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Abstract

We construct a family of involutions on the space g\, (C) of n x n matrices with
real eigenvalues interpolating the complex conjugation and the transpose. We deduce
from it a stratified homeomorphism between the space gl (R) of n x n real matri-
ces with real eigenvalues and the space p,(C) of n x n symmetric matrices with
real eigenvalues, which restricts to a real analytic isomorphism between individual
GL,, (R)-adjoint orbits and O, (C)-adjoint orbits. We also establish similar results in
more general settings of Lie algebras of classical types and quiver varieties. To this
end, we prove a general result about involutions on hyper-Kdhler quotients of linear
spaces. We provide applications to the (generalized) Kostant—Sekiguchi correspon-
dence, singularities of real and symmetric adjoint orbit closures, and Springer theory
for real groups and symmetric spaces.
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1. Introduction

1.1. Main results

A key structural result in Lie theory is Cartan’s classification of real forms of a com-
plex reductive Lie algebra g in terms of holomorphic involutions. It amounts to a
bijection
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{complex conjugations 1 of g}/isom <—> {holomorphic involutions 6 of g}/isom

(1.1)

between isomorphism classes of complex conjugations and holomorphic involutions
of g. For example, in the case g = gl,(C), the complex conjugation n(M) = M
with real form consisting of real matrices gr = gl,,(R) corresponds to the involution
O(M) = —M" with (—6)-fixed points consisting of symmetric matrices p = p, (C).
The interplay between the real gr and symmetric p pictures plays a fundamental role
in the structure and representation theory of real groups, going back at least to Harish-
Chandra’s formulation of the representation theory of real groups in terms of (g, K)-
modules.

One of the goals of this article is to get a better understanding of Cartan’s bijection
and also the real and symmetric pictures for real groups from the geometric point
of view. To this end, let  be a conjugation on g, and let 6 be the corresponding
involution under (1.1). For simplicity, we assume that 7 is the split conjugation. Then
the subspace g’ of g consisting of elements with real eigenvalues' is preserved by
both 7 and —8 and our first main result here, Theorem 1.4, is a construction of a real
analytic family of involutions on g’

as:g — g, s€][0,1], (1.2)

interpolating the conjugation 7 and the holomorphic involution —6, that is, we have
oo = n and o7 = —0, in the case when g is of classical type. Using the family of
involutions above, we prove the second main result of the article, Theorem 1.3, which
says that there exists a stratified homeomorphism

/

g — ¢’ (1.3)

between the 7 and (—6)-fixed points on g’ compatible with various structures.” The
family of involutions in (1.2) and the homeomorphism (1.3) can be thought of as
geometric refinements of Cartan’s bijection (1.1).

We deduce several applications from the main results. Assume that g is of classi-
cal type. In Corollary 1.9, we show that there exists a stratified homeomorphism

'Elements x € g such that the adjoint action ady : g — g has only real eigenvalues.

21t is necessary to consider the subspace g’ C g but not the whole Lie algebra g in the main results because, in
general, the fixed points gr = g” and p = g~? have different dimensions and hence cannot be homeomorphic
to each other.
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between the real nilpotent cone Mg C gr and the symmetric nilpotent cone N, C p
providing a lift of the celebrated Kostant—Sekiguchi correspondence between real and
symmetric nilpotent orbits. In particular, it implies that Mg and -V, have the same
singularities, answering an open question (see, e.g., [11, p. 354]). In Corollary 1.16,
we show that Grinberg’s nearby cycles sheaf on &, is isomorphic to the real Springer
sheaf given by the pushforward of the constant sheaf along the real Springer map,
establishing a conjecture of Vilonen, Xue, and the first author.

The key ingredients in the proof are the hyper-Kéhler SU(2)-actions on the space
of matrices arising from the quiver variety description in [19], [15], [22], [24], and
[25], and a general result about involutions on hyper-Kéhler quotients of linear spaces
(see Theorem 1.6). The techniques used in the proof are not specific to matrices and
are applicable to a more general setting. For example, we also establish a quiver vari-
ety version of the main results.

We now describe the paper in more detail.

1.1.1. Real-symmetric homeomorphisms for matrices
Let us first illustrate our main results with a notable case accessible to a general audi-
ence.

Let gl,(C) >~ C"* denote the space of n x n complex matrices. Let gl,,(R) C
gl,,(C) denote the real matrices, that is, those with real entries, and let p,, (C) C gl,,(C)
denote the symmetric matrices, that is, those equal to their transpose. Introduce the
following subspaces:

ol (R) = {x € gl,(R) | eigenvalues of x are real},
p,(C) = {x € pn(C) | eigenvalues of x are real}.

The real general linear group GL,(R) and complex orthogonal group O, (C) natu-
rally act by conjugation on gl},(R) and p/, (C), respectively. The real orthogonal group
0, (R) = GL,(R) N O4(C) acts on both gl (R) and p,(C). We also have the natu-
ral linear R*-actions on both gl},(R) and p;,(C). Consider the adjoint quotient map
x : al,(C) — C" which associates to each matrix x € gl,,(C) the coefficients of its
characteristic polynomial. Equivalently, one can think of it as giving the eigenvalues
of the matrix (with multiplicities).
Here is a notable case of our general results.

THEOREM 1.1
There is an (0, (R) x R*)-equivariant homeomorphism

gl (R) —— p,(C) (1.4)
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which is compatible with the adjoint quotient map. Furthermore, the homeomor-
phism restricts to a real analytic isomorphism between individual GL, (R)-orbits and
0,,(C)-orbits.

We deduce Theorem 1.1 from the following more fundamental structure of linear
algebra. Consider the subspace

al;,(C) = {x € gl,,(C) | eigenvalues of x are real}.

Let x': gl’,(C) — C" be the restriction of the adjoint quotient map to gl (C).

THEOREM 1.2
There is a continuous one-parameter family of (O, (R) x R*)-equivariant maps

as: gl (C) —— gl (C), s€l0,1], (1.5)

satisfying the following properties.

(1) o2 is the identity, for all s € [0,1].

(2)  Wehave ' oas =y’ : gl,,(C) > C".

(3)  «y takes each GL, (C)-orbit real analytically to a GL,(C)-orbit, for all s €
[0, 1].

(4)  Ats =0, we recover conjugation: ao(A) = A.

(5)  Ats =1, we recover transpose: a1(A) = A.

1.1.2. Real-symmetric homeomorphisms for Lie algebras
To state a general version of our main results, we next recall some standard construc-
tions in Lie theory, in particular those related to the study of real reductive groups.

Let G be a complex reductive Lie group with Lie algebra g. Let ¢ = g// G be the
categorical quotient with respect to the adjoint action of G on g. The adjoint quotient
map x : g — c is the Chevalley map.

Let Gg C G be areal form, defined by a conjugation n : G — G, with Lie algebra
gr C g. Choose a Cartan conjugation § : G — G that commutes with 7, and let G, C
G be the corresponding maximal compact subgroup.

Introduce the Cartan involution § =§on: G — G, and let K C G be the fixed
subgroup of 6 with Lie algebra ¥ C g. The subgroup K is called the symmetric
subgroup. We have the Cartan decomposition g = £ & p, where p C g is the —1-
eigenspace of 0. Let a C p be a maximal abelian subspace contained in p, and let
t C g be a O-stable Cartan subalgebra containing a. Let Wg = Ng(t)/Zg (1) be the
Weyl group of G, and let W = Ng(a)/Z g (a) be the little Weyl group of the sym-
metric pair (G, K). We denote pg = p N gg, tg = £ N gr, ag = a N gg, and so on.
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One can organize the above groups into the diagram:

K G. Gr (1.6)

Here Ky is the fixed subgroup of 8, §, and n together (or any two of the three) and
the maximal compact subgroup of Gr with complexification K.

Let g C gr (resp., p’ C p) be the subspace consisting of elements x € g (resp.,
x € p) such that the eigenvalues of the adjoint map ady : g — g are real. The real form
Gr and the symmetric subgroup K act naturally on g and p’ by the adjoint action.
The compact subgroup Kr = Gg N K and R* both act on gj and p’.

THEOREM 1.3 (Theorem 4.1)
Suppose that g is of classical type. There is a (Kgr X R*)-equivariant homeomorphism

g — > ¥ (1.7)
which is compatible with the adjoint quotient map. Furthermore, it restricts to a real
analytic isomorphism between individual Gg-orbits and K -orbits.

We deduce Theorem 1.3 from the following. Let ¢, g C ¢ be the image of the
natural map ag — ¢ = t//Wg. Introduce g’ = g X ¢, r, and let ' : g’ — ¢, r be the
projection map.

THEOREM 1.4 (Theorem 4.2)
Under the same assumption as Theorem 1.3, there is a continuous one-parameter
Sfamily of (Kg X R*)-equivariant maps

a5 g — ¢, s€[0,1], (1.8)

satisfying the following properties.

(D otsz is the identity, for all s € [0, 1].

(2)  Wehave y'oas =y :1¢' — ¢y

(3)  «y takes each G-orbit real analytically to a G-orbit, for all s € [0, 1].
4) At s = 0, we recover the conjugation: ay = 1.

5) At s = 1, we recover the anti-symmetry: o = —6.
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Remark 1.5
The special case of Theorems 1.3 and 1.4 stated in Theorems 1.1 and 1.2 is when
G =GL,(C), g ~ ¢1,,(C), Gr = GL,(R), K = 0,(C), and Kr = O, (R).

1.1.3. Involutions on hyper-Kdhler quotients
We deduce Theorems 1.3 and 1.4 from a general result about involutions on hyper-
Kihler quotients of linear spaces.

Let H=R & Ri ® Rj & Rk be the quaternions, and let Sp(1) C H be the group
consisting of elements of norm one. Let M be a finite-dimensional quaternionic repre-
sentation of a compact Lie group H,,. We assume that the quaternionic representation
is unitary; that is, there is a Hy-inner product (, ) on M which is Hermitian with
respect to the complex structures /, J, K on M given by multiplication by 7, j, k,
respectively. We have the hyper-Kihler moment map

w:M—>ImH® b,

vanishing at the origin. Using the isomorphism ImH =R & C sending x1i + x5/ +
X3k to (x1,x2 + x3i), we can identify InH ® b} = b & h* and hence obtain a
decomposition of the moment map

w=pr D pc:M—b; dbh*
of u into real and complex components. We consider the hyper-Kihler quotient

Mo = u~ 1 (0)/Hyu = puz' (0)//H,

where the right-hand side is the categorial quotient of 1(0) by the complexification
H of H,,, and the second isomorphism follows from a result of Kempf and Ness [14].

The hyper-Kéhler quotient 9t has the following structures: (1) for a subgroup L
of H, denote by My (1) the set consisting of orbits through points x whose stabilizer
in H,, is conjugate to L. We have an orbit-type stratification

Mo = I_l Mo, (L)
L)

where the summation runs over the set of all conjugacy classes of subgroups of H,,;
(2) there is a hyper-Kéhler (SU(2) = Sp(1))-action on 9%, denoted by ¢ (q) : Ny —
Mo, g € Sp(1), coming from the H-module structure on M.

In Section 2, we prove the following general results about involutions on hyper-
Kihler quotients.
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THEOREM 1.6 (Proposition 2.8, Example 2.13)

(1) Let ng and ny be complex conjugations on H and M which are compatible
with the unitary quaternionic representation of H, on M (see Definition 2.4
for the precise definition). Then ng and ny induce an antiholomorphic invo-
lution

T’]ZDJT()—)EUIQ (19)

such that the composition of 1 with the hyper-Kdihler SU(2)-action of qs =
cos(*3)i + sin(53F )k € Sp(1) on My, s € R, gives rise to a continuous family
of involutions

oy Ny —> My, s eR, (1.10)

interpolating the antiholomorphic involution ag = ¢ (i) o 1 and the holomor-
phic involution oy = ¢ (k) o 1.

(2)  Let Mo(R) and My ™ (C) be the fixed points of ag and oy on My, respec-
tively. Then the intersection of the strata My (1) with Mo (R) (resp., Z)T(f)ym (©)
defines a stratification of My (R) (resp., Sﬁsoym (C)) and there exists a stratified
homeomorphism

Mo(R) —— My (C) (1.11)
which is real analytic on each stratum.

Remark 1.7

Let G, Ggr, G,, Kr be as in Section 1.1.2. Suppose that M is a unitary quater-
nionic representation of the larger group H,, x G,,, and suppose that the conjugations
ng X ng and Ny on H x G and M are compatible with the unitary quaternionic rep-
resentation. Then the hyper-Kéhler quotient 901 carries an action of K such that the
involutions (1.9) and (1.10) and homeomorphism (1.11) are Kgr-equivariant.

It is well known that the complex nilpotent cone N, (C) C gl,(C) is an example
of hyper-Kihler quotients known as Nakajima’s quiver varieties (see [15], [19], [22],
[25]). Applying Theorem 1.6 to this particular example, we obtain a family of O, (C)-
equivariant involutions

st Na(C) —> N, (C), se[0,1], (1.12)

interpolating the complex conjugation atg(M) = M and the transpose oy (M) = M?,
and an Oy, (C)-equivariant homeomorphism
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No(R) ——= N,""(C) (1.13)

between real and symmetric nilpotent cones which restricts to a real analytic isomor-
phism between individual GL,, (R)-orbits and O, (C)-orbits. This establishes a special
case of Theorems 1.3 and 1.4 for the fiber of the adjoint quotient map x’: gl’,(C) —
C" over 0 € C", that is, matrices with zero eigenvalues. To extend the results to matri-
ces with real eigenvalues, we prove a version of Theorem 1.6 for the family of hyper-
Kihler quotients

Mze = pz' (0) N pug' (Ze)/Hu — Ze,

where Z¢ C h* is the dual of the center of h, and then deduce the results using the
description of general adjoint orbit closures as quiver varieties in [24]. Finally, we
check that the constructions are compatible with inner automorphisms and Cartan
involutions and then deduce the case of Lie algebras of classical types from the case
of gl (C).

We would like to emphasize that the keys in the proof of Theorems 1.3 and 1.4
are the symmetries on adjoint orbit closures (or rather, the symmetries on the whole
family gl},(C) — C") coming from the hyper-Kahler SU(2)-action. Those symme-
tries are not immediately visible in their original definitions as algebraic varieties.

Remark 1.8

The use of hyper-Kihler SU(2)-actions in the study of geometry of nilpotent orbits
goes back to the celebrated work of Kronheimer [20] where he used those symmetries
to give a differential-geometric interpretation of Brieskorn’s theorem on subregular
singularities.

1.2. Applications
We discuss here applications to the Kostant—Sekiguchi correspondence, singulari-
ties of real and symmetric adjoint orbit closures, and Springer theory for symmetric
spaces.

In the rest of the section, we assume that g is of classical type.

1.2.1. Generalized Kostant—Sekiguchi homeomorphisms
The celebrated Kostant—Sekiguchi correspondence is an isomorphism between real
and symmetric nilpotent orbit posets

|Gr\Nr| <— | K\N,|. (1.14)

The bijection was proved by Kostant (unpublished) and Sekiguchi [30]. Vergne [31],
using Kronheimer’s instanton flow in [20], showed that the corresponding orbits are
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diffeomorphic. Schmid and Vilonen [29] gave an alternative proof and further refine-
ments using Ness’s moment map. Barbasch and Sepanski [ 1] deduced that the bijec-
tion is a poset isomorphism from Vergne’s results.

We shall state a lift/generalization of the Kostant—Sekiguchi correspondence to
stratified homeomorphisms between adjoint orbit closures in the real Lie algebra gg
and symmetric subspace p whose eigenvalues are real but not necessarily zero.

Denote by Nz = y~!(&) the fiber of the Chevalley map y : g — ¢ over & € c.
In [16], Kostant proved that there are finitely many G-orbits in Mg and there is a
unique closed orbit (9§ consisting of semisimple elements and a unique open orbit (9;

consisting of regular elements. Moreover, we have Nz = (9_§
Assume that § € ¢, g C ¢. Then § is fixed by the involutions on ¢ induced by 7
and —6 and hence the fiber N is stable under n and —6. We write

NS,R = :/\/g N gr, Ng’p = d\fg Np

for the fixed points. There are finitely many Gg-orbits and K-orbits on Ng g and Ng ;,

New=||Ors.  New=]_[Op-
[ l

COROLLARY 1.9
There is a Kg-equivariant stratified homeomorphism

Nep —— MNep (1.15)

which restricts to real analytic isomorphisms between individual Gr-orbits and K -
orbits. The homeomorphism induces an isomorphism between Gr-orbit and K -orbit
posets

|GR\Ne r| <— | K\ N p|. (1.16)
Proof
This follows immediately from Theorem 1.3. O
Remark 1.10

Thanks to the work of Vergne [31], it is known that under the Kostant—Sekiguchi
bijection the corresponding orbits are diffeomorphic. It is an open question whether
the corresponding orbit closures have the same singularities (see, e.g., [11, Introduc-
tion]). Corollary 1.9 gives a positive answer in the case of classical Lie algebras.

Remark 1.11
In [3] and [4], the authors proved an extended Kostant—Sekiguchi correspondence for
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certain adjoint orbits. We expect that their correspondence is compatible with the one
in (1.16).

Remark 1.12
In Theorem 3.2, we also establish a Kostant—Sekiguchi correspondence between real
and symmetric leaves for quiver varieties.

1.2.2. Derived categories
Let DGy (Ngr), Dk (MNe,p) denote the respective equivariant derived categories of
sheaves (over any commutative ring). Since Kr — Ggr, Kr — K are homotopy
equivalences, the forgetful functors Dg, (Nr) = Dky (Nr), Dx(Ny) = Dip(N,)
to Kg-equivariant complexes are fully faithful with essential image those complexes
constructible along the respective orbits of Gy and K.

Transport along the homeomorphism of Theorem 1.9 immediately provides the
following.

COROLLARY 1.13
Pushforward along the homeomorphism (1.15) provides an equivalence of equivari-
ant derived categories

DGy (Ngr) = Dk (Ne,p). (1.17)

1.2.3. Vanishing of odd-dimensional intersection cohomology

Theorem 1.9 implies that the singularities of symmetric nilpotent orbit closures @p C
N are homeomorphic to the singularities of the corresponding real nilpotent orbit
closures O C Ng. Thus we can deduce results about one from the other.

Here is a notable example. Let IC(Og, £r) be the intersection cohomology sheaf
of a real nilpotent orbit Or C Ngr with coefficients in a Gr-equivariant local system
£r. (Recall that all nilpotent orbits @ C N have even complex dimension, so all real
nilpotent orbits Or C Mg have even real dimension, hence middle perversity makes
sense.)

COROLLARY 1.14
The cohomology sheaves #' (IC(Og, £r)) vanish for i — dimg Or/2 odd.

Proof
Using the equivalence (1.17), it suffices to prove the asserted vanishing for the inter-
section cohomology sheaf IC(09,, £,) of a symmetric nilpotent orbit O, C N, with
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coefficients in a K-equivariant local system &£, and i — dim¢ @} odd. This is proved
in [21, Theorem 14.10].° O

Remark 1.15

The proof of [21, Theorem 14.10] makes use of Deligne’s theory of weights and the
theory of canonical bases, and hence does not have an evident generalization to a real
algebraic setting.

1.2.4. Formula for the sheaf of symmetric nearby cycles
Consider the quotient map y, : p — ¢, = p//K. According to [18], the generic fiber
of xy is a single K-orbit through a semisimple element in p, and the special fiber over
the basepoint y,(0) € ¢, is the symmetric nilpotent cone V. Following Grinberg [8]
(see also [9], [10]), we consider the sheaf ¥, € Dk (N,) of nearby cycles along the
special fiber , in the family y, : p — ¢, (see Section 5.3 for the precise definition).
We will call #, the sheaf of symmetric nearby cycles.

Let Bg C Gg be a minimal parabolic subgroup with Lie algebra bg = mg + ag +
ng, where mp = Zg, (agr) and ng is the nilpotent radical. Consider the real Springer
map

R -« NR%NR,

where d’\\/ﬁg = Gg xB® ng and r(g,v) = Adg v.
We have the following formula for the sheaf of symmetric nearby cycles.

COROLLARY 1.16 (Theorem 5.3)

Under the equivalence D g(Ny) >~ Dy (Nr) (1.17), the sheaf of symmetric nearby
cycles ¥, becomes the real Springer sheaf 8g := (mr)1C[dimg Ng/2]. In particular,
the real Springer sheaf 8g is a perverse sheaf.

In fact, Theorem 5.3 is slightly stronger than the one stated here. We also prove a
formula for the sheaf of symmetric nearby cycles with coefficients in K-equivariant
local systems and we show that, for any gr (not just for classical types), the real
Springer sheaf is isomorphic to the sheaf of real nearby cycles g introduced in Sec-
tion 5.2.

Remark 1.17
The formula above for symmetric nearby cycles was originally conjectured by Vilo-
nen, Xue, and the first author. It can be viewed as a symmetric space version of the

3In fact, [21] establishes the odd vanishing in the more general setting of graded Lie algebras.
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well-known result that the sheaf of nearby cycles along the special fiber N in the
family y : g — ¢ is isomorphic to the Springer sheaf.

Remark 1.18

In [7], the authors used the sheaves of symmetric nearby cycles (with coefficients)
to produce all cuspidal complexes on &V, and use them to establish a Springer corre-
spondence for the split symmetric pair of type A (see [32] for the cases of classical
symmetric pairs). The formula established in Corollary 1.16 provides new insights
and methods into the study of Springer theory for general symmetric pairs and real
groups. We will give one example below. The details will be discussed in a sequel [6].

1.2.5. Real Springer theory and Hecke algebras at roots of unity
In [8], Grinberg gave a generalization of Springer theory using nearby cycles. One of
the main results there is a description of the endomorphism algebra End(¥,) of the
sheaf of symmetric nearby cycles as a certain Hecke algebra at roots of unity.* To
explain his result, let (P, a}) be the root system (possibly nonreduced) of (gr. ar).
For each o € ®, we denote by gr ¢ C gr the corresponding a-eigenspace. Choose a
system of simple roots A C ®, and let S C W be the set of simple reflections of the
little Weyl group associated to A. Consider the algebra

Hey = C[Bw]/(Ts — D)(Ts + (=1)%)

S€ES”’

where C[Bw] is the group algebra of the braid group By of W with generators Ty,
s € S, and d; is the integer given by

dy= Y dimp(gra)

aEA,sq =S

where s, denotes the reflection corresponding to the simple root o € A.° For exam-
ples, if Gg is a split real form, then we have dy = 1 for all s € S and Hg, is iso-
morphic to the Hecke algebra associated to W at ¢ = —1. On the other hand, if G is
a complex group, then we have dy = 2 and H#g, is isomorphic to the group algebra
C[W].

In [8, Theorem 6.1], Grinberg showed that there is a canonical isomorphism of
algebras

End(%,) ~ Hg,. (1.18)

“In fact, he works in a more general setting of polar representations.
3Since the root system might not be reduced, there might be more than one simple root & such that s = §.
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Since the algebra g, is in general not semisimple, as an interesting corollary of
(1.18), we see that the sheaf of symmetric nearby cycles F, is not semisimple in
general.

Now combining Corollary 1.16 with Grinberg’s theorem, we obtain the following
result in real Springer theory.

COROLLARY 1.19
We have a canonical isomorphism of algebras

End(8p) ~ Hg, .

In particular, the real Springer sheaf 8g is in general not semisimple and, for any
X € Mg, the cohomologies H*(By, C) of the real Springer fiber By = g ' (x) carry
a natural action of the algebra Hgy.

Remark 1.20

In [6], we will give an alternative proof of Corollary 1.19 (for all types) following the
classical arguments in Springer theory. In particular, combining with Corollary 1.16,
we obtain a new proof of Grinberg’s theorem on the endomorphism algebra of %,.

1.3. Previous work

In our previous work [5], we establish Corollary 1.9 for the nilpotent cone of gl,, (C)
using the geometry of moduli spaces of quasimaps associated to a symmetric pair
(G, K). In more detail, we use the factorization properties of the moduli space of
quasimaps to establish a real-symmetric homeomorphism in the setting of Beilinson—
Drinfeld Grassmannians (for any reductive group G) and then deduce Corollary 1.9
using the Lusztig embedding of the nilpotent cone for gl,, (C) into the affine Grass-
mannian for GL, (C). The result in the present paper suggests that there should be a
hyper-Kéhler geometry interpretation of the results in [5]. This will be discussed in
detail in a sequel.

We conclude the introduction with the following conjecture.

CONJECTURE 1.21
Theorems 1.3 and 1.4 remain true when g is of exceptional type.

1.4. Organization

We briefly summarize here the main goals of each section. In Section 2 immediately to
follow, we study involutions on hyper-Kihler quotients of linear spaces. In Section 3,
we apply the results established in the previous section to the case of quiver varieties.
In Section 4, we establish our main results, Theorems 4.1 and 4.2. In Section 5, we
discuss applications to Springer theory for real groups and symmetric spaces.
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2. A family of involutions on hyper-Kihler quotients

In this section, we introduce a family of involutions on hyper-Kéhler quotients of
linear spaces with remarkable properties. The main references for hyper-Kéhler quo-
tients are [12] and [13].

2.1. Quaternions

LetH=R&®Ri ®Rj & Rk be the quaternions. For any x = x¢ 4+ x1i + x5 j +x3k €
H, we denote by ¥ = x9 — x1i — x2j — x3k. Then the pairing (x, x’) = Re(xX’)
defines a real-valued inner product on H. We denote by Im(H) = Ri & Rj & Rk
the pure imaginary quaternions, and by Sp(1) = {x € H | (x,x) = 1} the group of
quaternions of norm one.

2.2. Hyper-Kdhler quotient of linear spaces
Let H be a complex reductive group with compact real form H,,. Let M be a quater-
nionic representation of H,,, that is, M is a finite-dimensional left quaternionic vec-
tor space together with an H-linear action of H,. We assume that the quaternionic
representation is unitary; that is, there is an H,-invariant inner product (, ) on M
(as a real vector space) which is Hermitian with respect to the complex structures
1, J, K on M given by multiplication by i, j, k, respectively. We have a nat-
ural complex representation of H on M preserving the complex symplectic form
wc(v,v) = Jv,v')+i(Kv,v') on M.

We have the hyper-Kihler moment map

w:M—ImH®g b,
satisfying

(6.1u(9)) = U54.9)i + (J§¢.¢)j + (KE¢. $)k € ImH,

where £ € b, ¢ € M, and (, ) is the paring between b, and bh,. The map p has
the following equivariant properties: (1) it intertwines the (Sp(1) x H,)-action on M
and the one on Im(H) ®g b} given by (¢,h)(w,u) = (Ad, w, Ad, u); (2) we have
w(tv) =1t?u(v) fort e R*, v e M.

Using the isomorphism ImH = R & C sending x1i + X3/ + x3k to (x1,x2 +
x3i), we can identify InH ® b = h @ h* and hence obtain a decomposition of the
moment map

p=pr® pc:M— b, ®b*

of u into real and complex components. The map ¢ : M — h* is holomorphic with
respect to the complex structure / on M and satisfies
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(E? /’LC(¢)) = U)C(Sd), ¢)7

where £ € h and ¢ € M. Moreover, it is H -equivariant with respect to the complex
representation of H on M and the adjoint representation on h*.

Let Z ={veb)|Ady(v)=vforallhe H,} and Zc = C®g Z. Then we have
ImH Qg Z =Z & Z¢. For any {¢ € Z¢, we can consider the hyper-Kéhler quotient

M. = g (0) N pg' (=4c)/Hu. @.1)
We have the holomorphic description
My = pc' (=4c)//H,

where the right-hand side is the categorial quotient of g 1(—~¢c) by H. One can form
a perturbed hyper-Kihler quotient

M) = M (—Cr) N g (—Lc)/Ha

with not necessarily zero real component {r. The composition p,ﬁl(—gR) N
1 (=¢c) = ue' (=¢c) = pe' (—4c)//H gives rise to a map

T m(gm,gc) — Dﬁgc (2.2)

which is holomorphic with respect to the complex structure /.
From now on, we will fix a real parameter {g. For any subset S C Z¢, we can
consider the following family of hyper-Kahler quotients:

xs Ms = pg' (0) N pg' (=S)/Hy — S,
s 1 Mp.5) = ui' (~52) N g (=8)/Hy — S.
Then the map (2.2) gives rise to a map
s Mee,5) = Ms (2.3)

compatible with the projection maps to S. If S is semialgebraic, then Mg is also
semialgebraic, and if S is a complex algebraic variety, then we have the holomorphic
description Mg ~ uz'(—S)//H.

2.3. A stratification
Let {c € Zc. Let L be a subgroup of H,,. We denote by My the set of all points in
M whose stabilizer is conjugate to L. A point in 9¢,. is said to be of stabilizer type
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(L) if it has a representative in M(z). The set of all points of stabilizer type (L) is
denoted by IM¢. (1. We have an orbit-type stratification

Me. = |Mee.w)- (2.4)
(L)

where the union runs over the set of all conjugacy classes of subgroups of H,,. Each
stratum 9M¢,. () is a smooth hyper-Kihler manifold; moreover, it is a symplectic vari-
ety with respect to the complex structure /.

2.4. Symmetries of hyper-Kdhler quotients
Let G be another complex reductive group with a compact real form G,,. Consider a
unitary representation of G,, on M commuting with the H,,-action on M. Then for any
semialgebraic subset S C Z¢, the action of the complexification G on M descends to
an action on the hyper-Kéhler quotient 9ts which is compatible with the projection
map to S, and the induced action of the fibers ;. are holomorphic with respect to
the complex structure /.

Assume that S C Z¢ is an R-linear subspace. Then the action of R* on M
descends to a G-equivariant R*-action on Mg:

o) : Ms —> Mg, teR™. (2.5)
Moreover, we have a commutative diagram

My (@) Mg

b |

s "9 s
where the bottom arrow is the multiplication by #2.

Let g € Sp(1) be such that Ad,;(S) C S. Here Ad; : ImH® Z - ImH ® Z is
the map Ad,(w,u) = (Ad, w,u) and we identify Z¢ = (Rj @ Rk) ® Z, and hence
S, as a subspace of InH ® Z with zero i -component. The action of ¢ € Sp(1) on M
gives rise to a G, -equivariant map

¢(q) : Ms — Ms (2.6)

commuting with the R*-actions. In addition, we have the following commutative dia-
gram
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Ms —> Mg
S S

where the bottom arrow is Ad; : § — §S.
It is straightforward to check that the stratum 9. (r) in (2.4) is stable under
the G- and R*-actions. Moreover, for any ¢ € Sp(1) (resp., t € R*) and S as above,
the map ¢(g) (resp., ¢(¢)) is compatible with the stratifications in the sense that it

maps the stratum 9. (1) in the fiber Xgl (8c) = Mg, to the corresponding stratum
My, (1) in the fiber x5! (¢p) = My, where §¢. = Ad, e (resp., { = 12c).

-

Example 2.1

Let S = 0. Then we have Ad,(0) = 0 for all ¢ € Sp(1) and the family of maps ¢ (q)
in (2.6) gives rise to a (G, x R*)-equivariant Sp(1)-action on 9y, called the hyper-
Kiihler Sp(1)-action. Moreover, the stratum 90 (1 is stable under the Sp(1)-action.

2.5. Conjugations on Mz,

Definition 2.2

Let ng and ny be conjugations on H and M, respectively. We say that ng and ny
are compatible with the symplectic representation of H on M if the following hold.
(1)  Wehave ny(hv) = ng (h)nm(v) forall h € H and v € M.

(2)  Wehave wc(nm(v), nm(v")) = wc(v, v’) for all v, v’ € M.

LEMMA 2.3

Let ng and ny be conjugations on H and M compatible with the symplectic repre-
sentation of H on M. Then the complex moment map jic : M — §* intertwines nw
and ng.

Proof
For any £ € h, v € M, we have

(€. uc(m(v))) = oc(Enm(v). nu(v)) = oc(mm(na E)v). T (V)
=wc(na )v.v) = na§). nc@)) = (& 18 (1))

This implies that wc(nvm(v)) = ng (uc(v)) for all v € M. The lemma follows. O

Let ny and ny be as in Lemma 2.3. Then the center of b, and hence Z, is stable
under ng. It follows that, for any {c € Z¢, the conjugation 1y on M descends to a
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map

Mee = pg' (=¢c)//H = My 00 = e (—na o))/ /H 2.7

which is antiholomorphic with respect to the complex structure /. Moreover, it maps
the stratum M. (1) to the corresponding stratum M, ,, (), (1)~ As {c varies over Zc,
the maps (2.7) organize into a map

NZec: ch — f)ﬁZC (2.8)

making the following diagram commute:

Nzc
Mz, 25 My

|, |

ZCLZC

We will call nz. the conjugation on Mz associated to the conjugations ng and 7.

2.6. Compatibility with symmetries
Recall the R-subspace Z C Z¢. For any s € R, let

qs =c0s(%)i +sin<s7n)k € Sp(1). (2.10)

A direct computation shows that Ad,, preserves the subspace Z = Rj ®r Z C
ImH ®g Z and its restriction to Z is given by —idz.® Consider the family of hyper-
Kihler quotients

Mz = pg' (0) N ug' (—=2)/Hy (2.11)

over Z. Then the discussion in the previous section shows that there is a family of
maps

¢s =d(gs) : Mz — Mz, seR, (2.12)

making the following diagram commute:

Mz L>fmz

| |

—idz

Z ——— Z

SNote that Z¢ = (Rj + Rk) ®r Z is not stable under the family of maps Ady, .
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Consider j € Sp(1). Since Ad; =idz on Z, we have a map
(]5(])%2—)93{2 (2.14)

making the following diagram commute:

o, *9 o,
l l (2.15)
idz

/7 ———~ 7
Note that
¢ =¢(j)* = (D). (2.16)

In particular, if ¢(—1) is equal to the identity map, then ¢ and ¢ (j) are involutions
on My.

Our next goal is to study the compatibility between the maps ¢5, ¢ (), and the
conjugation 7z, introduced in Section 2.5.

Definition 2.4

Let ng and ny be conjugations on H and M, respectively. We say that ng and 7y are

compatible with the unitary quaternionic representation of H,, on M if the following

hold.

(1)  The pair (ng, nm) is compatible with the symplectic representation of H on
M (see Definition 2.2).

2) nm preserves the inner product (, ); that is, we have (ny(v), nm(v")) = (v, v’)
for v,v e M.

3) ng commutes with the Cartan conjugation § g .

PROPOSITION 2.5

Let ng and ny be conjugations on H and M compatible with the unitary quater-
nionic representation of H, on M. Let nz. : Mz. — Mz, be the conjugation in
(2.8).” Then the subspace Mz C Mz is stable under nz.. Denote by nz : Mz —
Mz the resulting map. Then the following diagram commutes:

gﬁzgmz

|

ZLZ

n 7. is well defined since 14 and 7y are compatible with the symplectic representation of H on M.
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Moreover, we have the following equality of maps on Mz

psonz =¢(=Donzods,  ¢s09(j) =¢(=j)ods,  d(j)onz =nzo¢(j).
(2.18)

Proof

The commutativity of (2.17) is clear. We shall prove the equality of maps in (2.18).
Since ng commutes with the Cartan conjugation 8, the center of b, and hence its
real dual Z C b, is stable under ng and (2.9) implies that 9tz is preserved by the
conjugation 7z..

We claim that conditions (1) and (2) in Definition 2.4 imply that 7y commutes
with J and preserves [y 1(0). Assume the claim for the moment. Then using the
equality / onyy = —nmo I and K = IJ, a direct computation shows that we have the
following equality of maps on uz"'(0) N ug! (—2Z):

(cos(a)I + sin(a)K) o nu = —nm o (cos(a)! + sin(a) K),
(cos(a)! +sin(a)K) o J =—J o (cos(a)l + sin(a)K),
Jonmu=nmoJ

compatible with the H,,-action. The desired equality (2.18) follows.
Proof of the claim. For any £ € b, and v € M, we have

(& ur(m))) = (T @) 1a(v)) = —(nm(Ina €)v). ()
=—(Ing&)v.v) = (-1 ). pr))

= (&, —nu (ur©®))).

Thus we have ur(nm(v)) = —ng (Lr(v)) and it follows that g (0) is stable under
the conjugation ny. Recall that wc(v,v’) = (Jv,v’) + i(Kv,v’). Thus the equality
wc(mm(v), nm(v')) = we (v, v') is equivalent to

(Jnm(), na(v)) + i (Knm(v), ma(v)) = (Jv,v") —i(Kv,v"),
which implies that
(Jnm(), mu(v')) = (Jv,v").
Since nu preserves (, ), the above equality implies that
(Jrm@), nmm(v")) = (mmJ (v), nm ("))

and it follows that J o ny = nu o J. This finishes the proof of the claim. O
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Remark 2.6
The proof above shows that condition (2) in Definition 2.4 is equivalent to the condi-
tion that ny commutes with J.

2.7. A family of involutions
Let ng and ny be conjugations on H and M compatible with the unitary quater-
nionic representation of A, on M. Let G be another complex reductive group with a
compact real form G, and let ng be a conjugation on G with real form Gr. Suppose
that M is a unitary quaternionic representation of the larger group H,, x G, and that
the conjugations ng x ng and ny are compatible with the unitary quaternionic repre-
sentation. Then the maps 7z, ¢s, ¢(j) in Proposition 2.5 are Kg-equivariant, where
Kr = Gr N Gy, is a maximal compact subgroup of Gp.

Introduce the maps
(1) as=¢s0onz Mz — Mg,
2 B=¢()onz Mz —Mz.

PROPOSITION 2.7
We have og o 8 = B o forall s € R.

Proof
By Proposition 2.5, we have

asof=¢gsonzop(j)onz=¢so¢p(j)

and

asofp=¢(j)onzopsonz=¢(j)op(=1)ods=dso¢p()).

The result follows. O

PROPOSITION 2.8
The continuous family of maps

Olslf)ﬁz—>9ﬁz, sER,

satisfies the following.

(1) o2 is equal to identity, for all s € R.

2) o is Kgr-equivariant and commutes with the R* -action.

3) We have yz oas = xz : Mz — Z, where xz is the natural projection map,
and the induced involutions on the fibers as : Mz, — My, {c € Z, preserve
the stratification Mg = || 1) Mec (1)-
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4)  Ats =0, we have ag = ¢ (i) o nz which is an antiholomorphic involution.
(5) Ats =1, we have a1 = ¢ (k) o nz which is a holomorphic involution.

Proof
According to (2.10), we have g2 = —1. Thus ¢? = ¢(q2) = ¢(—1) and Proposi-
tion 2.5 implies that

oaf = (§s0nz) =dsonzodsonz =¢; op(=1)ony =id.
Part (1) follows. Parts (2), (3), (4), and (5) follow from the construction. U

PROPOSITION 2.9
The map

ﬂ:gﬁz—>9ﬁz

satisfies the following.

(1) We have B2 = ¢(—1).

2) B is Kr-equivariant and commutes with the R*-action.

3) B induces a holomorphic map between fibers B : Mz — M_¢. which takes
the stratum M. (1) to the stratum M _¢. (1)

Proof

Since B2 =¢(j)onzod(j)onz = ¢(j)? = ¢(—1), part (1) follows. Parts (2) and
(3) follow from the construction. O
Remark 2.10

Unlike the family of involutions oy, the map B is well defined on the whole family
Mz (see footnote 6).

2.8. A stratified homeomorphism
Our aim is to trivialize the family of fixed points of the involutions «. To that end,
we will invoke the following lemma.

Recall that a subset S of a real analytic manifold M (resp., real algebraic variety
M) is called semianalytic (resp., semialgebraic) if any point s € S has an open neigh-
borhood U (resp., a Zariski affine open neighborhood U) such that the intersection
S N U is a finite union of sets of the form

{er | fl(X)=“‘=fr(X)=0,g1(X)>0,...,gl(X)>0},

where the f; and g; are real analytic functions on U (resp., polynomial functions on
U). Let S be the unit circle with the following.
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LEMMA 2.11
Let M and N be two semianalytic sets, and let f : M — N be a continuous map. Let

o M —> M, seR,

be a continuous family of involutions over N .

(1)  Assume that ag preserves a semianalytic stratification® of M and restricts to
a real analytic map on each stratum. Then the fixed points of the strata are
real analytic manifolds and the ag-fixed points M are stratified by the fixed
points of the strata.

2) Assume further that there is a continuous R~ q-action on M (resp., N) real
analytic on strata and a proper continuous map ||—| : M — Rx¢ such that
(i) f: M — N is R.g-equivariant, (ii) the R~g-action on M has a unique
fixed point opy € M, which is also a stratum, and (iii) ||tm|| = t|m| and
las(m)|| = ||m|| fort € Rso, s € R, m € M. Then for any s,s’ € R there is an
R o-equivariant stratified homeomorphism

M%s ~ M*' (2.19)

that is real analytic on each stratum and compatible with the natural maps
toN.

(3)  Assume further that there is a continuous action of a compact group L on M
satisfying that (i) the action commutes with the map f : M — N, the invo-
lutions o, and the R g-action, and is real analytic on each stratum, and (ii)
the map ||—|| : M — Ry is L-invariant. Then the homeomorphism in (2.19)
is L-equivariant.

Proof
(1) Only the first claim requires a proof and it follows from the general fact that the
fixed points M * of a real analytic involution « on a real analytic manifold M is again
a real analytic manifold.

(2) Step 1. Let My = M \ {op} and C = {m € My | |m| = 1}. Since ||—| :
M — Ry is as-invariant and proper, C is compact and stable under the a;-action.
Since R acts freely on My and ||—|| is R>¢-equivariant, the restriction ||—|||a, :
My — R is a stratified submersion (where R~ is equipped with the trivial strati-
fication). It follows that C = ||—|| "} (1) C My is stratified by the intersection of the
strata with C.

8 A stratification of a semianalytic set is called semianalytic if each stratum is a real analytic manifold.
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Step 2. We shall show that there exists a stratified homeomorphism
V:C% ~C% (2.20)

which is real analytic on each stratum and is compatible with natural maps to N.
Consider the involution o : R x C — R x C, a(s,m) = (s,a5(m)). Let w = (ds X
0) + a«(ds x 0) be the average of the vector field ds x 0 on R x C with respect to
the Z/2Z-action given by the involution «. Since C is compact and the Z/2Z-action
is real analytic on each stratum, the «-invariant vector field w is complete and the
integral curves of w define the desired stratified homeomorphism v : C% ~ C%’,
s,s" € R between the fibers of the a-fixed point (R x C)* along the projection map
to R.

Step 3. We have a natural map My* — C% sending m to ”rmn—” Consider the
following map:

o (2% m
ME MY, m— ||m||v(—). 2.21)
gl
Note that M*s is homeomorphic to the cone C(My*) = My* U{opm} of My*. Thus
by the functoriality of cone, the map (2.21) extends to a homeomorphism

M% — M (2.22)

sending ops to opy. It is straightforward to check that (2.22) is an R~ ¢-equivariant
stratified homeomorphism which is real analytic on each stratum and compatible with
the natural maps to N. This finishes the proof of part (2). Part (3) is clear from the
construction of (2.22). O

Remark 2.12

In fact, one can also use the Thom—Mather theory to obtain the homeomorphism
(2.20) in Step 2. Indeed, under the assumption that the stratification is Whitney, the
Thom-Mather theory shows that the vector field d; on R admits a lift to a controlled
vector field w on the a-fixed points (R x C )% along the projection map (Rx C)* — R
and, as the projection map is proper, the integral curves of w give rise to a trivializa-
tion of (R x C)* — R, and hence the homeomorphism (2.20) between fibers (see,
e.g., [23, Corollary 10.2]). In our case, due to the fact that (R x C)* — C is the a-
fixed points subset of the trivial family R x C — R, we have a direct construction of
the controlled vector field as the average vector field w of the canonical controlled
vector field dg x 0 on R x C, and thus do not need to invoke the Thom—Mather theory.

Example 2.13
We preserve the setup in Section 2.7. The map |—|| : Mz = puz'(0) N uz'(Z)/
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H, — Rxq given by ||m| = (i1, 171)2 , where 71 € pe'(0) N pust(Z) is alift of m, is
a (Kg X ag)-invariant proper real analytic map satisfying ||¢ (z)m|| =t ||m||, t € R-o.
Let Mo = n1(0)/Hy, let ag : My — My be the family of involutions in Proposi-
tion 2.8, and let ¢ (¢) : My — Mo be the R g-action in (2.5). Denote by

Mo(R) =M, 9My™(C) = g’

the fixed points of ag and o; on My, respectively. Applying Lemma 2.11 to the
case M = 9, with the stratification Ny = |_|(L) Mo,y N =0, L = Kg, and the
restriction ||—|||ar : M = My — R of the function ||—|| above to My C WMz, we
see that there is a (Kg X Rx¢)-equivariant stratified homeomorphism

Mo(R) —= MI™(C) (2.23)

which is real analytic on each stratum. Note that whereas 9" (C) is complex ana-
Iytic, 9o (R) is not; it is a real form of M.

3. Quiver varieties

In this section, we consider the examples when the hyper-Kéhler quotients are Naka-
jima’s quiver varieties. We show that any quiver variety has a canonical conjugation
called the split conjugation and hence has a canonical family of involutions ¢ intro-
duced in Section 2.7. The main reference for quiver varieties is [25].

3.1. Split conjugations
Let O = (Qg, Q1) be a quiver, where Qy is the set of vertices and Q; is the set
of arrows. For any Q-graded Hermitian vector space V = P 0o Vk» We write
GL(V) = [lkeg, GL(V) and U(V) = []xep, U(Vk), where U(Vy) is the unitary
group associated to the Hermitian vector space V. We denote by gl(V') and u(V) the
Lie algebras of GL(V') and U(V), respectively.

Let V = @reg, Vk and W = Do, Wk be two Qo-graded Hermitian vector
spaces. Define

M = M(V, W)

= ( D Hom(V,y. Vi) ® Hom(Viny. Vo(h)))
heQ;

@ ( €D Hom(Wj. Vi) & Hom(Vs, Wk)). 3.1)
k€eQo

Here o(h) and i(h) are the outgoing and incoming vertices of the oriented arrow
h € Q1, respectively.
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We consider the H-vector space structure on M given by the original complex
structure / together with the new complex structure J given by

JX, Y. x,y)= (YT, xT, =y xT), (3.2)

where (X,Y,x,y) € HOIn(Vo(h), V,'(h)) (&5 Hom(V,-(h), Vo(h)) @ Hom(Wy, Vi) &
Hom(Vy, Wi) and (—)' is the Hermitian adjoint.

The Hermitian inner products on Vi and W induce a Hermitian inner product
on Hom(V, Wy) (resp., Hom(Vy, Vi) given by (f.g) = tr(fg'). We consider the
Hermitian inner product on M induced from the ones on V; and W.

Let H = GL(V) and G = GL(W) with compact real forms H, = U(V) and
G, = U(W). Then action of H x G = GL(V) x GL(W) on M given by the formula

(g.8)(X.Y.x.y)=(gXg '.g¥g ' gx(g) . g'vg ")

defines a unitary quaternionic representation of U(V') x U(W) on M. The holomor-
phic symplectic form w¢ is given by

wc((X. Y. x, ). (XY X' y)) =u(XY' = YX') + tr(xy' — x'y). (3.3)
We denote by
w:M—Im(H) @ uw(V)* =Im(H) @ u(V) (3.4)

the hyper-Kédhler moment map with respect to the U(V)-action. Here we identify
w(V') with its dual space u(})* via the above Hermitian inner product. We have the
following formulas for the real and complex moment maps:

Hr(X.Y.xy) = 3(XXT—¥TY 4t —pty) cuv).
pe(X.Y.x,y) = [X. Y]+ xy € gl(V) = C @z u(V).

The hyper-Kéhler quotient 90; is called the quiver variety.

LEMMA 3.1

Let ny and nw be conjugations on' V and W compatible with the Q¢-grading,” and
let nH, ng, and N be the induced conjugations on H = GL(V'), G = GL(W), and
M, respectively. Assume that ng and ng commute with the Cartan conjugations on
H and G given by the Hermitian adjoint. Then the conjugations ng X ng and ny are
compatible with the unitary quaternionic representation of H, x G, on M.

9That is, we have ny (Vi) = Vi, nw (Wx) = Wy forall k € Q.
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Proof

The conjugation ng X ng commutes with the Cartan involution on H X G by assump-
tion. Using (3.2) and (3.3), it is straightforward to check that iy commutes with J
and ng X ng and that 1y are compatible with the symplectic representation of H x G
on M. In view of Remark 2.6, we see that ng x ng and ny satisfy (1), (2), and (3) in
Definition 2.4. The lemma follows. ([

Choose Vv = (Vk)kegy W = (Wi)keo, € Zgg, and let M(v,w) = M(V, W),
where V = P, C'* and W = Py, C equipped with the standard Hermi-
tian inner products. The standard complex conjugations on V' and W induce the
split conjugations on H = GL(V) and G = GL(W) commuting with the Cartan
conjugations, and hence give rise to involutions ng, ng and ny compatible with the
unitary quaternionic representation. We will call the conjugation

NZc: mZC —> mzc

on the family of quiver varieties 9z associated to ng x ng and nv the split conju-
gation.

3.2. Real-symmetric homeomorphisms for quiver varieties

Let O(WRr) = U(W) N GL(WgR) be the real orthogonal group. By Propositions 2.5 and
2.8, the split conjugation 1z, on 2z preserves the subspace Mz C Mz and gives
rise to a family of O(Wg)-equivariant involutions

og Mz —>Mz, seR, 3.5

interpolating the antiholomorphic involution oy = ¢ (i) o nz and the holomorphic
involution a1 = ¢ (k) o nz, and preserving the strata M. (z) of the fiber M. for
é'(c e”.

The involutions in (3.5) restrict to a family of involutions «, : 0y — M. Write
Mo (R) = My® and My™ (C) = My for the fixed points of &g and ;. The intersec-

tions of the stratum 9% (z) with My (R) and Sﬁf)y ™(C) are unions of components

Mo,y VM) =|_|O/®R), Mo,y NMY™(C) =|_|O;"™(C).

In [2, Theorem 1.9], Bellamy and Schedler proved that the strata 9y (7) are sym-
plectic leaves of 9. We will call the components @ (R) and ;" (C) above the real
leaves and symmetric leaves, respectively.

The following proposition follows from Example 2.13.

THEOREM 3.2
There is an (Q(WR) x R*)-equivariant stratified homeomorphism
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Mo(R) —— My (C) (3.6)

which restricts to real analytic O(Wg)-equivariant isomorphisms between individual
real and symmetric leaves. The homeomorphism induces a bijection

{01R)}, «— {0, (C)}, (3.7

between real and symmetric leaves preserving the closure relation.

In the next section, we shall see that the nilpotent cone N, (C) in gl,(C) is an
example of a quiver variety and the homeomorphism (3.6) in this case becomes an
(0On (R) x R*)-equivariant homeomorphism

Na(R) = N(C)

between the real nilpotent cone in gl,(R) and the symmetric nilpotent cone in
the space of symmetric matrices p,(C), and the bijection (3.7) is the well-known
Kostant—Sekiguchi bijection between GL,(R)-orbits in N, (R) and O, (C)-orbits
in N,”"(C). Thus one can view (3.6) as Kostant-Sekiguchi homeomorphisms for
quiver varieties.

4. Real-symmetric homeomorphisms for Lie algebras

4.1. Main results

Let us return to the Cartan subgroup 7" C G, stable under 1 and 6, and maximally
split with respect to 1. Let t C g denote its Lie algebra, let Wg = Ng(t)/Zg(})
be the Weyl group, and introduce the affine quotient ¢ = g//G = Spec(O(g)%) ~
t//Wg = Spec(O(t)VG). Let x : g — ¢ be the natural map.

Next, let a =t N p be the —1-eigenspace of 6, and write ag = a N gg for the real
form of a with respect to 1. Let W = Nk, (ar)/Zk (ar) = Nk (a)/Zk(a) be the
“little Weyl group,” and introduce the affine quotient ¢, = p//K = Spec(O (p)X) ~
a//W = Spec(O(a)V). Let x, : p — ¢, denote the natural map.

Let ¢p g C ¢ be the image of the natural map ag — ¢. Since the map ag — cis a
polynomial map, by the Tarski—Seidenberg theorem, its image ¢, r is semialgebraic.
For example, if gr = s[>(R), then ¢ = C and ¢, g = R<o.

Consider the following semialgebraic subsets of g, gr and p:

g =g Xc R, O = OR Xc CpRs p =P X R 4.1)

We have
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g = {x € gr | eigenvalues of ad, are real}, 4.2)

p’ = {x € p | eigenvalues of ad, are real}. 4.3)

Note that G, Gg, and K naturally act on g’, ng, and p’, respectively, and the actions
are along the fibers of the natural projections

’ / /
g — R, gr — Cp.R> P = cpRr “4.4)

THEOREM 4.1
Suppose that all simple factors of the complex reductive Lie algebra g are of classical
type. There is a Kg-equivariant homeomorphism

o — ¥ (4.5)
compatible with the natural projections to ¢, . Furthermore, the homeomorphism
restricts to a real analytic isomorphism between individual Gg-orbits and K -orbits.

We deduce the theorem above from the following.

THEOREM 4.2
Suppose that all simple factors of the complex reductive Lie algebra g are of classical
type. There is a continuous one-parameter family of maps

as:g — g, seR,

satisfying the following.

(1) o2 is the identity, for all s € R.

(2) Ats =0, we have ag(M) =n(M).

(3) Ats=1,wehavex;(M)=—-0(M).

(@) oy is Kr-equivariant and takes a G-orbit real analytically to a G-orbit.

(5) We have y g oaq = xg 1@ — ¢p.r, where y is the projection map in (4.4).

4.2. Quiver varieties of type A and conjugacy classes of matrices
Consider the type A, quiver:

[
[ ]
[

Q:e °

Letv=(n,n—1,...,2,1) € Z’éo and w = (n,0,...,0,0) € Z’éo- Consider the uni-
tary quaternionic representation M(v, w) of H,, = []z_, U(k) in Section 3.1. A vec-
tor in M(v, w) can be represented as a diagram:
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cr
1)
X X X X X Y
cr — (Cn—l —— (Cn—2 (C3 (CZ (Cl

Y Y Y Y Y Y

(4.6)

Let Mz. = pug' (0) N pugc!(—Zc)/Hy — Zc be the family of quiver varieties associ-
ated to M(v, w).

Denote g, = gl,,(C), let t, C g, be the subspace of diagonal matrices, let ¢, =
gn//GL,(C), and let y, : gn — ¢, be the Chevalley map. We will fix an identification
¢n = C” so that the map y, : gn — ¢, = C" is given by y,(M) = (c1,...,cn), Where
T" 4 ¢1T" ' 4 --- 4 ¢, is the characteristic polynomial of M . Consider the maps

Gnc Mze = gn X ta, (X, Y.x, 3] = (yx.0). 4.7)

tnc 't Zc — tn, {c— (c1,...5Cn), 4.8)

where {c = ({1,...,¢{,) is the image of [X,Y,x,y] € Mz, under the projection
map yz. :Mz. - Zcand ¢; =8 + -+ ¢, 1 <i <n. Note that the map (l;n,C
intertwines the (GL,(C) x R*)-action on 9z, with the one on g, x t, given by
(g.a)(M,1)=(gMg™",a%1).

PROPOSITION 4.3

Let wz¢ : Mgy, ze) = Mz, be the map in (2.3), and let M,  C Mz be its image.
Assume that { = ({gr, 0) is generic in the sense of [25, Definition 2.10].

(1) The fiber imgc of the projection SJY’ZC — Z¢ over {¢c € Z¢ is a union of strata.
) QJT’ZC is connected and invariant under the (GL,,(C) x R*)-action.

3) The map (;3,1,@ (4.7) restricts to a (GL,, (C) x R*)-equivariant isomorphism

bnc i M7 > gn Xe, tn
of complex algebraic varieties making the following diagram commute:

¢n,C
Dﬁ/z(c — O X¢,

.

Z(C tn.Cc tn
Furthermore, the map ¢, c induces stratified isomorphisms between individ-
ual fibers of the projections Z)L)T’ZP — Zc and g, X, t, — t,. Here we equip
the fibers of gn X, tn — t, with the GL,(C)-orbit stratification.
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Proof
Part (1) follows from [25, Corollary 6.11]. We prove parts (2) and (3). Since each
stratum 9¢ () is invariant under the (GL,(C) x R*)-action, part (1) implies that
DJT/ZC also has this property. Moreover, since the R*-action on sm’zc is a contracting
action with a unique fixed point, i)ﬁ’zc is connected. By the result of Mirkovic and
Vybornov [24, Theorem 6.1], which is a generalization of the earlier results of Kraft
and Procesi [19] and Nakajima [25], the map ¢, ¢ : im’z(c — gn X, tp induces iso-
morphisms between individual fibers of the projections Dﬁ/ZC — Z¢, 9n X¢p, = 1y,
and hence is a bijection.'” We claim that ¢, ¢ is in fact an isomorphism of algebraic
varieties. Since SDT’ZC is connected, by Zariski’s main theorem, it suffices to show that
On X¢, tn 1S normal.'" For this, we observe that the input varieties g,, ¢,, t, to the
fiber product g, X, t, are smooth and the morphisms g, — ¢, < t, are flat, thus
On X, tn 1s a complete intersection, and hence Cohen—Macaulay. On the other hand,
since the restriction (g,)™® — ¢, of the Chevalley map to the regular locus (g,)™®
is smooth and g, \ (g,)™¢ is of codimension three (see, e.g., [16]), we conclude that
(gn)"™8 X, t, is smooth and g, X, tn \ (gn)™8 X, t, is of codimension three.'” Thus
9n X, ty 1s Cohen—Macaulay and smooth in codimension one, and hence normal.
We claim that ¢, ¢ maps each stratum 9. (z) isomorphically to a GL,(C)-
orbit. For this we observe that there are only finitely many GL, (C)-orbits on the
fibers of g, X, t, — t, and the closure of any nonclosed orbit is singular. Since each
stratum ¢ (7) is smooth and connected, it follows that ¢, c(M¢. (1)) is a single
GL,, (C)-orbit. The claim follows and the proofs of (2) and (3) are complete. O

4.3. Reflection functors
Let C = (Ck1)1<k,i<n be the Cartan matrix of type A,. Identify Z¢ with C", and
consider the reflection representation of the Weyl group W on Z¢. For any simple
reflection sg,k € [1,n] and {c = ({1,..., ) € Zc, we have sg ({c) = {¢, where §) =
1 — Cri k-

In [25], Nakajima associated to each k € [1,n] a certain hyper-Kihler isometry
Sk = M (v, w) = My, (v',w) called the reflection functor. Here (. = sk ({c) and v/
is given by v, = vg — >, Ck v; + wk, vy = v if [ #k for v=(vy,...,v,), W=
(wy, ..., wy,). Moreover, it is shown in [25] that the reflection functors Sy satisfy the
Coxeter relations of the Weyl group.

10The fibers of the projection OJI’ZC — Z are introduced in [24, Section 2.3.3] and are denoted there by
mS(v,d).

L . R . L J f
ndeed, Zariski’s main theorem implies that there exists a factorization ¢, ¢ : ?IR’ZC — Z = gn X, tn,
where j is an open immersion and f is finite. Since g, X ¢n tn is normal, f is an isomorphism. Thus ¢, ¢ is

Cn

an open immersion. Since @, ¢ is surjective, ¢, ¢ is an isomorphism.
2Here we use the fact that for a faithfully flat morphism f : X =Y (f : gn X, tn — g5 in our case), we
have codimy (Z) = codimy (f ~!(Z)) for any closed subset Z of Y.
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In the case v= (n,n — 1,...,1) and w = (n,0,...,0), a direct calculation
shows that, for k € [2,n], we have v = V" and hence Sk : M. (v, W) Mer (v, w).
Let S, C W be the subgroup generated by the simple reflections s,,...,5,. As {¢
varies over Zc, the reflection functors S3,...,S, define a S,-action on Mz, =
U;(Ce 2z Mg (v, w) such that the projection map Mz, — Z¢ is Sp-equivariant.

LEMMA 4.4
The subset fm’ZC C Mz, is invariant under the Sy-action and the isomorphism ¢, ¢ :
X)ﬁ’ZC > gn Xc, tn IS Sp-equivariant.

Proof

We first claim that the map qEn,C Mz = gn X 4 (4.7) is Sp-equivariant. Recall
the isomorphism (¢, ¢ : Z¢ =~ {, in (4.8). A direct computation shows that ¢, ¢ inter-
twines the action of s and the simple reflection ox_; x € S, for kK > 2. On the other
hand, the formula for the reflection functors in [26, Section 3(i)] implies that, for any
[X.Y,x,y] € Mz, wehave Sk ([X,Y,x,y]) = [)Z, Y.x. y] for k > 2. Altogether, we
see that

(ﬁn,(C(Sk ([Xv Y, x, y])) = ‘in,(C([X/’ Y/,X, y]) = (yxvo—k—l,k (ln,(C(é‘(C)))
= ok—1% (¥ X, tn,c(4c)) = k1.4 (Pn.c([X. Y. X, ¥])).

The claim follows. To complete the proof of the lemma, we need to show that zm’ZC
is Sy-invariant. Let Z(g C Zc (resp., t2 C t,) be the open dense subset consisting
of vectors with trivial stabilizers in S,. The isomorphism ¢, ¢ induces an isomor-
. ~ 0 _ 0 .
phism Dﬁ’zg >~ gp X, t,, where S)JI’Z% = SUI’ZC Xze Z¢, and it follows that S)JI’Z(C)
is open dense in sm’ZC and the fibers of the projection S)ZTI/Z 0 — Z(g are smooth.
Z
According to [25, Theorem 4.1], the map wz : EDTZC — Mz, is an isomorphism
_ 0 . _ 0 . .
over Sﬁzg =Mz, Xz, Z; and it follows that im’22 = Mz, Xzc Zg, which is
Sn-invariant. On the other hand, the same argument as in the proof of [25, Theo-
rem 4.1(1)] shows that the map 7z : Mz, z) — Mz is proper and hence its image
M =7z (M(g,z0)) C Mz is a closed subset. Thus M, _ is equal to the closure
of ?I)T’Zo in Mz, and, as 9)?’28 is Sp-invariant, it implies that SJT’ZC is Sy -invariant.

The lergma follows. O

4.4. Involutions on the spaces of matrices with real eigenvalues

Let M, C Mz be the image of 7z : M5 — Mz, and consider g, X, ity r, Where
it,r Ct, is the R-subspace consisting of diagonal matrices with pure imaginary
entries. Then the isomorphisms ¢, ¢ and ¢, ¢ above restrict to isomorphisms

My ~ gn Xe, itnp,  Z~ityx. (4.9)
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Consider the family of involutions «, : 9tz — 9z in Proposition 2.8 associated to
the split conjugations in Section 3.1 and the map B : Mz — 9z in Proposition 2.9.
Note that the action of —1 € R* on 91z is trivial (it becomes the action of 1 =
(=1)? on g, X, ity,r), thus, by Proposition 2.9(1), B is an involution. Note also
that the fibers of the projection 9, — Z are unions of strata (Proposition 4.3(1)),
thus Proposition 2.8(3) and Proposition 2.9(3) imply that 9, is invariant under the

involutions a and B.
To relate SDI’Z with matrices with real eigenvalues, let us consider the composition

(4.9)

Gn My > gn X, It R 2 Gn X, ta R, (4.10)

4.9)
w:Z = ithp >ty (4.11)

where the second isomorphisms are given by g, X, ityr =~ g X¢, ta,r, (X,0) =
(ix,iv) and it, g — t;, g, v — iv. Note that the following diagram is commutative:

n
My — gn Xe, tar

L

Z tn trn

where the vertical arrows are the natural projections.

Now the isomorphism ¢, : ', > g, X, t, r gives rise to involutions on g, X,

Cn

fn,]Ri
&n,s = ¢p o0y °¢;1 YOn Xy iR = On X, thR, S € R, (4.13)

Brn=0noBodyl:gn Xe, tak = On Xo, tnp. (4.14)

LEMMA 4.5

(1) The involution ’Bn is given by ,3n (M,v) = (=M",—v). In particular, Bn com-
mutes with the action of the symmetric group S, on g, X, t; r.

2) The involution &, s commutes with the action of the symmetric group S, on

On X¢, th R

Proof
Let (M, v) € g, X, tyr. Choose [X,Y,x,y] € 9.7(’@@ such that

¢n([X7 Y’x9y]) Zi(yxvtn(é‘(C)) = (M’ U).

According to Proposition 2.9, we have
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B(X.Y.x.y]) = () onz(IX.Y.x,y]) = [-Y T, XT, 5T T e’ .
It follows that
Bu((M,v)) = ¢ ([-Y T, X7, 57, 57]) = i (GN) (=5, —tnC0)) = (M, —v).

Part (1) follows.
According to Proposition 2.8, we have

as([X. Y. x,y]) = (cos(sm/2)¢ (i) + sin(s/2)¢p (k) o nz ([X.Y.x.y])
=[X" Y X"y e M,
where
x' =icos(smw/2)X —isin(sw/2)y7, y' =icos(smw/2)y +isin(sm/2)x .
On the other hand, we have S ([X,Y,x,y]) = [X,Y,x, y]. Thus

a0 S ([X. Y. x, y]) =[(X). (¥).x".)'].

. . (4.15)
Skoas([X,Y,x,y]) = [(X),(Y"),x,y'].
Since ¢,, commutes with the S,-action (see Lemma 4.4), we obtain
Gn,s © Sk ((M,v)) = @n5 0 Sk o Pu([X. Y. x,])
= pnoaso S ([X.Y.x,y]) =i (y'x'. 5k (v)),
Sk 0 @n s ((M,v)) = Sk 0 o dn([X.Y. x,])
=¢noSkoas([X.Y.x,y]) =i (y'x sk (v)).
Part (2) follows. The proof is complete. ([

Let ¢, g C ¢, be the image of the map t, g — ¢, and let g, = g, X, ¢u,r C Gn-
Note that both ¢, g and g], are semialgebraic sets. We have

g, = {x € g, | eigenvalues of x are real}. (4.16)

Since the natural map g, X, t,,g = @), = On X, Cn,R IS Sp-equivariant (where S,
acts trivially on g),), Lemma 4.5 implies that the involutions &, s and S, in (4.13) and
(4.14) descend to a continuous family of involutions on g}, :

Ons ' Oy — O 4.17)

compatible with projections to ¢, r and an involution



REAL AND SYMMETRIC MATRICES 1657
Bn:g, = G- (4.18)
Moreover, B, is equal to the restriction of the Cartan involution on g, to g),:

Bn(M)=—-M". (4.19)

THEOREM 4.6
The continuous one-parameter families of maps

. /
Qnys:@, — 0, SER,

satisfy the following.
(1) ais is equal to the identity map, for all s € R.

2) At s =0, we have o o(M) = M.

(3) Ats=1,wehave o, (M)=M".

(4)  ans is On(R)-equivariant and takes each GL,(C)-orbit real analytically to
itself.

(5) ay s commutes both with the Cartan involution ,, and with the projection map
g, — tur, forall s e R.

Proof

Part (1) follows from the construction, and part (5) follows from the commutative
¢n

diagram (4.12). Let ¢, : ', = g, X, ty,r — @), Where the last map is given by
On X, ta, R = On X¢, tn,r = @),. Let M € g;,. Choose [X, Y, x, y] € M, such that
M = ¢, ([X.Y.x,y]) =iyx.
We have
ao([X.Y,x,y]) =) onz([X.Y.x.y]) = [iX.iY,i%,i],
ar([X,Y.x,y]) = ¢ (k) onz([X,Y,x,y]) = [-i ¥ T,iXT, —iyT ixT].
It follows that
ano([X.Y.x.y]) = ¢, (i X.i¥.i%.i5]) = i(~5%) = M.
an (IX. Y.x.y]) = 9}, (=7

=i(xTyh) = i(WT) =i(yx)' =M".

JXT iyt

Parts (2) and (3) follow.
By Proposition 4.3(3), the isomorphism ¢, : MM, — g, X, t,,r maps each stra-
tum M. (z) real analytically to a GL, (C)-orbit. Now part (4) follows from the fact
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that the involution ag on M, is O, (R)-equivariant and Mg () is invariant under
O. O

Let g),  be the space of n x n real matrices with real eigenvalues. Let p,, be the
space of n x n symmetric matrices with real eigenvalues. It is clear that g, , = (g;,)*°

and p), = ().

THEOREM 4.7
There is an (O, (R) x R*)-equivariant homeomorphism

g — P (4.20)

compatible with the natural projections to ¢, r. Furthermore, the homeomorphism
restricts to a real analytic isomorphism between individual GL,(R)-orbits and
05 (C)-orbits.

Proof

Consider the Lusztig stratification of g,,. The stratum through g with a Jordan decom-
position g = s +u consists of all GL,, (C)-orbits through u 4+ Z, (I), where [ = Z, (s)
is the centralizer of s in g, and Z,(I) = {x € Z([) | Z, (x) = [} is the regular part
of the center Z(I) of [. It is clear that the Lusztig stratification restricts to the orbit
stratifications on the fibers of the Chevalley map x, : g, — ¢, and a stratification on
9;; = 0On X¢, Cn,R-

Recall the U(n)-invariant function ||—| : 9tz — Rs¢ in Example 2.13. The
restriction of ||—|| along the closed embedding g, X, t, ¢:n M, C Mz gives rise to
a function g, X, t, = Rxo. Its average with respect to the S,-action on g, X, t»
defines an Sj,-invariant function g, X, t, — R>¢ which descends to a function
[[—Ilg; : 8 — Rxo. It follows from Theorem 4.6 and the construction of [|—||,; that
the function |—||,; together with the real analytic map g), — ¢, r and the Lusztig
stratification on g/, satisfies the assumption in Lemma 2.11, and hence we obtain a
stratified O, (R)-equivariant homeomorphism

Gnr = P 4.21)

which is real analytic on each stratum and compatible with the maps to ¢, r. Since
each stratum in g;’R (resp., p},) is a finite union of GL,(R)-orbits (resp., O, (C)-
orbits) and O, (R)-acts simply transitively on connected components of each orbit,
it follows that the homeomorphism (4.21) restricts to a real analytic isomorphism
between individual GL, (R)-orbits and O, (C)-orbits. O
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4.5. Proof of Theorem 4.2
We shall deduce Theorem 4.2 from Theorem 4.6.

Let g be a simple Lie algebra of classical type with real form gr. Recall the
classification of real forms of classical types.

LEMMA 4.8 ([27, Section 4])
Here is the complete list of all possible quadruples (ggr, €, n, 0) (up to isomorphism):
(@  g=skL(C):
(D gr=sL(R), t=50,(C), n(g) =& 0(g) = —g";
(2 gr = sly(H), € = 5p,(C), n(g) = AdSn(g), 0(g) = —AdSn(g")
(n=2m);
(B gr=sUpu—p E=(gl,(C)Dgl,_,(C)Ng n(g) =—AdI,np(g")
0(g) = AdIpn—p(8).
b  g=150,(C):
(1) 9R = S0p n—p, E= 50p((c) @50n—p((c)> n(g) =Ad Ip,n—p(é_’), 0(g) =
Ad Ip,n—p(g);
2 gr=1u,,(H), t=gl,(C), n(g) = AdSn(g), 0(g) = AdSn(g) (n =
2m).
(©) g=25p,(C), n =2m:
(1) gr =52, (R), €= g1, (C), n(g) =g, 0(g) = AdSim(g);
(2) IR =SPp m—p» t= 5Pap ((C) 695pZm—Zp ((C)’ 77(8) =—Ad Kp,m—p (gt)’
0(g) = AdKp m—p(8)
Here Sy, = (I;’)m —1(;1,,, ) Ipn—p = ('ﬁp —Ido,,_p)’ and Kpm—p = (Ip"(r;_p 1,,,,:_,,)-

Consider the commutative diagram

lg
g > On

J/x lxn (4.22)
¢ —— ¢,
where (4 : g — g, is the natural embedding and ¢ : ¢ = g//G — ¢, = g»//GL,(C).
We have the following explicit description of y and ¢.. For any M € g,, let
T" 4+ T" V4T 4o 4 ey

be the characteristic polynomial of M. In the case g = sl,,(C), we have ¢; = 0 and
one can identify ¢ with C*~! so that

xX(M) = (cz,c3,...,cn),

te(c1y.oyen) =(0,c2,...,¢n).
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In the case g = s5p,(C) or s0,(C), we have ¢; = ¢3 = --- = 0 and one can choose an
identification of ¢ = CI"/2l such that y : g — ¢ = C"*/2] is given by

Y(M) =(c2,¢4,...,¢c) if g=s5p,(C),
x(M) = (ca,c4,...,cn—1) ifg=50,(C)n=2m+1,
x(M)=(ca,ca,...,¢n—2,¢y) ifg=s50,(C)n=2m,

where ¢, = Pf(M) is the Pfaffian of M satisfying Pf(M)? = det(M) = c,, and the
map (. is given by

te(ca,cay...ycn—1) =(0,¢2,0,c4,...,0,ch—1) if g=1sp,(C),

Lt(627c41~--9cn—1) == (07c2101C47---a0acn—1)
ifg=s50,(C)n=2m+1,l =m, (4.23)
LC(CZ$C49"'7CH—275}1) = (0762301647"'70a5;3)

if g=50,(C) n =2m,l =m.

Remark 4.9
It follows that the map ¢, : ¢ — ¢, is a closed embedding except in the case g = s0,,
n=2m.

Recall the semialgebraic sets ¢, g C ¢ and g’ = g X ¢, g C g introduced in (4.1).
Since for any x € g’ the eigenvalues of ad, are real, the embedding g’ — g, factors
through g’ — g, C g, and diagram (4.22) restricts to a diagram

L
g ——= g,

lx J/xn (4.24)

LEMMA 4.10
The compositions

OnsopPnobig,—g, SER, (4.25)

are involutions. Moreover, the subspace g’ C g,, is invariant under the involutions in
(4.25).

Proof
Note that Proposition 2.7 implies that &, 4 © 8, = Bn © @y 4. On the other hand, since
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the elements Sy, Iy n—p. Kpm—p € On(R), Proposition 4.6(4) implies that the invo-
lutions Ad S,,, AdIp,—p, and AdK ,,—p on g, commute with both «, s and B,.
Now a direct computation, using the formula of 6 in Lemma 4.8, shows that the com-
positions

OnsoPnob:ig,—g, SER,

are involutions.

Consider the involution o on g, such that (g,)° = g, thatis, o is given by o = 8,
if g =50,(C) and 0 = Ad(Sy,) o B, if g = sp,,(C). Since the map (4.25) commutes
with the involution o, the o-fixed points (g},)? is invariant under the map (4.25). The
lemma follows. O

The diagram (4.24) implies that g’ is equal to the base change

g =(9,)° Xz te(cpR) (4.26)

of (g;,)? to the subspace t.(cp r) C ¢, and hence the maps (4.25) restrict to a family
of involutions

as:g —g, seR. 4.27)

LEMMA 4.11
The map o above satisfies properties (1)—(5) in Theorem 4.2.

Proof

Properties (1), (2), (3) of a, ¢ in Theorem 4.6 immediately imply that o satisfies
properties (1), (2), (3) in Theorem 4.2. Property (4) follows from the fact that the
intersection of an adjoint orbit of g, with g is a finite disjoint union of G-orbits and
each G-orbit is a connected component. We now check property (5). We need to
show that « preserves the fibers of y : g’ — ¢, r. Assume that g is not of type D.
Then by Remark 4.9, the map ¢, g — ¢, r is a closed embedding and property (5)
follows from the one for o, 5. Assume that g = s0,, n = 2m. Then from the diagram
(4.24), we see that the involution a preserves the fibers of tc o y: g’ — Cp,R = Cn,R-
Let ¢ = (c2,¢4,...,Cn) € ¢y r. According to (4.23), if ¢, = 0, then )(_l(c) =(lc o
1) te(c)), and if ¢, = 0, then (1. o x) "' (te(c)) = x () U x~1(c’), where ¢’ =
(C2.C4,...,Cnn,—0Cy). In the first case, y~!(c) is equal to a fiber of ¢ o y and hence
is invariant under ors. Consider the second case. Since y~!(c) contains a vector in ag
and ag(M) = M for M € ag, it follows that ao(y ' (c)) = x~'(c). Since y~(c) and
%~ 1(c") are connected components of (1. o y)~!(ic(c)), we must have s (y~1(c)) =
1~ Y(c) for all s € R. We are done. O
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This finishes the proof of Theorem 4.2.

4.6. Proof of Theorem 4.1

The proof is similar to that of Theorem 4.7. Since g = (g,)° is the fixed-point sub-
space of the involution o on g, and the strata of the Lusztig stratification of g, are
invariant under o (the strata are invariant under the adjoint action and transpose), we
obtain a stratification of g given by the o-fixed points of the strata. The stratification
on g induces a stratification on g’ = g X, ¢, g. Moreover, the intersection of each
stratum with the fibers of g’ — ¢, g, if nonempty, is a finite union of G-orbits.

Let ||~ : ¢ — Rxo be the restriction of the function ||—||4; to g’ C g}, in the
proof of Theorem 4.7. It follows from Theorem 4.2 and the construction of the func-
tion |||, that the real analytic map g’ — ¢, r together with the stratification of g’
described above and the function ||—||4 satisfies the assumption in Lemma 2.11, and
hence we obtain a stratified Kg-equivariant homeomorphism

g = ()™ —p' = (@)™ (4.28)

which is real analytic on each stratum and compatible with the maps to ¢, r. Since
each stratum in g, (resp., p’)is a finite union of Gg-orbits (resp., K-orbits) and Kg-
acts simply transitively on connected components of each orbits, it follows that the
homeomorphism (4.28) restricts to a real analytic isomorphism between individual
Gr-orbits and K-orbits. The proof of Theorem 4.1 is complete.

5. Real and symmetric Springer theory

5.1. The real Grothendieck—Springer map

Let Ar = expag, which is a closed, connected, abelian, diagonalizable subgroup of
Gr.Let (P, ay) be the root system (possibly nonreduced) of (gr, ar). Foreacha € ®,
we denote by gr.o C gr the corresponding «-eigenspace. Choose a system of simple
roots A ={aq,...,o,} C ®, and denote by ot (resp., ®7) the corresponding set of
positive roots (resp., negative roots). We have the decomposition

gr =mp D ar S ng D ng,

where mg = Z, (AR), "R = @yep+ IR.as TR = Dacd— IR a-

Let br = mp @ ar @ nr be a minimal parabolic subalgebra of gr, and we denote
by Br = MrArNRr the corresponding minimal parabolic subgroup, where Ng =
exp(ng) and Mg = Zg, (Ar) is a group (possible not connected) with Lie algebra
mg. We write F' = mo(Mg).

An element x € g is called semisimple (resp., nilpotent) if ad, is diagonalizable
over C (resp., nilpotent). An element x € gg is called hyperbolic (resp., elliptic) if it
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is semisimple and the eigenvalues of ad, are real (resp., purely imaginary). For any
X € ggr, we have the Jordan decomposition x = x, + xj + X,, where X, is elliptic, xy,
is hyperbolic, x;, is nilpotent, and the three elements x., x, X, commute.

Consider the adjoint action of Gg on ggr. By a result of Richardson and Slodowy
[28], there exists a semialgebraic set gr//Gr Whose points are the semisimple Gg-
orbits on gg. Furthermore, there are maps yg : gr — gr//Gr and gr//Gr — ¢ such
that the restriction of the Chevalley map y : g — ¢ to ggr factors as

R —> 8

\LXR \LX
gr//Gr — ¢

For any x € gg, its image yr(x) is given by the Gr-orbit through the semisimple
part x, + x; of x. We also have an embedding ag//W — gr//Gr, Whose image
consists of hyperbolic Gr-orbits in gg, such that the restriction of yg to ar factors as
ap — ar//W — gr//Gr.

Recall the subspace g C gr consisting of elements in gr with hyperbolic
semisimple parts (4.2). By a result of Kostant [17, Proposition 2.4], any hyperbolic
element x in gg is conjugate to an element in ar. Moreover, the set of elements in ag
which are conjugate to x is a single W-orbit. It follows that the embedding g, — gr
factors through an isomorphism

Ok = OR Xgn//Ga Or//W. (5.1)

In particular, we have a natural projection map
gg — ar//W (5.2)

such that the composition g, — ar//W — ¢ is equal to the map g — ¢, g C ¢ in
(4.4).
Introduce the real Grothendieck—Springer map

e = Gr xB* b — gr,  (g.v) = Adg (v). (5.3)

Note that unlike the complex case, the real Grothendieck—Springer map (5.3) in gen-
eral is not surjective. Consider the base change of the real Grothendieck—Springer
map to gg:

Tr — Ok, (5.4)



1664 CHEN and NADLER

where g, = gr Xgz 0k By [17, Proposition 2.5], an element x € gg is in g if and
only if it is conjugate to an element in ag + ng.'” It follows that

Tk = Gr x"* (ag + np)
and the map (5.4) is surjective. Moreover, we have the commutative diagram

~
R

l | 55

ar —> ar//W

!
>~ Or

where the map g}, — ag is given by (g,v = vg + v) — Vg.
Consider the real Springer map

TR - ﬁR = GR XB]R nr —> :/VR. (56)
We have the following Cartesian diagrams:
Ne — T —
l l l (5.7)
Mg — g — gr

Since (5.4) is surjective, the real Springer map (5.6) is also surjective.

LEMMA 5.1

We have a Kr-equivariant isomorphism gy >~ Ng X ag commuting with projections
fo ag.

Proof

The Iwasawa decomposition Gg = Kr Agr Ng gives rise to Kg-equivariant isomor-
phism

B M,
Tr = Gr 7% (ag + nr) >~ Kg X% (ag + ng).
Since My acts trivially on ag, we obtain
M,
E]R ~ (KR xR mR) X aR.

31n [17, Proposition 2.5], the claim is proved in the setting of the adjoint action of Gz on Gg. But the same
argument works in the case of the adjoint action of Gy on the Lie algebra gg.
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On the other hand, we have
Ne = Gg xB% np ~ Kp xM* n.
Combining the isomorphisms above, we get the desired Kr-equivariant trivialization
T = Ng X ag
commuting with projections to ag. The proof is complete. O

5.2. Sheaves of real nearby cycles

Fix a point ar € a with image ér € ar//W. Let O, be the semisimple Ggr-orbit
through ag. The centralizer Z g, (ar) is isomorphic to Mg A, and it follows that the
Gr-equivariant fundamental group of O, is isomorphic to wo(MrAr) =~ mo(Mr) =
F. For any one-dimensional character y of F', we denote by £ , the Gr-equivariant
perverse sheaf on Og, corresponding to y (note that £g , is a local system up to
shifts).

Consider the path yg : [0, 1] — ag//W given by yr(s) = ség, and denote by

Zr = g Xag//w [0, 1]

the base change of g, — agr//W (5.2) along yr. Note that yp is an embedding and
hence Zg is closed subvariety of gj. The fibers of the natural projection f : Zr —
[0, 1] over O and 1 are isomorphic to the nilpotent cone Mg in gg and semisimple orbit
O¢, , respectively. Moreover, the R ¢-action on gf, induces a trivialization

(953 X (O, 1] ~ Z]RI(O,I] (g,s) —> (sg,s). (5.8)

Consider the following diagram

Og, x (0,1] =~ Zgl(01] Zp <~—— Mg
l J/f l (5.9)
(0,1] [0,1] < {0}

where ¥ and v are the natural embeddings. Note that all the varieties in the dia-
gram above carry natural Gg-actions and that all the maps between them are Gg-
equivariant. Define the nearby cycles functor:

\IJ]R . DG]R(@ER) — DGR(N]R), \I’R(?) = Wf(? X (C((),l]) = U*M*(? X C(O,l])-
(5.10)
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For any character y of F, consider the sheaf of nearby cycles with coefficient &£,
Fr,y = Wr(Ly). (5.11)

We will call W the real nearby cycles functor and Fg , the sheaf of real nearby
cycles.

We shall give a formula of the nearby cycle sheaves in terms of the real Springer
map 7R : :/VR — Mg (5.6). Since the Gg-equivariant fundamental group of Gg/ B,
and hence that of N, is isomorphic to mo(Br) = wo(Mr) = F, any character y of F
gives rise to a Gr-equivariant perverse sheaf £ ¥ On ﬁﬂg. Introduce the real Springer
sheaf

Sp.y = (TENZ,. (5.12)

THEOREM 5.2
We have Fr,y =~ SR 4.

Proof
Consider the path pg : [0, 1] — ar given by yr(s) = s(agr), and let

Zs = fr Xag [0,1]

be the base change of the map gr — agr along the path pr. The fibers of the projection
f ZR — [0, 1] over 0 and 1 are given by NR and O, , respectively. Moreover, there
is a trivialization

Zg|(0.1] = Og, x (0,1], ((g.v).5) = (Adg(s™'v).s). (5.13)

It follows that the real Grothendieck—Springer map gr — gg restricts to a map g :
Zgr — Zp which is an isomorphism over Zp|(o,1]. Consider the following commuta-
tive diagram

G13) =~ 5 - _
O, x (0,1] —— Zglo1] —— Zp = M
\Lid R R R
(5.8) u v
Og, X (0,1] —— Zg|(0,1 ZR Nr (5.14)
0,1] [0,1] {0}

Consider the nearby cycles functor
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g : DG, (Og,) = Dy (Ng),  Wn(F) = it (F K Co,1)-

Since R is proper and (7r)1(F X Cg,17) = F XCg,1], proper base change for nearby
cycles functors implies that there is a canonical isomorphism

(T WE(F) = ()Y #(F R Cio.11) = ¥ 7 ((z)(F B Ceo,17))
~ Y (F KC,17) = Yr(F). (5.15)
On the other hand, the Kg-equivariant trivialization in Lemma 5.1 gives rise to a
KR-equivariant isomorphism
Zr ~ Ng x [0, 1] (5.16)
commuting with projections to [0, 1]. In addition, there exists a Kr-equivariant iso-
morphism g : Ng =~ Of, such that g*&£, ~ £, and making the following diagram
commute:

Zr|0,1] DN Nz x (0, 1]

lid quid

~ G.13)
Zr|©0,1] — Og, x(0,1]

It follows that
Up (L) > Y 5( £, B Co1)) > ¥ f(€, W Co)) ~ (5.17)

as objects in DKR(JVR). Since DGR(%) C DKR(JVR) is a full subcategory (as
Gr/ Kg is contractible), we conclude that

~ (.17 ~ .15)
Srx = (Mr)i1Ly = (TRWWVR(Ly) = WYr(Ly) = Fry € DGy (Mr)-

The proof is complete. O

5.3. Sheaves of symmetric nearby cycles

The discussion in the previous subsection has a counterpart in the setting of sym-
metric space. Recall the subspace p’ C p consisting of elements x in p such that the
eigenvalues of ad, are real. In [18], Kostant and Rallis proved that for any such x, its
semisimple part x5 € p is conjugate to an element in ag, moreover, the set of elements
in ag which are conjugate to x; is a single W-orbit. It follows that the subspace p’ is
equal to the base change

P =px, ag//W

of yp 1p — ¢, along ar//W Cc,.
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Consider a,, € ap with image &, € ag//W. Let O¢, be the K-orbit through ay,.
We have Zg (a,) = M A, and it follows that the K-equivariant fundamental group of
O, is isomorphic to 7o(Zk (ay)) = mwo(M A) = mo(M) = F. For any character y of
F, we denote by £, y the corresponding K-equivariant perverse sheaf on Og, (note
that £, , is a local system up to shifts). Consider the path y, : [0, 1] — ar//W given
by v, (s) = s&;, and define

Zp = p/ Xag//W [0, 1].

The fibers of the natural projection f, : Z, — [0, 1] over 0 and 1 are isomorphic to the
nilpotent cone N, in p and the K-orbit @,. Moreover, the R -action on p’ induces
a trivialization

O, x (0. 1] = Zpl011,  (8.9) = (58.5). (5.18)

Consider the following diagram

Og, x (0.1] = Zylo1] —— Zp <—— N,

N

(0,1] [0,1] <— {0}

where u and v are the natural embeddings. Note that all the varieties in the diagram
above carry natural K-actions and all the maps between them are K-equivariant.
Introduce the nearby cycles functor:

\I/p . DK(@Ep) —> DK(NP), ‘pr(y) = Iﬂfp (37 X (C(O,l]) = l)>'(1/l>‘<(f'f7 X (C(O,l])'
(5.20)

For any character y of F, consider the nearby cycles sheaf with coefficient &£, ,,
Foox = Yp(Lyp,x) (5.21)

We will call W, the symmetric nearby cycles functor and ¥, , the sheaf of symmetric
nearby cycles.
Recall the Kg-equivariant stratified homeomorphism

ogp = b (5.22)

in Theorem (4.1). Since the homeomorphism (5.22) commutes with projection to ¢y r
and the natural map agr//W — ¢, r is a finite map,'* for any &g € ap/W there exists

!4Recall that ¢, R is by definition the image of the map ag — a//W = ¢, — c. Since the latter map ¢, — ¢
is in general not a closed embedding, the map ar//W —> ¢, R is not a closed embedding in general.
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a unique &, € ay//W such that (5.22) restricts to a Kr-equivariant real analytic iso-
morphism between individual fibers

(QEIR >~ (951g .

Since (5.22) is R~ g-equivariant, the isomorphism above and the trivializations (5.8)
and (5.18) imply that (5.22) induces a (Kr x R~ ¢)-equivariant homeomorphism

Ze~ Z, (5.23)

commuting with projections to [0, 1]. The homeomorphism above gives rise to a
canonical commutative square of functors

'\
D6y (Og) —> Dy (Nr)

L

Yy
Dk (0g,) —— Dk(Ny)

where the upper and lower arrows are the real and symmetric nearby cycles, respec-
tively, and the vertical arrows are the equivalences in (1.17). Since the equivalence
Dy (Og;) = Dg(Of,) maps £Lg y to Ly y, the diagram (5.24) and Theorem 5.2
imply the following.

THEOREM 5.3

Assume that g is of classical type. Under the equivalence Dk (Ny) = Dgy (Nr) in
(1.17), the sheaf of symmetric nearby cycles ¥, y becomes the sheaf of real nearby
cycles Fr_y, which is also isomorphic to the real Springer sheaf 8g . In particular,
the real Springer sheaf 8g  is a perverse sheaf.

Remark 5.4

The fact that the real Springer sheaf is perverse implies that the real Springer map mr
is cohomologically semismall, that is, it is a proper stratified map f : X — Y with
real even-dimensional stratum and smooth X, such that f,C is a perverse sheaf up to
shifts. If f is in fact complex algebraic, then we know that cohomologically semis-
mall implies semismall (and vice versa). On the other hand, it is interesting to note
that it is not the case when f is only real analytic; for example, the projection map
f : RIP?> — pt from the real projective plane to a point is cohomologically semismall,
but not semismall.
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