GPU hardware design techniques, such as optimizing memory
access patterns, employing parallel schedulings, and refining
sequence alignment algorithms for better GPU compatibil-
ity. MR-CUDASW is another work proposing a multi-round
approach utilizing CUDA that focuses on medium-length
genomic and metagenomic data to accelerate the SW algorithm
[47] on GPUs. It utilizes a GPU’s parallel processing capabili-
ties by optimizing memory usage and computational efficiency
for medium-length nucleotide reads from modern sequencing
machines. There is another highly optimized version of the
Smith-Waterman algorithm proposed by Korpar et al. named
SW# [48] to enable GPU acceleration of the SW algorithm.

A scalable GPU system developed for computing pairwise
Whole Genome Alignments (WGA) is called SegAlign [61].

TABLE 2

GENOME ANALYSIS WITH DIFFERENT TOOLS

Name CPU GPU FPGA ASICs Method Speedup Reference
H/S Co-design by Lo et al. [49] - - v - Accelerating Base Quality Score Recalibration (BQSR) 40.7x [49]
Helix - - - v Accelerating nanopore base calling 6% [50]
PLEDGER v v - - Whole genome read mapping 11x [51]
CUDAlign - v - - Accelerating Smith-Waterman algorithm - [36]
CUDAlign 2.1 - v - - Accelerating Smith-Waterman algorithm - [37]
CUDASW++ 3.0 - v - - Accelerating Smith-Waterman algorithm - [39]
CUDAlign 4.0 - v - - Accelerating Smith-Waterman algorithm - [40]
BarraCUDA - v - - Based off BWT 6x [52]
SOAP3-dp v v - - Based off BWT 10x [26]
CUSHAWGPU - v - - Based off BWT - [53]
GPU based BWT - v - - Based off BWT 12x [54]
SARUMAN - v - - Based on hash table 5% [55]
nvBowtie - v - - NVIDIA’s CUDA implementation of the Bowtie 2 algorithm - [56], [57]
CUDA-BLASTP - v - - Lightweight BLASTP for short queries 10x [58]
G-BLASTN - v - GPU-accelerated software tool for BLAST 14.8x [59]
SW# - v - - Based off Smith-Waterman algorithm - (48]
MUMmerGPU 2.0 - v - - Based off suffix tree 4x [60]
MR-CUDASW - v - - Based off Smith-Waterman algorithm 1.17x [39]
SegAlign - v - - Pairwise Whole Genome Alignments (WGA) 14x [61]
FPGA design by Tang et al. [62] v - v - Accelerating short reads mapping 42.9x% [62]
FPGA design by Chen et al. [63] - - v - Accelerating long read 48x [63]
FHAST - v - Accelerating Bowtie 70x [64]
FPGA design by Zhang et al. [65] - - v - Accelerating Smith-Waterman algorithm 250% [65]
FPGA design by Benkrid et al. [66] - v - Accelerating Smith-Waterman and Needleman—Wunsch algorithms - [66]
FPGA design by Yamaguchi et al. [67] - - v - Accelerating Smith-Waterman algorithm 3% [67]
FPGA design by Chen et al. [68] - - v - Accelerating Smith-Waterman algorithm 26.4x [68]
SWIFOLD - - v - Accelerating Smith-Waterman algorithm 58.77x [69]
FPGASW - - v Accelerating Smith-Waterman application with backtracking 25.2% [70]
FPGA design by Di [71] - - v - Accelerating Smith-Waterman algorithm 1.72x [71]
SeedEx - - v - Read-alignment accelerator focusing on the seed-extension step 6.0x [72]
GenPiP - - - v In-memory acceleration of basecalling and read mapping 41.6% [15]
GenStore - - - v In-storage computing system for accelerating read mapping 33.63% [73]
GRIM-Filter - - - v Accelerating seed location filtering in DNA read mapping 3.65x% [74]
GenASM - - - v Accelerating approximate string matching (ASM) 116x [75]
ApHMM - - v Accelerating profile hidden markov models for sequence alignment 260.03 X [76]

It accelerates the seeding and filtering stages of LASTZ by
efficiently parallelizing the data-dependent instructions for
the SIMT (single instruction, multiple threads) on GPUs.
SegAlign also scales efficiently over multiple GPU nodes and
can achieve good accuracy. Liu et al. developed CUSHAW
[53], a high-performance GPU-optimized short-read aligner
using the Burrows-Wheeler transform (BWT) and the Fer-
ragina—Manzini index to reduce the search space. Similar
to CUSHAW [53], SOAP3-dp [77] also uses the Burrows-
Wheeler transform. SOAP3-dp is an extension of SOPA3
[26] that can improve the speed and sensitivity of short-read
alignment by allowing multiple mismatches and gaps. Torres
et al. [54] demonstrated that taking advantage of the GPU
parallelism can significantly accelerate the exact alignment
of short-read genetic sequences using the Burrows-Wheeler
Transform. Klus et al. developed BarraCUDA [52] that can
also leverage a GPU’s massive parallelism to accelerate short-
read alignment through the Burrows-Wheeler transform. In
comparison, LOGAN is a GPU framework focusing on long-
read alignment [30]. It optimized the popular X-drop align-
ment algorithm for GPUs to achieve high performance by
efficiently handling the complexities and variations inherent
to long sequencing reads. Genesis [78] demonstrated how
to perform genomic data analysis operations using a series
of SQL-style queries and construct hardware pipelines with
Genesis hardware library modules. Genesis utilizes parallelism
and data reuse by employing a dataflow architecture and on-
chip scratchpads. It uses non-blocking APIs to manage the
accelerators for concurrent execution of the accelerator and
the host.

To achieve an exact and complete alignment of short-read
sequences to microbial genomes using GPU, Blom et al. [55]
proposed SARUMAN [79]. This framework can significantly
speed up the short-read alignment using GPUs. BLAST (Basic
Local Alignment Search Tool) [80] is a widely used algorithm
for genome analysis. It is a program that finds regions of local
similarity between sequences. Liu et al. developed CUDA-
BLASTP [58] that demonstrates GPUs can significantly im-
prove the performance of protein sequence alignment tools like
BLASTP (Basic Local Alignment Search Tool for Proteins).
Zhao et al. developed G-BLASTN [59] and demonstrated the
potential of using GPUs to accelerate nucleotide alignment
tools compared to the sequential NCBI-BLAST.

3. ACCELERATING GENOME ANALYSIS USING FPGAS

Recently, FPGAs (Field-Programmable Gate Arrays) have
taken an important role in accelerating genomic analysis. FP-
GAs provide a versatile, high-performance computing solution
that can be customized for specific genomic computations.
This allows researchers to process large datasets much more
efficiently. In this section, we focus on FPGAs as accelerators.

3.1 Accelerating Indexing

Tang et al. [62] tackled the growth of NGS data in a different
way by introducing a CPU-FPGA heterogeneous architecture
to accelerate a short-read mapping algorithm. The FPGA
handles computationally intensive tasks such as exact match
search and alignment, while the CPU manages tasks that
involve more complex logic and decision-making. The system
uses a custom-designed pipeline to maximize data throughput
and minimize latency. Chen et al. [63] proposed an FPGA-

TABLE 3
BILLIONS OF CELL UPDATES PER SECOND (GCUPS), ENERGY, AREA, DATASET LENGTH, ACCURACY AND EXPERIMENT SYSTEM FOR DIFFERENT
GENOME ANALYSIS TOOLS

Name GCUPS Energy Area Dataset length Accuracy System Reference

H/S Co-design by Lo et al. [49] - - - 57,962,777 #reads 98.9% Xeon E5-2680 v4 CPU [49]
Xilinx Virtex UltraScale+ VCU1525

Helix - 11x 43.83 mm? 6,154 bases NVIDIA Tesla T4 GPU [50]
Intel Xeon E5-4655 v4 CPU

PLEDGER 5.9% 150 bases 99% Intel i7-8750H CPU & Nvidia GTX 1050Ti [51]
Odroid N2 + Cortex AS53 & Mali-G52 GPU

FPGA design by Tang et al. [62] - 100 bases Xilinx Virtex5 LX330 FPGA [62]

FPGA design by Chen et al. [63] 6.71x 4,096 bases Intel Xeon W3505 CPU [63]
Xilinx XUPV5-LX110T

FHAST 62,851,893 #reads 99.9% Intel Xeon 2.13 GHz [64]
Xilinx Virtex 5 FPGA

FPGA design by Zhang et al. [65] 25.6 65,536 bases XD1000 platform [65]

FPGA design by Yamaguchi et al. [67] 16 32x - ADM-XRC-5T2 with XC5VLX330T [67]

FPGA design by Chen et al. [68] - 6% - Xilinx VC707 FPGA [68]

SWIFOLD 13243 65M bases Intel Xeon E5-2670 & E5-2695 v3 [69]
Intel Arria 10 GX & Xeon Phi 3120P, NVIDIA GTX 980

FPGASW 105.9 3.84% - Xilinx Virtex7 XC7VX485T FPGA [70]

FPGA design by Di et al. [71] 42.47 8.49x 256 bases Xilinx Virtex-7 FPGA [71]
Xilinx Kintex Ultrascale FPGA

SeedEx - 11x 28.76 mm? 787,265,109 #reads 98.19% Intel Xeon E5-2686 v4 [72]
Xilinx Ultrascale+ VU9P FPGA

GenPiP 32.8x 163.8 mm? 2,577,692,011 #reads ReRAM [15]

GenStore 27.17x 0.20 mm? - In-storage processing system [73]

GRIM-Filter - 4,389,429 #reads Intel(R) Core i7-2600 CPU [74]

GenASM - 37x 10.69 mm2 10M #reads Intel Xeon Gold 6126 CPU [75]
Nvidia Titan V GPU

ApHMM 11546x 6.536 mm? 163,482 #reads AMD EPYC 7742 processor [76]

NVIDIA A100 & Titan V GPUs

based system specifically optimized for long DNA reads. An
FPGA architecture was developed focusing on maximizing
data throughput and parallel processing capabilities, which are
optimized for the specific requirements of long-read mapping
algorithms, such as SW and BLAST. FHAST [64] is an
FPGA-based system designed to accelerate Bowtie, a widely
used software tool for aligning short DNA sequences to
large genomes. FHAST significantly improves the alignment
speed and efficiency by offloading critical parts of the Bowtie
algorithm to an FPGA.

3.2 Accelerating Sequence Alignment

For sequence alignment on FPGAs, Zhang et al. [65] pro-
posed an innovative reconfigurable supercomputing platform,
XD1000. They leveraged the flexibility and computational
power of FPGAs by using a multistage PE design, a pipelined
control mechanism, and a compressed substitution matrix stor-
age structure. It implemented the SW algorithm for DNA and
protein sequences. Benkrid et al. [66] introduced a flexible and
highly parallel FPGA-based framework for pairwise sequence
alignment. This framework takes advantage of an FPGA’s
flexibility and parallel processing capability and supports both
SW and Needleman-Wunsch (NW) algorithms.

Yamaguchi et al. [67] first introduced two methods for
organizing parallelism in the SW algorithm and compared
their performance to peak performance at varying levels of
parallelism. Then, they proposed a design to leverage the
inherent parallelism of FPGAs to enhance the performance and
efficiency of sequence alignment tasks. This design combined
a pipelined architecture and a hierarchical memory system,
resulting in significant speedups and optimized resource uti-
lization. The FPGA design demonstrated significantly higher

energy efficiency compared to GPU. Chen et al. [68] addressed
the challenge of handling different input sizes and extensive
pruning techniques used in modern aligners. They proposed an
architecture designed to effectively manage varied input sizes
and utilize software pruning strategies to speed up the SW
algorithm. SWIFOLD [69] also addressed the computational
demands of the Smith-Waterman algorithm by implementing
it on an FPGA using OpenCL. SWIFOLD demonstrates ex-
cellent performance for small and medium datasets compared
with other state-of-the-art methods.

FPGASW [70] is an FPGA-based implementation of the
Smith-Waterman sequence alignment algorithm designed to
address the backtracking stage bottlenecks. It utilizes a linear
systolic array and optimized hardware modules for back-
tracking. Di et al. [71] proposed an implementation of the
Smith-Waterman algorithm without heuristics to ensure result
accuracy. They included a series of architectural optimizations
to maximize performance for FPGAs using OpenCL and uses
the Berkeley roofline model for performance tracking and
optimization guidance. The design includes systolic arrays,
data compression features, shift registers, and a custom port
mapping strategy for scalability.

Lo et al. [49] focused on FPGA-based acceleration on the
base quality score re-calibration (BQSR) step in GATK. Their
work concentrated on adjusting the BQSR algorithm to deal
with random memory access conflicts with FPGA-specific
features such as ultraRAM. SeedEx [72] is a powerful and
memory-efficient solution for genome sequencing alignment
tasks. It is a read-alignment accelerator that focuses on the
seed-extension step in genome sequencing. SeedEx uses a
narrow-band seed-extension approach to efficiently handle
most reads, requiring only a small edit distance for alignment.

4. ACCELERATING GENOME ANALYSIS USING ASICs

Application-specific integrated circuits (ASICs) provide cus-
tomized hardware solutions optimized for handling the vast
amount of data and complex algorithms involved in genomics
research. ASICs are designed and optimized for specific tasks
that offer unparalleled performance for designated genomics
applications. In this section, we focus on ASICs in genomics
research. We explore the potential of ASICs for accelerating
indexing, seeding, and sequence alignment.

4.1 Accelerating Indexing

Lou et al. [50] used a specialized ASIC architecture named
HELIX to tackle the specific challenges of nanopore base-
calling, which not only provides significant speed and ac-
curacy improvement over existing base-calling solutions but
also marks a first-of-its-kind innovation in the use of an
ASIC for real-time genomic analysis. Maheshwari et al. [51]
implemented PLEDGER, a software-hardware co-design with
memory-aware implementation, to improve the read-mapping
process. PLEDGER optimizes algorithmic flows and hardware
utilization to overcome the memory bottleneck commonly seen
in read mapping. They demonstrated that hardware-software
co-design can achieve high-performance genomic data pro-
cessing, even within the limitations of embedded systems.
GenPiP [15] is an in-memory genome analysis accelerator that
combines basecalling and read mapping processes to address
the data movement and redundant computations bottleneck in
existing genome analysis pipelines. GenPiP proposes a chunk-
based pipeline for parallel processing and early rejection of
low-quality or unmapped reads to enhance throughput with
minimal accuracy loss.

4.2 Accelerating Seeding

GRIM-Filter [74] is an ASIC system that aims to reduce data
movement and computational overheads in genome sequence
analysis with in-storage processing. It proposes accelerating
read mapping using processing-in-memory (PIM) for fast seed
location filtering by using a seed location filtering algorithm
optimized for 3D-stacked memory systems. GRIM-Filter intro-
duced a new representation of coarse-grained segments of the
reference genome and employs parallel in-memory operations
to identify reads within each segment. GenStore [73] is an in-
storage processing system designed to reduce data movement
and computational overheads in genome sequence analysis. It
addresses the bottlenecks of traditional methods by processing
data where it is stored. GenStore uses a hardware/software
co-design to take advantage of in-storage filters (Exactly-
matching and Non-matching). It reduces data movement and
improves processing speeds by integrating computational ca-
pabilities directly into storage devices.

4.3 Accelerating Sequence Alignment

GenASM [75] is designed to address the bottleneck in ASM.
It is the first framework to accelerate ASM in genome se-
quence analysis. GenASM focuses on bitvectorbased ASM
and has modified the Bitap algorithm to increase parallelism
and reduce memory usage. It includes a hardware accelerator

with specialized systolic-array-based compute units and on-
chip SRAMs. ApHMM [76] addresses the computational and
energy inefficiencies in the Baum-Welch algorithm for profile
hidden Markov models (pHMMs) by using a flexible accelera-
tion framework. It utilizes a hardware-software co-design, fea-
turing flexible hardware, exploiting data dependency patterns,
and using on-chip memory with memorization. It implements
a hardware-based filter for efficient computation, minimizing
redundant calculations.

5. DISCUSSION AND PERSPECTIVES

The application of GPUs in genomics research has revolu-
tionized the field, offering significant improvements in speed
and efficiency. However, despite their advantages, integrating
GPUs into genomics research workflows presents several
challenges. The architectural differences between CPUs and
GPUs require modifying existing genome algorithms to fully
leverage the GPU. With NGS generating massive amounts
of data, data movement is still a bottleneck for GPUs due
to limited network bandwidth [81], [82]. Because GPUs are
general-purpose hardware, developing tailored GPU architec-
tures to support certain algorithms is costly [83], [84]. Instead,
most GPU-related genome frameworks focus on algorithm
optimization, trying to adapt the software to match the un-
derlying hardware. In addition, many GPU implementations
did not utilize multi-threading or vector instructions on the
CPU side. It has been shown that optimizing CPU-executed
instructions in addition to GPU acceleration can achieve
significant speed-ups [85]. Advanced GPU implementations,
such as those leveraging shared memory and asynchronous
data transfers, highlight the complexity of effective CUDA
[86] programming. We expect the ongoing developments in
GPU technology to further increase the performance gap with
CPUs, leading to more complex and large-scale simulations in
life sciences [87].

FPGAs provide a combination of flexibility, improved pro-
cessing speeds, parallel processing capability, and energy
efficiency. However, there are also several challenges. First,
FPGAs require more knowledge of hardware programming
from users. Additionally, FPGAs also face the challenges
of high development costs, limited flexibility (compared to
software solutions), and difficulty in integration with existing
data pipelines [63], [71]. Some specific expertise is needed to
fully take advantage of the potential of specialized hardware
like the FPGAs in the bioinformatics field. In the future, using
FPGAs as versatile hardware accelerators can benefit from
the development of more user-friendly FPGA programming
frameworks and developing hybrid systems that combine FP-
GAs with other accelerators.

ASICs are specifically designed hardware to execute certain
algorithms and can usually achieve better performance among
the three types of accelerators [73], [75]. However, their
specific design limits their applicability to a wide range of
genomic algorithms. For example, GenStore [73] significantly
reduces data movement and computational overhead. However,
it’s limited to a number of genome algorithms and filter

techniques. GenAsm’s [75] low-power ASM framework offers
significant improvements in performance and energy, though
it may encounter challenges in handling highly divergent
sequences. GenPiP [15] presents an in-memory acceleration
technique that integrates basecalling and read mapping. How-
ever, it struggles with the complexity of integration and hard-
ware compatibility. The cost of designing and manufacturing
ASICs could be higher than that of GPUs and FPGAs due
to their limited applications. They are also costly and time-
consuming. Additionally, they lack the flexibility of reconfig-
urable hardware like FPGAs. Once designed, an ASIC cannot
be easily modified to accommodate new algorithms or changes
in existing ones. A balanced tradeoff between performance and
costs needs to be well explored when considering ASICs as a
genomics accelerator.

An effective way to speed up sequence alignment for
NGS is to integrate a large number of processing elements
onto a single chip, fully utilizing the fine-grain parallelism
present in many genome workloads. Network-on-chip (NoC)
is a highly efficient method for achieving this kind of large-
scale integration. Much work has already been done on NoC
architecture, such as NoC for GPUs [88] and heterogeneous
chiplets [89]. However, specific NoC architecture for genome
workloads has not been fully explored.

As the data size keeps growing in genomics analysis, mem-
ory bandwidth becomes a most severe limitation to perfor-
mance. Memory bandwidth includes off-chip bandwidth and
on-chip bandwidth. There have been many works developing
process-in-memory architectures to decrease genomic data to
be fetched from off-chip memory. However, there is little
work trying to remove the on-chip bandwidth bottleneck.
Specialized NoC design for genome workloads is an under-
explored area that may further improve performance. Another
promising opportunity for future research is through hardware-
software co-design. Such an approach can achieve optimal
speed-ups and efficiency, and yet it still faces several chal-
lenges, such as the design complexity of custom hardware,
the need for specialized bioinformatics knowledge, the ever-
growing genomics technologies, and the fast-evolving genomic
algorithms. From our perspective, the ultimate solution lies in
the combination of expertise in both hardware and software
design to coordinatively optimize the overall system.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants 2008911,
2046186, and 2051062.

REFERENCES

[1] Jacob J Chabon et al. Integrating genomic features for non-invasive
early lung cancer detection. Nature, 580(7802):245-251, 2020.

[2] Yan Nie et al. The non-homologous end-joining activity is required for
fanconi anemia fetal hsc maintenance. Stem Cell Res Ther, 10:1-10,
2019.

[3] Rama R Gullapalli et al. Next generation sequencing in clinical
medicine: Challenges and lessons for pathology and biomedical infor-
matics. Journal of pathology informatics, 3(1):40, 2012.

[4] Shichao Feng et al. Metalp: An integrative linear programming method
for protein inference in metaproteomics. PLOS Computational Biology,
18(10):e1010603, 2022.

[5]
[6]
[7]
[8]

[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]
[19]

[20]

(21]

[22]
(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

David R Bentley et al. Accurate whole human genome sequencing using
reversible terminator chemistry. nature, 456(7218):53-59, 2008.

John Eid et al. Real-time dna sequencing from single polymerase
molecules. Science, 323(5910):133-138, 2009.

Daniel Branton et al. The potential and challenges of nanopore
sequencing. Nature biotechnology, 26(10):1146-1153, 2008.

Yongqi Zhu, Nan Liu, and Qing Yang. A new approximation algorithm
for genomic scaffold filling based on contig. In 2023 IEEE Healthcom,
pages 72—77. IEEE, 2023.

Jay Shendure et al. Dna sequencing at 40: past, present and future.
Nature, 550(7676):345-353, 2017.

Fatih Ozsolak and Patrice M Milos. Rna sequencing: advances, chal-
lenges and opportunities. Nature reviews genetics, 12(2):87-98, 2011.
Mohammed Alser et al. Accelerating genome analysis: A primer on an
ongoing journey. I[EEE/ACM Micro, 2020.

Tony Robinson, Jim Harkin, and Priyank Shukla. Hardware acceleration
of genomics data analysis: challenges and opportunities. Bioinformatics,
37(13):1785-1795, 2021.

Onur Mutlu and Can Firtina. Accelerating genome analysis via
algorithm-architecture co-design. In ACM/IEEE DAC, 2023.

Chris Seymour, Oxford Nanopore Technologies Ltd. Bonito: A pytorch
basecaller for oxford nanopore reads, 2019. Oxford Nanopore Tech-
nologies, Ltd. Public License, v. 1.0.

Haiyu Mao et al. Genpip: In-memory acceleration of genome analysis
via tight integration of basecalling and read mapping. In IEEE/ACM
MICRO, 2022.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094-3100, 2018.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local
algorithms for document fingerprinting. In ACM MOD, 2003.

Michael Roberts et al. Reducing storage requirements for biological
sequence comparison. Bioinformatics, 20(18):3363-3369, 2004.
Nvidia hopper architecture in-depth nvidia technical blog. https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

Intel challenges nvidia with gaudi 3 ai accelerator.
https://www.forbes.com/sites/stevemcdowell/2024/04/09/
intels-challenges-nvidia- with- gaudi- 3-ai-accelerator/.

Intel® stratix® 10 fpgas overview - high performance intel®
fpga. https://www.intel.com/content/www/us/en/products/details/fpga/
stratix/10/item.html. (Accessed on 07/29/2024).

Xianwei Cheng et al. Amoeba: A coarse grained reconfigurable
architecture for dynamic gpu scaling. In ICS, 2020.

Zhuren Liu et al. Genomics-gpu: A benchmark suite for gpu-accelerated
genome analysis. In IEEE ISPASS, 2023.

Accelerate genomic analysis for any sequencer with nvidia parabricks
v4.2 — nvidia technical blog. https://developer.nvidia.com/blog/
accelerate- genomic-analysis-for-any-sequencer- with-parabricks-v4-2/.
Qian Zhang, Hao Liu, and Fengxiao Bu. High performance of a gpu-
accelerated variant calling tool in genome data analysis. bioRxiv, pages
2021-12, 2021.

Chi-Ming Liu et al. Soap3: Gpu-based compressed indexing and ultra-
fast parallel alignment of short reads. In ALGO. Citeseer, 2011.

Anas Abu-Doleh et al. Masher: mapping long (er) reads with hash-based
genome indexing on gpus. In ACM BCB, 2013.

Franklin LA Cruz-Gamero and Juan Carlos Gutiérrez Céceres. Opti-
mization of blast seed indexing in the alignment of dna sequences with
gpu using cuda. In IEEE CLEI, 2018.

Gustavo Encarnac¢io, Nuno Sebastiio, and Nuno Roma. Advantages and
gpu implementation of high-performance indexed dna search based on
suffix arrays. In IEEE HPCS, 2011.

Alberto Zeni et al. Logan: High-performance gpu-based x-drop long-
read alignment. In /EEE IPDPS, 2020.

Shanshan Ren, Koen Bertels, and Zaid Al-Ars. Gpu-accelerated gatk
haplotypecaller with load-balanced multi-process optimization. In /IEEE
BIBE, 2017.

Amaro Taylor-Weiner et al. Scaling computational genomics to millions
of individuals with gpus. Genome biology, 20:1-5, 2019.

Nauman Ahmed et al. Gasal2: a gpu accelerated sequence alignment
library for high-throughput ngs data. BMC bioinformatics, 20:1-20,
2019.

Temple F Smith and Michael S Waterman. Identification of common
molecular subsequences. Journal of molecular biology, 147(1):195-197,
1981.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

Friman Sinchez et al. Performance analysis of sequence alignment
applications. In /[EEE IISWC, 2006.

Edans Flavius O Sandes and Alba Cristina MA de Melo. Cudalign: using
gpu to accelerate the comparison of megabase genomic sequences. In
ACM PPoPP, 2010.

Edans Flavius de O Sandes and Alba Cristina MA de Melo. Retrieving
smith-waterman alignments with optimizations for megabase biological
sequences using gpu. IEEE TPDS, 24(5):1009-1021, 2012.

Azzedine Boukerche, Rodolfo Bezerra Batista, and Alba Cristina Mag-
alhaes Alves De Melo. Exact pairwise alignment of megabase genome
biological sequences using a novel z-align parallel strategy. In 2009
IEEE IPDPS, pages 1-8, 2009.

Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. Cudasw++ 3.0:
accelerating smith-waterman protein database search by coupling cpu
and gpu simd instructions. BMC bioinformatics, 14:1-10, 2013.

Edans Flavius de Oliveira Sandes et al. Cudalign 4.0: Incremental
speculative traceback for exact chromosome-wide alignment in gpu
clusters. IEEE TPDS, 27(10):2838-2850, 2016.

Jie Wang, Xinfeng Xie, and Jason Cong. Communication optimization
on gpu: A case study of sequence alignment algorithms. In /EEE IPDPS,
2017.

Lawrence Rabiner and Biinghwang Juang. An introduction to hidden
markov models. ieee assp magazine, 3(1):4-16, 1986.

Licheng Guo et al. Hardware acceleration of long read pairwise
overlapping in genome sequencing: A race between fpga and gpu. In
IEEE FCCM, 2019.

Heng Li. New strategies to improve minimap2 alignment accuracy.
Bioinformatics, 37(23):4572-4574, 2021.

Zonghao Feng et al. Accelerating long read alignment on three
processors. In ACM ICPP, 2019.

Gregory M Striemer and Ali Akoglu. Sequence alignment with gpu:
Performance and design challenges. In /EEE ISPA, 2009.

Amir Muhammadzadeh. MR-CUDASW-GPU accelerated Smith-
Waterman algorithm for medium-length (meta) genomic data. PhD
thesis, University of Saskatchewan, 2014.

Matija Korpar and Mile Siki¢. Sw#-gpu-enabled exact alignments on
genome scale. Bioinformatics, 29(19):2494-2495, 2013.

Michael Lo et al. Algorithm-hardware co-design for bqsr acceleration
in genome analysis toolkit. In JEEE FCCM, 2020.

Qian Lou, Sarath Chandra Janga, and Lei Jiang. Helix: Algo-
rithm/architecture co-design for accelerating nanopore genome base-
calling. In ACM PACT, 2020.

Sidharth Maheshwari et al. Pledger: Embedded whole genome read map-
ping using algorithm-hw co-design and memory-aware implementation.
In IEEE DATE, 2021.

Petr Klus et al. Barracuda-a fast short read sequence aligner using
graphics processing units. 5:1-7, 2012.

Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Cushaw: a cuda
compatible short read aligner to large genomes based on the burrows—
wheeler transform. Bioinformatics, 28(14):1830-1837, 2012.

José Salavert Torres et al. Using gpus for the exact alignment of short-
read genetic sequences by means of the burrows-wheeler transform.
IEEE/ACM TCBB, 9(4):1245-1256, 2012.

Jochen Blom et al. Exact and complete short-read alignment to microbial
genomes using graphics processing unit programming. Bioinformatics,
27(10):1351-1358, 2011.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with
bowtie 2. Nature methods, 9(4):357-359, 2012.

Nuno Subtil Jacopo Pantaleoni. Nvbio: Nvbio. https://nvlabs.github.io/
nvbio/.

Weiguo Liu, Bertil Schmidt, and Wolfgang Muller-Wittig. Cuda-blastp:
accelerating blastp on cuda-enabled graphics hardware. IEEE/ACM
TCBB, 8(6):1678-1684, 2011.

Kaiyong Zhao and Xiaowen Chu. G-blastn: accelerating nucleotide
alignment by graphics processors. Bioinformatics, 30(10):1384—1391,
2014.

Cole Trapnell and Michael C Schatz. Optimizing data intensive gpgpu
computations for dna sequence alignment. Parallel computing, 35(8-
9):429-440, 2009.

Sneha D Goenka et al. Segalign: A scalable gpu-based whole genome
aligner. In IEEE SC, 2020.

Wen Tang et al. Accelerating millions of short reads mapping on a
heterogeneous architecture with fpga accelerator. In IEEE FCCM, 2012.

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]
[81]
[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

Peng Chen et al. Accelerating the next generation long read mapping
with the fpga-based system. IEEE/ACM TCBB, 11(5):840-852, 2014.
Edward B Fernandez et al. Fhast: Fpga-based acceleration of bowtie in
hardware. IEEE/ACM TCBB, 12(5):973-981, 2015.

Peiheng Zhang, Guangming Tan, and Guang R Gao. Implementation
of the smith-waterman algorithm on a reconfigurable supercomputing
platform. In HPRCTA conjunction with SCO7, pages 39-48, 2007.
Khaled Benkrid, Ying Liu, and AbdSamad Benkrid. A highly parameter-
ized and efficient fpga-based skeleton for pairwise biological sequence
alignment. /IEEE VLSI, 17(4):561-570, 2009.

Yoshiki Yamaguchi, Hung Kuen Tsoi, and Wayne Luk. Fpga-based
smith-waterman algorithm: Analysis and novel design. In ARC. Springer,
2011.

Yu-Ting Chen et al. A novel high-throughput acceleration engine for
read alignment. In /[EEE FCCM, 2015.

Enzo Rucci et al. Swifold: Smith-waterman implementation on fpga
with opencl for long dna sequences. BMC systems biology, 12:43-53,
2018.

Xia Fei et al. Fpgasw: accelerating large-scale smith—waterman sequence
alignment application with backtracking on fpga linear systolic array.
Interdisciplinary Sciences: Computational Life Sciences, 10:176—188,
2018.

Lorenzo Di Tucci et al. Architectural optimizations for high performance
and energy efficient smith-waterman implementation on fpgas using
opencl. In IEEE DATE, 2017.

Daichi Fujiki et al. Seedex: A genome sequencing accelerator for
optimal alignments in subminimal space. In JEEE/ACM MICRO, 2020.
Nika Mansouri Ghiasi et al. Genstore: a high-performance in-storage
processing system for genome sequence analysis. In ACM ASPLOS,
2022.

Jeremie S Kim et al. Grim-filter: Fast seed location filtering in dna read
mapping using processing-in-memory technologies. BMC genomics,
19:23-40, 2018.

Damla Senol Cali et al. Genasm: A high-performance, low-power ap-
proximate string matching acceleration framework for genome sequence
analysis. In IEEE/ACM MICRO, 2020.

Can Firtina et al. Aphmm: Accelerating profile hidden markov models
for fast and energy-efficient genome analysis. 21(1):1-29, 2024.
Ruibang Luo et al. Soap3-dp: fast, accurate and sensitive gpu-based
short read aligner. PloS one, 8(5):¢65632, 2013.

Tae Jun Ham et al. Genesis: A hardware acceleration framework for
genomic data analysis. In 2020 ACM/IEEE ISCA, pages 254-267. IEEE,
2020.

Saul B Needleman and Christian D Wunsch. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of molecular biology, 48(3):443-453, 1970.
Johanna McEntyre and Jim Ostell. The ncbi handbook. Bethesda (MD):
National Center for Biotechnology Information (US), 2002.

Xianwei Cheng et al. Packet pump: overcoming network bottleneck in
on-chip interconnects for gpgpus. In DAC, 2018.

Hui Zhao et al. Designing scalable hybrid wireless noc for gpgpus. In
ISVLSI, 2018.

Khoa Ho et al. Improving gpu throughput through parallel execution
using tensor cores and cuda cores. In ISVLSI, 2022.

Zhuren Liu et al. Predicting gpu performance and system parameter
configuration using machine learning. In 2022 IEEE ISVLSI, pages
253-258. IEEE, 2022.

Oliver Korb, Thomas Stutzle, and Thomas E Exner. Accelerating
molecular docking calculations using graphics processing units. Journal
of chemical information and modeling, 51(4):865-876, 2011.

NVIDIA Corporation. CUDA C Programming Guide, 2023. Accessed:
2024-06-16.

Marco S Nobile et al. Graphics processing units in bioinformatics,
computational biology and systems biology. Briefings in bioinformatics,
18(5):870-885, 2017.

Siamak Biglari Ardabili and Gholamreza Zare Fatin. Icla unit: Intra-
cluster locality-aware unit to reduce 1 2 access and noc pressure in
gpgpus. Journal of Circuits, Systems and Computers, 31(01):2250015,
2022.

Siamak Biglari et al. Designing reconfigurable interconnection network
of heterogeneous chiplets using kalman filter. In GLSVLSI, 2024.

