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Abstract

We prove the Chevalley restriction theorem for the commuting scheme of symplec-
tic Lie algebras. The key step is the construction of the inverse map of the Chevalley
restriction map called the spectral data map. Along the way, we establish a certain mul-
tiplicative property of the Pfaffian which is of independent interest.

1 The Chevalley restriction theorem for commuting schemes

Let k be a field of characteristic zero, or of large prime characteristic. Let G be a reductive
group over k, g its Lie algebra. For every d € N, we consider the commuting scheme Qg
consisting of elements (x,...,x;) € g such that [xi,x;]=0forall i,j € {1,...,d}. The
commuting scheme has always been of some interest in invariant theory but it is only recent
that it appears as a primordial object in the study of moduli space of Higgs bundles for higher
dimensional varieties. It is also poorly understood. For d = 2, Richardson proved that the
open subscheme of (’%“S defined by the condition that x;, x, are regular and semi-simple is

a dense and smooth irreducible variety. Although the reducedness of Cé has the status of a
folklore conjecture, there is little evidence to expect Qig to be reduced in general. For d > 3,
63 is in general reducible, and components other than the closure of the regular semisimple

open subscheme of (’,‘ﬁ are unlikely to be reduced.
In this paper, we are more concerned with the categorical quotient

Qig /G= Spec(k[cg]G)

where k[@g]G is the ring of G-invariant functions on Qfg. We note that G acts on g by the
adjoint action, and hence on g? by the diagonal adjoint action. This action leaves the com-
muting subscheme Qg stable and we are interested in generalizing the Chevalley restriction
theorem asserting a description of the categorical quotient Qig // G in terms of a Cartan subal-
gebra t of g equipped with an action of the Weyl group W. Let T denote a maximal torus of
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G, t its Lie algebra. The Weyl group W = N;(T)/T acts on T and t. The embedding ¢! — g¢
factors through the commuting variety Cg and it induces a homomorphism of algebras

c: k[cg]G — k[t4]W

because the restriction of a G-invariant function to t? is obviously W-invariant. We conjecture
that c is always an isomorphism. Any instance of this conjecture will be called an instance of
the Chevalley restriction theorem for commuting schemes. The classical Chevalley restriction
theorem corresponds to the case d = 1. Note that, since t¢ / W is known to be normal and
reduced, the conjecture will imply (’Zﬁ // G is normal and reduced.

For G = GL,, this conjecture was proved by Vaccarino in [6] (not being aware of Vac-
carino’s result, we also reprove it in [1]). Vaccarino’s proof in the case G = GL,, relies on the
construction of a map in the opposite direction, to be called the spectral data map

s k[t - k[eg]G

which is due to Deligne in the case G = GL,,. Once the spectral data map is constructed, to
prove the Chevalley restriction theorem for commuting schemes it is enough to prove that
soc and c os are identities. For this, one can use a a result of Procesi in [4] which provides
a system of generators of the ring k[g?]°.

In this paper we will prove the Chevalley restriction theorem for the commuting scheme
of the symplectic Lie algebras following the same line of thought. The main novelty is the
construction of the spectral data map for G = Sp,,,. One should note that for general reduc-
tive groups, even in the case d = 1, we don’t know to construct this map without assuming
first the Chevalley restriction theorem. For symplectic groups, a key ingredient in our con-
struction is a certain multiplicative property of the Pfaffian, see Proposition 3.1. This is an
elementary fact of linear algebra which seems to be new and of independent interest.

2 Deligne’s construction

We will first recall Deligne’s beautiful construction of the spectral data map for GL,, in [2,
Section 6.3.1]. As a preparation, we will first recall Roby’s concept of polynomial laws which
will provide a convenient language for Deligne’s construction (see [5] and also [3]).

Let A be a commutative ring. For every A-module V, we will denote V, the functor R —
V ®,4 R from the category of A-algebras to the category of sets. If V and N are A-modules,
we will denote by P(V,N) the set of morphisms of functors f : V4, — N,. In case N is not
explicitly mentioned, we will understand that N = A, i.e., P(V) = P(V,A) and call P(V) the
set of polynomial laws on V.

The connection between polynomial laws and usual polynomials can be explained as
follows. Let S, = A[X,...,X4] be the polynomial algebra with free variables X1,...,X . For
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every finite set of elements v,,...,v; € V, we have an element X;v; +- -+ X v4 € V®,S,. If
f is a polynomial law on V, then f, = f(X;v;+...X4v4) is an element of S, i.e. a polynomial
of variables X,...,X, with coefficients in A. If V is a free A-module and v;,...,v4 form a
basis of V, then the polynomial f, € S, determines the polynomial law f.

A polynomial law f on V is said to be homogenous of degree n if for every A-algebra R
and element v € V ®4 R we have f (uv) = u"f(v) for every u € R*. If V is a free A-module
and vq,...,v4 form a base of V, then f is homogenous of degree n if and only if f, is a
homogenous polynomial of degree n. -

If V is an A-module, we denote T, (V) the nth fold tensor power V over A which is
equipped with an action of the symmetric group &,,. We denote by TS}(V), the nth mod-
ule of symmetric tensors of V that is the submodule of T, (V') consisting of elements fixed
under &,,, to be differentiated from S} (V), the nth symmetric power of V that is the largest
quotient of T}(V) on which &, acts trivially. We have a map V — TS"V given by v — v®".
Roby proved that if V is a free A-module, then there is a canonical bijection between the set
of homogeneous polynomial laws f of degree n and the set of homogenous polynomials h of
degree 1 on TS}(V) characterized by the equality f(v) = h(v®"). We note that Roby states
this theorem [5, Theorem IV.1] with the divided power module instead of the symmetric ten-
sor module. These modules coincide however in the case where V is a free A-module [5,
Propositions III.1, IV.5].

If moreover, V is an A-algebra, which is free as an A-module, and if f is a multiplicative
homogenous polynomial law of degree non V i.e. if f (xy) = f (x)f (), then the correspond-
ing degree 1 homogenous polynomial on TS}(V) is a homomorphism of algebras TS}(V) — A
[3, Proposition 2.5.1].

We now consider the group G = GL,, whose Lie algebra is the space of matrices M,, which
is also equipped with a structure of an algebra. Let T, be the diagonal torus of GL, and
t, its Lie algebra. The Weyl group W is the symmetric group &,, acting on T, and t, by
permutation of coordinates. The commuting scheme of GL, will be denoted by @ﬁ. We will
recall Deligne’s construction of a GL,,-invariant map

s:¢d e,

which roughly records the joint eigenvalues of set of commuting matrices.

This map can be easily described at level of points in an algebraically closed field k. If
x = (X1,...,X%q) € Qig(k) are commuting matrices, we can equip the n-dimensional vector
space V = k" with a structure of a k[X;,...,X ]-module. Since V is finite dimensional, it is
supported by a finite subscheme of A? = Spec(k[X1,...,X;])

v=EEv,

aekd

where V, is annihilated by a power of the maximal ideal defining a. We then set s(x) to be
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the degree n 0-cycle on A4

s(x) = Y dim(V,)a

being thought as a k-point of tg /| &,. Itis not clear how to generalize this cycle construction
for commuting matrices with values in an arbitrary test ring R.

Now let A be the coordinate ring of Qig and x = (xq,...,X4) € Cg(A) the tautological
A-point of Qg. Let S = k[X4,...,X4] be the polynomial algebra of variables X1, ...,X,. The
point x gives rise to a homomorphism of algebras

Px :S®R—gl,(A®R)

with p,(X;) = x; for every k-algebra R. By composing with the determinant map we get a
polynomial law on S
f£25®kR—>A®kR

given by f, = detop, which is homogenous of degree n and multiplicative. By Roby’s theo-
rem, this is equivalent with a homomorphism of algebras

hy s TSH(S) = A

which is a A-point of Spec(TS}(S(V))) = tg / &,. Since det is G-invariant, h, is also G-
invariant. As a result, we obtain the spectral data map

s : TSH(S) — A°.

We note that this construction works without any restriction on the characteristic of the base
field k.

3 Multiplicative property of the Pfaffian

Instead of the determinant, our construction of the spectral data map for symplectic groups
relies on the Pfaffian function and its multiplicative property. The Pfaffian is a homogenous
form of degree n on the space of antisymmetric forms on k?*. Since the Pfaffian is a square-
root of the determinant one may ask the question whether it enjoys the same multiplicative
property as the determinant. A priori the question is ill-posed for the product of antisymmet-
ric matrices is not antisymmetric. We will show it is indeed possible to prove a multiplicative
property of a function closely related to the Pfaffian, see Proposition 3.1. This elementary
result seems to be new and of independent interest.

In this section, we assume that the base field k is of characteristic zero or of odd prime
characteristic. Let V be a 2n-dimensional k-vector space. A bilinear form on V is an element
of the vector space Hom,(V, V*) which is equipped with an involution given by x — x*. We
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observe that Hom; (V, V*) is canonically isomorphic to V*®, V* equipped with the involution
vi ®v; — v; ®v]. We have a decomposition into eigenspaces of this involution

Vi@, V* =82Vt @ A2V*

where S2V* corresponds to the space of symmetric bilinear forms on V and A%(V*) to the
space of alternating bilinear forms on V.
There is a canonical map
Sn(AZV*) N AZnV*
given by the super-commutative multiplication law in the exterior algebra A*V* = 1.220 AV,
It follows that we have a degree n homogenous polynomial law

W A2VF — A2VF

which associates to an alternating form w € A?V* the image of w" € S*(A%2V*) in the line
A?"V*, We note that w € A%V* is a non-degenerate alternating bilinear form if and only if
u(ew) is a non-zero vector of A2"V*, If it is the case, we will say that w is a symplectic form.

We also note that u is a square-root of the determinant in the following sense. A bilinear
form b on V induces a bilinear form on the determinant line A%"V

det(b) € Hom (A%"V, A2"V*) = A2"V* @ A2V,
Then for every alternating form w € A2V* we have the identity
det(w) = u(w) ® u(w). 3.1

We will now fix a symplectic form w, € A2V* and consider the symplectic group G = Sp,,,
of all linear transformations of V that preserve w,. The Lie algebra g of G is the subspace of
gl(V) of matrices x € gl(V) such that

wO(qu V) = _COO(U, XV)

for all vectors u, v € V. This is equivalent to saying that the identity wyx = —x*wg holds in
Hom, (V,V*). In this case we have (wox)* = —x*wj = x*wg = wyx and therefore wyx €
S2V*. In other words, the map x — wyx induces an isomorphism of k-vector spaces g —
S2v*.

We will also consider the decomposition gl(V) = g @ g© where g* is the subspace of
matrices x € End(V) such that

wolxu, v) = wo(u, xv)

for all vectors u,v € V. The map x — wgx induces an isomorphism of k-vector spaces
g™ — A2V*. We will define a Pfaffian norm N : g* — A! by the equality

N, (0)u(wo) = ul(wox)
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for every k-algebra R and x € g™ (R). Note that since u(w,) is a generator of the free R-
module A%"V* ®, R the above equality defines N_.(x) € R uniquely.
Applying the identity (3.1) to xw, € A2V*, we get the equality

det(wgx) = u(wox) ® u(wex)
in the line (A2"V*)®2. It follows that
det(x) = N+(x)2 (3.2)

for all x € g*. Note that since this equality is valid for all x € g™ ®, R for all k-algebra R,
det= Ni can be seen as an equality in the coordinate ring of g*.

As a square-root of the determinant, we may expect that the function N, satisfies a mul-
tiplicative property as the determinant does. However, the multiplicativity does not make
sense a priori as the subspace g* of gl(V) is not stable under matrix multiplication. We note
that for x, y € g*, xy € g* if and only if xy = yx. The multiplicicativity of the Pfaffian norm
N, then makes sense as an identity in the coordinate ring of the commuting subscheme €+
of gt x g*.

Proposition 3.1. The equality N, (xy) = N, (x)N,(y) holds in the coordinate ring of €.

Proof. This is equivalent to proving that for every point (x,y) € €+ (R) with values in an
arbitrary k-algebra R, the identity N, (xy) = N, (x)N_,(y) holds in R. For this we introduce
new formal variables a, # and consider commuting elements

l1+ax,1+By €g"(Rla, f])
with values in the polynomial ring R[a, ]. We also have

(1+ax)(1+By)€g(Rla, B])

because xy = yx. We now have elements P, = N,(1+ ax),P, =N,.(1+ By) and P,, =
N,((1 + ax)(1+ By)) in R[a, B] which are polynomials with constant coefficients equal to
1. We also note that P, € R[a] is a polynomial of degree at most n in a whose coefficient of
a™ is N, (x), P, € R[] is a polynomial of degree at most n in 3 whose coefficient of " is
N, (¥), and P,, =N, ((1+ax)(1+py)) €R[a, 3]is a polynomial of degree at most n in both
variables a and 8 whose coefficient of a"3" is N, (xy). To prove N (xy) = N (x)N,(y), it
is enough to prove the equality of polynomials P, = P, P, .

Since the ring of polynomials R[a, 8] embeds in the ring of formal series R[[a, B]], it
is enough to prove the equality P, = P, P, in R[[a, 8]]. We note that P,,P,, P,, are now
invertible elements of R[[a, $]] which is a limit of thickenings of R. Using the fact that
the square map G,, — G,, is étale (here we use the assumption char(k) > 2), for every
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g € R[[a, B]]* with constant coefficient g, € R*, and for every square-root f, € R* of g,

there exists a unique f € R[[a, 8]]* with constant coefficient f, such that f2 = g.
Using the equality (3.2) we have Pfy = pr}%. The fact that P,, Py, P, have constant
coefficients 1 implies now the equality P,, = P, P, as formal series, and thus as polynomials.
O

We observe that it is possible to prove the equality N (xy) = N, (x)N_(y) holds for every
point €+ with values in a field using their simultaneous triangulation. This implies that the
equality N, (xy) = N, (x)N,(y) holds in the reduced quotient of k[ . ]. However we do
not know whether k[ €. ] is reduced.

4 Spectral data map for symplectic groups

Let k be a field of characteristic zero, or of large prime characteristic. Let V be a 2n-
dimensional k-vector space equipped with a symplectic form w, € A2V*. The group G = Sp,,
is the subgroup of GL,, preserving w,. The Lie algebra g = sp,, consists of elements
x € gl(V) such x*w, = —wyx. We have an orthogonal complement g* of g in gl,, consisting
of x € gl(V) such that x*wy, = wyx. We observe that if matrices x,y € g are commuting
matrices then we have xy € g*. We have also noted that for commuting elements x,y € g*
we have xy € g*. If x € g and y € g* are commuting matrices then we have xy € g.

Let A denote the coordinate ring k[@g] of the commuting scheme and (x1, ..., x4) € g(A)?
the universal sequence of commuting matrices. Let S = k[X;,...,X ] be the polynomial ring
with d variables. The commutation property implies that for every k-algebra R there exists
a morphism of rings

p:S®R— gl (A®R)

sending X; — x;. For every a = (a;,...,a4) € Zdzo the image p(Xil1 ...Xsd) lies in g(R) or
g*(R) depending on whether a; +--- + a4 is odd or even. If ST denotes the subalgebra of S
generated by the monomials X, ... X5’ with a; + -+ + a4 even then we have p(S*) € g*(R).
Let us denote p* : St ®, R — g*(A ®; R) the restriction of p to S*. Composing with the
Pfaffian norm N, : g* — A!, we have a polynomial law

N,:S*® R—A®R

which is homogenous of degree n and multiplicative according to Proposition 3.1. By Roby’s
theorem, this gives rise to a morphism of k-algebras

5:((8T)*M% —A

satisfying s(¢®") = N,(p™(q)) for all ¢ € S*. Since N, is G-invariant, the induced map s is
also G-invariant, and as a result, the image of s is contained in A®.
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Let T denote the involution of S given by 7(X;) = —X;. We note that S™ is the subalgebra
of S of fixed points of T. As a result, ((ST)®")®» can be identified with the subalgebra of S$®"
of fixed points under (Z/2Z)" x &,,. This will permit us to identify ((S*)®")®» with k[t¢]"
via some explicit choice of the Cartan algebra. This choice will be ultimately irrelevant as we
will prove that s is an inverse to the map ¢ that doesn’t depend on the choice of the Cartan
algebra.

Let V be now the standard 2n-dimensional vector space k2" with basis ey, . .., e,, and wq
the standard symplectic form given by

0 ifi+j#2n+1
wole,e))=41 ifi+j=2n+1,i<n
-1 ifi+j=2n+1,i=n+1
The subspace t of diagonal matrices of the form diag(b,, ..., b,,—b,,...,—b;) will then be a
Cartan algebra of g equipped with the obvious action of W = {£1}" X &,,. The coordinate
ring of t is then the polynomial ring k[ b4, ..., b, ] where the b; are the coordinates given by
entries of the diagonal matrix as above. Let B = k[t?] denote the coordinate ring of ¢ and

(Y1, ---,¥4) € t4(B) the tautological B-point of tZ. We consider the elements b i(¥i) € B with
1<i<dand1<j<nand the isomorphism of algebras 3 : S®" — B given by

BX;:)=b;(y:) (4.1)

where X ,,...,X; 4 are the coordinates of the jth copy of S. By restriction we have an iso-
morphism of algebras

ﬁ . ((S+)®n)6n — (S@n)(Z/ZZ)”mG,I - k[td]W.
It follows that we have a morphism of algebras
s k[¢']Y — k[ed]° (4.2)

such that

s(B(@®M) =N,(p" () (4.3)

for all g € S*. It remains to prove that the spectral data map s is inverse to the Chevalley
restriction.

Theorem 4.1. The map c : k[@g]G — k[t41" is an isomorphism with the inverse given by the
spectral data map s : k[t1]V — k[@g]G of (4.2).

We need to show that the compositions c o s and s o ¢ are equal to the identities. To this
end, we introduce a set of generators each for the rings k[t]" and k[@g]G and then we
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check the desired property on those generators. Following Procesi as in [4] these functions
are constructed as certain traces. We only use the assumption that k is of characteristic zero
or of prime characteristic large enough to prove that these trace functions form a system
of generators. We record this fact to facilitate the work of those who may want make the
assumption on the characteristic explicit.

For every a = (a,...,aq) € Z>0, we define the element ¢, € A given by

Pg = tr(x] - xy) (4.4)

where (xq,...,X4) € @g (A) is the universal point of the commuting scheme. Since the trace
is G-invariant, we have ¢, € A°. We note that if a; + -+ + a4 is odd then x| ---xg" € g(A)
and if a; +--- + a4 is even then x|’ -'-xgd € g (A). It follows that ¢, = 0 if a; +--- +aq is
odd. For this reason we will only consider the functions ¢, with a; +--- + a4 even.

Proposition 4.2. The functions ¢, with a € Zd Soform a set of generators of k[@d]G

Proof. The first statement is consequence of a result of Procesi [4, Theorem 10.1]. Procesi
describes a set of functions on gl(V)? that are invariant under the diagonal action of the
symplectic group G and generates the ring k[gl(V)?]¢. Since Cg is clearly a closed subscheme
of gl(V)?, the restriction map k[gl(V)4]¢ — k[@g]G is surjective (this is true in characteristic
zero because G is linearly reductive, and therefore it is also true for prime characteristic large
enough). It follows that the restrictions of Procesi’s functions form a set of generators of
k[Cg ]6. Using the fact that x;,..., x; are commuting elements of the symplectic Lie algebra,
it is easy to see that Procesi’s functions restrict to our functions ¢,. d

Proposition 4.3. If ¢, = c(¢,) then the functions 1, generate k[t41" and we have
s(Pq) = ¢q

Proof. Let B = k[t?] denote the coordinate ring of t¢ and (y1, ..., y4) € t(B) the tautological
B-point of ¢. We have observed that B is a polynomial algebra of the variables b;(y;) for
1<i<dand1<j<n.Bycomputing the trace of the matrix yil to.. ygd we get

Yo = (4.5)

0 if a; +-+-+ay is odd,
221 11—11 1 ](yl ifa; +---+ay is even.

We derive from these explicit formulas that the functions 1, for a € Zd>0 with a; +--- + a4

even generate B . Here we need to assume the characteristic of k is either zero or no less
than 2n in order to perform usual manipulations with symmetric polynomials.
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In order to prove the equality s(),) = ¢, for a € Zdzo with a; + -+ + a4 even, we will
calculate the determinant of the element

pr(0) =t-id—x)"---x3" € g"(A®R)

where 6, =t —X‘fl - -Xsd € R®; ST with the test ring R = k[ t] being the algebra of polyno-
mials in one variable t.
On the one hand, with the usual formula for the characteristic polynomial we have

det(p*(6,)) = £ — $a t2"~! + terms of lower degrees in t

On the other hand after (3.2) we have det(p*(6,)) = NJF(QQ)Z where N,.(6,) = s(B(62™)
by (4.3). Using the identification (4.1), the image of the element 6" € R®; S®" in R® B is
given by the formula -

n d
peogmy = [ =] [b;00%
j=1 i=1

n d

= t"— Z l—[ b;(y;)™ t""1 + terms of lower degrees in t

j=1i=1
It follows that

det(p*(6,)) = ¢2n —s(2q) t2"~1 + terms of lower degrees in t

Comparing the coefficient of t2"~! in the two polynomial expressions of det(p“L(Gg )) € A[t]
we derive the desired equality s(1),) = @4 d

To finish the proof of Theorem 4.1 we observe that the propositions above imply that the
compositions cos and cos are equal to the identities on the generators 1, and ¢, respectively.
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