
Quantum Logspace Computations are Verifiable

Uma Girish∗ Ran Raz† Wei Zhan‡

Abstract

In this note, we observe that quantum logspace computations are verifiable by classical logspace algorithms,
with unconditional security. More precisely, every language in BQL has an (information-theoretically secure)
streaming proof with a quantum logspace prover and a classical logspace verifier. The prover provides a
polynomial-length proof that is streamed to the verifier. The verifier has a read-once one-way access to that
proof and is able to verify that the computation was performed correctly. That is, if the input is in the
language and the prover is honest, the verifier accepts with high probability, and, if the input is not in the
language, the verifier rejects with high probability even if the prover is adversarial. Moreover, the verifier uses
only O(log n) random bits.

1 Introduction

The problem of how to classically verify that a quantum computation was performed correctly, first suggested
by Gottesman in 2004, has been studied in numerous recent works (see for example [5, 13, 9, 1, 12, 7,
6, 2, 4]). Mahadev’s breakthrough work presented the first protocol for classical verification of quantum
computations [12]. Her protocol is only secure against computationally bounded adversarial provers, under
cryptographic assumptions. In this note we observe that for quantum logspace computations, there is a simple
verification protocol, with a classical logspace verifier, such that the protocol is secure against adversarial provers
with unlimited computational power. Moreover, the protocol is non-interactive. Our proof is similar to our recent
proof that shows that randomized logspace computations are verifiable using only O(log n) random bits [11].

1.1 Streaming Proofs A streaming proof consists of a pair of (classical or quantum) randomized algorithms,
a prover and a verifier, which share a common stream tape. In our work, the prover is a quantum logspace
machine and the verifier is a classical randomized logspace machine. The prover doesn’t have a separate output
tape, instead, it has write-once access to the proof tape onto which it writes a classical bit string Π. The verifier
has read-once access to the proof tape from which it can read Π. Both the verifier and the prover have read-many
access to the input x ∈ {0, 1}∗. We allow the prover and verifier to output a special symbol ⊥. Upon outputting
this symbol, the algorithm stops all further processing and we say that the algorithm aborts.

Definition 1.1. (Logspace Streaming Proofs) Let F = {fn : {0, 1}n → {0, 1}}n∈N be a family of functions.
Let P : N→ N be a monotone computable function. We say that F has a logspace streaming proof of length P if
there is a (possibly quantum) logspace prover P and a classical randomized logspace verifier V, that uses a random
string R, such that on input x ∈ supp(fn),

1. The honest prover P, with at least 3
4 probability, outputs a (randomized) proof Π ∈ {0, 1}P (n) such that

Pr
R

[V(x,Π) = fn(x)] ≥ 3
4

(where the probability is over the uniform distribution over R.)

∗Princeton University. E-mail: ugirish@cs.princeton.edu. Research supported by a Simons Investigator Award, by the National

Science Foundation grants No. CCF-1714779, CCF-2007462 and by the IBM Phd Fellowship.
†Princeton University. E-mail: ranr@cs.princeton.edu. Research supported by a Simons Investigator Award and by the National

Science Foundation grants No. CCF-1714779, CCF-2007462.
‡Princeton University. E-mail: weizhan@cs.princeton.edu. Research supported by a Simons Investigator Award and by the

National Science Foundation grants No. CCF-1714779, CCF-2007462.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited144

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2. For an arbitrary Π ∈ {0, 1}P (n) (even adversarially chosen after seeing the input x),

Pr
R

[V(x,Π) ∈ {fn(x),⊥}] ≥ 3
4

(where the probability is over the uniform distribution over R.)

Let k : N→ N be a monotone computable function. If the verifier V never reads more than k(n) random bits from
R, we say that the verifier uses at most k(n) random bits.

We sometimes omit the length of the proof and it is understood that P is at most the runtime of the prover,
which is polynomial in n.

1.2 Our Main Result Our main result is as follows.

Proposition 1.1. A language is in BQL if and only if it has a streaming proof between a quantum logspace prover
and a classical logspace verifier where the verifier uses O(log n) random bits.

2 Preliminaries

Let n ∈ N. We use [n] to denote {1, 2, . . . , n}. Let v ∈ Rn. For i ∈ [n] we use vi to denote the i-th coordinate of v.

Let 1 ≤ k <∞. Let ‖v‖k :=
(∑

i∈[n] |vi|
k
)1/k

denote the `k-norm of v. This induces an operator norm on matrices

M ∈ Rn×n by ‖M‖k := maxv∈Rn\{~0}
‖M(v)‖k
‖v‖k . This norm is sub-multiplicative, i.e., ‖M ·N‖k ≤ ‖M‖k · ‖N‖k for

all M,N ∈ Rn×n. Let ‖v‖∞ = maxi∈[n] |vi| denote the `∞-norm of v and let ‖M‖max = maxi,j∈[n] |Mi,j | (this is
not an induced operator norm). We have the following inequalities for all M ∈ Rn×n, v ∈ Rn and 1 ≤ k, k′ <∞.

‖M‖max ≤ ‖M‖k ≤ n · ‖M‖max

k ≥ k′ =⇒ ‖v‖k ≤ ‖v‖k′

We use M [i, j] to refer to the (i, j)th entry of the matrix M .

2.1 Our Model of Computation In this work, a deterministic Turing machine consists of a read-only input
tape, a work tape and a write-once output tape. A randomized Turing Machine has an additional read-once
randomness tape consisting of random bits. Let S, T,R : N → N be any monotone computable functions. We
typically use S to denote the space complexity and T to denote the time complexity of a Turing Machine. When
we say that an event occurs with high probability, we typically mean that it occurs with probability at least 2/3.
An algorithm is said to have bounded error if the probability of error is at most 1/3. By standard error-reduction
techniques, we could choose this number to be any constant in (0, 1/2).

A deterministic (resp. bounded-error randomized) (S, T ) algorithm refers to a deterministic (resp. random-
ized) Turing Machine such that for all x ∈ {0, 1}∗, |x| = n, the machine with x on its input tape, uses at most
S(n) bits of space on its work tape and runs in at most T (n) time. We say that an algorithm computes a family
of functions {fn : {0, 1}n → {0, 1}∗}n∈N if for all n ∈ N, x ∈ {0, 1}n, the output of the algorithm on input x is
fn(x) (with high probability if the algorithm is bounded-error randomized). These functions may be partial, i.e.,
defined on a strict subset of {0, 1}n. The Turing machine is said to use R bits of randomness if on inputs of size
n ∈ N, the machine never reads more than R(n) bits on the randomness tape.

Logspace Computation: A logspace algorithm refers to an (O(log(n)), poly(n)) algorithm. The (promise)
class L refers to all families of single-bit-output functions computable by deterministic logspace algorithms.
The (promise) class BPL refers to all families of single-bit-output functions computable by randomized logspace
algorithms with high probability. All these classes are inherently promise classes, so for the rest of the paper, we
omit this prefix. We use the notation family of functions, languages and problems interchangeably. It is possible
to define quantum analogues of the aforementioned complexity classes. In particular, we will be interested in BQL,
the set of all families of single-bit-output functions computable by quantum logspace algorithms. The readers are
referred to [8] for a formal definition of BQL, while here we characterize the class using a complete problem stated
below.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited145

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2.2 Unitary Matrix Powering We consider the following promise problem.

Definition 2.1. (Unitary Matrix Powering) The inputs are an n × n unitary matrix M and a parameter
T ≤ poly(n) and an n× n projection matrix Π onto a subset of standard basis states. The promise on the input
is that ‖ΠMT (e1)‖22 ≥ 4/5 or ‖ΠMT (e1)‖22 ≤ 1/5. The goal is to output 1 in the former case and 0 in the latter
case.

Proposition 2.1. The Unitary Matrix Powering Problem is logspace-complete for BQL.

The proof of this is deferred to the appendix.

3 Classical Logspace Verifiers for Quantum Logspace Computations

In this section, we prove Proposition 1.1 which states that a family of functions is in BQL if and only if it has
a logspace streaming proof between a quantum prover and a classical verifier that reads O(log n) random bits.
First, it is clear that any streaming proof between a quantum logspace prover and a classical logspace verifier can
be implemented by a BQL algorithm, which simulates the honest prover and the verifier, with success probability
at least (3/4)2 > 1/2 which can be amplified. It suffices to argue that the Unitary Matrix Powering Problem can
be solved by a streaming proof between a quantum logspace prover and a classical logspace verifier, where the
verifier uses O(log n) random bits. Towards this, we define a notion of a δ-good sequence of vectors for a matrix
M .

Definition 3.1. Let M be any n × n matrix and T ≤ poly(n) be a natural number. Let vi = M i(e1) for all
i ≤ T . Let δ ∈ [0, 1]. A sequence of vectors v′0, v

′
1, . . . , v

′
T ∈ Rn is said to be δ-good for M if for all i ∈ [T ], we

have ‖v′i − vi‖2 ≤ δ and v0 = e1.

We make use of the following claims.

Claim 3.1. There is a quantum logspace prover which given an n × n unitary matrix M and parameters
T ≤ poly(n), δ ≥ 1

poly(n) as input, outputs a δ-good sequence of vectors for M with probability at least 3
4 .

Claim 3.2. Let 1
poly(n) < δ ≤ 1

104T 2 . There is a randomized logspace verifier which given any n × n unitary

matrix M and parameters T ≤ poly(n), δ as input and read-once access to a stream of vectors v′0, . . . , v
′
T ∈ Rn

(where each vector is specified up to Θ(log(n)) bits of precision), does the following.

• If the sequence is δ-good for M , then the probability that the algorithm aborts is at most 1/4.

• If ‖v′T − vT ‖2 ≥
1
5 , then the algorithm aborts with probability at least 3/4.

Furthermore, this algorithm only uses O(log(n)) bits of randomness.

Let us see how to complete the proof using Claim 3.1 and Claim 3.2. Given an n × n unitary matrix M as
input and a parameter T ≤ poly(n), set δ = min

{
1

104T 2 ,
1
10

}
. Run the prover’s algorithm from Claim 3.1 using

this value of δ to produce a stream v′0, . . . , v
′
T . Run the verifier’s algorithm from Claim 3.2 on this stream to

verify. If it doesn’t abort, we have the verifier return 1 if ‖Π(v′T )‖22 ≥ 0.6, return 0 if ‖Π(v′T )‖22 ≤ 0.4 and return
⊥ otherwise. With the access to read Π from the input, this computation can be easily done in classical logspace
when v′T is given as a stream.

Completeness: Claim 3.1 implies that an honest prover outputs a δ-good sequence with probability at least
3
4 . Claim 3.2 implies that an honest proof is aborted with probability at most 1

4 . Since ‖v′T − vT ‖2 ≤ δ ≤ 1/10

by assumption and Π is a projection, ‖Π(v′T )−Π(vT )‖2 ≤ 1/10. Hence, if ‖Π(vT )‖22 ≥ 4/5, then ‖Π(v′T )‖22 ≥
(
√

4/5− 0.1)2 ≥ 0.6 and if ‖Π(vT )‖22 ≤ 1/5 then ‖Π(v′T )‖22 ≤ (
√

1/5 + 0.1)2 ≤ 0.4. Thus, the verifier will return
the correct answer whenever the sub-routine doesn’t abort.

Soundness: Consider the behavior of this verifier on an arbitrary proof. If the verifier makes a mistake and
returns the incorrect answer, it must be the case that either ‖Π(vT )‖22 ≥ 4/5 and ‖Π(v′T )‖22 ≤ 0.4 or ‖Π(vT )‖22 ≤
1/5 and ‖Π(v′T )‖22 ≥ 0.6. In either case, we must have ‖v′T − vT ‖2 ≥ min

(√
4/5−

√
0.4,
√

0.6−
√

1/5
)
≥ 1

5 .

Claim 3.2 implies that such a proof is aborted with probability at least 3
4 . This completes the proof of

Proposition 1.1.
We now proceed to prove Claim 3.1.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited146

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Proof. [Proof of Claim 3.1]The prover starts by outputting v0 = e1. To output the intermediate vi, we make use
of the following result from [10]. It appears as Corollary 15 and we paraphrase it as follows.

Lemma 3.1. Given an n×n matrix M with ‖M‖2 ≤ 1, a positive integer i ≤ poly(n), two unit vectors v, w ∈ Rn
and an error parameter δ > 0, there is a quantum algorithm with time poly(n/δ) and space O(log(n/δ)) such that
with probability 1− 2−poly(n/δ), it outputs w†M iv with additive error δ.

Note that vi(j) = e†jM
ie1. Thus, by repeating the subroutine from Lemma 3.1 poly

(
nT
δ

)
times with parameters

w = ej , v = e1, i and δ/n, a quantum logspace prover can with probability at least 3
4 , estimate each vi(j) to δ/n

additive accuracy for all i ∈ [T ] and j ∈ [n]. In this case, we have, ‖v′i − vi‖2 ≤ ‖v′i − vi‖∞ ·n ≤ δ. This completes
the proof of Claim 3.1.

We now complete the proof of Claim 3.2

Proof. [Proof of Claim 3.2] The verifier’s algorithm is formally described in Algorithm 1. The informal

description is as follows. The verifier will try to check that M̃(v′i−1) is approximately equal to v′i for all i ∈ [T ].
However, to do this in a streaming fashion, the verifier will instead test that a random linear combination of these
approximate equations holds. To reduce the randomness from T to O(log n), instead of using a truly random
combination of the equations the verifier uses a pseudorandom combination drawn using a 4-wise independent
collection of {−1, 1}-random variables. This is similar to the `2-frequency estimation algorithm in [3].

Algorithm 1: Algorithm for Verifier in Claim 3.2

Input : An n× n unitary matrix M , parameters T ≤ poly(n), 1
104T 2 ≥ δ ≥ 1

poly(n) and read-once access

to a stream of vectors v′0, . . . , v
′
T ∈ Rn.

Output: If the sequence is δ-good for M , then return ⊥ with probability at most 1
4 . If ‖v′T − vT ‖2 ≥

1
5 ,

return ⊥ with probability at least 3
4 .

begin

Round down each entry of the input matrix M to δ
6n2T additive error to produce a matrix M̃ so that∥∥∥M − M̃∥∥∥

2
≤ δ

6T .

Return ⊥ if v′0 6= e1.;
for t = 1 to 11 do

Sample αi,j ∈ {−1, 1} for i ∈ [T ], j ∈ [n] from a collection of 4-wise independent {−1, 1}-random
variables with mean 0.;

Compute ∆ :=
∑
i∈[T ],j∈[n] αi,j · wi,j where for i ∈ [T ], j ∈ [n], we have

wi,j := (M̃(v′i−1))(j)− v′i(j).;
Return ⊥ if |∆| > 30Tδ.

end

end

Time & Space Complexity of this Algorithm: One can sample from a collection of 4-wise independent
{−1, 1}-random variables of size O(nT ) in logspace using only O(log(nT )) bits of randomness [3]. Note that the

quantity ∆ ,
∑
i∈[T ]
j∈[n]

αi,j ·
(

(M̃(v′i−1))(j)− v′i(j)
)

can be expressed
∑
i∈{0,...,T}
j∈[n]

βi,jv
′
i(j) where βi,j are coefficients

that depend only on the entries of M̃ and α, and can be computed in logspace. Thus, a logspace algorithm can
read the stream of v′i(j) for i = 0, . . . , T and j ∈ [n] once from left to right and compute ∆ ,

∑
i,j βi,jv

′
i(j) in a

streaming fashion. As the entries of the matrices and the vectors are O(log(n)) bits long, the arithmetic can be
done in logspace. The time complexity of this process is hence poly(n) and the space complexity is O(log(n)).

We now move on to the completeness and soundness. First, we make some observations. Let w ∈ RnT be
defined at i ∈ [T ], j ∈ [n] by wi,j , (M̃(v′i−1))(j) − v′i(j). Let ṽ0, . . . , ṽT be defined by ṽi = M̃ i(e1) for all

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited147

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



i ∈ [T ] ∪ {0}. Since
∥∥∥M̃ −M∥∥∥

2
≤ 1

6δT and ‖M‖2 ≤ 1,

for all i ∈ [T ],
∥∥∥M̃ i −M i

∥∥∥
2
≤
(

1 +
δ

6T

)i
− 1 ≤ δ

2
.(3.1)

(In particular,
∥∥∥M̃ i

∥∥∥
2
≤ 1 + δ/2.) Thus,

for all i ∈ [T ], ‖ṽi − vi‖2 ,
∥∥∥M̃ i(e1)−M i(e1)

∥∥∥
2
≤
∥∥∥M̃ i −M i

∥∥∥
2
≤ δ

2
.(3.2)

Completeness of the Algorithm: Suppose v′0, . . . , v
′
T is a δ-good sequence, then ‖v′i − vi‖2 ≤ δ for all

i ∈ [T ] and v′0 = e1. Since M is a contraction map with respect to ‖ · ‖2, this along with Equation (3.1) implies
that for all i ∈ [T ], ∥∥∥M̃(v′i−1)− v′i

∥∥∥
2
≤
∥∥∥M̃(v′i−1)−M(v′i−1)

∥∥∥
2

+
∥∥M(v′i−1)−M(vi−1)

∥∥
2

+ ‖M(vi−1)− vi‖2 + ‖vi − v′i‖2

≤
∥∥∥M̃ −M∥∥∥

2
· ‖v′i−1‖2 + ‖vi−1 − v′i−1‖2 + ‖vi − v′i‖2

≤ δ
6T · (1 + δ) + δ + δ ≤ 3δ.

Thus, ‖w‖2 ≤ 3Tδ. Consider the quantity 〈α,w〉 =
∑
i,j αi,jwi,j that the algorithm estimates. Note that

E [〈α,w〉] = 0 and that E
[
〈α,w〉2

]
=
∑
i,j w

2
i,j . Chebyshev’s Inequality implies that with probability at least

0.99, we have |〈α,w〉| ≤ 30Tδ. This implies that with probability at least (0.99)11 ≥ 0.8, every iteration of the
inner loop in Algorithm 1 does not reject.

Soundness of the Algorithm: Suppose a dishonest prover produces a stream v′0, . . . , v
′
T such that

‖v′T − vT ‖2 ≥
1
5 . The verifier always returns ⊥ if v′0 6= e1, so we may assume that v′0 = e1. Let ε = 1

20T .

We argue that for some i ∈ [T ], we must have ‖wi‖2 ≥ ε. Assume by contradiction that
∥∥∥M̃(v′i−1)− v′i

∥∥∥
2
≤ ε for

all i ∈ [T ]. Hence, by Triangle Inequality and Equation (3.1), (and since ṽ0 = e1) we have

‖ṽT − v′T ‖2 =
∥∥∥M̃T (v′0)− v′T

∥∥∥
2
≤
∑
i

∥∥∥M̃T−(i−1)(v′i−1)− M̃T−i(v′i)
∥∥∥
2

≤
∑
i

∥∥∥M̃T−i
∥∥∥
2
·
∥∥∥M̃(v′i−1)− v′i

∥∥∥
2

≤
∑
i

(
1 + δ

2

)
· ε

≤ 2Tε.

Equation (3.2) implies that ‖ṽT − vT ‖2 ≤
δ
2 . This implies that ‖v′T − vT ‖2 ≤

δ
2 + 2Tε. We assumed that

‖vT − v′T ‖2 ≥
1
5 . Hence, it follows that

1
5 ≤

δ
2 + 2Tε.

Since we chose ε = 1
20T and δ ≤ 1/10, this is a contradiction. Thus, we must have ‖w‖2 ≥ ε. Note that

E [〈α,w〉] = 0 and E
[
〈α,w〉2

]
= ‖w‖22. Furthermore,

E
[
〈α,w〉4

]
= E

∑
i,j,k,l

wiwjwkwlαiαjαkαl

 ≤ 6
∑
i,j

w2
iw

2
j ≤ 6‖w‖42

Here, we used the fact that the random variables are 4-wise independent. The Paley-Zygmund Inequality implies
that

Pr

[
〈α,w〉2 ≥ 1

10
· ‖w‖22

]
≥
(

1− 1

10

)2

·
(
E
[
〈α,w〉2

])2
E [〈α,w〉4]

≥ 1

8
.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited148

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



This, along with the fact that ‖w‖2 ≥ ε implies that Pr
[
|〈α,w〉| ≥ ε

10

]
≥ 1

8 . By repeating this experiment 11
times, we can ensure that with probability at least 1 − (1 − 1/8)11 ≥ 3/4, we find at least one instance so that
|〈α,w〉| ≥ ε

10 . Since δ ≤ 1
104T 2 and ε = 1

20T , we have

ε
10 > 30Tδ

Thus, with probability at least 3/4, we have |〈α,w〉| > 30Tδ. This implies that the algorithm returns ⊥ with
probability at least 3/4.

References

[1] D. Aharonov, M. Ben-Or, E. Eban, and U. Mahadev, Interactive proofs for quantum computations, 2017.
[2] G. Alagic, A. M. Childs, A. B. Grilo, and S. Hung, Non-interactive classical verification of quantum

computation, in Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part III, R. Pass and K. Pietrzak, eds., vol. 12552 of Lecture Notes in Computer Science,
Springer, 2020, pp. 153–180.

[3] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the frequency moments, J. Comput.
Syst. Sci., 58 (1999), pp. 137–147.

[4] J. Bartusek, Y. T. Kalai, A. Lombardi, F. Ma, G. Malavolta, V. Vaikuntanathan, T. Vidick, and
L. Yang, Succinct classical verification of quantum computation, in Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part II, Y. Dodis and T. Shrimpton, eds., vol. 13508 of Lecture Notes in Computer Science, Springer,
2022, pp. 195–211.

[5] A. Broadbent, J. F. Fitzsimons, and E. Kashefi, Universal blind quantum computation, in 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, IEEE
Computer Society, 2009, pp. 517–526.

[6] N. Chia, K. Chung, and T. Yamakawa, Classical verification of quantum computations with efficient verifier, in
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part III, R. Pass and K. Pietrzak, eds., vol. 12552 of Lecture Notes in Computer Science, Springer,
2020, pp. 181–206.

[7] A. Coladangelo, A. Bredariol Grilo, S. Jeffery, and T. Vidick, Verifier-on-a-leash: New schemes for
verifiable delegated quantum computation, with quasilinear resources, in Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part III, Y. Ishai and V. Rijmen, eds., vol. 11478 of Lecture Notes in
Computer Science, Springer, 2019, pp. 247–277.

[8] B. Fefferman and Z. Remscrim, Eliminating intermediate measurements in space-bounded quantum computation,
in STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, S. Khuller and V. V. Williams, eds., ACM, 2021, pp. 1343–1356.

[9] J. F. Fitzsimons and E. Kashefi, Unconditionally verifiable blind quantum computation, Phys. Rev. A, 96 (2017),
p. 012303.

[10] U. Girish, R. Raz, and W. Zhan, Quantum logspace algorithm for powering matrices with bounded norm, in 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow,
Scotland (Virtual Conference), N. Bansal, E. Merelli, and J. Worrell, eds., vol. 198 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, pp. 73:1–73:20.

[11] , Is untrusted randomness helpful?, in 14th Innovations in Theoretical Computer Science Conference, ITCS 2023,
January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, Y. T. Kalai, ed., vol. 251 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023, pp. 56:1–56:18.

[12] U. Mahadev, Classical verification of quantum computations, SIAM J. Comput., 51 (2022), pp. 1172–1229.
[13] B. W. Reichardt, F. Unger, and U. V. Vazirani, A classical leash for a quantum system: command of quantum

systems via rigidity of CHSH games, in Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA,
January 9-12, 2013, R. D. Kleinberg, ed., ACM, 2013, pp. 321–322.

4 Appendix

4.1 A BQL-complete Problem We prove Proposition 2.1 which states that the Unitary Matrix Powering
Problem is complete for BQL. As before, it suffices to reduce all BQL problems to this problem.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited149

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Consider any F = {fn : {0, 1}n → {0, 1}}n∈N in BQL. As per the definition1 in [8], this means that there exists
a logspace-uniform family of quantum circuits {Qn(x)}n∈N, consisting of only unitary operators where Qn(x) acts
on m = O(log n) qubits with the following property. If the initial state is |0m〉 and the first qubit of the final state
is measured, then fn(x) = 1 if the outcome is 0 with probability at least 4/5 and fn(x) = 0 if the outcome is 0
with probability at most 1/5. Let Tn(x) be the number of operators of the quantum circuit Qn(x) and m be the
number of qubits. Define a unitary matrix Un(x) in (Tn(x) + 1) × 2m dimensions as follows. We first partition
the rows and columns of Un(x) into Tn(x) + 1 parts based on the value of the first log(dTn(x) + 1e) coordinates.
For all i ∈ [Tn(x)], define the (i + 1, i)-th block of Un(x) to be the i-th operator in the circuit Qn(x). Define the
(1, Tn(x) + 1)-th block of Un(x) to be the identity matrix. All other blocks of Un(x) are defined to be zero. Since
Tn(x) ≤ poly(n) and m ≤ O(log n), this is a unitary operator in poly(n) dimensions. Let Πn(x) be a projection
matrix in (Tn(x) + 1)× 2m dimensions that projects onto the basis states {|i, j〉 | i = Tn(x) + 1, j ∈ [2m], j1 = 0}.

Firstly, each entry of the unitary matrix Un(x) and the projection matrix Πn(x) can be computed by
a deterministic logspace algorithm. Observe that the vector U in(x)(e1) is supported only on coordinates in
{i + 1} × [2m], furthermore, when restricted to these coordinates, this vector precisely captures the state of
the qubits in Qn(x) after applying the first i operators. It follows that the probability that the circuit Qn(x)
outputs 1 is precisely ‖ΠUTn(x)(e1)‖2. Thus, given any x ∈ supp(fn), we can produce in deterministic logspace,
a unitary matrix Un(x) and a projection matrix Πn(x) in poly(n) dimensions and a parameter T ≤ poly(n) such
that fn(x) = 1 if ‖ΠUTn(x)(e1)‖2 ≥ 4/5 and fn(x) = 0 if ‖ΠUTn(x)(e1)‖2 ≤ 1/5. This shows that the Unitary
Matrix Powering Problem is complete for BQL.

1Strictly speaking, this definition is for a unitary variant of BQL, however, in [8] it is shown that all problems in BQL are solvable
by this unitary variant.

Copyright c© 2024 by SIAM
Unauthorized reproduction of this article is prohibited150

D
ow

nl
oa

de
d 

10
/2

9/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	Streaming Proofs
	Our Main Result

	Preliminaries
	Our Model of Computation
	Unitary Matrix Powering

	Classical Logspace Verifiers for Quantum Logspace Computations
	Appendix
	A BQL-complete Problem


