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Abstract
We construct a family of involutions on the space gl

0
n.C/ of n � n matrices with

real eigenvalues interpolating the complex conjugation and the transpose. We deduce
from it a stratified homeomorphism between the space gl

0
n.R/ of n � n real matri-

ces with real eigenvalues and the space p0
n.C/ of n � n symmetric matrices with

real eigenvalues, which restricts to a real analytic isomorphism between individual
GLn.R/-adjoint orbits and On.C/-adjoint orbits. We also establish similar results in
more general settings of Lie algebras of classical types and quiver varieties. To this
end, we prove a general result about involutions on hyper-Kähler quotients of linear
spaces. We provide applications to the (generalized) Kostant–Sekiguchi correspon-
dence, singularities of real and symmetric adjoint orbit closures, and Springer theory
for real groups and symmetric spaces.
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1. Introduction

1.1. Main results
A key structural result in Lie theory is Cartan’s classification of real forms of a com-
plex reductive Lie algebra g in terms of holomorphic involutions. It amounts to a
bijection
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¹complex conjugations � of gº=isom !¹holomorphic involutions � of gº=isom

(1.1)

between isomorphism classes of complex conjugations and holomorphic involutions
of g. For example, in the case g D gln.C/, the complex conjugation �.M/ D M

with real form consisting of real matrices gR D gln.R/ corresponds to the involution
�.M/D �M t with .��/-fixed points consisting of symmetric matrices pD pn.C/.
The interplay between the real gR and symmetric p pictures plays a fundamental role
in the structure and representation theory of real groups, going back at least to Harish-
Chandra’s formulation of the representation theory of real groups in terms of .g;K/-
modules.

One of the goals of this article is to get a better understanding of Cartan’s bijection
and also the real and symmetric pictures for real groups from the geometric point
of view. To this end, let � be a conjugation on g, and let � be the corresponding
involution under (1.1). For simplicity, we assume that � is the split conjugation. Then
the subspace g0 of g consisting of elements with real eigenvalues1 is preserved by
both � and �� and our first main result here, Theorem 1.4, is a construction of a real
analytic family of involutions on g0

˛s W g
0 �! g0; s 2 Œ0; 1�; (1.2)

interpolating the conjugation � and the holomorphic involution �� , that is, we have
˛0 D � and ˛1 D �� , in the case when g is of classical type. Using the family of
involutions above, we prove the second main result of the article, Theorem 1.3, which
says that there exists a stratified homeomorphism

g0
R

�
p0 (1.3)

between the � and (�� )-fixed points on g0 compatible with various structures.2 The
family of involutions in (1.2) and the homeomorphism (1.3) can be thought of as
geometric refinements of Cartan’s bijection (1.1).

We deduce several applications from the main results. Assume that g is of classi-
cal type. In Corollary 1.9, we show that there exists a stratified homeomorphism

NR

�
Np

1Elements x 2 g such that the adjoint action adx W g ! g has only real eigenvalues.
2It is necessary to consider the subspace g0 � g but not the whole Lie algebra g in the main results because, in
general, the fixed points gR D g� and p D g�� have different dimensions and hence cannot be homeomorphic
to each other.
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between the real nilpotent cone NR � gR and the symmetric nilpotent cone Np � p

providing a lift of the celebrated Kostant–Sekiguchi correspondence between real and
symmetric nilpotent orbits. In particular, it implies that NR and Np have the same
singularities, answering an open question (see, e.g., [11, p. 354]). In Corollary 1.16,
we show that Grinberg’s nearby cycles sheaf on Np is isomorphic to the real Springer
sheaf given by the pushforward of the constant sheaf along the real Springer map,
establishing a conjecture of Vilonen, Xue, and the first author.

The key ingredients in the proof are the hyper-Kähler SU.2/-actions on the space
of matrices arising from the quiver variety description in [19], [15], [22], [24], and
[25], and a general result about involutions on hyper-Kähler quotients of linear spaces
(see Theorem 1.6). The techniques used in the proof are not specific to matrices and
are applicable to a more general setting. For example, we also establish a quiver vari-
ety version of the main results.

We now describe the paper in more detail.

1.1.1. Real-symmetric homeomorphisms for matrices
Let us first illustrate our main results with a notable case accessible to a general audi-
ence.

Let gln.C/ ' C
n2

denote the space of n � n complex matrices. Let gln.R/ �
gln.C/ denote the real matrices, that is, those with real entries, and let pn.C/� gln.C/

denote the symmetric matrices, that is, those equal to their transpose. Introduce the
following subspaces:

gl
0
n.R/D

®
x 2 gln.R/

ˇ̌
eigenvalues of x are real

¯
;

p0
n.C/D

®
x 2 pn.C/

ˇ̌
eigenvalues of x are real

¯
:

The real general linear group GLn.R/ and complex orthogonal group On.C/ natu-
rally act by conjugation on gl

0
n.R/ and p0

n.C/, respectively. The real orthogonal group
On.R/D GLn.R/ \ On.C/ acts on both gl

0
n.R/ and p0

n.C/. We also have the natu-
ral linear R�-actions on both gl

0
n.R/ and p0

n.C/. Consider the adjoint quotient map
� W gln.C/! C

n which associates to each matrix x 2 gln.C/ the coefficients of its
characteristic polynomial. Equivalently, one can think of it as giving the eigenvalues
of the matrix (with multiplicities).

Here is a notable case of our general results.

THEOREM 1.1
There is an .On.R/�R

�/-equivariant homeomorphism

gl
0
n.R/

�
p0

n.C/ (1.4)
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which is compatible with the adjoint quotient map. Furthermore, the homeomor-
phism restricts to a real analytic isomorphism between individual GLn.R/-orbits and
On.C/-orbits.

We deduce Theorem 1.1 from the following more fundamental structure of linear
algebra. Consider the subspace

gl
0
n.C/D

®
x 2 gln.C/

ˇ̌
eigenvalues of x are real

¯
:

Let �0 W gl0n.C/!Cn be the restriction of the adjoint quotient map to gl
0
n.C/.

THEOREM 1.2
There is a continuous one-parameter family of .On.R/�R

�/-equivariant maps

˛s W gl
0
n.C/ gl

0
n.C/; s 2 Œ0; 1�; (1.5)

satisfying the following properties.
(1) ˛2

s is the identity, for all s 2 Œ0; 1�.
(2) We have �0 ı ˛s D �

0 W gl0n.C/!C
n.

(3) ˛s takes each GLn.C/-orbit real analytically to a GLn.C/-orbit, for all s 2
Œ0; 1�.

(4) At s D 0, we recover conjugation: ˛0.A/D NA.
(5) At s D 1, we recover transpose: ˛1.A/DA

t .

1.1.2. Real-symmetric homeomorphisms for Lie algebras
To state a general version of our main results, we next recall some standard construc-
tions in Lie theory, in particular those related to the study of real reductive groups.

Let G be a complex reductive Lie group with Lie algebra g. Let cD g==G be the
categorical quotient with respect to the adjoint action of G on g. The adjoint quotient
map � W g! c is the Chevalley map.

LetGR �G be a real form, defined by a conjugation � WG!G, with Lie algebra
gR � g. Choose a Cartan conjugation ı WG!G that commutes with �, and let Gc �

G be the corresponding maximal compact subgroup.
Introduce the Cartan involution � D ı ı � W G! G, and let K � G be the fixed

subgroup of � with Lie algebra k � g. The subgroup K is called the symmetric
subgroup. We have the Cartan decomposition g D k ˚ p, where p � g is the �1-
eigenspace of � . Let a � p be a maximal abelian subspace contained in p, and let
t� g be a � -stable Cartan subalgebra containing a. Let WG D NG.t/=ZG.t/ be the
Weyl group of G, and let WD NK.a/=ZK.a/ be the little Weyl group of the sym-
metric pair .G;K/. We denote pR D p\ gR, kR D k\ gR, aR D a\ gR, and so on.
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One can organize the above groups into the diagram:

G

K Gc GR

KR

(1.6)

Here KR is the fixed subgroup of � , ı, and � together (or any two of the three) and
the maximal compact subgroup of GR with complexification K .

Let g0
R
� gR (resp., p0 � p) be the subspace consisting of elements x 2 gR (resp.,

x 2 p) such that the eigenvalues of the adjoint map adx W g! g are real. The real form
GR and the symmetric subgroup K act naturally on g0

R
and p0 by the adjoint action.

The compact subgroup KR DGR \K and R
� both act on g0

R
and p0.

THEOREM 1.3 (Theorem 4.1)
Suppose that g is of classical type. There is a .KR�R

�/-equivariant homeomorphism

g0
R

�
p0 (1.7)

which is compatible with the adjoint quotient map. Furthermore, it restricts to a real
analytic isomorphism between individual GR-orbits and K-orbits.

We deduce Theorem 1.3 from the following. Let cp;R � c be the image of the
natural map aR! cD t==WG . Introduce g0 D g�c cp;R, and let �0 W g0! cp;R be the
projection map.

THEOREM 1.4 (Theorem 4.2)
Under the same assumption as Theorem 1.3, there is a continuous one-parameter
family of .KR �R

�/-equivariant maps

˛s W g
0 g0; s 2 Œ0; 1�; (1.8)

satisfying the following properties.
(1) ˛2

s is the identity, for all s 2 Œ0; 1�.
(2) We have �0 ı ˛s D �

0 W g0! cp;R.
(3) ˛s takes each G-orbit real analytically to a G-orbit, for all s 2 Œ0; 1�.
(4) At s D 0, we recover the conjugation: ˛0 D �.
(5) At s D 1, we recover the anti-symmetry: ˛1 D�� .



1628 CHEN and NADLER

Remark 1.5
The special case of Theorems 1.3 and 1.4 stated in Theorems 1.1 and 1.2 is when
G DGLn.C/, g' gln.C/, GR DGLn.R/, K DOn.C/, and KR DOn.R/.

1.1.3. Involutions on hyper-Kähler quotients
We deduce Theorems 1.3 and 1.4 from a general result about involutions on hyper-
Kähler quotients of linear spaces.

Let HDR˚Ri ˚Rj ˚Rk be the quaternions, and let Sp.1/�H be the group
consisting of elements of norm one. Let M be a finite-dimensional quaternionic repre-
sentation of a compact Lie groupHu. We assume that the quaternionic representation
is unitary; that is, there is a Hu-inner product . ; / on M which is Hermitian with
respect to the complex structures I , J , K on M given by multiplication by i , j , k,
respectively. We have the hyper-Kähler moment map

� WM! ImH˝ h�
u

vanishing at the origin. Using the isomorphism ImHDR˚C sending x1i C x2j C

x3k to .x1; x2 C x3i/, we can identify ImH ˝ h�
u D h�

u ˚ h� and hence obtain a
decomposition of the moment map

�D �R˚�C WM! h�
u˚ h�

of � into real and complex components. We consider the hyper-Kähler quotient

M0 D �
�1.0/=Hu ' �

�1
C
.0/==H;

where the right-hand side is the categorial quotient of ��1
C
.0/ by the complexification

H ofHu, and the second isomorphism follows from a result of Kempf and Ness [14].
The hyper-Kähler quotient M0 has the following structures: (1) for a subgroup L

of Hu denote by M0;.L/ the set consisting of orbits through points x whose stabilizer
in Hu is conjugate to L. We have an orbit-type stratification

M0 D
G
.L/

M0;.L/

where the summation runs over the set of all conjugacy classes of subgroups of Hu;
(2) there is a hyper-Kähler .SU.2/D Sp.1//-action on M0, denoted by �.q/ WM0!

M0, q 2 Sp.1/, coming from the H-module structure on M.
In Section 2, we prove the following general results about involutions on hyper-

Kähler quotients.
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THEOREM 1.6 (Proposition 2.8, Example 2.13)
(1) Let �H and �M be complex conjugations on H and M which are compatible

with the unitary quaternionic representation of Hu on M (see Definition 2.4
for the precise definition). Then �H and �M induce an antiholomorphic invo-
lution

� WM0 �!M0 (1.9)

such that the composition of � with the hyper-Kähler SU.2/-action of qs D

cos. s�
2
/i C sin. s�

2
/k 2 Sp.1/ on M0, s 2R, gives rise to a continuous family

of involutions

˛s WM0 �!M0; s 2R; (1.10)

interpolating the antiholomorphic involution ˛0 D �.i/ ı � and the holomor-
phic involution ˛1 D �.k/ ı �.

(2) Let M0.R/ and M
sym
0 .C/ be the fixed points of ˛0 and ˛1 on M0, respec-

tively. Then the intersection of the strataM0;.L/ withM0.R/ (resp.,M
sym
0 .C/)

defines a stratification ofM0.R/ (resp.,M
sym
0 .C/) and there exists a stratified

homeomorphism

M0.R/
�

M
sym
0 .C/ (1.11)

which is real analytic on each stratum.

Remark 1.7
Let G, GR, Gu, KR be as in Section 1.1.2. Suppose that M is a unitary quater-
nionic representation of the larger group Hu �Gu, and suppose that the conjugations
�H � �G and �M on H �G and M are compatible with the unitary quaternionic rep-
resentation. Then the hyper-Kähler quotient M carries an action of KR such that the
involutions (1.9) and (1.10) and homeomorphism (1.11) are KR-equivariant.

It is well known that the complex nilpotent cone Nn.C/� gln.C/ is an example
of hyper-Kähler quotients known as Nakajima’s quiver varieties (see [15], [19], [22],
[25]). Applying Theorem 1.6 to this particular example, we obtain a family of On.C/-
equivariant involutions

˛s WNn.C/�!Nn.C/; s 2 Œ0; 1�; (1.12)

interpolating the complex conjugation ˛0.M/DM and the transpose ˛1.M/DM t ,
and an On.C/-equivariant homeomorphism
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Nn.R/
�

N
sym
n .C/ (1.13)

between real and symmetric nilpotent cones which restricts to a real analytic isomor-
phism between individual GLn.R/-orbits and On.C/-orbits. This establishes a special
case of Theorems 1.3 and 1.4 for the fiber of the adjoint quotient map �0 W gl0n.C/!

C
n over 0 2Cn, that is, matrices with zero eigenvalues. To extend the results to matri-

ces with real eigenvalues, we prove a version of Theorem 1.6 for the family of hyper-
Kähler quotients

MZC
D ��1

R
.0/\��1

C
.ZC/=Hu!ZC;

where ZC � h� is the dual of the center of h, and then deduce the results using the
description of general adjoint orbit closures as quiver varieties in [24]. Finally, we
check that the constructions are compatible with inner automorphisms and Cartan
involutions and then deduce the case of Lie algebras of classical types from the case
of gln.C/.

We would like to emphasize that the keys in the proof of Theorems 1.3 and 1.4
are the symmetries on adjoint orbit closures (or rather, the symmetries on the whole
family gl

0
n.C/! C

n) coming from the hyper-Kähler SU.2/-action. Those symme-
tries are not immediately visible in their original definitions as algebraic varieties.

Remark 1.8
The use of hyper-Kähler SU.2/-actions in the study of geometry of nilpotent orbits
goes back to the celebrated work of Kronheimer [20] where he used those symmetries
to give a differential-geometric interpretation of Brieskorn’s theorem on subregular
singularities.

1.2. Applications
We discuss here applications to the Kostant–Sekiguchi correspondence, singulari-
ties of real and symmetric adjoint orbit closures, and Springer theory for symmetric
spaces.

In the rest of the section, we assume that g is of classical type.

1.2.1. Generalized Kostant–Sekiguchi homeomorphisms
The celebrated Kostant–Sekiguchi correspondence is an isomorphism between real
and symmetric nilpotent orbit posets

jGRnNRj  ! jKnNpj: (1.14)

The bijection was proved by Kostant (unpublished) and Sekiguchi [30]. Vergne [31],
using Kronheimer’s instanton flow in [20], showed that the corresponding orbits are
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diffeomorphic. Schmid and Vilonen [29] gave an alternative proof and further refine-
ments using Ness’s moment map. Barbasch and Sepanski [1] deduced that the bijec-
tion is a poset isomorphism from Vergne’s results.

We shall state a lift/generalization of the Kostant–Sekiguchi correspondence to
stratified homeomorphisms between adjoint orbit closures in the real Lie algebra gR

and symmetric subspace p whose eigenvalues are real but not necessarily zero.
Denote by N� D �

�1.�/ the fiber of the Chevalley map � W g! c over � 2 c.
In [16], Kostant proved that there are finitely many G-orbits in N� and there is a
unique closed orbit Os

�
consisting of semisimple elements and a unique open orbit Or

�

consisting of regular elements. Moreover, we have N� DOr
�
.

Assume that � 2 cp;R � c. Then � is fixed by the involutions on c induced by �
and �� and hence the fiber N� is stable under � and �� . We write

N�;R DN� \ gR; N�;pDN� \ p

for the fixed points. There are finitely manyGR-orbits andK-orbits on N�;R and N�;p,

N�;R D
G

l

OR;l ; N�;pD
G

l

Op;l :

COROLLARY 1.9
There is a KR-equivariant stratified homeomorphism

N�;R
�

N�;p (1.15)

which restricts to real analytic isomorphisms between individual GR-orbits and K-
orbits. The homeomorphism induces an isomorphism between GR-orbit and K-orbit
posets

jGRnN�;Rj  ! jKnN�;pj: (1.16)

Proof
This follows immediately from Theorem 1.3.

Remark 1.10
Thanks to the work of Vergne [31], it is known that under the Kostant–Sekiguchi
bijection the corresponding orbits are diffeomorphic. It is an open question whether
the corresponding orbit closures have the same singularities (see, e.g., [11, Introduc-
tion]). Corollary 1.9 gives a positive answer in the case of classical Lie algebras.

Remark 1.11
In [3] and [4], the authors proved an extended Kostant–Sekiguchi correspondence for
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certain adjoint orbits. We expect that their correspondence is compatible with the one
in (1.16).

Remark 1.12
In Theorem 3.2, we also establish a Kostant–Sekiguchi correspondence between real
and symmetric leaves for quiver varieties.

1.2.2. Derived categories
Let DGR

.N�;R/, DK.N�;p/ denote the respective equivariant derived categories of
sheaves (over any commutative ring). Since KR ! GR, KR ! K are homotopy
equivalences, the forgetful functors DGR

.NR/!DKR
.NR/, DK.Np/!DKR

.Np/

to KR-equivariant complexes are fully faithful with essential image those complexes
constructible along the respective orbits of GR and K .

Transport along the homeomorphism of Theorem 1.9 immediately provides the
following.

COROLLARY 1.13
Pushforward along the homeomorphism (1.15) provides an equivalence of equivari-
ant derived categories

DGR
.N�;R/'DK.N�;p/: (1.17)

1.2.3. Vanishing of odd-dimensional intersection cohomology
Theorem 1.9 implies that the singularities of symmetric nilpotent orbit closures NOp �

Np are homeomorphic to the singularities of the corresponding real nilpotent orbit
closures NOR �NR. Thus we can deduce results about one from the other.

Here is a notable example. Let IC.OR;LR/ be the intersection cohomology sheaf
of a real nilpotent orbit OR �NR with coefficients in a GR-equivariant local system
LR. (Recall that all nilpotent orbits O �N have even complex dimension, so all real
nilpotent orbits OR �NR have even real dimension, hence middle perversity makes
sense.)

COROLLARY 1.14
The cohomology sheaves H i .IC.OR;LR// vanish for i � dimR OR=2 odd.

Proof
Using the equivalence (1.17), it suffices to prove the asserted vanishing for the inter-
section cohomology sheaf IC.Op;Lp/ of a symmetric nilpotent orbit Op �Np with
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coefficients in a K-equivariant local system Lp, and i � dimC Op odd. This is proved
in [21, Theorem 14.10].3

Remark 1.15
The proof of [21, Theorem 14.10] makes use of Deligne’s theory of weights and the
theory of canonical bases, and hence does not have an evident generalization to a real
algebraic setting.

1.2.4. Formula for the sheaf of symmetric nearby cycles
Consider the quotient map �p W p! cp D p==K . According to [18], the generic fiber
of �p is a singleK-orbit through a semisimple element in p, and the special fiber over
the basepoint �p.0/ 2 cp is the symmetric nilpotent cone Np. Following Grinberg [8]
(see also [9], [10]), we consider the sheaf Fp 2DK.Np/ of nearby cycles along the
special fiber Np in the family �p W p! cp (see Section 5.3 for the precise definition).
We will call Fp the sheaf of symmetric nearby cycles.

Let BR �GR be a minimal parabolic subgroup with Lie algebra bR DmRCaRC

nR, where mR DZkR.aR/ and nR is the nilpotent radical. Consider the real Springer
map

	R W eNR!NR;

where eNR DGR �
BR nR and 	R.g; v/DAdg v.

We have the following formula for the sheaf of symmetric nearby cycles.

COROLLARY 1.16 (Theorem 5.3)
Under the equivalence DK.Np/'DGR

.NR/ (1.17), the sheaf of symmetric nearby
cycles Fp becomes the real Springer sheaf SR WD .	R/ŠCŒdimR NR=2�. In particular,
the real Springer sheaf SR is a perverse sheaf.

In fact, Theorem 5.3 is slightly stronger than the one stated here. We also prove a
formula for the sheaf of symmetric nearby cycles with coefficients in K-equivariant
local systems and we show that, for any gR (not just for classical types), the real
Springer sheaf is isomorphic to the sheaf of real nearby cycles FR introduced in Sec-
tion 5.2.

Remark 1.17
The formula above for symmetric nearby cycles was originally conjectured by Vilo-
nen, Xue, and the first author. It can be viewed as a symmetric space version of the

3In fact, [21] establishes the odd vanishing in the more general setting of graded Lie algebras.
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well-known result that the sheaf of nearby cycles along the special fiber N in the
family � W g! c is isomorphic to the Springer sheaf.

Remark 1.18
In [7], the authors used the sheaves of symmetric nearby cycles (with coefficients)
to produce all cuspidal complexes on Np and use them to establish a Springer corre-
spondence for the split symmetric pair of type A (see [32] for the cases of classical
symmetric pairs). The formula established in Corollary 1.16 provides new insights
and methods into the study of Springer theory for general symmetric pairs and real
groups. We will give one example below. The details will be discussed in a sequel [6].

1.2.5. Real Springer theory and Hecke algebras at roots of unity
In [8], Grinberg gave a generalization of Springer theory using nearby cycles. One of
the main results there is a description of the endomorphism algebra End.Fp/ of the
sheaf of symmetric nearby cycles as a certain Hecke algebra at roots of unity.4 To
explain his result, let .ˆ;a�

R
/ be the root system (possibly nonreduced) of .gR;aR/.

For each ˛ 2ˆ, we denote by gR;˛ � gR the corresponding ˛-eigenspace. Choose a
system of simple roots 
�ˆ, and let S�W be the set of simple reflections of the
little Weyl group associated to 
. Consider the algebra

HGR
WDCŒBW�=.Ts � 1/

�
Ts C .�1/

ds
�

s2S ;

where CŒBW� is the group algebra of the braid group BW of W with generators Ts ,
s 2 S, and ds is the integer given by

ds D
X

˛2�;s˛Ds

dimR.gR;˛/;

where s˛ denotes the reflection corresponding to the simple root ˛ 2
.5 For exam-
ples, if GR is a split real form, then we have ds D 1 for all s 2 S and HGR

is iso-
morphic to the Hecke algebra associated to W at q D�1. On the other hand, if GR is
a complex group, then we have ds D 2 and HGR

is isomorphic to the group algebra
CŒW�.

In [8, Theorem 6.1], Grinberg showed that there is a canonical isomorphism of
algebras

End.Fp/'HGR
: (1.18)

4In fact, he works in a more general setting of polar representations.
5Since the root system might not be reduced, there might be more than one simple root ˛ such that s˛ D s.
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Since the algebra HGR
is in general not semisimple, as an interesting corollary of

(1.18), we see that the sheaf of symmetric nearby cycles Fp is not semisimple in
general.

Now combining Corollary 1.16 with Grinberg’s theorem, we obtain the following
result in real Springer theory.

COROLLARY 1.19
We have a canonical isomorphism of algebras

End.SR/'HGR
:

In particular, the real Springer sheaf SR is in general not semisimple and, for any
x 2NR, the cohomologies H�.Bx ;C/ of the real Springer fiber Bx D 	

�1
R
.x/ carry

a natural action of the algebra HGR
.

Remark 1.20
In [6], we will give an alternative proof of Corollary 1.19 (for all types) following the
classical arguments in Springer theory. In particular, combining with Corollary 1.16,
we obtain a new proof of Grinberg’s theorem on the endomorphism algebra of Fp.

1.3. Previous work
In our previous work [5], we establish Corollary 1.9 for the nilpotent cone of gln.C/
using the geometry of moduli spaces of quasimaps associated to a symmetric pair
.G;K/. In more detail, we use the factorization properties of the moduli space of
quasimaps to establish a real-symmetric homeomorphism in the setting of Beilinson–
Drinfeld Grassmannians (for any reductive group G) and then deduce Corollary 1.9
using the Lusztig embedding of the nilpotent cone for gln.C/ into the affine Grass-
mannian for GLn.C/. The result in the present paper suggests that there should be a
hyper-Kähler geometry interpretation of the results in [5]. This will be discussed in
detail in a sequel.

We conclude the introduction with the following conjecture.

CONJECTURE 1.21
Theorems 1.3 and 1.4 remain true when g is of exceptional type.

1.4. Organization
We briefly summarize here the main goals of each section. In Section 2 immediately to
follow, we study involutions on hyper-Kähler quotients of linear spaces. In Section 3,
we apply the results established in the previous section to the case of quiver varieties.
In Section 4, we establish our main results, Theorems 4.1 and 4.2. In Section 5, we
discuss applications to Springer theory for real groups and symmetric spaces.
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2. A family of involutions on hyper-Kähler quotients
In this section, we introduce a family of involutions on hyper-Kähler quotients of
linear spaces with remarkable properties. The main references for hyper-Kähler quo-
tients are [12] and [13].

2.1. Quaternions
Let HDR˚Ri˚Rj ˚Rk be the quaternions. For any x D x0Cx1iCx2j Cx3k 2

H, we denote by Nx D x0 � x1i � x2j � x3k. Then the pairing .x; x0/ D Re.x Nx0/

defines a real-valued inner product on H. We denote by Im.H/ D Ri ˚ Rj ˚ Rk

the pure imaginary quaternions, and by Sp.1/ D ¹x 2 H j .x; x/ D 1º the group of
quaternions of norm one.

2.2. Hyper-Kähler quotient of linear spaces
Let H be a complex reductive group with compact real form Hu. Let M be a quater-
nionic representation of Hu, that is, M is a finite-dimensional left quaternionic vec-
tor space together with an H-linear action of Hu. We assume that the quaternionic
representation is unitary; that is, there is an Hu-invariant inner product . ; / on M
(as a real vector space) which is Hermitian with respect to the complex structures
I , J , K on M given by multiplication by i , j , k, respectively. We have a nat-
ural complex representation of H on M preserving the complex symplectic form
!C.v; v

0/D .J v; v0/C i.Kv; v0/ on M.
We have the hyper-Kähler moment map

� WM! ImH˝R h�
u

satisfying

˝
�;�.�/

˛
D .I ��;�/i C .J ��;�/j C .K��;�/k 2 ImH;

where � 2 hu, � 2M, and h ; i is the paring between h�
u and hu. The map � has

the following equivariant properties: (1) it intertwines the .Sp.1/�Hu/-action on M
and the one on Im.H/˝R h�

u given by .q; h/.w;u/D .Adqw;Adh u/; (2) we have
�.tv/D t2�.v/ for t 2R�, v 2M.

Using the isomorphism ImHD R˚ C sending x1i C x2j C x3k to .x1; x2 C

x3i/, we can identify ImH˝ h�
u D h�

u˚ h� and hence obtain a decomposition of the
moment map

�D �R˚�C WM! h�
u˚ h�

of � into real and complex components. The map �C WM! h� is holomorphic with
respect to the complex structure I on M and satisfies
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˝
�;�C.�/

˛
D !C.��;�/;

where � 2 h and � 2M. Moreover, it is H -equivariant with respect to the complex
representation of H on M and the adjoint representation on h�.

Let Z D ¹v 2 h�
u jAdh.v/D v for all h 2Huº and ZC DC˝RZ. Then we have

ImH˝R Z DZ˚ZC. For any �C 2ZC, we can consider the hyper-Kähler quotient

M�C D �
�1
R
.0/\��1

C
.��C/=Hu: (2.1)

We have the holomorphic description

M�C ' �
�1
C
.��C/==H;

where the right-hand side is the categorial quotient of ��1
C
.��C/ byH . One can form

a perturbed hyper-Kähler quotient

M.�R;�C/ D �
�1
R
.��R/\�

�1
C
.��C/=Hu

with not necessarily zero real component �R. The composition ��1
R
.��R/ \

��1
C
.��C/!��1

C
.��C/!��1

C
.��C/==H gives rise to a map

	 WM.�R;�C/!M�C (2.2)

which is holomorphic with respect to the complex structure I .
From now on, we will fix a real parameter �R. For any subset S � ZC, we can

consider the following family of hyper-Kähler quotients:

�S WMS D �
�1
R
.0/\��1

C
.�S/=Hu! S;

Q�S WM.�R;S/ D �
�1
R
.��R/\�

�1
C
.�S/=Hu! S:

Then the map (2.2) gives rise to a map

	S WM.�R;S/!MS (2.3)

compatible with the projection maps to S . If S is semialgebraic, then MS is also
semialgebraic, and if S is a complex algebraic variety, then we have the holomorphic
description MS ' �

�1
C
.�S/==H .

2.3. A stratification
Let �C 2ZC. Let L be a subgroup of Hu. We denote by M.L/ the set of all points in
M whose stabilizer is conjugate to L. A point in M�C is said to be of stabilizer type
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.L/ if it has a representative in M.L/. The set of all points of stabilizer type .L/ is
denoted by M�C;.L/. We have an orbit-type stratification

M�C D
G
.L/

M�C;.L/; (2.4)

where the union runs over the set of all conjugacy classes of subgroups of Hu. Each
stratum M�C;.L/ is a smooth hyper-Kähler manifold; moreover, it is a symplectic vari-
ety with respect to the complex structure I .

2.4. Symmetries of hyper-Kähler quotients
Let G be another complex reductive group with a compact real form Gu. Consider a
unitary representation ofGu on M commuting with theHu-action on M. Then for any
semialgebraic subset S �ZC, the action of the complexification G on M descends to
an action on the hyper-Kähler quotient MS which is compatible with the projection
map to S , and the induced action of the fibers M�C are holomorphic with respect to
the complex structure I .

Assume that S � ZC is an R-linear subspace. Then the action of R� on M
descends to a G-equivariant R�-action on MS :

�.t/ WMS !MS ; t 2R�: (2.5)

Moreover, we have a commutative diagram

MS
�.t/

MS

S
t2.�/

S

where the bottom arrow is the multiplication by t2.
Let q 2 Sp.1/ be such that Adq.S/� S . Here Adq W ImH˝Z! ImH˝Z is

the map Adq.w;u/D .Adq w;u/ and we identify ZC D .Rj ˚Rk/˝Z, and hence
S , as a subspace of ImH˝Z with zero i -component. The action of q 2 Sp.1/ on M
gives rise to a Gu-equivariant map

�.q/ WMS !MS (2.6)

commuting with the R�-actions. In addition, we have the following commutative dia-
gram
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MS
�.q/

MS

S S

where the bottom arrow is Adq W S! S .
It is straightforward to check that the stratum M�C;.L/ in (2.4) is stable under

the G- and R
�-actions. Moreover, for any q 2 Sp.1/ (resp., t 2 R�) and S as above,

the map �.q/ (resp., �.t/) is compatible with the stratifications in the sense that it
maps the stratum M�C;.L/ in the fiber ��1

S .�C/DM�C to the corresponding stratum
M� 0

C
;.L/ in the fiber ��1

S .�0
C
/DM� 0

C
, where �0

C
DAdq �C (resp., �0

C
D t2�C).

Example 2.1
Let S D 0. Then we have Adq.0/D 0 for all q 2 Sp.1/ and the family of maps �.q/
in (2.6) gives rise to a .Gu �R

�/-equivariant Sp.1/-action on M0, called the hyper-
Kähler Sp.1/-action. Moreover, the stratum M0;.L/ is stable under the Sp.1/-action.

2.5. Conjugations on MZC

Definition 2.2
Let �H and �M be conjugations on H and M, respectively. We say that �H and �M
are compatible with the symplectic representation of H on M if the following hold.
(1) We have �M.hv/D �H .h/�M.v/ for all h 2H and v 2M.
(2) We have !C.�M.v/; �M.v

0//D !C.v; v0/ for all v; v0 2M.

LEMMA 2.3
Let �H and �M be conjugations on H and M compatible with the symplectic repre-
sentation of H on M. Then the complex moment map �C WM! h� intertwines �M
and �H .

Proof
For any � 2 h, v 2M, we have

˝
�;�C

�
�M.v/

�˛
D !C

�
��M.v/; �M.v/

�
D !C

�
�M

�
�H .�/v

�
; �M.v/

�
D !C

�
�H .�/v; v

�
D

˝
�H .�/;�C.v/

˛
D

˝
�; �H

�
�C.v/

�˛
:

This implies that �C.�M.v//D �H .�C.v// for all v 2M. The lemma follows.

Let �H and �M be as in Lemma 2.3. Then the center of h, and hence ZC, is stable
under �H . It follows that, for any �C 2 ZC, the conjugation �M on M descends to a
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map

M�C D �
�1
C
.��C/==H !M�H .�C/ D �

�1
C

�
��H .�C/

�
==H (2.7)

which is antiholomorphic with respect to the complex structure I . Moreover, it maps
the stratum M�C;.L/ to the corresponding stratum M�H .�C/;.L/. As �C varies over ZC,
the maps (2.7) organize into a map

�ZC
WMZC

!MZC
(2.8)

making the following diagram commute:

MZC

�ZC

MZC

ZC

�H
ZC

(2.9)

We will call �ZC
the conjugation on MZC

associated to the conjugations �H and �M.

2.6. Compatibility with symmetries
Recall the R-subspace Z �ZC. For any s 2R, let

qs D cos
�s	
2

�
i C sin

�s	
2

�
k 2 Sp.1/: (2.10)

A direct computation shows that Adqs
preserves the subspace Z D Rj ˝R Z �

ImH˝R Z and its restriction to Z is given by �idZ .6 Consider the family of hyper-
Kähler quotients

MZ D �
�1
R
.0/\��1

C
.�Z/=Hu (2.11)

over Z. Then the discussion in the previous section shows that there is a family of
maps

�s D �.qs/ WMZ!MZ ; s 2R; (2.12)

making the following diagram commute:

MZ
�s

MZ

Z
�idZ

Z

(2.13)

6Note that ZC D .Rj CRk/ ˝R Z is not stable under the family of maps Adqs
.



REAL AND SYMMETRIC MATRICES 1641

Consider j 2 Sp.1/. Since Adj D idZ on Z, we have a map

�.j / WMZ!MZ (2.14)

making the following diagram commute:

MZ
�.j /

MZ

Z
idZ

Z

(2.15)

Note that

�2
s D �.j /

2 D �.�1/: (2.16)

In particular, if �.�1/ is equal to the identity map, then �s and �.j / are involutions
on MZ .

Our next goal is to study the compatibility between the maps �s , �.j /, and the
conjugation �ZC

introduced in Section 2.5.

Definition 2.4
Let �H and �M be conjugations onH and M, respectively. We say that �H and �M are
compatible with the unitary quaternionic representation of Hu on M if the following
hold.
(1) The pair .�H , �M/ is compatible with the symplectic representation of H on

M (see Definition 2.2).
(2) �M preserves the inner product . ; /; that is, we have .�M.v/; �M.v0//D .v; v0/

for v; v0 2M.
(3) �H commutes with the Cartan conjugation ıH .

PROPOSITION 2.5
Let �H and �M be conjugations on H and M compatible with the unitary quater-
nionic representation of Hu on M. Let �ZC

WMZC
!MZC

be the conjugation in
(2.8).7 Then the subspace MZ �MZC

is stable under �ZC
. Denote by �Z WMZ !

MZ the resulting map. Then the following diagram commutes:

MZ
�Z

MZ

Z
idZ

Z

(2.17)

7�ZC
is well defined since �H and �M are compatible with the symplectic representation of H on M.
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Moreover, we have the following equality of maps on MZ:

�s ı�Z D �.�1/ı�Z ı�s; �s ı�.j /D �.�j /ı�s; �.j /ı�Z D �Z ı�.j /:

(2.18)

Proof
The commutativity of (2.17) is clear. We shall prove the equality of maps in (2.18).
Since �H commutes with the Cartan conjugation ıH , the center of hu, and hence its
real dual Z � h�

u, is stable under �H and (2.9) implies that MZ is preserved by the
conjugation �ZC

.
We claim that conditions (1) and (2) in Definition 2.4 imply that �M commutes

with J and preserves ��1
R
.0/. Assume the claim for the moment. Then using the

equality I ı�M D��M ı I andK D IJ , a direct computation shows that we have the
following equality of maps on ��1

R
.0/\��1

C
.�Z/:

�
cos.a/I C sin.a/K

�
ı �M D��M ı

�
cos.a/I C sin.a/K

�
;�

cos.a/I C sin.a/K
�
ı J D�J ı

�
cos.a/I C sin.a/K

�
;

J ı �M D �M ı J

compatible with the Hu-action. The desired equality (2.18) follows.
Proof of the claim. For any � 2 hu and v 2M, we have

˝
�;�R

�
�M.v/

�˛
D

�
I ��M.v/; �M.v/

�
D�

�
�M

�
I�H .�/v

�
; �M.v/

�
D�

�
I�H .�/v; v

�
D

˝
��H .�/;�R.v/

˛
D

˝
�;��H

�
�R.v/

�˛
:

Thus we have �R.�M.v//D��H .�R.v// and it follows that ��1
R
.0/ is stable under

the conjugation �M. Recall that !C.v; v
0/D .J v; v0/C i.Kv; v0/. Thus the equality

!C.�M.v/; �M.v
0//D !C.v; v0/ is equivalent to

�
J�M.v/; �M.v

0/
�
C i

�
K�M.v/; �M.v

0/
�
D .J v; v0/� i.Kv; v0/;

which implies that
�
J�M.v/; �M.v

0/
�
D .J v; v0/:

Since �M preserves . ; /, the above equality implies that
�
J�M.v/; �M.v

0/
�
D

�
�MJ.v/; �M.v

0/
�

and it follows that J ı �M D �M ı J . This finishes the proof of the claim.
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Remark 2.6
The proof above shows that condition (2) in Definition 2.4 is equivalent to the condi-
tion that �M commutes with J .

2.7. A family of involutions
Let �H and �M be conjugations on H and M compatible with the unitary quater-
nionic representation of Hu on M. Let G be another complex reductive group with a
compact real form Gu, and let �G be a conjugation on G with real form GR. Suppose
that M is a unitary quaternionic representation of the larger group Hu �Gu and that
the conjugations �H ��G and �M are compatible with the unitary quaternionic repre-
sentation. Then the maps �Z , �s , �.j / in Proposition 2.5 are KR-equivariant, where
KR DGR \Gu is a maximal compact subgroup of GR.

Introduce the maps
(1) ˛s D �s ı �Z WMZ!MZ ,
(2) ˇD �.j / ı �Z WMZ!MZ .

PROPOSITION 2.7
We have ˛s ı ˇD ˇ ı ˛s for all s 2R.

Proof
By Proposition 2.5, we have

˛s ı ˇD �s ı �Z ı �.j / ı �Z D �s ı �.j /

and

˛s ı ˇD �.j / ı �Z ı �s ı �Z D �.j / ı �.�1/ ı �s D �s ı �.j /:

The result follows.

PROPOSITION 2.8
The continuous family of maps

˛s WMZ �!MZ ; s 2R;

satisfies the following.
(1) ˛2

s is equal to identity, for all s 2R.
(2) ˛s is KR-equivariant and commutes with the R�-action.
(3) We have �Z ı ˛s D �Z WMZ !Z, where �Z is the natural projection map,

and the induced involutions on the fibers ˛s WM�C !M�C , �C 2Z, preserve
the stratification M�C D

F
.L/ M�C;.L/.
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(4) At s D 0, we have ˛0 D �.i/ ı �Z which is an antiholomorphic involution.
(5) At s D 1, we have ˛1 D �.k/ ı �Z which is a holomorphic involution.

Proof
According to (2.10), we have q2

s D �1. Thus �2
s D �.q

2
s / D �.�1/ and Proposi-

tion 2.5 implies that

˛2
s D .�s ı �Z/

2 D �s ı �Z ı �s ı �Z D �
2
s ı �.�1/ ı �

2
Z D id:

Part (1) follows. Parts (2), (3), (4), and (5) follow from the construction.

PROPOSITION 2.9
The map

ˇ WMZ �!MZ

satisfies the following.
(1) We have ˇ2 D �.�1/.
(2) ˇ is KR-equivariant and commutes with the R�-action.
(3) ˇ induces a holomorphic map between fibers ˇ WM�C !M��C which takes

the stratum M�C;.L/ to the stratum M��C;.L/.

Proof
Since ˇ2 D �.j / ı �Z ı �.j / ı �Z D �.j /

2 D �.�1/, part (1) follows. Parts (2) and
(3) follow from the construction.

Remark 2.10
Unlike the family of involutions ˛s , the map ˇ is well defined on the whole family
MZC

(see footnote 6).

2.8. A stratified homeomorphism
Our aim is to trivialize the family of fixed points of the involutions ˛s . To that end,
we will invoke the following lemma.

Recall that a subset S of a real analytic manifold M (resp., real algebraic variety
M ) is called semianalytic (resp., semialgebraic) if any point s 2 S has an open neigh-
borhood U (resp., a Zariski affine open neighborhood U ) such that the intersection
S \U is a finite union of sets of the form

®
x 2U

ˇ̌
f1.x/D � � � D fr .x/D 0;g1.x/ > 0; : : : ; gl.x/ > 0

¯
;

where the fi and gj are real analytic functions on U (resp., polynomial functions on
U ). Let S1 be the unit circle with the following.
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LEMMA 2.11
LetM and N be two semianalytic sets, and let f WM !N be a continuous map. Let

˛s WM !M; s 2R;

be a continuous family of involutions over N .
(1) Assume that ˛s preserves a semianalytic stratification8 of M and restricts to

a real analytic map on each stratum. Then the fixed points of the strata are
real analytic manifolds and the ˛s-fixed pointsM ˛s are stratified by the fixed
points of the strata.

(2) Assume further that there is a continuous R>0-action on M (resp., N ) real
analytic on strata and a proper continuous map k�k WM ! R�0 such that
(i) f WM ! N is R>0-equivariant, (ii) the R>0-action on M has a unique
fixed point oM 2 M , which is also a stratum, and (iii) ktmk D tkmk and
k˛s.m/k D kmk for t 2R>0, s 2R,m 2M . Then for any s; s0 2R there is an
R>0-equivariant stratified homeomorphism

M ˛s 'M ˛s0 (2.19)

that is real analytic on each stratum and compatible with the natural maps
to N .

(3) Assume further that there is a continuous action of a compact group L onM
satisfying that (i) the action commutes with the map f WM ! N , the invo-
lutions ˛s , and the R>0-action, and is real analytic on each stratum, and (ii)
the map k�k WM ! R�0 is L-invariant. Then the homeomorphism in (2.19)
is L-equivariant.

Proof
(1) Only the first claim requires a proof and it follows from the general fact that the
fixed pointsM ˛ of a real analytic involution ˛ on a real analytic manifoldM is again
a real analytic manifold.

(2) Step 1. Let M0 DM n ¹oM º and C D ¹m 2M0 j kmk D 1º. Since k�k W
M ! R�0 is ˛s-invariant and proper, C is compact and stable under the ˛s-action.
Since R>0 acts freely on M0 and k�k is R>0-equivariant, the restriction k�kjM0

W

M0! R>0 is a stratified submersion (where R>0 is equipped with the trivial strati-
fication). It follows that C D k�k�1.1/ �M0 is stratified by the intersection of the
strata with C .

8A stratification of a semianalytic set is called semianalytic if each stratum is a real analytic manifold.
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Step 2. We shall show that there exists a stratified homeomorphism

� W C ˛s ' C ˛s0 (2.20)

which is real analytic on each stratum and is compatible with natural maps to N .
Consider the involution ˛ W R � C ! R � C , ˛.s;m/ D .s; ˛s.m//. Let w D .@s �

0/C ˛�.@s � 0/ be the average of the vector field @s � 0 on R � C with respect to
the Z=2Z-action given by the involution ˛. Since C is compact and the Z=2Z-action
is real analytic on each stratum, the ˛-invariant vector field w is complete and the
integral curves of w define the desired stratified homeomorphism � W C ˛s ' C ˛s0 ,
s; s0 2 R between the fibers of the ˛-fixed point .R � C/˛ along the projection map
to R.

Step 3. We have a natural map M ˛s

0 ! C ˛s sending m to m
kmk

. Consider the
following map:

M
˛s

0 !M
˛s0

0 ; m!kmk�
� m

kmk

�
: (2.21)

Note that M ˛s is homeomorphic to the cone C.M ˛s

0 /DM ˛s

0 [ ¹oM º of M ˛s

0 . Thus
by the functoriality of cone, the map (2.21) extends to a homeomorphism

M ˛s !M ˛s0 (2.22)

sending oM to oM . It is straightforward to check that (2.22) is an R>0-equivariant
stratified homeomorphism which is real analytic on each stratum and compatible with
the natural maps to N . This finishes the proof of part (2). Part (3) is clear from the
construction of (2.22).

Remark 2.12
In fact, one can also use the Thom–Mather theory to obtain the homeomorphism
(2.20) in Step 2. Indeed, under the assumption that the stratification is Whitney, the
Thom–Mather theory shows that the vector field @s on R admits a lift to a controlled
vector fieldw on the ˛-fixed points .R�C/˛ along the projection map .R�C/˛!R

and, as the projection map is proper, the integral curves of w give rise to a trivializa-
tion of .R � C/˛ ! R, and hence the homeomorphism (2.20) between fibers (see,
e.g., [23, Corollary 10.2]). In our case, due to the fact that .R � C/˛ ! C is the ˛-
fixed points subset of the trivial family R�C !R, we have a direct construction of
the controlled vector field as the average vector field w of the canonical controlled
vector field @s �0 on R�C , and thus do not need to invoke the Thom–Mather theory.

Example 2.13
We preserve the setup in Section 2.7. The map k�k WMZ D �

�1
R
.0/ \ ��1

C
.Z/=



REAL AND SYMMETRIC MATRICES 1647

Hu!R�0 given by kmk D . Qm; Qm/
1
2 , where Qm 2 ��1

R
.0/\��1

C
.Z/ is a lift of m, is

a .KR � ˛s/-invariant proper real analytic map satisfying k�.t/mk D tkmk, t 2R>0.
Let M0 D �

�1.0/=Hu, let ˛s WM0!M0 be the family of involutions in Proposi-
tion 2.8, and let �.t/ WM0!M0 be the R>0-action in (2.5). Denote by

M0.R/DM
˛0

0 ; M
sym
0 .C/DM

˛1

0

the fixed points of ˛0 and ˛1 on M0, respectively. Applying Lemma 2.11 to the
case M DM0 with the stratification M0 D

F
.L/ M0;.L/, N D 0, LDKR, and the

restriction k�kjM WM DM0! R�0 of the function k�k above to M0 �MZ , we
see that there is a .KR �R>0/-equivariant stratified homeomorphism

M0.R/
�

M
sym
0 .C/ (2.23)

which is real analytic on each stratum. Note that whereas M
sym
0 .C/ is complex ana-

lytic, M0.R/ is not; it is a real form of M0.

3. Quiver varieties
In this section, we consider the examples when the hyper-Kähler quotients are Naka-
jima’s quiver varieties. We show that any quiver variety has a canonical conjugation
called the split conjugation and hence has a canonical family of involutions ˛s intro-
duced in Section 2.7. The main reference for quiver varieties is [25].

3.1. Split conjugations
Let Q D .Q0;Q1/ be a quiver, where Q0 is the set of vertices and Q1 is the set
of arrows. For any Q0-graded Hermitian vector space V D

L
k2Q0

Vk , we write
GL.V / D

Q
k2Q0

GL.Vi / and U.V / D
Q

k2Q0
U.Vk/, where U.Vk/ is the unitary

group associated to the Hermitian vector space Vk . We denote by gl.V / and u.V / the
Lie algebras of GL.V / and U.V /, respectively.

Let V D
L

k2Q0
Vk and W D

L
k2Q0

Wk be two Q0-graded Hermitian vector
spaces. Define

MDM.V;W /

D
� M

h2Q1

Hom.Vo.h/; Vi.h//˚Hom.Vi.h/; Vo.h//
�

˚
� M

k2Q0

Hom.Wk; Vk/˚Hom.Vk;Wk/
�
: (3.1)

Here o.h/ and i.h/ are the outgoing and incoming vertices of the oriented arrow
h 2Q1, respectively.
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We consider the H-vector space structure on M given by the original complex
structure I together with the new complex structure J given by

J.X;Y;x;y/D .�Y �;X�;�y�; x�/; (3.2)

where .X;Y;x;y/ 2 Hom.Vo.h/; Vi.h// ˚ Hom.Vi.h/; Vo.h// ˚ Hom.Wk ; Vk/ ˚

Hom.Vk;Wk/ and .�/� is the Hermitian adjoint.
The Hermitian inner products on Vk and Wk induce a Hermitian inner product

on Hom.Vk ;Wk/ (resp., Hom.Vk; Vk0/) given by .f;g/D tr.fg�/. We consider the
Hermitian inner product on M induced from the ones on Vk and Wk .

Let H D GL.V / and G D GL.W / with compact real forms Hu D U.V / and
Gu DU.W /. Then action of H �G DGL.V /�GL.W / on M given by the formula

.g;g0/.X;Y;x;y/D
�
gXg�1; gYg�1; gx.g0/�1; g0yg�1

�
defines a unitary quaternionic representation of U.V / � U.W / on M. The holomor-
phic symplectic form !C is given by

!C

�
.X;Y;x;y/; .X 0; Y 0; x0; y0/

�
D tr.XY 0 � YX 0/C tr.xy0 � x0y/: (3.3)

We denote by

� WM! Im.H/˝ u.V /� D Im.H/˝ u.V / (3.4)

the hyper-Kähler moment map with respect to the U.V /-action. Here we identify
u.V / with its dual space u.V /� via the above Hermitian inner product. We have the
following formulas for the real and complex moment maps:

�R.X;Y;x;y/D
i

2
.XX� � Y �Y C xx� � y�y/ 2 u.V /;

�C.X;Y;x;y/D ŒX;Y �C xy 2 gl.V /DC˝R u.V /:

The hyper-Kähler quotient M� is called the quiver variety.

LEMMA 3.1
Let �V and �W be conjugations on V and W compatible with the Q0-grading,9 and
let �H , �G , and �M be the induced conjugations on H D GL.V /, G D GL.W /, and
M, respectively. Assume that �H and �G commute with the Cartan conjugations on
H and G given by the Hermitian adjoint. Then the conjugations �H ��G and �M are
compatible with the unitary quaternionic representation of Hu �Gu on M.

9That is, we have �V .Vk/ D Vk , �W .Wk/ D Wk for all k 2 Q0 .
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Proof
The conjugation �H ��G commutes with the Cartan involution onH �G by assump-
tion. Using (3.2) and (3.3), it is straightforward to check that �M commutes with J
and �H ��G and that �M are compatible with the symplectic representation ofH �G
on M. In view of Remark 2.6, we see that �H � �G and �M satisfy (1), (2), and (3) in
Definition 2.4. The lemma follows.

Choose v D .vk/k2Q0
, w D .wk/k2Q0

2 Z
Q0

�0 , and let M.v;w/ D M.V;W /,
where V D

L
k2Q0

C
vk and W D

L
k2Q0

C
wk equipped with the standard Hermi-

tian inner products. The standard complex conjugations on V and W induce the
split conjugations on H D GL.V / and G D GL.W / commuting with the Cartan
conjugations, and hence give rise to involutions �H , �G and �M compatible with the
unitary quaternionic representation. We will call the conjugation

�ZC
WMZC

!MZC

on the family of quiver varieties MZC
associated to �H � �G and �M the split conju-

gation.

3.2. Real-symmetric homeomorphisms for quiver varieties
Let O.WR/DU.W /\GL.WR/ be the real orthogonal group. By Propositions 2.5 and
2.8, the split conjugation �ZC

on MZC
preserves the subspace MZ �MZC

and gives
rise to a family of O.WR/-equivariant involutions

˛s WMZ!MZ ; s 2R; (3.5)

interpolating the antiholomorphic involution ˛0 D �.i/ ı �Z and the holomorphic
involution ˛1 D �.k/ ı �Z , and preserving the strata M�C;.L/ of the fiber M�C for
�C 2Z.

The involutions in (3.5) restrict to a family of involutions ˛a WM0!M0. Write
M0.R/DM

˛0

0 and M
sym
0 .C/DM

˛1

0 for the fixed points of ˛0 and ˛1. The intersec-
tions of the stratum M0;.L/ with M0.R/ and M

sym
0 .C/ are unions of components

M0;.L/ \M0.R/D
G

Ol.R/; M0;.L/ \M
sym
0 .C/D

G
O

sym
l
.C/:

In [2, Theorem 1.9], Bellamy and Schedler proved that the strata M0;.L/ are sym-
plectic leaves of M0. We will call the components Ol.R/ and O

sym
l
.C/ above the real

leaves and symmetric leaves, respectively.
The following proposition follows from Example 2.13.

THEOREM 3.2
There is an .O.WR/�R

�/-equivariant stratified homeomorphism
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M0.R/
�

M
sym
0 .C/ (3.6)

which restricts to real analytic O.WR/-equivariant isomorphisms between individual
real and symmetric leaves. The homeomorphism induces a bijection

®
Ol.R/

¯
l
 !

®
O

sym
l
.C/

¯
l

(3.7)

between real and symmetric leaves preserving the closure relation.

In the next section, we shall see that the nilpotent cone Nn.C/ in gln.C/ is an
example of a quiver variety and the homeomorphism (3.6) in this case becomes an
.On.R/�R

�/-equivariant homeomorphism

Nn.R/'N sym
n .C/

between the real nilpotent cone in gln.R/ and the symmetric nilpotent cone in
the space of symmetric matrices pn.C/, and the bijection (3.7) is the well-known
Kostant–Sekiguchi bijection between GLn.R/-orbits in Nn.R/ and On.C/-orbits
in N

sym
n .C/. Thus one can view (3.6) as Kostant–Sekiguchi homeomorphisms for

quiver varieties.

4. Real-symmetric homeomorphisms for Lie algebras

4.1. Main results
Let us return to the Cartan subgroup T � G, stable under � and � , and maximally
split with respect to �. Let t � g denote its Lie algebra, let WG D NG.t/=ZG.t/

be the Weyl group, and introduce the affine quotient c D g==G D Spec.O.g/G/ '
t==WG D Spec.O.t/WG /. Let � W g! c be the natural map.

Next, let aD t\ p be the �1-eigenspace of � , and write aR D a\ gR for the real
form of a with respect to �. Let W D NKR

.aR/=ZKR
.aR/ D NK.a/=ZK.a/ be the

“little Weyl group,” and introduce the affine quotient cp D p==K D Spec.O.p/K/'
a==WD Spec.O.a/W/. Let �p W p! cp denote the natural map.

Let cp;R � c be the image of the natural map aR! c. Since the map aR! c is a
polynomial map, by the Tarski–Seidenberg theorem, its image cp;R is semialgebraic.
For example, if gR D sl2.R/, then cDC and cp;R DR�0.

Consider the following semialgebraic subsets of g, gR and p:

g0 D g�c cp;R; g0
R
D gR �c cp;R; p0 D p�c cp;R: (4.1)

We have
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g0
R
D ¹x 2 gR j eigenvalues of adx are realº; (4.2)

p0 D ¹x 2 p j eigenvalues of adx are realº: (4.3)

Note that G, GR, and K naturally act on g0, g0
R

, and p0, respectively, and the actions
are along the fibers of the natural projections

g0! cp;R; g0
R
! cp;R; p0! cp;R: (4.4)

THEOREM 4.1
Suppose that all simple factors of the complex reductive Lie algebra g are of classical
type. There is a KR-equivariant homeomorphism

g0
R

�
p0 (4.5)

compatible with the natural projections to cp;R. Furthermore, the homeomorphism
restricts to a real analytic isomorphism between individual GR-orbits and K-orbits.

We deduce the theorem above from the following.

THEOREM 4.2
Suppose that all simple factors of the complex reductive Lie algebra g are of classical
type. There is a continuous one-parameter family of maps

˛s W g
0 �! g0; s 2R;

satisfying the following.
(1) ˛2

s is the identity, for all s 2R.
(2) At s D 0, we have ˛0.M/D �.M/.
(3) At s D 1, we have ˛1.M/D��.M/.
(4) ˛s is KR-equivariant and takes a G-orbit real analytically to a G-orbit.
(5) We have �g0 ı ˛a D �g0 W g0! cp;R, where �g0 is the projection map in (4.4).

4.2. Quiver varieties of type A and conjugacy classes of matrices
Consider the type An quiver:

Q W
1
�

2
�

3
� � � �

n�2
�

n�1
�

n
�

Let vD .n;n � 1; : : : ; 2; 1/ 2 Zn
�0 and wD .n; 0; : : : ; 0; 0/ 2 Zn

�0. Consider the uni-
tary quaternionic representation M.v;w/ of Hu D

Qn
kD1 U.k/ in Section 3.1. A vec-

tor in M.v;w/ can be represented as a diagram:
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C
n

x

C
n

X

y

C
n�1

Y

X

C
n�2

Y

X

� � �
Y

X

C
3

Y

X

C
2

Y

Y

C
1

Y

(4.6)

Let MZC
D ��1

R
.0/\��1

C
.�ZC/=Hu!ZC be the family of quiver varieties associ-

ated to M.v;w/.
Denote gn D gln.C/, let tn � gn be the subspace of diagonal matrices, let cn D

gn==GLn.C/, and let �n W gn! cn be the Chevalley map. We will fix an identification
cn DC

n so that the map �n W gn! cn DC
n is given by �n.M/D .c1; : : : ; cn/, where

T nC c1T
n�1C � � � C cn is the characteristic polynomial of M . Consider the maps

Q�n;C WMZC
! gn � tn; ŒX;Y;x; y�! .yx; �C/; (4.7)


n;C WZC! tn; �C! .c1; : : : ; cn/; (4.8)

where �C D .�1; : : : ; �n/ is the image of ŒX;Y;x; y� 2MZC
under the projection

map �ZC
WMZC

! ZC and ci D �1 C � � � C �i , 1 � i � n. Note that the map Q�n;C

intertwines the .GLn.C/ � R
�/-action on MZC

with the one on gn � tn given by
.g; a/.M; t/D .gMg�1; a2t /.

PROPOSITION 4.3
Let 	ZC

WM.�R;ZC/!MZC
be the map in (2.3), and let M0

ZC
�MZC

be its image.
Assume that � D .�R; 0/ is generic in the sense of [25, Definition 2.10].
(1) The fiberM0

�C
of the projectionM0

ZC
!ZC over �C 2ZC is a union of strata.

(2) M0
ZC

is connected and invariant under the .GLn.C/�R
�/-action.

(3) The map Q�n;C (4.7) restricts to a .GLn.C/�R
�/-equivariant isomorphism

�n;C WM
0
ZC
' gn �cn

tn

of complex algebraic varieties making the following diagram commute:

M0
ZC

�n;C
gn �cn

tn

ZC

	n;C
tn

Furthermore, the map �n;C induces stratified isomorphisms between individ-
ual fibers of the projections M0

ZC
! ZC and gn �cn

tn! tn. Here we equip
the fibers of gn �cn

tn! tn with the GLn.C/-orbit stratification.
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Proof
Part (1) follows from [25, Corollary 6.11]. We prove parts (2) and (3). Since each
stratum M�;.L/ is invariant under the .GLn.C/ � R

�/-action, part (1) implies that
M0

ZC
also has this property. Moreover, since the R

�-action on M0
ZC

is a contracting
action with a unique fixed point, M0

ZC
is connected. By the result of Mirkovic and

Vybornov [24, Theorem 6.1], which is a generalization of the earlier results of Kraft
and Procesi [19] and Nakajima [25], the map �n;C WM

0
ZC
! gn �cn

tn induces iso-
morphisms between individual fibers of the projections M0

ZC
!ZC, gn �cn

tn! tn,
and hence is a bijection.10 We claim that �n;C is in fact an isomorphism of algebraic
varieties. Since M0

ZC
is connected, by Zariski’s main theorem, it suffices to show that

gn �cn
tn is normal.11 For this, we observe that the input varieties gn, cn, tn to the

fiber product gn �cn
tn are smooth and the morphisms gn! cn tn are flat, thus

gn �cn
tn is a complete intersection, and hence Cohen–Macaulay. On the other hand,

since the restriction .gn/
reg ! cn of the Chevalley map to the regular locus .gn/

reg

is smooth and gn n .gn/
reg is of codimension three (see, e.g., [16]), we conclude that

.gn/
reg �cn

tn is smooth and gn �cn
tn n .gn/

reg�cn
tn is of codimension three.12 Thus

gn �cn
tn is Cohen–Macaulay and smooth in codimension one, and hence normal.

We claim that �n;C maps each stratum M�C;.L/ isomorphically to a GLn.C/-
orbit. For this we observe that there are only finitely many GLn.C/-orbits on the
fibers of gn �cn

tn! tn and the closure of any nonclosed orbit is singular. Since each
stratum M�C;.L/ is smooth and connected, it follows that �n;C.M�C;.L// is a single
GLn.C/-orbit. The claim follows and the proofs of (2) and (3) are complete.

4.3. Reflection functors
Let C D .Ckl/1�k;l�n be the Cartan matrix of type An. Identify ZC with C

n, and
consider the reflection representation of the Weyl group W on ZC. For any simple
reflection sk ; k 2 Œ1; n� and �C D .�1; : : : ; �n/ 2ZC, we have sk.�C/D �0

C
, where �0

l
D

�l �Ckl �k .
In [25], Nakajima associated to each k 2 Œ1; n� a certain hyper-Kähler isometry

Sk WM�C.v;w/'M� 0
C
.v0;w/ called the reflection functor. Here �0

C
D sk.�C/ and v0

is given by v0
k
D vk �

P
l Ckl vl C wk , v0

l
D vl if l ¤ k for vD .v1; : : : ; vn/, wD

.w1; : : : ;wn/. Moreover, it is shown in [25] that the reflection functors Sk satisfy the
Coxeter relations of the Weyl group.

10The fibers of the projection M0
ZC

! ZC are introduced in [24, Section 2.3.3] and are denoted there by
Mc

1.v;d/.

11Indeed, Zariski’s main theorem implies that there exists a factorization �n;C W M0
ZC

j
! Z

f
! gn �cn

tn ,
where j is an open immersion and f is finite. Since gn �cn

tn is normal, f is an isomorphism. Thus �n;C is
an open immersion. Since �n;C is surjective, �n;C is an isomorphism.
12Here we use the fact that for a faithfully flat morphism f W X ! Y (f W gn �cn

tn ! gn in our case), we
have codimY .Z/ D codimX .f �1.Z// for any closed subset Z of Y .
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In the case v D .n;n � 1; : : : ; 1/ and w D .n; 0; : : : ; 0/, a direct calculation
shows that, for k 2 Œ2; n�, we have v D v0 and hence Sk WM�C.v;w/ 'M� 0

C
.v;w/.

Let Sn �W be the subgroup generated by the simple reflections s2; : : : ; sn. As �C
varies over ZC, the reflection functors S2; : : : ; Sn define a Sn-action on MZC

DS
�C2ZC

M�C.v;w/ such that the projection map MZC
!ZC is Sn-equivariant.

LEMMA 4.4
The subsetM0

ZC
�MZC

is invariant under the Sn-action and the isomorphism �n;C W

M0
ZC
' gn �cn

tn is Sn-equivariant.

Proof
We first claim that the map Q�n;C WMZC

! gn � tn (4.7) is Sn-equivariant. Recall
the isomorphism 
n;C WZC ' tn in (4.8). A direct computation shows that 
n;C inter-
twines the action of sk and the simple reflection �k�1;k 2 Sn for k � 2. On the other
hand, the formula for the reflection functors in [26, Section 3(i)] implies that, for any
ŒX;Y;x; y� 2MZC

, we have Sk.ŒX;Y;x;y�/D Œ QX; QY ;x;y� for k � 2. Altogether, we
see that

Q�n;C

�
Sk

�
ŒX;Y;x; y�

��
D Q�n;C

�
ŒX 0; Y 0; x; y�

�
D

�
yx;�k�1;k

�

n;C.�C/

��
D �k�1;k

�
yx; 
n;C.�C/

�
D �k�1;k

�
Q�n;C

�
ŒX;Y;x; y�

��
:

The claim follows. To complete the proof of the lemma, we need to show that M0
ZC

is Sn-invariant. Let Z0
C
� ZC (resp., t0n � tn) be the open dense subset consisting

of vectors with trivial stabilizers in Sn. The isomorphism �n;C induces an isomor-
phism M0

Z0
Z

' gn �cn
t0n, where M0

Z0
Z

DM0
ZC
�ZC

Z0
C

, and it follows that M0

Z0
C

is open dense in M0
ZC

and the fibers of the projection M0

Z0
Z

! Z0
C

are smooth.

According to [25, Theorem 4.1], the map 	ZC
WM QZC

!MZC
is an isomorphism

over MZ0
Z

DMZZ
�ZC

Z0
C

and it follows that M0

Z0
Z

DMZC
�ZC

Z0
C

, which is

Sn-invariant. On the other hand, the same argument as in the proof of [25, Theo-
rem 4.1(1)] shows that the map 	ZC

WM.�R;ZC/!MZC
is proper and hence its image

M0
ZC
D 	ZC

.M.�R;ZC//�MZC
is a closed subset. Thus M0

ZC
is equal to the closure

of M0

Z0
C

in MZC
and, as M0

Z0
C

is Sn-invariant, it implies that M0
ZC

is Sn-invariant.

The lemma follows.

4.4. Involutions on the spaces of matrices with real eigenvalues
Let M0

Z �MZ be the image of 	Z WM QZ !MZ , and consider gn �cn
i tn;R, where

i tn;R � tn is the R-subspace consisting of diagonal matrices with pure imaginary
entries. Then the isomorphisms �n;C and 
n;C above restrict to isomorphisms

M0
Z ' gn �cn

i tn;R; Z ' i tn;R: (4.9)
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Consider the family of involutions ˛a WMZ !MZ in Proposition 2.8 associated to
the split conjugations in Section 3.1 and the map ˇ WMZ!MZ in Proposition 2.9.
Note that the action of �1 2 R

� on MZ is trivial (it becomes the action of 1 D
.�1/2 on gn �cn

i tn;R), thus, by Proposition 2.9(1), ˇ is an involution. Note also
that the fibers of the projection M0

Z ! Z are unions of strata (Proposition 4.3(1)),
thus Proposition 2.8(3) and Proposition 2.9(3) imply that M0

Z is invariant under the
involutions ˛s and ˇ.

To relate M0
Z with matrices with real eigenvalues, let us consider the composition

�n WM
0
Z

(4.9)
' gn �cn

i tn;R ' gn �cn
tn;R; (4.10)


n WZ
(4.9)
' i tn;R ' tn;R; (4.11)

where the second isomorphisms are given by gn �cn
i tn;R ' gn �cn

tn;R; .x; v/!

.ix; iv/ and i tn;R! tn;R, v! iv. Note that the following diagram is commutative:

M0
Z

�n
gn �cn

tn;R

Z
	n

tn;R

(4.12)

where the vertical arrows are the natural projections.
Now the isomorphism �n WM

0
Z ' gn �cn

tn;R gives rise to involutions on gn �cn

tn;R:

Q̨n;s D �n ı ˛s ı �
�1
n W gn �cn

tn;R! gn �cn
tn;R; s 2R; (4.13)

Q̌
n D �n ı ˇ ı �

�1
n W gn �cn

tn;R! gn �cn
tn;R: (4.14)

LEMMA 4.5
(1) The involution Q̌n is given by Q̌n.M;v/D .�M t ;�v/. In particular, Q̌n com-

mutes with the action of the symmetric group Sn on gn �cn
tn;R.

(2) The involution Q̨n;s commutes with the action of the symmetric group Sn on
gn �cn

tn;R.

Proof
Let .M;v/ 2 gn �cn

tn;R. Choose ŒX;Y;x; y� 2M0
�C

such that

�n

�
ŒX;Y;x; y�

�
D i

�
yx; 
n.�C/

�
D .M;v/:

According to Proposition 2.9, we have
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ˇ
�
ŒX;Y;x; y�

�
D �.j / ı �Z

�
ŒX;Y;x; y�

�
D Œ� NY �; NX�;� Ny�; Nx�� 2M0

��C
:

It follows that

Q̌
n

�
.M;v/

�
D �n

�
Œ� NY �; NX�;� Ny�; Nx��

�
D i

�
. Nx�/.� Ny�/;�
n.�C/

�
D .�M t ;�v/:

Part (1) follows.
According to Proposition 2.8, we have

˛s

�
ŒX;Y;x; y�

�
D

�
cos.s	=2/�.i/C sin.s	=2/�.k/

�
ı �Z

�
ŒX;Y;x; y�

�
D ŒX 0; Y 0; x0; y0� 2M0

�C
;

where

x0 D i cos.s	=2/ Nx � i sin.s	=2/ Ny�; y0 D i cos.s	=2/ Ny C i sin.s	=2/ Nx�:

On the other hand, we have Sk.ŒX;Y;x;y�/D Œ QX; QY ;x;y�. Thus

˛s ı Sk

�
ŒX;Y;x; y�

�
D

�
. QX/0; . QY /0; x0; y0

�
;

Sk ı ˛s

�
ŒX;Y;x; y�

�
D

�
Q.X 0/; Q.Y 0/; x0; y0

�
:

(4.15)

Since �n commutes with the Sn-action (see Lemma 4.4), we obtain

Q̨n;s ı Sk

�
.M;v/

�
D Q̨n;s ı Sk ı �n

�
ŒX;Y;x; y�

�
D �n ı ˛s ı Sk

�
ŒX;Y;x; y�

�
D i

�
y0x0; sk.v/

�
;

Sk ı Q̨n;s

�
.M;v/

�
D Sk ı ˛a ı �n

�
ŒX;Y;x; y�

�
D �n ı Sk ı ˛s

�
ŒX;Y;x; y�

�
D i

�
y0x0; sk.v/

�
:

Part (2) follows. The proof is complete.

Let cn;R � cn be the image of the map tn;R! cn, and let g0
n D gn �cn

cn;R � gn.
Note that both cn;R and g0

n are semialgebraic sets. We have

g0
n D ¹x 2 gn j eigenvalues of x are realº: (4.16)

Since the natural map gn �cn
tn;R! g0

n D gn �cn
cn;R is Sn-equivariant (where Sn

acts trivially on g0
n), Lemma 4.5 implies that the involutions Q̨n;s and Q̌n in (4.13) and

(4.14) descend to a continuous family of involutions on g0
n:

˛n;s W g
0
n! g0

n (4.17)

compatible with projections to cn;R and an involution
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ˇn W g
0
n! g0

n: (4.18)

Moreover, ˇn is equal to the restriction of the Cartan involution on gn to g0
n:

ˇn.M/D�M t : (4.19)

THEOREM 4.6
The continuous one-parameter families of maps

˛n;s W g
0
n �! g0

n; s 2R;

satisfy the following.
(1) ˛2

n;s is equal to the identity map, for all s 2R.
(2) At s D 0, we have ˛n;0.M/DM .
(3) At s D 1, we have ˛n;1.M/DM t .
(4) ˛n;s is On.R/-equivariant and takes each GLn.C/-orbit real analytically to

itself.
(5) ˛n;s commutes both with the Cartan involution ˇn and with the projection map

g0
n! cn;R, for all s 2R.

Proof
Part (1) follows from the construction, and part (5) follows from the commutative

diagram (4.12). Let �0
n WM

0
Z

�n

' gn �cn
tn;R ! g0

n, where the last map is given by
gn �cn

tn;R! gn �cn
cn;R D g0

n. Let M 2 g0
n. Choose ŒX;Y;x; y� 2M0

Z such that

M D �0
n

�
ŒX;Y;x; y�

�
D iyx:

We have

˛0

�
ŒX;Y;x; y�

�
D �.i/ ı �Z

�
ŒX;Y;x; y�

�
D ŒiX; iY ; i Nx; i Ny�;

˛1

�
ŒX;Y;x; y�

�
D �.k/ ı �Z

�
ŒX;Y;x; y�

�
D Œ�i NY �; i NX�;�i Ny�; i Nx��:

It follows that

˛n;0

�
ŒX;Y;x; y�

�
D �0

n

�
ŒiX; iY ; i Nx; i Ny�

�
D i.� Ny Nx/DM;

˛n;1

�
ŒX;Y;x; y�

�
D �0

n

�
Œ�iY

�
; iX

�
;�i Ny�; i Nx��

�
D i. Nx� Ny�/D i

�
.yx/

��
D i.yx/t DM t :

Parts (2) and (3) follow.
By Proposition 4.3(3), the isomorphism �n WM

0
Z! gn �cn

tn;R maps each stra-
tum M�C;.L/ real analytically to a GLn.C/-orbit. Now part (4) follows from the fact
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that the involution ˛s on M0
Z is On.R/-equivariant and M�C;.L/ is invariant under

˛s .

Let g0
n;R be the space of n� n real matrices with real eigenvalues. Let p0

n be the
space of n�n symmetric matrices with real eigenvalues. It is clear that g0

n;R D .g
0
n/

˛0

and p0
n D .g

0
n/

˛1 .

THEOREM 4.7
There is an .On.R/�R

�/-equivariant homeomorphism

g0
n;R

�
p0

n (4.20)

compatible with the natural projections to cn;R. Furthermore, the homeomorphism
restricts to a real analytic isomorphism between individual GLn.R/-orbits and

On.C/-orbits.

Proof
Consider the Lusztig stratification of gn. The stratum through g with a Jordan decom-
position gD sCu consists of all GLn.C/-orbits through uCZr.l/, where lDZgn

.s/

is the centralizer of s in gn and Zr.l/D ¹x 2 Z.l/ j Zgn
.x/D lº is the regular part

of the center Z.l/ of l. It is clear that the Lusztig stratification restricts to the orbit
stratifications on the fibers of the Chevalley map �n W gn! cn and a stratification on
g0

n D gn �cn
cn;R.

Recall the U.n/-invariant function k�k WMZ ! R�0 in Example 2.13. The

restriction of k�k along the closed embedding gn �cn
tn

�n

'M0
Z �MZ gives rise to

a function gn �cn
tn! R�0. Its average with respect to the Sn-action on gn �cn

tn

defines an Sn-invariant function gn �cn
tn ! R�0 which descends to a function

k�kg0
n
W g0

n! R�0. It follows from Theorem 4.6 and the construction of k�kg0
n

that
the function k�kg0

n
together with the real analytic map g0

n ! cn;R and the Lusztig
stratification on g0

n satisfies the assumption in Lemma 2.11, and hence we obtain a
stratified On.R/-equivariant homeomorphism

g0
n;R! p0

n (4.21)

which is real analytic on each stratum and compatible with the maps to cn;R. Since
each stratum in g0

n;R (resp., p0
n) is a finite union of GLn.R/-orbits (resp., On.C/-

orbits) and On.R/-acts simply transitively on connected components of each orbit,
it follows that the homeomorphism (4.21) restricts to a real analytic isomorphism
between individual GLn.R/-orbits and On.C/-orbits.
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4.5. Proof of Theorem 4.2
We shall deduce Theorem 4.2 from Theorem 4.6.

Let g be a simple Lie algebra of classical type with real form gR. Recall the
classification of real forms of classical types.

LEMMA 4.8 ([27, Section 4])
Here is the complete list of all possible quadruples .gR; k; �; �/ (up to isomorphism):
(a) gD sln.C/:

(1) gR D sln.R/, kD son.C/, �.g/D Ng, �.g/D�gt ;
(2) gR D slm.H/, k D spm.C/, �.g/ D AdSm. Ng/, �.g/ D �AdSm.g

t /

(nD 2m);
(3) gR D sup;n�p , kD .glp.C/˚gln�p.C//\g, �.g/D�AdIp;n�p. Ng

t /,
�.g/DAdIp;n�p.g/.

(b) gD son.C/:
(1) gR D sop;n�p , kD sop.C/˚son�p.C/, �.g/DAdIp;n�p. Ng/, �.g/D

AdIp;n�p.g/;
(2) gR D u�

m.H/, kD glm.C/, �.g/D AdSm. Ng/, �.g/D AdSm.g/ (nD
2m).

(c) gD spn.C/, nD 2m:
(1) gR D sp2m.R/, kD glm.C/, �.g/D Ng, �.g/DAdSm.g/;
(2) gR D spp;m�p , kD sp2p.C/˚sp2m�2p.C/, �.g/D�AdKp;m�p. Ng

t /,
�.g/DAdKp;m�p.g/.

Here Sm D
�

0 �Idm

Idm 0

�
, Ip;n�p D

� Idp 0

0 �Idn�p

�
, and Kp;m�p D

� Ip;m�p 0

0 Ip;m�p

�
.

Consider the commutative diagram

g
	g




gn


n

c
	c

cn

(4.22)

where 
g W g! gn is the natural embedding and 
c W cD g==G! cn D gn==GLn.C/.
We have the following explicit description of � and 
c. For any M 2 gn, let

T nC c1T
n�1C c2T

n�1C � � � C cn

be the characteristic polynomial of M . In the case gD sln.C/, we have c1 D 0 and
one can identify c with C

n�1 so that

�.M/D .c2; c3; : : : ; cn/;


c.c1; : : : ; cn/D .0; c2; : : : ; cn/:
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In the case gD spn.C/ or son.C/, we have c1 D c3 D � � � D 0 and one can choose an
identification of cDC

Œn=2� such that � W g! cDC
Œn=2� is given by

�.M/D .c2; c4; : : : ; cn/ if gD spn.C/;

�.M/D .c2; c4; : : : ; cn�1/ if gD son.C/ nD 2mC 1;

�.M/D .c2; c4; : : : ; cn�2; Qcn/ if gD son.C/ nD 2m;

where Qcn D Pf.M/ is the Pfaffian of M satisfying Pf.M/2 D det.M/D cn, and the
map 
c is given by


c.c2; c4; : : : ; cn�1/D .0; c2; 0; c4; : : : ; 0; cn�1/ if gD spn.C/;


c.c2; c4; : : : ; cn�1/D .0; c2; 0; c4; : : : ; 0; cn�1/

if gD son.C/ nD 2mC 1; l Dm;


c.c2; c4; : : : ; cn�2; Qcn/D .0; c2; 0; c4; : : : ; 0; Qc
2
n/

if gD son.C/ nD 2m; l Dm:

(4.23)

Remark 4.9
It follows that the map 
c W c! cn is a closed embedding except in the case gD son,
nD 2m.

Recall the semialgebraic sets cp;R � c and g0 D g�c cp;R � g introduced in (4.1).
Since for any x 2 g0 the eigenvalues of adx are real, the embedding g0! gn factors
through g0! g0

n � gn and diagram (4.22) restricts to a diagram

g0
	g




g0
n


n

cp;R
	c

cn;R

(4.24)

LEMMA 4.10
The compositions

˛n;s ı ˇn ı � W g
0
n! g0

n; s 2R; (4.25)

are involutions. Moreover, the subspace g0 � g0
n is invariant under the involutions in

(4.25).

Proof
Note that Proposition 2.7 implies that ˛n;a ıˇn D ˇn ı˛n;a. On the other hand, since
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the elements Sm; Ip;n�p;Kp;m�p 2 On.R/, Proposition 4.6(4) implies that the invo-
lutions AdSm, AdIp;n�p , and AdKp;m�p on g0

n commute with both ˛n;s and ˇn.
Now a direct computation, using the formula of � in Lemma 4.8, shows that the com-
positions

˛n;s ı ˇn ı � W g
0
n! g0

n; s 2R;

are involutions.
Consider the involution � on gn such that .gn/

� D g, that is, � is given by � D ˇn

if gD son.C/ and � D Ad.Sm/ ı ˇn if gD spn.C/. Since the map (4.25) commutes
with the involution � , the � -fixed points .g0

n/
� is invariant under the map (4.25). The

lemma follows.

The diagram (4.24) implies that g0 is equal to the base change

g0 D .g0
n/

� �cn;R

c.cp;R/ (4.26)

of .g0
n/

� to the subspace 
c.cp;R/� cn;R and hence the maps (4.25) restrict to a family
of involutions

˛s W g
0! g0; s 2R: (4.27)

LEMMA 4.11
The map ˛s above satisfies properties (1)–(5) in Theorem 4.2.

Proof
Properties (1), (2), (3) of ˛n;s in Theorem 4.6 immediately imply that ˛s satisfies
properties (1), (2), (3) in Theorem 4.2. Property (4) follows from the fact that the
intersection of an adjoint orbit of gn with g is a finite disjoint union of G-orbits and
each G-orbit is a connected component. We now check property (5). We need to
show that ˛s preserves the fibers of � W g0! cp;R. Assume that g is not of type D.
Then by Remark 4.9, the map cp;R! cn;R is a closed embedding and property (5)
follows from the one for ˛n;s . Assume that gD son, nD 2m. Then from the diagram
(4.24), we see that the involution ˛s preserves the fibers of 
c ı � W g0! cp;R! cn;R.
Let c D .c2; c4; : : : ; Qcn/ 2 cp;R. According to (4.23), if Qcn D 0, then ��1.c/ D .
c ı

�/�1.
c.c//, and if Qcn D 0, then .
c ı �/�1.
c.c// D �
�1.c/ t ��1.c0/, where c0 D

.c2; c4; : : : ; cn�2;�Qcn/. In the first case, ��1.c/ is equal to a fiber of 
c ı � and hence
is invariant under ˛s . Consider the second case. Since ��1.c/ contains a vector in aR

and ˛0.M/DM forM 2 aR, it follows that ˛0.�
�1.c//D ��1.c/. Since ��1.c/ and

��1.c0/ are connected components of .
c ı �/�1.
c.c//, we must have ˛s.�
�1.c//D

��1.c/ for all s 2R. We are done.
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This finishes the proof of Theorem 4.2.

4.6. Proof of Theorem 4.1
The proof is similar to that of Theorem 4.7. Since gD .gn/

� is the fixed-point sub-
space of the involution � on gn and the strata of the Lusztig stratification of gn are
invariant under � (the strata are invariant under the adjoint action and transpose), we
obtain a stratification of g given by the � -fixed points of the strata. The stratification
on g induces a stratification on g0 D g �c cp;R. Moreover, the intersection of each
stratum with the fibers of g0! cp;R, if nonempty, is a finite union of G-orbits.

Let k�kg0 W g0! R�0 be the restriction of the function k�kg0
n

to g0 � g0
n in the

proof of Theorem 4.7. It follows from Theorem 4.2 and the construction of the func-
tion k�kg0

n
that the real analytic map g0! cp;R together with the stratification of g0

described above and the function k�kg0 satisfies the assumption in Lemma 2.11, and
hence we obtain a stratified KR-equivariant homeomorphism

g0
R
D .g0/˛0 ! p0 D .g0/˛1 (4.28)

which is real analytic on each stratum and compatible with the maps to cp;R. Since
each stratum in g0

R
(resp., p0)is a finite union of GR-orbits (resp., K-orbits) and KR-

acts simply transitively on connected components of each orbits, it follows that the
homeomorphism (4.28) restricts to a real analytic isomorphism between individual
GR-orbits and K-orbits. The proof of Theorem 4.1 is complete.

5. Real and symmetric Springer theory

5.1. The real Grothendieck–Springer map
Let AR D expaR, which is a closed, connected, abelian, diagonalizable subgroup of
GR. Let .ˆ;a�

R
/ be the root system (possibly nonreduced) of .gR;aR/. For each ˛ 2ˆ,

we denote by gR;˛ � gR the corresponding ˛-eigenspace. Choose a system of simple
roots 
D ¹˛1; : : : ; ˛rº �ˆ, and denote by ˆC (resp., ˆ�) the corresponding set of
positive roots (resp., negative roots). We have the decomposition

gR DmR˚ aR˚ nR˚ NnR;

where mR DZkR.aR/, nR D˚˛2ˆCgR;˛ , NnR D˚˛2ˆ�gR;˛ .
Let bR DmR˚ aR˚ nR be a minimal parabolic subalgebra of gR, and we denote

by BR D MRARNR the corresponding minimal parabolic subgroup, where NR D

exp.nR/ and MR D ZKR
.AR/ is a group (possible not connected) with Lie algebra

mR. We write F D 	0.MR/.
An element x 2 gR is called semisimple (resp., nilpotent) if adx is diagonalizable

over C (resp., nilpotent). An element x 2 gR is called hyperbolic (resp., elliptic) if it
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is semisimple and the eigenvalues of adx are real (resp., purely imaginary). For any
x 2 gR, we have the Jordan decomposition x D xeCxhCxn, where xe is elliptic, xh

is hyperbolic, xn is nilpotent, and the three elements xe , xh, xn commute.
Consider the adjoint action of GR on gR. By a result of Richardson and Slodowy

[28], there exists a semialgebraic set gR==GR whose points are the semisimple GR-
orbits on gR. Furthermore, there are maps �R W gR! gR==GR and gR==GR! c such
that the restriction of the Chevalley map � W g! c to gR factors as

gR


R

g




gR==GR c

For any x 2 gR, its image �R.x/ is given by the GR-orbit through the semisimple
part xe C xh of x. We also have an embedding aR==W! gR==GR, whose image
consists of hyperbolic GR-orbits in gR, such that the restriction of �R to aR factors as
aR! aR==W! gR==GR.

Recall the subspace g0
R
� gR consisting of elements in gR with hyperbolic

semisimple parts (4.2). By a result of Kostant [17, Proposition 2.4], any hyperbolic
element x in gR is conjugate to an element in aR. Moreover, the set of elements in aR

which are conjugate to x is a single W-orbit. It follows that the embedding g0
R
! gR

factors through an isomorphism

g0
R
D gR �gR==GR

aR==W: (5.1)

In particular, we have a natural projection map

g0
R
! aR==W (5.2)

such that the composition g0
R
! aR==W! c is equal to the map g0

R
! cp;R � c in

(4.4).
Introduce the real Grothendieck–Springer map

egR DGR �
BR bR! gR; .g; v/!Adg.v/: (5.3)

Note that unlike the complex case, the real Grothendieck–Springer map (5.3) in gen-
eral is not surjective. Consider the base change of the real Grothendieck–Springer
map to g0

R
:

eg0
R
! g0

R
; (5.4)
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where eg0
R
DegR �gR g0

R
. By [17, Proposition 2.5], an element x 2 gR is in g0

R
if and

only if it is conjugate to an element in aRC nR.13 It follows that

eg0
R
DGR �

BR .aRC nR/

and the map (5.4) is surjective. Moreover, we have the commutative diagram

eg0
R

g0
R

aR aR==W

(5.5)

where the map eg0
R
! aR is given by .g; vD va C vn/! va.

Consider the real Springer map

	R W eNR DGR �
BR nR!NR: (5.6)

We have the following Cartesian diagrams:

eNR eg0
R

egR

NR g0
R

gR

(5.7)

Since (5.4) is surjective, the real Springer map (5.6) is also surjective.

LEMMA 5.1
We have a KR-equivariant isomorphismeg0

R
' eNR � aR commuting with projections

to aR.

Proof
The Iwasawa decomposition GR D KRARNR gives rise to KR-equivariant isomor-
phism

eg0
R
DGR �

BR .aRC nR/'KR �
MR .aRC nR/:

Since MR acts trivially on aR, we obtain

eg0
R
' .KR �

MR nR/� aR:

13In [17, Proposition 2.5], the claim is proved in the setting of the adjoint action of GR on GR . But the same
argument works in the case of the adjoint action of GR on the Lie algebra gR .
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On the other hand, we have

eNR DGR �
BR nR 'KR �

MR nR:

Combining the isomorphisms above, we get the desired KR-equivariant trivialization

eg0
R
' eNR � aR

commuting with projections to aR. The proof is complete.

5.2. Sheaves of real nearby cycles
Fix a point aR 2 ars

R
with image �R 2 aR==W. Let O�R be the semisimple GR-orbit

through aR. The centralizer ZGR
.aR/ is isomorphic to MRAR, and it follows that the

GR-equivariant fundamental group of O�R is isomorphic to 	0.MRAR/' 	0.MR/D

F . For any one-dimensional character � of F , we denote by LR;
 the GR-equivariant
perverse sheaf on O�R corresponding to � (note that LR;
 is a local system up to
shifts).

Consider the path �R W Œ0; 1�! aR==W given by �R.s/D s�R, and denote by

ZR D g0
R
�aR==W Œ0; 1�

the base change of g0
R
! aR==W (5.2) along �R. Note that �R is an embedding and

hence ZR is closed subvariety of g0
R

. The fibers of the natural projection f W ZR!

Œ0; 1� over 0 and 1 are isomorphic to the nilpotent cone NR in gR and semisimple orbit
O�R , respectively. Moreover, the R>0-action on g0

R
induces a trivialization

O�R � .0; 1�'ZRj.0;1� .g; s/! .sg; s/: (5.8)

Consider the following diagram

O�R � .0; 1�'ZRj.0;1�
u

ZR

f

NR

v

.0; 1� Œ0; 1� ¹0º

(5.9)

where u and v are the natural embeddings. Note that all the varieties in the dia-
gram above carry natural GR-actions and that all the maps between them are GR-
equivariant. Define the nearby cycles functor:

‰R WDGR
.O�R/!DGR

.NR/; ‰R.F /D f .F �C.0;1�/D v
�u�.F �C.0;1�/:

(5.10)
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For any character � of F , consider the sheaf of nearby cycles with coefficient L
,

FR;
 D‰R.L
/: (5.11)

We will call ‰R the real nearby cycles functor and FR;
 the sheaf of real nearby
cycles.

We shall give a formula of the nearby cycle sheaves in terms of the real Springer
map 	R W eNR! NR (5.6). Since the GR-equivariant fundamental group of GR=BR,
and hence that of eNR, is isomorphic to 	0.BR/D 	0.MR/D F , any character � of F
gives rise to a GR-equivariant perverse sheaf eL
 on eNR. Introduce the real Springer
sheaf

SR;
 D .	R/Š eL
: (5.12)

THEOREM 5.2
We have FR;
 ' SR;
.

Proof
Consider the path Q�R W Œ0; 1�! aR given by Q�R.s/D s.aR/, and let

eZR D QgR �aR Œ0; 1�

be the base change of the map QgR! aR along the path Q�R. The fibers of the projection
Qf W eZR! Œ0; 1� over 0 and 1 are given by eNR and O�R , respectively. Moreover, there

is a trivialization

eZRj.0;1� 'O�R � .0; 1�;
�
.g; v/; s

�
!

�
Adg.s

�1v/; s
�
: (5.13)

It follows that the real Grothendieck–Springer map egR! gR restricts to a map �R WeZR!ZR which is an isomorphism over ZRj.0;1�. Consider the following commuta-
tive diagram

O�R � .0; 1�
(5.13)

id

eZRj.0;1�
Qu


R

eZR


R

eNR

Qv

�R

O�R � .0; 1�
(5.8)

ZRj.0;1�
u

ZR NR

v

.0; 1� Œ0; 1� ¹0º

(5.14)

Consider the nearby cycles functor
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e‰R WDGR
.O�R/!DGR

. eNR/; e‰R.F /D Qv
� Qu�.F �C.0;1�/:

Since �R is proper and .�R/Š.F �C.0;1�/' F �C.0;1�, proper base change for nearby
cycles functors implies that there is a canonical isomorphism

.	R/Še‰R.F /D .	R/Š Qf
.F �C.0;1�/' f

�
.�R/Š.F �C.0;1�/

�
' f .F �C.0;1�/D‰R.F /: (5.15)

On the other hand, the KR-equivariant trivialization in Lemma 5.1 gives rise to a
KR-equivariant isomorphism

eZR ' eNR � Œ0; 1� (5.16)

commuting with projections to Œ0; 1�. In addition, there exists a KR-equivariant iso-
morphism q W eNR ' O�R such that q�L
 ' eL
 and making the following diagram
commute:

ZRj.0;1�
(5.16)

id

eNR � .0; 1�

q�id

eZRj.0;1�
(5.13)

O�R � .0; 1�

It follows that

e‰R.L
/' Qf
.L
 �C.0;1�/' Qf

.eL
 �C.0;1�/' eL
 (5.17)

as objects in DKR
. eNR/. Since DGR

. eNR/ � DKR
. eNR/ is a full subcategory (as

GR=KR is contractible), we conclude that

SR;
 D .	R/Š eL


(5.17)
' .	R/Še‰R.L
/

(5.15)
' ‰R.L
/D FR;
 2DGR

.NR/:

The proof is complete.

5.3. Sheaves of symmetric nearby cycles
The discussion in the previous subsection has a counterpart in the setting of sym-
metric space. Recall the subspace p0 � p consisting of elements x in p such that the
eigenvalues of adx are real. In [18], Kostant and Rallis proved that for any such x, its
semisimple part xs 2 p is conjugate to an element in aR, moreover, the set of elements
in aR which are conjugate to xs is a single W-orbit. It follows that the subspace p0 is
equal to the base change

p0 D p�cp aR==W

of �p W p! cp along aR==W� cp.
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Consider ap 2 ars
R

with image �p 2 aR==W. Let O�p be the K-orbit through ap.
We have ZK.ap/DMA, and it follows that the K-equivariant fundamental group of
O�p is isomorphic to 	0.ZK.ap//D 	0.MA/D 	0.M/D F . For any character � of
F , we denote by Lp;
 the corresponding K-equivariant perverse sheaf on O�p (note
that Lp;
 is a local system up to shifts). Consider the path �p W Œ0; 1�! aR==W given
by �p.s/D s�p, and define

Zp D p0 �aR==W Œ0; 1�:

The fibers of the natural projection fp WZp! Œ0; 1� over 0 and 1 are isomorphic to the
nilpotent cone Np in p and the K-orbit Op. Moreover, the R>0-action on p0 induces
a trivialization

O�p � .0; 1�'Zpj.0;1�; .g; s/! .sg; s/: (5.18)

Consider the following diagram

O�p � .0; 1�'Zpj.0;1�
u

Zp

fp

Np
v

.0; 1� Œ0; 1� ¹0º

(5.19)

where u and v are the natural embeddings. Note that all the varieties in the diagram
above carry natural K-actions and all the maps between them are K-equivariant.
Introduce the nearby cycles functor:

‰p WDK.O�p/!DK.Np/; ‰p.F /D fp
.F �C.0;1�/D v

�u�.F �C.0;1�/:

(5.20)

For any character � of F , consider the nearby cycles sheaf with coefficient Lp;
,

Fp;
 D‰p.Lp;
/ (5.21)

We will call ‰p the symmetric nearby cycles functor and Fp;
 the sheaf of symmetric
nearby cycles.

Recall the KR-equivariant stratified homeomorphism

g0
R
' p0 (5.22)

in Theorem (4.1). Since the homeomorphism (5.22) commutes with projection to cp;R

and the natural map aR==W! cp;R is a finite map,14 for any �R 2 ars
R
=W there exists

14Recall that cp;R is by definition the image of the map aR ! a==W D cp ! c. Since the latter map cp ! c

is in general not a closed embedding, the map aR==W ! cp;R is not a closed embedding in general.
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a unique �p 2 ars
R
==W such that (5.22) restricts to a KR-equivariant real analytic iso-

morphism between individual fibers

O�R 'O�p :

Since (5.22) is R>0-equivariant, the isomorphism above and the trivializations (5.8)
and (5.18) imply that (5.22) induces a .KR �R>0/-equivariant homeomorphism

ZR 'Zp (5.23)

commuting with projections to Œ0; 1�. The homeomorphism above gives rise to a
canonical commutative square of functors

DGR
.O�R/

‰R

DGR
.NR/

DK.O�p/
‰p

DK.Np/

(5.24)

where the upper and lower arrows are the real and symmetric nearby cycles, respec-
tively, and the vertical arrows are the equivalences in (1.17). Since the equivalence
DGR

.O�R/ ' DK.O�p/ maps LR;
 to Lp;
, the diagram (5.24) and Theorem 5.2
imply the following.

THEOREM 5.3
Assume that g is of classical type. Under the equivalence DK.Np/ 'DGR

.NR/ in
(1.17), the sheaf of symmetric nearby cycles Fp;
 becomes the sheaf of real nearby
cycles FR;
, which is also isomorphic to the real Springer sheaf SR;
. In particular,
the real Springer sheaf SR;
 is a perverse sheaf.

Remark 5.4
The fact that the real Springer sheaf is perverse implies that the real Springer map 	R

is cohomologically semismall, that is, it is a proper stratified map f W X ! Y with
real even-dimensional stratum and smooth X , such that f�C is a perverse sheaf up to
shifts. If f is in fact complex algebraic, then we know that cohomologically semis-
mall implies semismall (and vice versa). On the other hand, it is interesting to note
that it is not the case when f is only real analytic; for example, the projection map
f WRP2! pt from the real projective plane to a point is cohomologically semismall,
but not semismall.
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