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REAL AND SYMMETRIC QUASI-MAPS

TSAO-HSIEN CHEN AND DAVID NADLER

ABSTRACT. Let Gr be a real reductive group and let X be the corresponding complex symmetric
variety under the Cartan bijection. We construct a stratified homeomorphism between the based
polynomial arc group of Gr and the based polynomial arc space of X. We also prove a multi-point
version where we replace arcs by moduli spaces of quasi-maps from the projective line P' to Gg and
X. The key ingredients in the proof include: (i) a multi-point generalization of the “Gram-Schmidt”
factorization of loop groups, and (ii) a nodal degeneration of moduli spaces of quasi-maps. As an
application, we show that for the closures of real spherical orbits in the real affine Grassmannian,
their singularities near the base point are locally homeomorphic to complex algebraic varieties.
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1. INTRODUCTION

1.1. Overview. Let G be a connected complex reductive Lie group with real form Gg, with max-
imal compact K. C Ggr, with complexification K C G, and corresponding complex symmetric
variety X = K\G. (See Section 2 for a collection of standard Lie theory constructions downstream
of this starting point.)

This paper gives a direct geometric explanation for why much of the local spherical geometry of
the real affine Grassmannian Grgr = GRr((t))/Gr][[t]] behaves like complex geometry (for example,
satisfying the semisimplicity of the Decomposition Theorem as shown in [N]). For a spherical orbit
S = Grl[t]] - A C Grg, we show the intersection of its closure S3 C Grg with the open cospherical
orbit 7% = Gg[t™] -1 C Grp is stratified homeomorphic to a complex algebraic variety. More
precisely, we view the open cospherical orbit as the based polynomial arc group

(1.1) Tg ~ Grlt™'1 == {g : P \ {0} = Gr|g(c0) = 1}
and construct a stratified homeomorphism
(1.2) Grlt 11 ~ X[t

to the based polynomial arc space of the symmetric variety
(1.3) X[ty = {z: P\ {0} = X |z(c0) =1}

(In the definitions of (1.1) and (1.3), the subscript 1 conveys the condition g(co) = 1.)

Going further, our main theorem provides a generalization of the stratified homeomorphism (1.2)
to spaces of maps where we allow poles at multiple points. Write Gg — R for the group ind-
scheme whose fiber over (z1, ..., z,) € R™ is the group of maps 7 : Pi \ {21, ..., 2m } — Gr such that
~v(00) = e. Similarly, write X — R™ for the ind-scheme whose fiber over (z1, ..., z,) € R™ is the
space of maps v : P1\ {21, ..., 2} — X such that y(c0) = e.

Theorem 1.1 (See Theorem 6.9). There is a K.-equivariant stratified homeomorphism
over R™ that restricts to real analytic isomorphisms on spherical strata.

The construction of the stratified homeomorphism (1.4) involves two ingredients of independent
interest.

(1) First, we establish a multi-point generalization of the “Gram-Schmidt” factorization of the
polynomial loop group

(1.5) G[t,t7'] ~ QG - G[t]

given by multiplication of the factors on the right. Here QG. C G[t,t~!] is the polynomial based
loop group of the maximal compact G, C G, i.e., the subgroup of maps that take the unit circle
SleA}CtchCGandleSltoleG.
The following states one version of our multi-point generalization; the classical case (1.5) results
from taking S =0, ST = {0}, S~ = {0}, and 59 = 1.
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Theorem 1.2 (See Theorem 3.3). Let S! C A%: be the unit circle, DT C A}C the open unit disk,
and D™ C IP’}C the complementary open disk. Let k(z) = z=1 be the conjugation of IP’}C with real form
St c AL

Suppose given a finite set of points S C S', a finite set of points ST C DF, with conjugates
ST =kr(ST)CD™. Set S=SUSTUS™ to be their union.

Let G[P'\S] be the group of polynomial maps P*\'S — G, and G[P*\S]. C G[P*\S] the subgroup
that takes S'\ S to G..

Fiz a point sg € S'\ S, and let G[P*\ S].s, C G[P*\ S|, be the further subgroup that takes so
to 1.

Then multiplication provides a homeomorphism

(1.6) G[P*\ Sles, x GIPL\ {S™ U S} —= G[P'\ §]

After passing to the quotient by G[t], one can interpret (1.5) as a homeomorphism Gr =
G[t,t71/G[t] ~ QG. of the affine Grassmannian with the based loop group. More generally,
one can similarly use (1.6) to obtain a homeomorphism of a Belinson-Drinfeld Grassmannian with
the quotient of a mapping space. For our application, this is useful in it gives one access to the
global mapping space via local data.

(2) Second, in Section 5, we study how maps, and more generally quasi-maps, behave under colli-
sions of marked points (where the maps or quasi-maps are allowed to have poles) and degenerations
of the domain curve itself.

Specifically, for our application, we study two such families: the bubbling of the domain curve
P! to the nodal curve P! vV P! given in local coordinates by xy = a?, for a parameter a € A'; and
the collision of distinct but Galois-conjugate marked points = # Z € P! of the fixed domain curve
to a single Galois fixed-point xz¢ = zo € P'.
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FIGURE 1. Degenerations of curve P! and marked points S. Nodal degeneration of
curve P! to the left, collision of marked points S to the right.

A detailed study of quasi-maps under the collision of distinct but Galois-conjugate marked points
can be found in [CN1]. Here let us focus on the key Galois-theoretic property of the bubbling
degeneration that we exploit. We start at the parameter a = 1 with the conjugation of P! given by
x — Z~! in the local coordinate x. So its real form is the unit circle S' C P}C and it exchanges the
points 0 and co. Then we extend this over a # 0 by taking « — @?z~'. When we degenerate to
a = 0, we find the conjugation (x,y) + (¥, Z) exchanging the two components of P! vV P'. Thus the
Galois-action on the special fiber is almost free with the node the only real point. This allows us to
describe Galois-equivariant maps, and more generally quasi-maps, on P! VP! in almost completely
complex algebraic terms: the real structure constrains their values at the node alone.

Finally, within these families, we single out stratified subfamilies, defined over real parameters

a € Aﬁ{, that are locally constant with respect to the parameters. This provides homeomorphisms
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from their general fibers, which involve evident real structures, to their special fibers, where the real
structures “disappear” due to the almost free nature of the Galois-action. The proof of Theorem 1.1
is an application of this idea: the general fiber is the group Gg of real maps and the special fiber X
is also a space of “real” maps but has a completely complex algebraic interpretation.

1.2. Acknowledgements. The authors would like to thank the generous organizers of the 2019
SE Lie Theory workshop at LSU where these results were presented.

T.-H. Chen would also like to thank the Institute of Mathematics Academia Sinica in Taipei for
support, hospitality, and a nice research environment.

The research of T.-H. Chen is supported by NSF grant DMS-2001257 and DMS-2143722, and
that of D. Nadler by NSF grant DMS-2101466.

2. GROUP DATA

We collect here notation and standard constructions used throughout the rest of the paper (for
further discussion, see for example [CN1, NJ).

2.1. Real forms. Let G be a connected complex reductive Lie group with Lie algebra g.
Let Gg C G be a real form, defined by a conjugation 7 : G — G, with Lie algebra gr C g.
Choose a Cartan conjugation § : G — G that commutes with 7, and let G. C G be the
corresponding maximal compact subgroup with Lie algebra g. C g.
Introduce the involution § = don: G — G, and let K C G be the fixed subgroup of 6.
One can organize the above groups into the diagram:

(2.1) G

Here K. is the fixed subgroup of 6,0, and 7 together (or any two of the three) and the maximal
compact subgroup of Gg with complexification K.

Fix a maximal J-stable split torus Ag C Ggr with Lie algebra ag C ggr, and complexification
A C G with Lie algebra a C g. Fix a maximal §-stable torus Tk C Ggr containing Ax with Lie
algebra tg C gr, and complexification 7' C G with Lie algebra t C g.

Fix a Borel subgroup B C G containing 7" with Lie algebra b C g, and unipotent radical U C B
with Lie algebra u C b. Let H = B/U be the universal Cartan with Lie algebra h = b/u. Note the
composition T'— B — H is an isomorphism.

Let W = N¢g(t)/Za(t) = No(T')/T denote the Weyl group, and Wy = Ng(a)/Zk(a) the “baby
Weyl group”.

Let A7 = Hom(G,,,, T) denote the coweight lattice of T with dominant coweights AJ. C Ap. Let
R C Ap denote the coroot lattice generated by the simple coroots Ag C Rg and let RE = RgﬂA}_.
Let m1(G) denote the fundamental group based at the identity e € G, and recall the natural
isomorphism Ar/Rg = m1(G).
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Similarly, let Ay = Hom(G,,, A) denote the coweight lattice of A with dominant coweights
A% = AsnAS

Introduce the symmetric variety X = K\G. The map 7 : G — G, 7(g) = 0(g)"'g factors
through X, and descends to an isomorphism X = GY . where Ggym = {g € G|0(97!) = g},

sym>
and GY,, C Ggym denotes its neutral component. Note the inclusion 4 C Ggym induces a map

sym
AA — Wl(Gsym) ~ 7T1(X).

Consider the induced map 7, : m(G) — m(X). Define L C Ay to be the inverse image of
7 (m1(G)) C 71(X) under the natural map Ay — m(X), and set £ = £ N AL. Note that £L = Ay

if and only if K is connected.

Example 2.1 (Complex groups). An important special case is when the real form is itself a
complex group. To avoid potential confusion in this case, we will use the alternative notation
sw:GxG— GxG,sw(g,h) = (h,g) for the “swap” Cartan involution with fixed-point subgroup
the diagonal G C G x G. The corresponding conjugation is the composition sws = swo (4 x d), and
the compact conjugation is the product § x §. We identify the corresponding symmetric variety
with the group G ~ G\(G x @) via inclusion to the left factor, which coincides with the subspace
G~{(g,h) €GxG|h=g1}

Introduce the affine quotient
(2.2) ¢ = t//W = Spec(0(1)"") =~ g//G = Spec(0(9))

The conjugation n descends to a real structure on ¢, and we denote its real points by cg. We
also have the real characteristic polynomial map gg — cg from real matrices to their unordered
eigenvalues.

2.2. Loop groups. Let X = C((z)) denote the field of Laurent series, O = C[[z]] the ring of
power series, and O~ = C[z7!] the ring of Laurent poles. Let Gr = G(X)/G(O) be the affine
Grassmannian of G.! For any g € G(X) we denote by [g] € Gr the corresponding coset.

Via the natural inclusion A7 — T(K) C G(X), any coweight A € Ar defines a point [A] € Gr.
For a dominant coweight A\ € Af, introduce the G(O)-orbit S* = G(0O) - [A\] C Gr (spherical
stratum) and G(O7)-orbit T* = G(O07) - [\] C Gr (cospherical stratum). Recall the disjoint union
decompositions

(2.3) Gr = HAGA; SA Gr = HAEA; ™

We can similarly repeat the above constructions over the real numbers. Let Kg = R((z)) denote
the field of real Laurent series, Og = R[[2]] the ring of real power series, and O~ = R[27!] the ring
of real Laurent poles. Let Grg = Gr(Kgr)/Gr(Or) be the real affine Grassmannian of the real form
Gr.

For a dominant coweight A € Al = Aq N AT, set S3 = Gr(OR) - [\] = S* N Grg (real spherical
stratum) and 73 = Gr(Og) - [\] = T* N Grg (real cospherical stratum). We have the disjoint union
decompositions

(2.4) Grg = [T)ept S2 Grg = [Theps T2

LOur concerns in this paper will be exclusively topological, and we will ignore any non-reduced structure
throughout.
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Note that all of above constructions result from the natural conjugation nx : G(X) — G(X),
nx(9(2)) = n(g(z)) with real form Gr(Kgr) C G(X).

Now let us recall some parallel constructions where we work with the global curve G,, =
Spec(C[z,271]) = P!\ {0,00} in place of the punctured disk D* = Spec(X), and similarly
A' = Spec(C[z]) = P! \ {cc} in place of the disk D = Spec(0).

Introduce the polynomial loop group LG = G(C[z,271]) € G(X) of maps G, — G, and similarly,
the polynomial arc group LG = G(C[z]) C G(O) of maps A — G. Recall the natural map is an
isomorphism LG/L+G = G(X)/G(0) = Gr.

We have an additional compact conjugation x : G, — Gy, x(2) = z~! with real points the unit
circle ST € C*.2 Note that x does not preserve the punctured disk D* C G,,.

We extend the conjugations 7,6 : G — G to conjugations 7,6 : LG — LG by the formulas
n(g9)(z) = n(g(k(2))),d(g9)(z) = 6(g9(k(z))). The corresponding real forms LGgr, LG. C LG consist
of maps g : G,,, — G that take S' C G,, respectively to Gr,G. C G. We denote by QGr C LGg,
QG. C LG, the based subgroups of maps that take 1 € S' to the identity e € G. Note that
multiplication gives isomorphisms QGr x Gr = LGg, QG. x G, = LG..

3. FACTORIZATION

In this section, we record a useful extension of a well-known loop group factorization.
Recall the “Gram-Schmidt” factorization

(3.1) OG, x L G —~ LG

of the polynomial loop group LG = G(Clz, 271]), its arc subgroup LG = G(C[z]), and the based
loop group QG. C LG. Note that (3.1) is equivalent to the fact that the QG -action on the base
point [e] € Gr ~ LG/L4+G induces a homeomorphism

(3.2) QG —— Gr

Consider the projective line P! = Proj(C[zp, 21]). Using the local coordinate z = z1/zy, we will
regard the complex points of P! as the Riemann sphere P!(C) = C U {co}.

Given any finite set of points S C P!, we will denote by G[P! \ S] the group ind-scheme of maps
P'\S — G. We will only be interested in the complex points of G[P!\S] equipped with the classical
topology, and thus ignore any non-reduced structure.

For example, if S = (), we have G[P!] = G; if S = {co}, we have G[P! \ {oo}] = L, G; and if
S = {0, 00}, we have G[P! \ {0,00}] = LG.

For a pair s = (s4,s_) of points s;,s_ € P!, we will write L;G = G[P'\ {s;,s_}]. If we choose
an isomorphism ¢ : P! = P! ©(0) = s, ¢(c0) = s_, then we obtain an isomorphism

(3-3) ¢*: LG — LG ¢ (9) =gop

To uniquely prescribe ¢, we can further require p(p) = ¢, for some p,q € P' with p # 0,00,
q # S4,8—-

Lemma 3.1. Suppose ST,8~ C P! are disjoint, finite sets of points with S~ non-empty.

2There is another conjugation z — —Zz ' of the curve G,, with empty real points, but it will not appear in the
developments of this paper.
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For S = 8T US™, the natural map is an isomorphism
(3.4) GP'\S]/G[P'\ $7] — []es+ Grs

where Grg := G(K;)/G(0s) denotes the affine Grassmannian at s (which is isomorphic to the affine
Grassmannian Gr by the choice of a local coordinate).

Proof. Set U* = P!\ S*. Since S~ is non-empty, the restriction €|~ of any G-bundle € on P!
may be trivialized. Thus the left hand side classifies a trivial G-bundle &} on U™, a G-bundle €~
on U™, and an isomorphism between them over U N U~. This is equivalent to a G-bundle € on
P! with a trivialization over UT. It is standard that this factorizes to give the right hand side. [

Fix a non-zero real number a and consider the conjugation x, : P — P!, k(z) = % with real
points being the circle S!_, = {|z| = |a™!|}. Let D} = {|z| < [a~![} denote the open disk, and
D; = {|z| > |a~!|} the complementary open disk.

If a finite set of points S C P! is invariant under x,, then the conjugation ¢ : G — G induces a
conjugation 6 : G[P'\'S] — G[P*\S], 6(g9)(2) = d(g(ka(2)). The corresponding real points, denoted
by G[P!\ S]., consist of maps g : P \'S — G that take S\ (S' N'S) to the maximal compact
G. C G. For example, if S = (), we have G[P!]. = G,; if S = {00}, we have G[P! \ {c0}]. = G..

For a pair s = (51, s_) of points s; € DI, s_ = ku(s4) € D, we write LsG. = G[P'\ {s4,s_}..
Observe that the map ¢ : P1 = P (0) = 51, ¢(00) = s, ¢(a™!) = a~! commutes with the
conjugation k,. Thus the isomorphism (3.3) restricts to an isomorphism on real points

(3.5) o*: LG, —= LG,

For any sg € S, we will write Qs.5,Ge C LG, for the based subgroup of those maps with g(sg) = e.
For finite subsets S C S', we have the following:

Lemma 3.2. For any finite subset S C S, any element of G[P' \ S|. is constant, and hence

G[P'\ S|, = G..

Proof. Choose an embedding G C GL(N) so that G, C U(N). For any g € G[P!\ S]., consider a
matrix entry gi; : P' \'S — A'. The restriction g|gng lands in G. C U(N), hence the restricted
matrix entry g;| sn\s is bounded. Thus g;; is bounded, and hence constant. O

Now we are ready to state the main result of this section. The special case when S = () and
St = {0}, so that S~ = {oo}, recovers the “Gram-Schmidt” factorization (3.1).

Theorem 3.3. Suppose we are given a finite set of points S C S, and a finite set of points
ST C DT, with conjugates S~ = k(ST) CD™. Set S=SUSTUS™ to be their union.
Fiz a point sg € S'\ S, and consider the kernel of the evaluation

(3.6) G[P'\ S]cs, := ker(evs, : G[P'\ S]. — G.)

Then we have:
1) Multiplication provides a homeomorphism

(3.7) G[P'\ S)csy x GIP\ {S™US} ——= G[P'\ §]
2) The natural action map provides a homeomorphism

(3.8) GIP' \ Slesy —=> GP*\ SJ/G[P'\ {5~ U )] = [, Cr
7



3) For any ordering ST = {s1,..., s}, multiplication provides a homeomorphism

(39) Qsl,sch X X st,sch *N> G[Pl \S]C,SO

Proof. Clearly 1) and 2) are equivalent. We will prove 2) and 3) simultaneously by considering the
diagram

Qsy,50Ge X+ X Qg 159G —> G[PT\ Sleqg — GPH\ S]/GPM\ {S™ U S} ~ [[ g+ Grs

Clearly the composite map g, 4oGe X - - X Qs 5oGe = [[;cg+ Grs is a homeomorphism by (3.2).
Thus it suffices to show the map G[P'\ S]¢ s, — [+ Grs is injective, i.e., the G[P' \ S]. 5,-action
on the base-point [e¢] € [[,cq+ Grs is free. Any element in the stabilizer must extend across ST,
hence also across S—, and so lie in G[P!\ S].s,. Thus by Lemma 3.2, any element in the stabilizer
must be constant. Since its evaluation at sg is trivial, the element must in fact be trivial. ]

4. QUASI-MAPS

4.1. Definitions. Let B be a smooth complex base-scheme.

Let m : Z — B be a projective family of curves, with fibers denoted Z; = 7~1(b). We do not
assume the total space Z or fibers Z; are smooth. See the next section for the specific setting used
in this paper.

Let Bung(Z/B) denote the moduli stack of a point b € B and a G-bundle € on the fiber Z;. More
precisely, an S-point consists of an S-point a : SpecS — B and a G-bundle € on the corresponding
fiber product Z xp SpecS. Denote by p : Bung(Z/B) — B the evident projection with fibers
p~1(b) = Bung(Zy).

Let 0 = (01,...,0,) : B — Z" be an ordered n-tuple of sections of m. We allow the sections to
intersect or coincide, but require o(b) € Z} to be a smooth point, for all b € B.

For an affine G-variety X, let QM¢ x(Z/B, o) denote the ind-stack of quasi-maps classifying a
point b € B, a G-bundle € on the fiber Zy, and a section

(4.1) s: Zp\{o1(b),...,on(b)} —= X¢

to the associated X-bundle over the complement of the points o1(b),...,0,(b) € Zy. We have the
evident forgetful maps

(4.2) q: QMg x(Z/B,0) — Bung(2/B) — B

with fibers ¢~ 1(b) = QMg x (Zp, o(b)).

Let £ : B — Z be another section of 7 such that £(b) # o;(b), for allb € B, and i = 1,...,n.

Let QMg x(Z2/B, 0,&) denote the ind-stack of rigidified quasimaps classifying quadruples (b, &, s, ¢)
where (b, €, s) is a quasi-map as above and ¢ : €y =~ K is a trivialization, where € is the K-
reduction of & on Zy \ {o1(b),...,0n(b)} given by the section s. We have the evident forgetful
maps

(4.3) r: QMg x(Z/B,0,§) — Bung(2/B) — B

with fibers r~1(b) = QMg x (Zp, o(b),£(D)).

Suppose given conjugations ¢z : Z — Z and cg : B — B such that mocy = cgom.
8



The conjugation n of G induces a conjugation 7 : Bung(Z/B) — Bung(Z/B) given by n(b, &) =
(c(b), c3Ey) where we write c% &, for the bundle ¢§& with its n-twisted G-action. We denote by
Bung(Z/B)Rr the corresponding real points.

Suppose n = 2m so that we have 0 = (¢F,07) : B — 2" with components o0& = (oF,...,075) :
B — Z™. Suppose further that cg o a;t ocg = o, fori =1,...,m. Then the conjugation 7 of

G induces a conjugation 1 : QMg x(Z/B,0) = QMg x(Z/B,c). We denote by QMg x(Z/B,0)r
the corresponding real points.

Suppose further that cz 0 = £ocp. Then the conjugation 7 of G similarly induces a conjugation
n: QMg x(Z/B,0,§) = QMg x(Z/B,0,£). We denote by QMg x(Z/B,0,&)r the corresponding
real points.

4.2. Uniformizations. Let Grg gz, (resp. Grgz,) denote the Beilinson-Drinfeld Grassman-
nian of a point b € B, a G-bundle & on Z;, and a section s : Zy \ 0;(b) — & (resp. s :
Zp \ {o1(b),...,on(D)} — &).

Let G[Z, d;] denote the group scheme of a point b € B and a section ﬁgi(b) — G, where Dgi(b) is
the formal disk around o;(b).

Let G[Z,0;] (resp. G[Z,0]) denote the group ind-scheme of a point b € B and a section s :
Zp \ {oi(0)} = G (resp. s:Zp \ {o1(D),...,0n(b)} = G).

Let G[Z,04,&] (resp. GI[Z,0,€]) denote the subgroup ind-scheme of G[Z,0;] (resp. GIZ,0])
consisting of (b, s) € G[Z, ;] (resp. (b,s) € G[Z,0]) such that s(£(b)) = e.

For any b € B, we write Grg 2 0.5, G[Z,0,b], etc., for the respective fibers over b.

The conjugations ¢z, cp, 1 induce conjugations on Grgz,, G[Z,0], etc., and we denote by
Grg 2.0k, G[Z, 0]R, etc., the respective real points.

For any b € B(R), we write Grg 2 50,8, G[Z,0,b]r, etc., for the respective fibers over b.

The group ind-scheme G[Z, o] (resp. G[Z,0;]) naturally acts on Grg 2, (resp. Grgz,,) and we
have uniformizations morphisms

(4.4) G[Z,0i]\Grg,2,0, — Bung(Z/B) G[Z,0]\Grg 2, = Bung(2/B)
(4.5) K[Z,G]\GI"G’Z’U 4>QMG7)((Z/B,U)
(46) K[Z‘v g, 5]\GrG,Z,U - QMG,X(Z’/B’ g, g)

The uniformizations are compatible with the given conjugations, hence induce uniformizations
on real points:

(4.7) G[Z, Ji]R\GrG,Z,o’i,R _— Bung(Z/B)R G[Z, U]R\GYG,Z,U,R _— Bun(;(Z/B)R
(4.8) K[Z,, U]R\GTG,Z,U,R —— QMGJ((Z/B, U)]R
(49) K[Z'v g, g]R\GrG,Z,U,R - QMG,X(Z’/Ba g, g)R

4.3. Morphisms. Let G; and G2 be two reductive groups with complex conjugations 7; and 7
and Cartan involutions #; and 6y respectively. Then the constructions of quasi-maps, rigidified
quasi-maps, uniformization morphisms, and real forms of those are functorial with respect to ho-
momorphisms f : Gy — G2 that intertwine 7,70 and 61, 6s.
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5. NODAL DEGENERATION

We invoke here the preceding constructions in a situation to be studied in the remainder of the
paper.

5.1. Universal family. Let A' = Spec(C[a]) be the affine line with coordinate a. Consider the
product PL x IP’; with respective homogeneous coordinates [xg, x1], [0, y1], local coordinates = =
x1/T0,y = Y1/Yo, and projections py, py : PL x IP’; — P!. For convenience, we will also set tt =
Lt = yil.

Introduce the surface Z C PL x IP’ZlJ x Al cut out by z1y1 = a®zoyo. We will regard Z as a family
of curves via the evident projection p: Z — A'. We denote the fibers by Z, = p~!(a), for a € Al
When a # 0, projection along p, or p, provides an isomorphism Z, ~ P'. When a = 0, the image
of the inclusion Zy C P! x P! is the nodal curve

(5.1) P, VP, = (P} x {0}) U ({0} x P})

Equip A! with the usual conjugation c(a) = a@ with real points A!(R) ~ R. Equip Z with
the twisted conjugation cz(z,y,a) = (7,Z,a). When a # 0 € A'(R), under the identification
pe : Z = PL we have cz(z) = a?/z, and thus p, : Z,(R) = RP!. When a = 0 € A}(R), the
components of Zy are exchanged by cz, and Zy(R) is the single point z = 0,y = 0.

Note that in terms of the coordinate t* of P! the complex conjugation is given by cy(t*) =
#. Let A} = Spec(C[t*]), AL = Spec(C[t7]) be the affine lines with respective coordinates
tt =271t~ = y~!. Thus we have natural open embeddings A}F c Pl Al C ]P’;.

Fix n = 2m. Consider the base scheme

(5.2) B=Al x Bt x B~ B = (AL)™

with coordinates (a,t™,t~) where tt = (tf,...,ti). Equip B with the twisted conjugation
ca(a,tt,t7) = (a,t7,t") where t* = (£5,...,5). Projection provides an identification of real
points

(5.3) B(R) ~ AY(R) x B (C) ~R x C™

Consider the family of curves
(5.4) p:Z=ZxyuB——B

with the tautological sections

(5.5) o= (o",07): B——= 2™
(5.6) ol (a,tT,t7) = (a, [t 1], [1,ta?], tT,t7) i=1,....m
(5.7) o; (a, t%,t7) = (a,[1,t;a?], [t;,1],67,¢7) i=1,...,m

Equip Z with the twisted conjugation cg(a,x,y,tT,t7) = (a,,Z,t~,t"). Projection provides an
identification of real points

(5.8) 2(R) ~ Z(R) x B*(C) ~ Z(R) x C™
10



Introduce the canonical section
(5.9) §:B——=12 &(a, tT,t7) = (a,[1,a],[1,a],tT,t7)
We denote by B’ the open subset of B consisting of (a,t",t™) with a # 0 and we define 2/ :=
Z xpg B'.
Note that &(a,t+,t7) = oi(a,t*,t7) if and only if 7 = a~!. Denote by B, C B the open
complement of such coincidences. Introduce the base-change
(5.10) p:2o=2%2x%xp B, —— B,
and note, by construction, the tautological sections
(5.11) o= (0o",07): Bo —= 2™
do not intersect the canonical section
(5.12) §: By ——=1Z,

With the above choices fixed, we will study the real points of the ind-stacks of quasimaps with
their natural projections

(5.13) q: QMg x(Z2/B,0)r — B(R)

(5.14) r: QMe,x(Zo/Bo,0,§)r — Bo(R)

5.2. Complex groups. We specialize here our prior constructions to the distinguished case of
complex groups.

Recall § = 6 o = 1o 6 denotes the Cartan conjugation of G with compact real form G.. Equip
G x G with the swap involution sw(g, h) = (h, g) and the conjugation sws(g,h) = (6(h),d(g)). The
fixed-point subgroup of sw is the diagonal G C G x G, and the corresponding symmetric space is
isomorphic to the group G\ (G x G) ~ G.

Lemma 5.1. The uniformization morphisms (4.8), (4.9) are isomorphisms:

(5.15) G2, 0lr\Graxc 2 ok X5 B'(R) — QM¢axc,a(Z'/B',0)r

(5.16) G2, 0,8r\Graxa 2 ok X5 BL(R) — QMg xa,c(Z, /B, 0,&)r

Proof. Note that the above uniformization morphisms over a base point b € B’ (resp. b € B.) are
the (multipoint version) of the real or complex uniformization morphisms in [CN1, Section 6.3].
Since the fixed-point subgroup G C G x G is connected and H'(Gal(C/R),G x G) is trivial for
the Galois-action given by swg, it follows from [CN1, Remark 5.8 and Lemma 6.1] that any real
bundles on the curve Z,(R) ~ RP! (associated to the real form sws of G x G) admit either real or
complex uniformizations. The lemma follows by standard arguments. O

Next, the projection maps pry,pry : G X G — G, pr;(g1, g2) = ¢i, provide an isomorphism
(5.17) Groxg 2,0 —= Grg 2.0 xB Gra 2o

The conjugations cz of Z and sws of G x G together induce a conjugation of Grgxg,2,, which,
under the isomorphism (5.17), is given by the map on pairs of bundles with sections

(5.18) (€5, 8") (1 €5, ¢5(s"), ¢z €, ¢ (5))
11



Thus the isomorphism (5.17) followed by pr; provides an isomorphism
(5.19) Graxg,z,or — Grgz.0 x5 B(R)

of real analytic spaces over B(R) ~ P}(R) xp1 «©) BT(C).
Thus the preceding lemma has the following consequence.

Corollary 5.2. There are natural isomorphisms

(5.20) G[Z/, U]R\(Grgzlﬂ X B B/(R)) *N> QMGXG,G(Z//B/a O')R

(5.21) G2}, 0,&r\(Grg 2 » X g, BL(R)) —— QMgxa,q(%,/Bl, 0, &)r

Next, consider the natural map
(5.22) Grg 2,0+ — Grg 2,0

given by restricting a trivialization of a G-bundle defined away from the section o to the comple-
ment of both sections o™ and o~.

We will find open loci where the map (5.22) induces an isomorphism.
First, consider the restriction of (5.22) to the generic family

(5.23) Grg o o+ — Gro 20
Proposition 5.3. The map (5.23) induces isomorphisms

(524) GC\GI‘G,Z’,U+ X Bt BI(R) 4N> G[Z/, U]R\(GrG,Z’,o’ X Bt B/(R))

(5.25) Grg2p 0+ Xpy Bo(R) — G[2¢, 0,¢]r\(Grg 2,0 ¥ By Bo(R))

Proof. Tt suffices to establish the second with its natural G.-equivariance then glue to obtain the
first. Let b = (a,t],...,t;7) € BL(R) and let 21, ..., 2, € C be k-distinct points such that {21, .., 2} =
{tf, .., t7}. Tt follows from the standard factorization property of Beilinson-Drinfeld Grassmannian
and Theorem 3.3 that, over the based point b, the second map above can be identified with the
map

k k k
(5.26) [1Gr = J[(Grz, x Gr_y )= I19:00-1G\(Grz, % Gr_y )

i=1 i=1 : i=1 :
where the first map is the left copy embedding sending « to (v,e), where e is the base point of
Gr L and the second map is the natural quotient map. (Note that in terms of the local coordinate

z; the complex conjugation on Z; ~ IP’;Z, is given by z; — %) Thus the assertion follows from the
fact that the based loop group 2, ,-1G. acts freely on Gr,, and Gr 0

1 .
2z,
a“z;

Corollary 5.4. There are natural isomorphisms

(5.27) Gc\GrG’Z/’U#» X B! B/(R) —— QMGX07g(Z//B/, U)R

(5.28) Grg o o+ X g BL(R) —= QMeaxa,a(ZL/Bl,0,8)r
12



Next, let Bun%(2/B) C Bung(Z/B) denote the open sub-stack of a point b € B and a trivializ-
able G-bundle on Z;. Denote by

(5.29) QMg ,c(2/B,0)r = G\Grg; 5+ QM .6(%o/Boy 0, &)r = Gy, oo o
the base-changes to Bun%(2/B) C Bung(Z/B). Consider the restriction of (5.22) to the trivial

bundle locus

(5.30) Gry o o+ — Griyp,

Proposition 5.5. The map (5.30) induces isomorphisms

(5.31) GG, o x5 B(R) —> G[Z,0]z\(G1%  , x5 B(R))

(5.32) Gry . ot XBo Bo(R) —> G[Zo,0,&Je\(Gre: 5, , X B, Bo(R))

o

Proof. By Proposition 5.3, it suffices to establish the maps are isomorphisms at the special fiber
b= (a,t],....,t;;) € B(R) with a = 0. Moreover, it suffices to establish the second with its natural
G-equivariance then glue to obtain the first.

Now it is elementary to see we have a natural isomorphism at the special fiber
(5.33) GIG 200 XBo Bo(R)ly —= Grg 2, 0+ 5 X GG 20,0 b
And similarly, we have a natural isomorphism of groups at the special fiber
(5.34) G[Zo, 0, &Ry —— Ar C G[PY, 07, &,b] x G[PY, 07, &, b]

where Agr denotes the conjugate diagonal. Thus the assertion follows from the facts that the
isomorphism (5.33) restricts to an isomorphism

(5.35) Gr%,zo,a X B, Bo(R)[p —— GTOG,ZO,U+,b X Gr%,zo,a:b

o

and the action of G[P!, o™, &,b] on Gr%,zo,atb is free and transitive. O
Corollary 5.6. There are natural isomorphisms

(5.36) GA\GIg, 5 o+ XB B(R) —> QM o(2/B,0)r

(5.37) Grd ;. oyt X B, Bo(R) == QM (%0/Bo, 0, €)r
Remark 5.7. The isomorphisms of Cor. 5.4 and 5.37 coincide on the intersections of their domains.

5.3. Stratification. Recall the Beilinson-Drinfeld Grassmannian Gr(™ — (P1)™ of a G-bundle
€ on P!, a point (z1,...,2,m) € (P1)™, and a section s : P\ {z1,...,2,} — & We denote by
Gr(™0 < Gr™ the open subset consisting of (&, z1, ..., zm, ) such that € is trivializable.

First, let us stratify the base (P1)™ by coincidences among points. For any partition p of the set
{1,...,m}, denote by (P')? C (P!)™ the locus where z; = z; if and only if i and j are in the same
part of p. This provides a Whitney stratification of (P!)™.

Next, for any partition p of the set {1,...,m}, and any map A, : p — A, denote by §* ¢ Gr™
(resp. 8*0  Gr(™9) the spherical stratum of a G-bundle & (resp. a trivializable G-bundle &),
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a point (21, ..., 2m) € (P)?, and a section s : P1\ {21,...,2m} — & of modification type A,. This
provides a Whitney stratification of Gr(™) (resp. Gr(™-%) compatible with that of (P')™.
Note that the coordinate 2! provides an isomorphism

(5.38) (R x Grl™) xg, p1ym B(R) = Grg 2 5+ x5 B(R)

5.3
here we identify B(R) (:) R xC™ C Rx (P!)™. The isomorphism above restricts to an isomorphism

(5.39) (R x Gr™0) g p1ym B(R) ~ G1& , . xp B(R)
between the corresponding open loci and, by Corollary 5.4 and 5.6, we obtain:
(5.40) (R x Gr'™) xg, prym BL(R) =~ QMaxc,¢(25/Bh, 0, )R,
(5.41) (R x Grl™0) xp, p1ym Bo(R) ~ QMG q.¢(%0/Bo, 0, ).

Let us equip R x Gr(™ (resp. R x Gr(m)’o) with the product stratification {R x 8§} (resp.
{R x 8°}) and transport the spherical strata R x $*» C R x Gr(™) (resp. R x §*»0 c R x Gr(™0)
across the isomorphisms (5.40) and (5.41) and denote the resulting strata by

(5.42) 83 € QMaxc,c(Z,/Bh,0,6)r (resp. 83" C QM. (%0/Bo, 0, €)R).

Note that 82?]1,{0 and 82',’]1’{0 are non-empty if and only if the total coweight |\y| € A7, given by
summing the values of A\, over the parts of p, in fact lies in Rg C A;.

5.4. Symmetry. We continue here with the distinguished case of complex groups. We will describe
an involution of quasi-maps.

Definition 5.8 (Swap involution dz). The conjugation § x § of G x G commutes with the con-
jugation swgs. Hence together with the conjugation cg of Z it induces a fiberwise involution of
QMGXG’G(Z/B, U)R and QMGXG,G(Zo/Bo, o, f)R denoted by 0.

In the remainder of this section, we will give concrete descriptions of how the involution §y act
at the generic and special fibers in terms of our prior uniformizations.

5.4.1. Generic fiber. Let b= (a # 0,t],...,t;7) € BL(R). Let 21, ..., 2zt € C be the distinct k points
such that there is an equality of sets {z1,..., 2} = {t],...,t;>} and consider the isomorphism

5.38 5.28
(5.43) Vp . Gr21 X oo X GI‘Zk ~ (R X Gr(m))]b ( >~ ) GYG,z,ng,b ( ~ ) QMGXG,G(Zo/Bo, U,f, b)]R.

Here the first map is the factorization isomorphism. For ¢ = 1,...,k, we define

v+ Gra, < Gra, X - X Gra, 2 QMaxa.a(Zo/Bo, 0, €,b)R

Proposition 5.9. Fori=1,...,k, the involution dy satisfies:
(1) When z € S1_, = {|z| = |a™ |} C P!, we have
(5.44) dz 0v; =v;046
where 0 is the conjugation on Gry, induced by the conjugations c(z) = % on P! and § on
G.
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(2) When z € C\ S!_,, we have
(5.45) 0y 0 v; = v; oinv
where inv(g)(z) = g(z)~! is the group-inverse on Q. ,-1G. ~ Gr,.

Proof. We first note that the isomorphism

k

H in,aflGC\(GrZi X Grc(zi)) = G[Zg, g, fa b]R\GrG,Zg,a,b = QMGXG,G(ZO/Boa g, éa b)R

i=1
intertwines the conjugation d, with the one 6% on the product Hle Q. .a-1G\(Gry, X Gre,,) given
by

5/2.(71',17 7i,2) = (’Yz{,lu 71/',2)7 i=1,..,k
where v/ ; = d(vij), § = 1,2, if 2; = (%) € S}y, otherwise 7}, = 8(yi2) and 7], = 6(yi,1) if
z; # ¢(z;). Here 0 is the map 6 : Gr,;, — Gr(;,) induced by the complex conjugation c(z) = % on
P! and § on G.
On the other hand, a direct computation shows that the isomorphism

k k
H Gr,, ~ H Q., a1G\(Gry, x Gregy,))
i=1 i=1
induced by the left copy embedding v — (v, €) intertwines the map d% above with the one 67 on Gr,
given by 6%(v) = 6(v) when z; = ¢(z;) and 64(y) = v~ ' is the group-inverse on Q,, ,-1G. ~ Gr,
when z; # c(2;).
To deduce the proposition, we note that the map vy in (5.43) is equal to the composition of the
above two isomorphisms. O

5.4.2. Special fiber. Let b= (0,t],...,t}) € Bo(R). Consider the map
(5.46)

vt GIPY\ {t, ooy £ Hoose ~ (R x Gr(™)0) (5:37)

Gr%,Z,a*,b ~" QMg q.c(Zo/Bs,0, &, b)g.

Here and in what follows, the subscropt oo — e conveys the condition g(co) = e on a mapping.

(5.39)
b =~

Proposition 5.10. The involution 6y satisfies
0 0 vy = vp 0 inv

here inv(g(z)) = g(2)~! is the group inverse on G[PL\ {t],...,t;; Hoose-

Proof. We first note that the isomorphism
GIP\{t], st Hoose \(Cry g ot s XCT 1 o ) = G20, 0,6, bR \CY 2 oy ~ QMG . 6(Z0/Bo, 0,€, b)R

intertwines the involution dz with the one 85 on G[P!\ {t], ...t} Hoomse\(G1& 5 1y X GO )
given by &, (v1,72) = (0(72),6(71)) (note that the group G[P*\ {t], ...t} Hoose acts on the product
via the conjugate diagonal embedding v — (y,0(y))). On the other hand, the isomorphism

GIP'\ {t], .yt Hoose = GrOG,z,a+,b ~ G[P'\ {t], '--7t:,2}]oo—>e\(Gl"OG7z7g+,b X Gr%7z,g,7b)

where the fist map is the action map and the second map is induced by the left copy embedding
intertwines the involution &, with the group inverse on G[P!\ {t{,...,t;}; }oo—se. To deduce the
15



proposition, we observe that the map vy, is equal to the composition of the above two isomorphisms.
O

5.5. Compatibility with stratifications. We have the following compatibility of the involution
0z, with stratifications. Let wy € W denote the longest element of the Weyl group. For any partition

p of the set {1,...,m}, and map X\, : p — AJTF, we set —wo(Ap) = —wp o Ap.
Lemma 5.11. (1) The involution dy, preserves the open subspace
(5.47) QMG ,6(%0/Bos 0, )k C QMeix6,6(%0/Boy 0, &)
(2) The involution dy restricts to a map on spherical strata
A —wo (A
(5.48) 8% — Sy

within QMaxa,a(ZL /B, 0,&)r, and also the spherical strata

Ap,0 —wo(Ap),0
(5.49) 3% Hszﬁ()( »)

within QngG7G(Z’O/BO’ g, g)R

Proof. The claim follows from the facts that the conjugation § of Gr maps S* (resp. Gr%) to S —wo(A)
(resp. Gr"), and the involution inv of QG, maps S* to S—wo(A) O

5.6. The involution 77. Recall 6 denotes the Cartan involution of G with fixed-point subgroup
K, and § = 6 onp = n o6 the Cartan conjugation of G with compact real form G.. Since n and 6
commute with §, the conjugation n x 1 and involution € x 6 of G x G define involutions of the real
moduli QMg xa,c(Zo/Bo,0,&)r of rigidified quasi-maps which we denote respectively by 7z and
0.

Propositions 5.9 and 5.10, and Lemma 5.11 immediately imply:
Proposition 5.12. The involution nz on QMaxc,q(Zo/Bo,0,&)r satisfies:

(1) The involution commutes with the natural G.-action and preserves the open subfamilies

QMegxa,a(Z./Bl,0,8)r and QngGG(ZO/BO, 0, &)r and their spherical stratifications {SE\,?R
and {S;"H’{O .

(2) Atb=(a#0,t],...t;7) € Bo(R), the isomorphism

Vp : Grzl X X Grzk — QMGXG,G(Z’O/Boao"§7 b)R

of (5.43) intertwines the involution dy, with the involution on Gr, X --- X Gr,, given by
(150 v) = (Vs Vk), where v = n(v;) if z; € S}y and n is the conjugation on Gr_,
induced by c(z) = % on P! and n on G, otherwise ~; = invof(v;) if zz € C\ S}_, and

inv of is the involution on Q. ,~1G. ~ Gr,.
(3) Atb=(0,t],,,.t;}) € Bo(R), the isomorphism

Up - G[Pl \ {t;rv 79 'tr—tl,}]OOHe *N> QngG7G(ZO/BOv g, ga b)R
of (5.46) intertwines the involution ny, with the involution invof(y) = 6(y)~! on G[P*\

{tF,,, th Hoomse-
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6. STRATIFIED HOMEOMORPHISMS
6.1. Trivializations. Set B = [0, 1] x R™ and B’ = (0, 1] x R™.
Definition 6.1. An embedding
(:B=1[0,1] x R ——= B,(R) Cc RxC™

is called admissible if it is given by ((a, 21, ..., 2m) = (@, fa(21), ., fa(2m)) where f : [0,1] — Aut(P)
is a real analytic map satisfying fo(z) = z and fi(z) = 2

==
Remark 6.2. Each admissible ¢ defines a one-parameter family of embeddings (, := (|qxrm :
R™ — C™, a € [0, 1] satisfying (o(R™) = R™ and ¢;(R™) = (St \ {1})™.

Example 6.3. Consider the map f : [0,1] — Aut(P!) given by fu(2) = —2-% . A direct

aztai+(l—a)’
computation shows that f,(z) # a~! for all a € R, and fo(2) = 2, fi(z) = 275, and hence the
corresponding embedding ¢ : B — B,(R) is admissible.
Let ¢ : B — Bo(R) be an admissible embedding. Consider the following base changes

QMaxc,c(2/B,0,§)r = QMaxc,6(Zo/Bo,0,§)r Xp,r) B—>B
QM c.¢(%/B, 0, €k = QML .¢(%0/Bo, 0, §)R X B, ) B—— B

QMgxc,c(Z' /B, 0, )r = QMaxc,c(Z6/Bs, 0,§)r X ) B’ — B

Then (5.40) and (5.41) restrict to isomorphisms
(6.1) (R x Grl™) xp, p1ym B —= QMexa.c(Z' /B, 0,6)r |

(6.2) (R x Gr™0) xp, p1ym B—> QM2 ¢ ¢(2/B,0, )k -
Note that there is an isomorphism over [0, 1]
[0,1] x (GTl™ X (p1ym R™) — > (R x Gr™) x g prym B

given by

(aa (87 R1y ey Zmy S)) = (aa (fa)*ga fa(21)7 ceey fa(zm)v (fa)*s)
and in view of (6.1), (6.2), we obtain

Proposition 6.4. Each admissible embedding ¢ : B — Bo(R) induces isomorphisms:
(6.3) (0,1] x (Grl™ X (p1ym R™) —> QMea,c(Z /B, 0,é)r ,
(6.4) 0,1] % (Grm™0 x puye R™) — QMY ; 4(2/B, 7, )

Note that the isomorphisms above coincide on the intersections of their domains.
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6.2. Families of involutions. Let p : § — R™ be the group ind-scheme over R™ whose fiber over
(21, .y Zm) € R™ is the group ind-scheme G[P'\ {21, ..., Zm Hoose of maps v : P*\ {21, ..., 2} — G
such that y(co) = e. The acton of G on the base point of Gr(™ X prym R™ defines an isomorphism

(65) 9 = Gr(m)’o X(Pl)m R™

Consider the transported strata G* := 8*°N G of G and equip [0, 1] x § with the product stratifi-
cation {[0,1] x G }. By Proposition 6.4, we obtain a stratified isomorphism

(6.6) pe: [0,1] X §—> QMp,  o(2/B, 0, )R-

Recall the involution 7y on QMgXQG(ZO/BO, 0,&)Rr of Section 5.6. Via the isomorphism p¢, the
involution 7y gives rise to a family of involutions

(67) aa: 9*>97 CLE [Oa 1])
where a,(7y) = pgl ony o pc({a} x ). The following proposition follows from Proposition 5.12:

Theorem 6.5. The family of involutions g : G — G, a € [0, 1] satisfy the following:

(1) We have qoag =¢q: G — R™.

(2) aq is G.-equivariant and preserves the stratification {G*}.
(3) At a =0, we have ap(y(2)) = 0(v(2)) L.

(4) At a =1, we have a1(y(2)) = n(v(2)).

Proof. Part (1), (2), (3) is clear. Part (4) follows from the fact that the automorphism f(z) = 2=
satisfies f1(z) = % = (W)*l- -

6.3. Trivializations of fixed-points. Our aim is to trivialize the fixed-point of the family invo-
lution ay. To that end, we will invoke the following lemma:

Lemma 6.6. Let I C R be an interval. Let M — I and N — I be two stratified real analytic
submersions of real analytic Whitney stratified ind-varieties M and N (where I is equipped with
the trivial stratification). Let f : M — N be a Thom map.

(1) Assume there is a compact group H X 7Z,/2 acting real analytically on M such that the action
preserves the stratifications and f is H X Z/2-invariant (where H X 7/2 acts trivially on
N ). Then the Z/2-fixed-point ind-variety MZ/2 s Whitney stratified by the fized-points of
the strata and the induced map fZ/2 . MZ/2 5 N is an H-equivariant Thom map.

(2) Assume further that f is ind-proper and there is an H-equivariant stratified trivialization
of f: M — N over I, that is, there are stratified preserving homeomorphisms hyr and hy
fitting into a commutative diagram

MM T s M

lf iidxfo

N T N

that are real analytic on each stratum. Then there is an H-equivariant stratified trivializa-
tion of f2/%2 . M%/2 — N that is real analytic on each stratum.
18



Proof. Part (1) is proved in [N, Lemma 4.5.1]. For part (2), the H-equivariant stratified trivializa-
tion of f: M — N provides a horizontal lift of the coordinate vector field 9, on I to a continuous
H-invariant vector field v on M that is tangent to and real analytic along each stratum. Let w
be the average of v with respect to the Z/2Z-action. As f is ind-proper and the Z/2Z-action is
real analytic, the vector field w is complete and the integral curves of w define an H-equivariant
stratified trivialization of f2/2 : M%/?2 — N over [0,1] that is real analytic along each stratum. [J

Now let us apply the above lemma to the map

QMexac(Z /B 0,6 ) g — B

(resp. QMg .(%/B,0,6)r —B)

with the stratifications {SQ?RJB,} and {(B")" = (0,1] x R"} (resp. {Sgt’ﬂgﬁ} and {(BP = [0,1] x R*}).

We will consider the H x Z/2-action given by K. X (nz).

Proposition 6.7. (1) There is a K.-equivariant topological trivialization of the fixed-points of
Nz of the map

QMexca(Z /B0, )r — B

over I = (0,1].
(2) There is a K.-equivariant topological trivialization of the fized-points of ng of the map

QMgyc,c(2/B,0. &) — B

over I =0,1].
Proof. For part (1), by Proposition 6.4, there is a K -equivariant stratified trivialization of
(6.8) QMaxcc(Z' /B0, )p —=B = (0,1] x R™

Applying Lemma 6.6 with H x Z/2 = K. x (nz), we obtain part (1).
For part (2), by Proposition 6.4, there is a K -equivariant stratified trivialization of

(6.9) QMY . c(%/B, 0, &g —= B =[0,1] x R™

Following the proof of Lemma 6.6, consider the averaged vector field w with respect to the Z/27Z-
action given by (nz). We claim that w is complete, hence the integral curves of w provide the
desired trivialization.

To prove the claim, observe that, over the open locus B’ C B in the base, the K .-equivariant
trivialization in (6.9) extends to a K -equivariant trivialization of the ind-proper family in (6.8).

Thus for any b = (a, 21, ..., 2m) € B, any integral curve p(t) for w with initial point p(a) €
QMgXQG(Z.’/IB%’, 0,&,b)r exists for t > a. Together with the local existence of integral curves with
initial point in the special fiber QM2 . (2' /B, 0,&,b)r, b= (0, 21, ..., 2 ), this implies p(t) exists
for all ¢ € [0,1]. Hence w is complete and we have proved the claim. O
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6.4. Real and symmetric spherical strata. Let us summarize here the results obtained by the
preceding considerations.

Recall we write G ~ Gr("™)0 X p1ym R™ — R™ for the group ind-scheme over R™ whose fiber over
(215 -y 2m) € R™ is the group of maps 7 : P!\ {21, ..., z,n} — G such that y(co) = e. Recall the
transported spherical strata G* = G N 8.

The isomorphism p¢ : [0,1] x § ~ QM%XQG(Z/IB%, 0,&)Rr in (6.6) together with Theorem 6.5 and
Proposition 6.7 immediately imply:

Theorem 6.8. There is a K.-equivariant stratified homeomorphism between the fixed-points of

n and invof on G compatibile with projections to R™. The homeomorphism restricts to a K-
equivariant real analytic isomorphism between the fized-points of n and inv of on G*.

Observe that the fixed-points "7 coincide with the group ind-scheme Gr — R™ of a point
(#1,.,2m) € R™ and a map v : P1\ {21,..., 2z} — G, such that y(P*(R) \ {z1,...,zm}) C Gr
and v(c0) = e. Denote by 9%” = GM N Gg its spherical strata. Similarly, observe that the fixed-
points (G)™v°Y coincides with the space X — R™ of a point (z1,...,2m) € R™ and a map 7 :
P!\ {21, ..., 2m} — X C G such that y(00) = e. Denote by X* = G* N X its spherical strata.

We can restate the above theorem in the form:
Theorem 6.9. There is a K.-equivariant stratified homeomorphism
(6.10) Gr —=X
fitting into the diagram

that restricts to real analytic isomorphisms on strata
(6.11) Gp —> 0
where Ny 1 p — L (for the subset LT C A defined in Section 2.1) with |Ay| € R,

Remark 6.10. Since the stratum 9%‘“ = Sﬂép M Gr is the intersection of the real spherical stratum

Sﬁ" in the real Beilinson-Drinfeld grassmannian Gr]%{m) with the open cospherical stratum Gg, the

above theorem implies that the singularities of the closures of the real spherical strata Sﬂg" are
locally homeomorphic to complex algebraic varieties. However, one should note that the closures

S]g" are not in general globally homeomorphic to complex projective varieties. For example, for the
rank one group Gr = SLo(H), and the generator A € A (i.e., m =1l and A =\ : p = {1} = A}),
one finds that Sﬁ C Grp is the one-point compactification of the cotangent bundle T*HP' of the

quaternionic projective line. Thus its intersection cohomology Poincaré polynomial is 1+ t* 48 so
does not satisfy the Hard Lefschetz Theorem.

6.5. Kostant-Sekiguchi homeomorphism for GL,,. Here we explain how the prior construction
recover Theorem 1.1 and Theorem 1.2 in [CN2] but by a completely different argument.?

3The argument in [CN2] used quiver varieties and hyperkéhler rotations.
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Consider the case when G = GL,(C) with real form Ggr = GL,(R). We have K = 0,(C) and
K. = 0,(R) the complex and real orthogonal groups respectively. The conjugation 1 and involution
6§ on GL,(C) are given by n(M) = M and (M) = (M*)~!. Let g, = gl,,(C) be the Lie algebra of
G = GL,(C), t, C g, the subspace of diagonal matrices, and ¢,, = t,,// S,, the quotient of t,, by the
symmetric group S,, on n letters. Let x : g, — gn// GL,(C) ~ ¢,, be the Chevalley map.

As observed by G. Lusztig and B.C. Ngo, for any (M, z1,...,2n) € gn X, tn(R), the formula
7y :=id —z~'M defines a map from v : P1\ {21, .., z,} — GL,(C) satisfying v(co) = id. Indeed, the
collection {21, .., 2,} is the set of eigenvalues of M and hence the matrix id —z~'M is invertible for
z € P\ {21, .., 2,}. Thus we have an embedding

In Xe, th(R) — G ~ Gr™M0 xp R?
given by

(M, 21, .y z) = (1 — 27 M, 21, ..., z)
compatible with the natural projection maps to t,(R) ~ R™. Moreover, by [Ngo, Lemma 2.3.1], the
image of g, X, t,(R) in G is a union of strata and the restriction of those strata to the fibers of the

projection gp X, t,(R) — t,(R) are unions of orbits under the natural adjoint action of GL,,(C)
on g, X, tn(R). Thus the family of involutions in Theorem 6.5 restricts to a family of involutions

(6.12) Qg : On X, th(R) = gn Xe, ta(R), a€0,1]
satisfying the following properties:
Theorem 6.11. The family of involutions ag : @n X¢, th(R) = gn X, t.(R), a € [0, 1] satisfy the
following:
(1) We have proag = pr: g, X, t.(R) = t,(R), for all a € [0, 1].
(2) oy is Op(R)-equivariant and takes a GL,(C)-orbit real analytically to a GL,(C)-orbit.

(3) At a =0, we have ag(M, 21, ...2p) = (M, 21, ..., 2p).
(4) At a =1, we have aoo(M, 21, ...2) = (M, 21, ...21,).

Proof. Only part (3) and (4) require proof, and they follow from the following identities: for vy(z) =
id =27 M we have ag(y(2)) = (7(2)) = (id—2"'M) = id —2z7'M and a1 (y(2)) = 0(y(2)) ™" =
(id —z"'M)! =id -2~ M. O

Let g,(R) be the space of real n x m-matrices and let gy be the space of n x n complex

symmetric matrices. Theorem 6.9 implies the following result which can be viewed as a lift of the
well-known Kostant-Sekiguchi bijection between real and symmetric nilpotent orbits to a stratified
homeomorphism:

Theorem 6.12. There is an O, (R)-equivariant homeomorphism
(6.13) In(R) X¢, tn(R) — g™ X, ta(R)

fitting into the diagram
In(R) Xc, ta(R) ——= @i X, tn(R)
b (R) ———"—— ts(R)

that restricts to real analytic isomorphisms between GL,(R) and O,,(C) adjoint orbits on g,(R) X,
to(R) and g™ X, t,(R).
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Remark 6.13. It follows from the construction that the family of involutions in (6.7) are in fact
equivariant under the natural S,-action on § ~ Gr("™)0 X prym R™. Thus the involutions in (6.12)
are also equivariant under the natural S,,-action on g, X, t,(R). Hence Theorem 6.11 and Theorem
6.12 have a direct analogy for the quotient g, X, t,(R)// Sp.

On the other hand, the quotient g, X, t,(R)// S, is isomorphic to the subset g/, C g,, consisting
of matrices with real eigenvalues. Thus in this way we recover Theorem 1.1 and Theorem 1.2 in
[CN2], but by a completely different argument.
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