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Abstract

We prove the Chevalley restriction theorem for the commuting scheme of symplec-
tic Lie algebras. The key step is the construction of the inverse map of the Chevalley
restriction map called the spectral data map. Along the way, we establish a certain mul-
tiplicative property of the Pfaffian which is of independent interest.

1 The Chevalley restriction theorem for commuting schemes

Let k be a field of characteristic zero, or of large prime characteristic. Let G be a reductive
group over k, g its Lie algebra. For every d ∈ !, we consider the commuting scheme Cd

g

consisting of elements (x1, . . . , xd) ∈ gd such that [x i , x j] = 0 for all i, j ∈ {1, . . . , d}. The
commuting scheme has always been of some interest in invariant theory but it is only recent
that it appears as a primordial object in the study of moduli space of Higgs bundles for higher
dimensional varieties. It is also poorly understood. For d = 2, Richardson proved that the
open subscheme of C2,rss

g defined by the condition that x1, x2 are regular and semi-simple is
a dense and smooth irreducible variety. Although the reducedness of C2

g has the status of a

folklore conjecture, there is little evidence to expect Cd
g to be reduced in general. For d ≥ 3,

Cd
g is in general reducible, and components other than the closure of the regular semisimple

open subscheme of Cd
g are unlikely to be reduced.

In this paper, we are more concerned with the categorical quotient

Cd
g ! G = Spec(k[Cd

g ]
G)

where k[Cd
g ]

G is the ring of G-invariant functions on Cd
g . We note that G acts on g by the

adjoint action, and hence on gd by the diagonal adjoint action. This action leaves the com-
muting subscheme Cd

g stable and we are interested in generalizing the Chevalley restriction

theorem asserting a description of the categorical quotient Cd
g !G in terms of a Cartan subal-

gebra t of g equipped with an action of the Weyl group W . Let T denote a maximal torus of
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Deligne’s construction

G, t its Lie algebra. The Weyl group W = NG(T )/T acts on T and t. The embedding td → gd

factors through the commuting variety Cd
g and it induces a homomorphism of algebras

c : k[Cd
g ]

G → k[td]W

because the restriction of a G-invariant function to td is obviouslyW -invariant. We conjecture
that c is always an isomorphism. Any instance of this conjecture will be called an instance of
the Chevalley restriction theorem for commuting schemes. The classical Chevalley restriction
theorem corresponds to the case d = 1. Note that, since td !W is known to be normal and
reduced, the conjecture will imply Cd

g ! G is normal and reduced.
For G = GLn, this conjecture was proved by Vaccarino in [6] (not being aware of Vac-

carino’s result, we also reprove it in [1]). Vaccarino’s proof in the case G = GLn relies on the
construction of a map in the opposite direction, to be called the spectral data map

s : k[td]W → k[Cd
g ]

G

which is due to Deligne in the case G = GLn. Once the spectral data map is constructed, to
prove the Chevalley restriction theorem for commuting schemes it is enough to prove that
s ◦ c and c ◦ s are identities. For this, one can use a a result of Procesi in [4] which provides
a system of generators of the ring k[gd]G .

In this paper we will prove the Chevalley restriction theorem for the commuting scheme
of the symplectic Lie algebras following the same line of thought. The main novelty is the
construction of the spectral data map for G = Sp2n. One should note that for general reduc-
tive groups, even in the case d = 1, we don’t know to construct this map without assuming
first the Chevalley restriction theorem. For symplectic groups, a key ingredient in our con-
struction is a certain multiplicative property of the Pfaffian, see Proposition 3.1. This is an
elementary fact of linear algebra which seems to be new and of independent interest.

2 Deligne’s construction

We will first recall Deligne’s beautiful construction of the spectral data map for GLn in [2,
Section 6.3.1]. As a preparation, we will first recall Roby’s concept of polynomial laws which
will provide a convenient language for Deligne’s construction (see [5] and also [3]).

Let A be a commutative ring. For every A-module V , we will denote VA the functor R→
V ⊗A R from the category of A-algebras to the category of sets. If V and N are A-modules,
we will denote by P(V,N) the set of morphisms of functors f : VA → NA. In case N is not
explicitly mentioned, we will understand that N = A, i.e., P(V ) = P(V,A) and call P(V ) the
set of polynomial laws on V .

The connection between polynomial laws and usual polynomials can be explained as
follows. Let SA = A[X1, . . . ,Xd] be the polynomial algebra with free variables X1, . . . ,Xd . For
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every finite set of elements v1, . . . , vd ∈ V , we have an element X1v1+ · · ·+Xd vd ∈ V ⊗ASA. If
f is a polynomial law on V , then fv = f (X1v1+ . . .Xd vd) is an element of SA i.e. a polynomial
of variables X1, . . . ,Xn with coefficients in A. If V is a free A-module and v1, . . . , vd form a
basis of V , then the polynomial fv ∈ SA determines the polynomial law f .

A polynomial law f on V is said to be homogenous of degree n if for every A-algebra R
and element v ∈ V ⊗A R we have f (uv) = un f (v) for every u ∈ R×. If V is a free A-module
and v1, . . . , vd form a base of V , then f is homogenous of degree n if and only if fv is a
homogenous polynomial of degree n.

If V is an A-module, we denote Tn
A (V ) the nth fold tensor power V over A which is

equipped with an action of the symmetric group Sn. We denote by TSnA(V ), the nth mod-
ule of symmetric tensors of V that is the submodule of Tn

A (V ) consisting of elements fixed
under Sn, to be differentiated from SnA(V ), the nth symmetric power of V that is the largest
quotient of Tn

A (V ) on which Sn acts trivially. We have a map V → TSnV given by v &→ v⊗n.
Roby proved that if V is a free A-module, then there is a canonical bijection between the set
of homogeneous polynomial laws f of degree n and the set of homogenous polynomials h of
degree 1 on TSnA(V ) characterized by the equality f (v) = h(v⊗n). We note that Roby states
this theorem [5, Theorem IV.1] with the divided power module instead of the symmetric ten-
sor module. These modules coincide however in the case where V is a free A-module [5,
Propositions III.1, IV.5].

If moreover, V is an A-algebra, which is free as an A-module, and if f is a multiplicative
homogenous polynomial law of degree n on V i.e. if f (x y) = f (x) f (y), then the correspond-
ing degree 1 homogenous polynomial on TSnA(V ) is a homomorphism of algebras TSeA(V )→ A
[3, Proposition 2.5.1].

We now consider the group G = GLn whose Lie algebra is the space of matrices Mn which
is also equipped with a structure of an algebra. Let Tn be the diagonal torus of GLn and
tn its Lie algebra. The Weyl group W is the symmetric group Sn acting on Tn and tn by
permutation of coordinates. The commuting scheme of GLn will be denoted by Cd

n. We will
recall Deligne’s construction of a GLn-invariant map

s : Cd
n → tdn !Sn

which roughly records the joint eigenvalues of set of commuting matrices.
This map can be easily described at level of points in an algebraically closed field k. If

x = (x1, . . . , xd) ∈ Cd
n(k) are commuting matrices, we can equip the n-dimensional vector

space V = kn with a structure of a k[X1, . . . ,Xd]-module. Since V is finite dimensional, it is
supported by a finite subscheme of "d = Spec(k[X1, . . . ,Xd])

V =
!

α∈kd
Vα

where Vα is annihilated by a power of the maximal ideal defining α. We then set s(x) to be
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the degree n 0-cycle on "d
s(x) =
"

α

dim(Vα)α

being thought as a k-point of tdn !Sn. It is not clear how to generalize this cycle construction
for commuting matrices with values in an arbitrary test ring R.

Now let A be the coordinate ring of Cd
n and x = (x1, . . . , xd) ∈ Cd

n(A) the tautological
A-point of Cd

n. Let S = k[X1, . . . ,Xd] be the polynomial algebra of variables X1, . . . ,Xd . The
point x gives rise to a homomorphism of algebras

px : S ⊗k R→ gln(A⊗k R)

with px(X i) = x i for every k-algebra R. By composing with the determinant map we get a
polynomial law on S

fx : S ⊗k R→ A⊗k R
given by fx = det◦px which is homogenous of degree n and multiplicative. By Roby’s theo-
rem, this is equivalent with a homomorphism of algebras

hx : TS
n
k(S)→ A

which is a A-point of Spec(TSnk(S(V ))) = tdn ! Sn. Since det is G-invariant, hx is also G-
invariant. As a result, we obtain the spectral data map

s : TSnk(S)→ AG .

We note that this construction works without any restriction on the characteristic of the base
field k.

3 Multiplicative property of the Pfaffian

Instead of the determinant, our construction of the spectral data map for symplectic groups
relies on the Pfaffian function and its multiplicative property. The Pfaffian is a homogenous
form of degree n on the space of antisymmetric forms on k2n. Since the Pfaffian is a square-
root of the determinant one may ask the question whether it enjoys the same multiplicative
property as the determinant. A priori the question is ill-posed for the product of antisymmet-
ric matrices is not antisymmetric. We will show it is indeed possible to prove a multiplicative
property of a function closely related to the Pfaffian, see Proposition 3.1. This elementary
result seems to be new and of independent interest.

In this section, we assume that the base field k is of characteristic zero or of odd prime
characteristic. Let V be a 2n-dimensional k-vector space. A bilinear form on V is an element
of the vector space Homk(V,V ∗) which is equipped with an involution given by x &→ x∗. We
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observe that Homk(V,V ∗) is canonically isomorphic to V ∗⊗k V ∗ equipped with the involution
v∗1 ⊗ v∗2 &→ v∗2 ⊗ v∗1 . We have a decomposition into eigenspaces of this involution

V ∗ ⊗k V ∗ = S2V ∗ ⊕Λ2V ∗

where S2V ∗ corresponds to the space of symmetric bilinear forms on V and Λ2(V ∗) to the
space of alternating bilinear forms on V .

There is a canonical map
Sn(Λ2V ∗)→ Λ2nV ∗

given by the super-commutativemultiplication law in the exterior algebraΛ•V ∗ =
#2n

i=0Λ
iV ∗.

It follows that we have a degree n homogenous polynomial law

µ : Λ2V ∗→ Λ2nV ∗

which associates to an alternating form ω ∈ Λ2V ∗ the image of ωn ∈ Sn(Λ2V ∗) in the line
Λ2nV ∗. We note that ω ∈ Λ2V ∗ is a non-degenerate alternating bilinear form if and only if
µ(ω) is a non-zero vector of Λ2nV ∗. If it is the case, we will say that ω is a symplectic form.

We also note that µ is a square-root of the determinant in the following sense. A bilinear
form b on V induces a bilinear form on the determinant line Λ2nV

det(b) ∈ Homk(Λ
2nV,Λ2nV ∗) = Λ2nV ∗ ⊗Λ2nV ∗.

Then for every alternating form ω ∈ Λ2V ∗ we have the identity

det(ω) = µ(ω)⊗µ(ω). (3.1)

We will now fix a symplectic formω0 ∈ Λ2V ∗ and consider the symplectic group G = Sp2n
of all linear transformations of V that preserve ω0. The Lie algebra g of G is the subspace of
gl(V ) of matrices x ∈ gl(V ) such that

ω0(xu, v) = −ω0(u, x v)

for all vectors u, v ∈ V . This is equivalent to saying that the identity ω0x = −x∗ω0 holds in
Homk(V,V ∗). In this case we have (ω0x)∗ = −x∗ω∗0 = x∗ω0 = ω0x and therefore ω0x ∈
S2V ∗. In other words, the map x &→ ω0x induces an isomorphism of k-vector spaces g →
S2V ∗.

We will also consider the decomposition gl(V ) = g ⊕ g+ where g+ is the subspace of
matrices x ∈ End(V ) such that

ω0(xu, v) =ω0(u, x v)

for all vectors u, v ∈ V . The map x &→ ω0x induces an isomorphism of k-vector spaces
g+→ Λ2V ∗. We will define a Pfaffian norm N+ : g+→ "1 by the equality

N+(x)µ(ω0) = µ(ω0x)
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for every k-algebra R and x ∈ g+(R). Note that since µ(ω0) is a generator of the free R-
module Λ2nV ∗ ⊗k R the above equality defines N+(x) ∈ R uniquely.

Applying the identity (3.1) to xω0 ∈ Λ2V ∗, we get the equality

det(ω0x) = µ(ω0x)⊗µ(ω0x)

in the line (Λ2nV ∗)⊗2. It follows that

det(x) = N+(x)
2 (3.2)

for all x ∈ g+. Note that since this equality is valid for all x ∈ g+ ⊗k R for all k-algebra R,
det= N2

+ can be seen as an equality in the coordinate ring of g+.
As a square-root of the determinant, we may expect that the function N+ satisfies a mul-

tiplicative property as the determinant does. However, the multiplicativity does not make
sense a priori as the subspace g+ of gl(V ) is not stable under matrix multiplication. We note
that for x , y ∈ g+, x y ∈ g+ if and only if x y = y x . The multiplicicativity of the Pfaffian norm
N+ then makes sense as an identity in the coordinate ring of the commuting subscheme Cg+

of g+ × g+.

Proposition 3.1. The equality N+(x y) = N+(x)N+(y) holds in the coordinate ring of Cg+ .

Proof. This is equivalent to proving that for every point (x , y) ∈ Cg+(R) with values in an
arbitrary k-algebra R, the identity N+(x y) = N+(x)N+(y) holds in R. For this we introduce
new formal variables α,β and consider commuting elements

1+αx , 1+ β y ∈ g+(R[α,β])

with values in the polynomial ring R[α,β]. We also have

(1+αx)(1+ β y) ∈ g+(R[α,β])

because x y = y x . We now have elements Px = N+(1 + αx), Py = N+(1 + β y) and Px y =
N+((1+ αx)(1+ β y)) in R[α,β] which are polynomials with constant coefficients equal to
1. We also note that Px ∈ R[α] is a polynomial of degree at most n in α whose coefficient of
αn is N+(x), Py ∈ R[β] is a polynomial of degree at most n in β whose coefficient of βn is
N+(y), and Px y = N+((1+αx)(1+β y)) ∈ R[α,β] is a polynomial of degree at most n in both
variables α and β whose coefficient of αnβn is N+(x y). To prove N+(x y) = N+(x)N+(y), it
is enough to prove the equality of polynomials Px y = Px Py .

Since the ring of polynomials R[α,β] embeds in the ring of formal series R[[α,β]], it
is enough to prove the equality Px y = Px Py in R[[α,β]]. We note that Px , Py , Px y are now
invertible elements of R[[α,β]] which is a limit of thickenings of R. Using the fact that
the square map #m → #m is étale (here we use the assumption char(k) > 2), for every
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g ∈ R[[α,β]]× with constant coefficient g0 ∈ R×, and for every square-root f0 ∈ R× of g0,
there exists a unique f ∈ R[[α,β]]× with constant coefficient f0 such that f 2 = g.

Using the equality (3.2) we have P2
x y = P2

x P
2
y . The fact that Px , Py , Px y have constant

coefficients 1 implies now the equality Px y = Px Py as formal series, and thus as polynomials.

We observe that it is possible to prove the equality N+(x y) = N+(x)N+(y) holds for every
point Cg+ with values in a field using their simultaneous triangulation. This implies that the
equality N+(x y) = N+(x)N+(y) holds in the reduced quotient of k[Cg+]. However we do
not know whether k[Cg+] is reduced.

4 Spectral data map for symplectic groups

Let k be a field of characteristic zero, or of large prime characteristic. Let V be a 2n-
dimensional k-vector space equipped with a symplectic formω0 ∈ Λ2V ∗. The group G = Sp2n
is the subgroup of GL2n preserving ω0. The Lie algebra g = sp2n consists of elements
x ∈ gl(V ) such x∗ω0 = −ω0x . We have an orthogonal complement g+ of g in gl2n consisting
of x ∈ gl(V ) such that x∗ω0 = ω0x . We observe that if matrices x , y ∈ g are commuting
matrices then we have x y ∈ g+. We have also noted that for commuting elements x , y ∈ g+
we have x y ∈ g+. If x ∈ g and y ∈ g+ are commuting matrices then we have x y ∈ g.

Let Adenote the coordinate ring k[Cd
g ] of the commuting scheme and (x1, . . . , xd) ∈ g(A)d

the universal sequence of commuting matrices. Let S = k[X1, . . . ,Xd] be the polynomial ring
with d variables. The commutation property implies that for every k-algebra R there exists
a morphism of rings

p : S ⊗k R→ gl2n(A⊗k R)
sending X i &→ x i . For every a = (a1, . . . , ad) ∈ $d≥0 the image p(X a1

1 . . .X ad
d ) lies in g(R) or

g+(R) depending on whether a1 + · · ·+ ad is odd or even. If S+ denotes the subalgebra of S
generated by the monomials X a1

1 . . .X ad
d with a1+ · · ·+ ad even then we have p(S+) ∈ g+(R).

Let us denote p+ : S+ ⊗k R → g+(A⊗k R) the restriction of p to S+. Composing with the
Pfaffian norm N+ : g+→ "1, we have a polynomial law

N+ : S+ ⊗k R→ A⊗k R

which is homogenous of degree n and multiplicative according to Proposition 3.1. By Roby’s
theorem, this gives rise to a morphism of k-algebras

s : ((S+)⊗n)Sn → A

satisfying s(q⊗n) = N+(p+(q)) for all q ∈ S+. Since N+ is G-invariant, the induced map s is
also G-invariant, and as a result, the image of s is contained in AG .
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Let τ denote the involution of S given by τ(X i) = −X i . We note that S+ is the subalgebra
of S of fixed points of τ. As a result, ((S+)⊗n)Sn can be identified with the subalgebra of S⊗n

of fixed points under ($/2$)n ⋊Sn. This will permit us to identify ((S+)⊗n)Sn with k[td]W

via some explicit choice of the Cartan algebra. This choice will be ultimately irrelevant as we
will prove that s is an inverse to the map c that doesn’t depend on the choice of the Cartan
algebra.

Let V be now the standard 2n-dimensional vector space k2n with basis e1, . . . , e2n andω0
the standard symplectic form given by

ω0(ei , e j) =





0 if i + j ∕= 2n+ 1

1 if i + j = 2n+ 1, i ≤ n

−1 if i + j = 2n+ 1, i ≥ n+ 1

The subspace t of diagonal matrices of the form diag(b1, . . . , bn,−bn, . . . ,−b1) will then be a
Cartan algebra of g equipped with the obvious action of W = {±1}n ⋊Sn. The coordinate
ring of t is then the polynomial ring k[b1, . . . , bn] where the bi are the coordinates given by
entries of the diagonal matrix as above. Let B = k[td] denote the coordinate ring of td and
(y1, . . . , yd) ∈ td(B) the tautological B-point of td . We consider the elements b j(yi) ∈ B with
1≤ i ≤ d and 1≤ j ≤ n and the isomorphism of algebras β : S⊗n→ B given by

β(X j,i) = b j(yi) (4.1)

where X j,1, . . . ,X j,d are the coordinates of the jth copy of S. By restriction we have an iso-
morphism of algebras

β : ((S+)⊗n)Sn = (S⊗n)(!/2!)
n⋊Sn → k[td]W .

It follows that we have a morphism of algebras

s : k[td]W → k[Cd
g ]

G (4.2)

such that
s(β(q⊗n)) = N+(p

+(q)) (4.3)

for all q ∈ S+. It remains to prove that the spectral data map s is inverse to the Chevalley
restriction.

Theorem 4.1. The map c : k[Cd
g ]

G → k[td]W is an isomorphism with the inverse given by the
spectral data map s : k[td]W → k[Cd

g ]
G of (4.2).

We need to show that the compositions c ◦ s and s ◦ c are equal to the identities. To this
end, we introduce a set of generators each for the rings k[td]W and k[Cd

g ]
G and then we
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check the desired property on those generators. Following Procesi as in [4] these functions
are constructed as certain traces. We only use the assumption that k is of characteristic zero
or of prime characteristic large enough to prove that these trace functions form a system
of generators. We record this fact to facilitate the work of those who may want make the
assumption on the characteristic explicit.

For every a = (a1, . . . , ad) ∈ $d≥0, we define the element φa ∈ A given by

φa = tr(xa11 · · · xadd ) (4.4)

where (x1, . . . , xd) ∈ Cd
g (A) is the universal point of the commuting scheme. Since the trace

is G-invariant, we have φa ∈ AG . We note that if a1 + · · ·+ ad is odd then xa11 · · · xadd ∈ g(A)
and if a1 + · · ·+ ad is even then xa11 · · · xadd ∈ g+(A). It follows that φa = 0 if a1 + · · ·+ ad is
odd. For this reason we will only consider the functions φa with a1 + · · ·+ ad even.

Proposition 4.2. The functions φa with a ∈ $d≥0 form a set of generators of k[Cd
g ]

G .

Proof. The first statement is consequence of a result of Procesi [4, Theorem 10.1]. Procesi
describes a set of functions on gl(V )d that are invariant under the diagonal action of the
symplectic group G and generates the ring k[gl(V )d]G . Since Cd

g is clearly a closed subscheme

of gl(V )d , the restriction map k[gl(V )d]G → k[Cd
g ]

G is surjective (this is true in characteristic
zero because G is linearly reductive, and therefore it is also true for prime characteristic large
enough). It follows that the restrictions of Procesi’s functions form a set of generators of
k[Cd

g ]
G . Using the fact that x1, . . . , xd are commuting elements of the symplectic Lie algebra,

it is easy to see that Procesi’s functions restrict to our functions φa.

Proposition 4.3. If ψa = c(φa) then the functions ψa generate k[td]W and we have

s(ψa) = φa.

Proof. Let B = k[td] denote the coordinate ring of td and (y1, . . . , yd) ∈ td(B) the tautological
B-point of td . We have observed that B is a polynomial algebra of the variables b j(yi) for
1≤ i ≤ d and 1≤ j ≤ n. By computing the trace of the matrix ya11 · · · yadd we get

ψa =

(
0 if a1 + · · ·+ ad is odd,

2
)n

j=1

*d
i=1 b j(yi)

ai if a1 + · · ·+ ad is even.
(4.5)

We derive from these explicit formulas that the functions ψa for a ∈ $d≥0 with a1 + · · ·+ ad
even generate BW . Here we need to assume the characteristic of k is either zero or no less
than 2n in order to perform usual manipulations with symmetric polynomials.
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In order to prove the equality s(ψa) = φa for a ∈ $d≥0 with a1 + · · · + ad even, we will
calculate the determinant of the element

p+(θa) = t · id− xa11 · · · xadd ∈ g+(A⊗k R)

where θa = t − X a1
1 · · ·X ad

d ∈ R⊗k S+ with the test ring R= k[t] being the algebra of polyno-
mials in one variable t.

On the one hand, with the usual formula for the characteristic polynomial we have

det(p+(θa)) = t2n −φa t
2n−1 + terms of lower degrees in t

On the other hand after (3.2) we have det(p+(θa)) = N+(θa)2 where N+(θa) = s(β(θ⊗na ))
by (4.3). Using the identification (4.1), the image of the element θ⊗na ∈ R⊗k S⊗n in R⊗ B is
given by the formula

β(θ⊗na ) =
n+

j=1

(t −
d+

i=1

b j(yi)
ai )

= tn −
n"

j=1

d+

i=1

b j(yi)
ai tn−1 + terms of lower degrees in t

It follows that

det(p+(θa)) = t2n − s(ψa) t
2n−1 + terms of lower degrees in t

Comparing the coefficient of t2n−1 in the two polynomial expressions of det(p+(θa)) ∈ A[t]
we derive the desired equality s(ψa) = φa.

To finish the proof of Theorem 4.1 we observe that the propositions above imply that the
compositions c◦s and c◦s are equal to the identities on the generatorsψa andφa respectively.
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