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Abstract

Exploring dense connectivity of convolutional operators
establishes critical “synapses” to communicate feature vec-
tors from different levels and enriches the set of transfor-
mations on Computer Vision applications. Yet, even with
heavy-machinery approaches such as Neural Architecture
Search (NAS), discovering effective connectivity patterns
requires tremendous efforts due to either constrained con-
nectivity design space or a sub-optimal exploration process
induced by an unconstrained search space. In this paper,
we propose CSCO, a novel paradigm that fabricates ef-
fective connectivity of convolutional operators with mini-
mal utilization of existing design motifs and further utilizes
the discovered wiring to construct high-performing Con-
vNets. CSCO guides the exploration via a neural predictor
as a surrogate of the ground-truth performance. We intro-
duce Graph Isomorphism as data augmentation to improve
sample efficiency and propose a Metropolis-Hastings Evo-
lutionary Search (MH-ES) to evade locally optimal archi-
tectures and advance search quality. Results on ImageNet
show ~ 0.6% performance improvement over hand-crafted
and NAS-crafted dense connectivity. Our code is publicly
available here.

1. Introduction

The fundamental success of Convolutional Neural Net-
work (CNN) on Computer Vision lies in the effective
wiring pattern, represented by dense connectivity within
convolutional layers [20, 21] and atomic-level neurons [2].
Throughout neural synapses, a convolution operator, as an
elementary atomic building operator, establishes receptive
fields to extract spatial-local information in 2D images.
However, from classic CNNs [16, 25, 38] to modernized
CNNs driven by Neural Architecture Search (NAS) [40,

41], the construction of CNNs mainly innovates an effec-
tive building block composed of a combination of building
operators and directly stacks a few copies of these operators
to construct the overall architecture. On images, most CNN
designs are constrained to a chain-like structure without del-
icate consideration of building block connectivity. On the
one hand, hardware is designed to handle better chain-like
architectures such as MobileNets [18, 19, 37]. On the other
hand, chain-like CNN architectures are easier to study, re-
quiring less extensive efforts to fully explore, thus yielding
a better rate of improvement (ROI) in research and devel-
opment on vision benchmarks. The limitations in the afore-
mentioned chain-like designs may prevent the discovery of
effective inter-block synapses that enhance feature interac-
tion in different positions of CNN architectures.

As aresult, more recent works start to scratch the surface
of dense connectivity by constructing a graph representa-
tion of the network design space [29, 33, 45, 52]. These
works explicitly seek a building cell with searchable wiring
of building operators via Directed Acyclic Graphs (DAGs)
as the design motif for CNN architectures. Various search
strategies are implemented to achieve a good architec-
ture outcome, such as differentiable-based search [27, 29],
Bayesian Optimization [24, 44], and local search [6, 43].
However, these methods employ brutal-force optimization
algorithms such as differentiable-based search [22, 29],
reinforcement-learning [33, 52] without any topology con-
sideration when seeking the optimal wiring of building op-
erators. Despite the remarkable success, existing methods
may have the following challenges: (1) The constrained de-
sign space does not support the dense connectivity of ver-
satile building operators that integrate feature vectors from
all building cell levels without limitations. (2) With uncon-
strained dense connectivity, exploring such design space is
difficult without topological information in the graph rep-
resentation of building cells, such as isomorphism in adja-
cency matrices and locality contained with similar graphs.
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In this paper, we tackle the above challenges by propos-
ing a new paradigm, CSCO (Connectivity Search of
Convolutional Operators), that enables the delicate explo-
ration of the structural wiring within building cells for CNN
architectures. CSCO establishes a hierarchical structure of
CNN architectures via a meta-graph comprising several Di-
rected Acyclic Graphs (DAGs). Each DAG represents a
building cell in each hierarchy. Within each building cell,
CSCO integrates a structural design space with versatile
building operators (e.g., convolution, depthwise convolu-
tion) with varying transformation capacities of input fea-
tures, allowing dense connectivity searches. The combi-
nation of dense edge connectivity and versatile heteroge-
neous operators we employ can craft various design mo-
tifs. For example, depthwise separable convolution [19],
Inverted Bottleneck [37], Inception-like [39], and Con-
densenets [21], etc. This covers most design motifs from
hand-crafted CNN design principles and more recent block-
based search spaces in NAS (e.g., ProxylessNAS [1], Mo-
bileNetV3 [18] etc.), providing more opportunities to ob-
tain top-performing CNN architectures with minimal design
space constraints and priors.

Intuited by predictor-based NAS [10, 42] that accu-
rately models the design space via a surrogate model of
the ground-truth performance, we follow this principle and
address two key factors to demystify search on dense con-
nectivity. First, we propose Graph Isomorphism to enrich
architecture-performance pairs during the sampling phase
of predictor-based NAS, enhancing the quality of perfor-
mance prediction with improved sample efficiency. As
a result, Graph Isomorphism advances prediction reliabil-
ity in dense connectivity design space with large cardinal-
ity. Second, we propose Metropolis-Hastings Evolutionary
Search (MH-ES), which evades local optimal solutions dur-
ing search space exploration. This allows us to approach
a better region of the dense connectivity design space and
discover better building cells for CNNs.

CSCO improves both the evaluation strategy (i.e., the
quality and reliability of prediction) and the search strategy
(i.e., the quality of top-performing architectures discovered)
in predictor-based NAS. As a result, CSCO discovers good
CNN architectures that achieve impressive empirical results
over existing hand-crafted and NAS-crafted connectivity on
ImageNet. We summarize our contributions as follows:

* We propose a new paradigm, CSCO, to automatically ex-
plore dense connectivity within building cells to fabri-
cate CNN architectures. CSCO supports dense connectiv-
ity search on structural wiring of versatile convolutional
building operators to seek the optimal CNN architecture.

* We pioneer using predictor-based NAS in dense connec-
tivity search and demonstrate two essential techniques
that advance search quality and efficiency. Specifically,
we propose Graph Isomorphism to improve sample ef-

ficiency and introduce Metropolis-Hastings Evolutionary
Search (MH-ES) to improve search quality.

* We thoroughly evaluate each component of CSCO and
demonstrate 0.6% accuracy gain over existing NAS-
crafted dense connectivity CNN architectures under mo-
bile computation regimes.

2. Related Work

Dense Connectivity of Convolutional Neural Networks.
Existing NAS methods emphasize cell design on a graph de-
sign space [29, 33]; these methods are primarily topology-
agnostic. For example, DARTS implies addressing the bi-
level optimization problem without considering any graph
information (e.g., graph adjacency and graph isomorphism).
More recent works [3, 11, 45, 51] manage to incorporate
topological information into search space design and im-
prove the flexibility of crafted CNN architectures. Yet, they
still focus on a constrained search space emphasizing ei-
ther a single-cell design (i.e., normal cell and./or reduction
cell) or macro-level connections between building cells with
constraints and limitations. Another line of research takes
advantage of network generators [36, 47, 48] to obtain the
best cluster of CNN architectures. Yet, these methods em-
phasize discovering the top-performing local regions of the
search space and may miss the opportunity to discover an
individual architecture with a globally optimal solution.
Predictor-based NAS. Neural predictors [42] are potent
tools to map candidate architectures to their performance
in a search space. Predictor-based NAS has two significant
phases: (1) train an accuracy predictor based on exploitable
architecture-performance samples collected from a search
space, and (2) utilize the accuracy predictor to probe the
whole search space and obtain the top-performing archi-
tectures. Existing works enhance predictor-based NAS in
sample-efficiency [10, 30], quality of prediction [4], and
better regions of the search space [46]. Yet, these works
focus on a constrained block-based search space without
considering topology, making them unsuitable for explor-
ing cell structures for better sample efficiency. In ad-
dition, existing approaches mostly employ Evolutionary
Search [5, 34, 35] as the backbone methodology to obtain
top-performing architectures on neural predictors, gradually
approaching a narrower local region of the dense connectiv-
ity design space and ending up with locally optimal archi-
tectures.

3. Dense Connectivity Design Space

CNN architectures comprise a series of building cells that
transform input features into learned representations. For
input features with varying properties (e.g., different spa-
tial sizes), CNN architectures employ stage to represent the
building cells with identical input sizes and repeat building
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Figure 1. Overview of dense connectivity design space.

cells to build deeper architectures. Our dense connectivity
design space delicately seeks the wiring of versatile convo-
lutional operators in a building cell. Figure 1 demonstrates
an overview of our dense connectivity design space. We
utilize existing positional settings (i.e., x D, C denotes D
copies of DAG with C' base channels) and delicately seek
the edge connections that wire versatile building operators
independently for all building cells. We first discuss the
graph representation of CNN architectures in dense con-
nectivity design space and then discuss versatile building
operators.

3.1. Graph Representation of CNN

Given a CNN architecture with K stages, we specify in-
dependent Directed Acyclic Graphs (DAG) for each hierar-
chical level of input features to represent the dense connec-
tivity of building versatile operators. A DAG is a building
cell with multiple CNN layers and identical spatial feature
sizes (i.e., image height and width). Each DAG G*) =
(V) £(,)) contains N vertices and [N - (N — 1)/2] edges
with total capacity for dense connectivity search. Among N
vertices, vertex 0 is defined as the input vertex that receives
an output from the previous building cell, and vertex N is
the output vertex that sends an output to a succeeding build-
ing cell. We define vertex 1 ~ N — 1 as intermediate ver-
tices. Each intermediate vertex takes input features X from
an arbitrary number of preceding vertices and produces an
output Y via an assigned building operator op. More specif-
ically, each intermediate vertex v can make a connection to
any preceding vertex ug, ..., 4z, concatenates all these in-
puts, and use the assigned building operator op to produce
output representations as follows:

Y, = opy[Concat( Xy, Xugy ooy Xuag )]s (1

Concat denotes the feature concatenation in the channel
dimension, and M denotes the number of connections that
vertex v makes to preceding vertices.

The output vertex collects the output representations
from each leaf vertex in DAG and concatenates them as an
output to the succeeding building cells as follows:

Yn = C’oncat({Ym |dout (Z) = 0})7 ()

where d,,+(-) denotes the out degree of a vertex. A
meta-graph G = (GM,...¢F)) = (V,E) com-
poses K DAGs to build the overall CNN architec-
ture that processes input features of different hierar-
chies. We construct each candidate architecture A by a
function of vertices and edge connections on the meta-
graph (i.e., the union of all independent DAGs): A =
fm.ch(f)(l), LG VE) E@EE) gD O}J(K)). In
dense connectivity design space, we assign each vertex an
atomic convolutional operator from a set of versatile build-
ing operators and seek the best connectivity by optimizing
edge connectivity E* as follows:

g*(K); o‘p(l), L o’p(K))),

arg max_ Perf(faren (W, ., 0D gx()
excE
3)
where Perf(-) denotes the performance metric, and
faren transforms a meta-graph representation to a concrete
CNN architecture. Given a meta-graph with K indepen-
dent DAGs (e.g., K stages) and N vertices each, a dense
connectivity design space optimizes O(K - N?) dense edge
connections to seek the optimal architecture and contains a
much richer source of architecture fabrications.

3.2. Convolution Building Operators

The dense connectivity design space is built upon versatile
atomic building operators to remove the constraints in CNN
design and enhance flexibility during the search. An atomic
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Figure 2. Graph Isomorphism creates extra training examples without extra cost.

convolution operator should contain precisely one convo-

lution operation, followed by batch normalization [23] and

ReLU activation [38]. We collect the popular design mo-

tifs from the existing literature and use the following set of

building operators to craft the dense connectivity space:

* Convolution 1x1.

* Depthwise convolution 3x3, 5x5, or 7x7.

Convolution 1x 1 and depthwise convolution are hetero-
geneous building operators with distinct functionality on in-
put features: convolution 1 x 1 learns a transformation of lo-
cal input features, and depthwise convolution learns a trans-
formation of spatial input features. Next, we instantiate two
dense connectivity spaces for ImageNet and CIFAR-10 as
follows:

e ImageNet Dense Connectivity Space. Each meta-graph
contains 4 stages which corresponds to the 4 x 4, 8 x §,
16 x 16, 32 x 32 down-sampling region of an input image.
In each DAG, we employ one input vertex, one output
vertex, and 16 intermediate vertices assigned with one of
the aforementioned convolutional building operators. We
follow MobileNetV2 [37] for the design of stem archi-
tecture (i.e., first three blocks) and head architecture (i.e.,
last two blocks).

e CIFAR-10 Dense Connectivity Space. Each meta-graph
contains 4 stages which corresponds to the 1 x 1, 2 x 2,
4 x 4 down-sampling region of an input image. In each
DAG, we employ one input vertex, one output vertex, and
16 intermediate vertices assigned with one of the afore-
mentioned convolutional building operators. We follow
ResNet [16] to design stem architecture (i.e., first block)
and employ no head architecture.

Notably, we set the number of vertices to far exceed that
of versatile building operators in dense connectivity design
space to ensure scalability. The dense connectivity design
space is prohibitively large. Even with N = 8 vertices,
a single DAG contains 4.5 x 108 architectures. Conse-

quently, an ImageNet Dense Connectivity Space contains up
to 4 x 1029 architectures, calling for an effective and effi-
cient algorithm to demystify dense connectivity optimiza-
tion thoroughly.

4. Demystifying Dense Connectivity Search

A dense connectivity design space contains a rich source of
candidates to ensure flexibility. However, versatile building
operators and the dense connectivity design space challenge
the efficiency and quality of search. CSCO incorporates two
key techniques that facilitate architecture exploration in the
dense connectivity design space. First, CSCO adopts Graph
Isomorphism to augment architecture-performance pairs in
the dense connectivity design space to boost the accuracy
predictor’s prediction quality without additional cost. Sec-
ond, CSCO proposes a novel search strategy, Metropolis-
Hastings Evolutionary Search (MH-ES), as an in-place im-
provement over evolutionary search during full search space
exploration via a trained predictor. Inspired by the defi-
nition of Markov Chains, MH-ES rejects weaker samples
with a lower probability and effectively evades local opti-
mal solutions in discovery.

4.1. Graph Isomorphism as Data Augmentation

As is discussed in Section 3.2, a DAG within a dense con-
nectivity design space contains more building operators
than the number of vertices. This provides a chance to
find isomorphic structures in the dense connectivity design
space and further exploit these architectures to enhance the
performance of predictor-based NAS. We formally define
the isomorphism of meta-graphs as follows:

Definition 1. Two meta-graphs G, G are isomorphic if ev-
ery pair of DAG: (G, G1)) is isomorphic.

Isomorphic meta-graphs represent the same architecture
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Figure 3. Accuracy surface of a performance predictor with/without Graph Isomorphism.

in the dense connectivity search space. This is because iso-
morphic meta-graphs have an identical set of building oper-
ators and identical dense connectivity of these building op-
erators, see Figure 2. As a result, isomorphic meta-graphs
represent the same neural architecture, leading to the same
level of performance during evaluation.

Thus, we propose Graph Isomorphism to augment the
architecture samples. Graph Isomorphism conducts a valid
vertex permutation to one of the DAGs within each sam-
pled meta-graph to construct a new isomorphic meta-graph
and incorporate it as a new architecture sample with no ex-
tra search cost. These isomorphic samples can augment the
architecture-performance pairs to brew a more accurate per-
formance predictor without additional search costs.
Prediction Surface. We visualize the prediction surface of
performance predictors with/without Graph Isomorphism in
Figure 3. Here, a higher z-axis value denotes better pre-
dictive performance on the target dataset. Notably, Graph
Isomorphism not only enhances the prediction quality of a
performance predictor but also provides a smooth perfor-
mance surface that eases the following search process in an
ample, dense connectivity design space.

4.2. Metropolis-Hastings Evolutionary Search

Evolutionary Search is a popular method that efficiently ex-
plores the best architecture in predictor-based NAS. Yet,
these methods may not efficiently explore our dense con-
nectivity design space, thus suffering from the sub-optimal
quality of discovered CNN architectures. We follow the
same intuition of evolutionary search and first define the
mutation space as follows:
* Re-sample a random edge connection for one DAG.
* Randomly add an edge connection for one DAG.
* Randomly remove an edge connection for one DAG.
Given an intermediate meta-graph with N vertices and
K stages, the mutation space covers up to O(N2K) pos-
sible candidate architectures, thus being prohibitively large
for existing evolutionary search algorithms to explore fully.

For example, (1) tremendous samples are needed to cover
the good regions of the dense connectivity space and obtain
the best child architecture, and (2) the complexity of predic-
tion surface in dense connectivity design space may lead to
the discovery of locally optimal solutions. This is because
evolutionary search judiciously accepts the strongest child
architectures during the evolutionary process and, thus, ob-
tains locally optimal solutions with high concentration on a
specific region of the dense connectivity design space.

We are inspired by Markov Chain Monte Carlo
(MCMC) optimization, especially Metropolis-Hastings Al-
gorithm [32], extensively addressing such issues by adopt-
ing an acceptance-rejection mechanism. Such mechanism
maintains a current best solution and admits weaker solu-
tions with an acceptance-rejection probability AC, defined
as follows:

AC = min(1,exp ((score’ — score)/T)), 4)

Where score denotes the score (e.g., predicted performance
of architectures) for a weaker solution, score’ denotes the
score of the current best solution, and 7" denotes the tem-
perature. The acceptance-rejection probability is propor-
tional to the gap between the weaker solution and the cur-
rent best solution. As a result, the optimization process may
not greedily stick to the current best solution and thus have
better potential to avoid locally optimal solutions.

Thus, we propose Metropolis-Hastings Evolutionary
Search (MH-ES) as an alternative to existing evolutionary
search algorithms on dense connectivity design space. MH-
ES allows the discovery of better architectures within the
large dense connectivity design space. MH-ES maintains
the best parent architecture, which is initialized among Fy
randomly sampled candidate architectures in the initial pop-
ulation. Then, child architectures are obtained by randomly
mutating one of the stages (i.e., DAGs) in the parent archi-
tecture (i.e., meta-graph). Each evolution round selects the
best child architecture in the current population as a weaker
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Figure 4. The search progress and predicted accuracy of discovered architectures via MH-ES compared to ES and RS baselines.

solution. The aforementioned MH acceptance-rejection ra-
tio AC' is applied to update the current best architecture.
The proposed MH-ES generalizes to local search when
T — 0 and evolutionary search when 7" — oo. MH-ES also
adopts a cosine simulated annealing [34] of the temperature
to eliminate locally optimal solutions at early evolutionary
rounds.

Optimization Curve of MH-ES. We compare the op-
timization curve of MH-ES versus Evolutionary Search
(ES) [14] and Local Search (LS) [12] to demonstrate its ef-
fectiveness and efficiency. Figure 4 depicts the optimiza-
tion curve of accuracy on top-performing CNN architec-
tures for both CIFAR-10 and ImageNet. On a small-scale
CIFAR-10 dense connectivity design space, MH-ES per-
forms on-par as local search yet significantly outperforms
evolutionary search by ~ 0.01. This is greatly attributed to
the capability of MH-ES to evade locally optimal solutions
during architecture exploration over the dense connectivity
design space. On large-scale ImageNet dense connectiv-
ity design space, MH-ES significantly edges other search
algorithms, highlighting its efficiency and effectiveness in
exploring dense connectivity design space.

5. Experiments

Following all NAS methods focusing on connectivity,
we apply CSCO to obtain promising CNN architec-
tures within mobile computation regimes on CIFAR-
10/ImageNet-1K [7] classification over CIFAR-10 Dense
Connectivity Space | ImageNet Dense Connectivity Space.

5.1. CSCO Setup

We first elaborate on the search settings on CSCO, including
search space configuration and MH-ES guided by a trained
neural predictor. Then, we discuss the evaluation settings of
CSCO over a dense connectivity design space.

Search Space Settings. We set a search budget of 4 GPU
days and employ a fixed assignment of the building oper-
ators in all DAGs of the meta-graph. This enhances the

reproducibility of our methods. We employ a large-scale
dense connectivity design space with N = 18 vertices,
where vertex 1,5,9, 13 are assigned with convolution 1x1,
vertices 2,6, 10, 14 are assigned with depthwise convolu-
tion 3x3, vertex 3,7,11,15 are assigned with depthwise
convolution 5x5, and vertex 4, 8,12, 16 are assigned with
depthwise convolution 7x7. We define vertex 0/17 as the
input/output vertex.

Predictor Training and MH-ES. We train the above
MLP performance predictor on the sampled architecture-
performance pairs for 300 epochs with batch size 128, ini-
tial learning rate 0.1, and an L2 weight decay of le-4 for
ImageNet. During MH-ES, we employ an initial population
of 4096 to ensure the discovery of a good parent architec-
ture. We proceed with 10K rounds of MCMC optimization
with 96 child architectures sampled and evaluated in each
round. We set the sensitivity parameter to 0.001 for the best
solution in the dense connectivity design space.

Evaluation Settings. The outcome of CSCO leads to a pool
of candidate CNN architectures for both CIFAR-10 and Im-
ageNet, respectively. We simply evaluate the top-5 mod-
els on CIFAR-10/ImageNet proxy dataset for 20/10 epochs
and scale the best model to 600M Multiply-Accumulates
(MACs) mobile computation budget.

Table 1. CIFAR-10 evaluation of best models.

Architecture En’f:;st( %) Params (M) (S(i;r[cjhncagz;
WRN-28-10 [50] 4.17 36.5 -
DenseNet-BC [20] 3.46 25.6
PNAS [28] 3.41x00 3.2 -
AmoebaNet-A [35] 3.34 1006 3.2 3150
DARTS (Ist-order) [29] 3.0+014 3.3 4
GDAS [9] 2.93 34 0.3
CSCO (Ours) 2.82 3.1 4
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Table 2. ImageNet-1K results. All models use 224 x 224 input under mobile settings.

Architecture Test Err.(%) MACs | Params | Search Cost
top-1 top-5 M) (M) (GPU days)
CondenseNet [21] 26.2 8.3 529 4.8 N/A
MobileNetV2 1.4 [37] 25.3 7.5 585 6.9 N/A
ProxylessNAS-G [1] 254 7.8 320 4.1 8.33
MnasNet-A1l [41] 24.8 7.5 312 3.9 1.7K
DARTS [29] 26.7 8.7 574 4.7 4
NASNet-A [52] 26.0 8.4 564 53 2K
RandWire-WS [47] 25.3+025 7.8+01s 58362 5.6+01 N/A
MiLeNAS [15] 24.7 7.6 584 53 0.3
PC-DARTS [49] 24.2 7.3 597 5.3 3.8
TopoNAS [22] 24.1 7.2 598 5.3 6.2
GAEA + PC-DARTS [26] 24.0 7.3 N/A 5.6 3.8
DenseNAS [11] 23.9 - 479 - 2.67
CSCO (Ours) 23.3 6.7 598 5.7 8

5.2. CIFAR-10 Experiments

We first evaluate each component of the CSCO paradigm
and then proceed to evaluate the top-performing architec-
ture discovered on CIFAR-10.

Evaluating Best CIFAR-10 Model. In CIFAR-10, we fol-
low DARTS-series architectures [29, 49]) and stack 6 build-
ing cells in each stage to construct the final CNN architec-
ture. To match the number of parameters reported in the
DARTS-series paper, we apply a width multiplier to scale
up the candidate networks to ensure a fair comparison with
existing state-of-the-art.

We follow the DARTS protocol to train the best network.
Specifically, we train the best network discovered by CSCO
on 50K CIFAR-10 training data from scratch for 600 epochs
with batch size 96. We employ an initial learning rate of
0.025 with a cosine learning rate schedule [31]. Follow-
ing DARTS series works, we employ Dropout [17], Drop-
Path [13] and Cutout [8] with a L-2 weight-decay of 3e-4 to
combat overfitting.

The key results of CSCO on the CIFAR-10 dataset are
summarized in Table 1. CSCO outperforms SMBO-based
PNAS and EA-based AmoebaNet by up to 0.42%. Com-
pared with DARTS and GDAS, CSCO achieves up to 0.2%
better accuracy within a reasonable 4 GPU day search cost.

5.3. ImageNet Classification

We evaluate the best architectures crafted by CSCO on Ima-
geNet by training them from scratch using the same training
protocol as previous works. We compare the accuracy ver-
sus various metrics such as Multiply-Accumulates (MACs)
with hand-crafted and NAS-crafted models. We train the
best-discovered model on 1.28M ImageNet-1K training
data from scratch for 450 epochs with batch size 768. We

employ an initial learning rate of 0.6 with cosine learning
rate schedule [31]. Following DARTS series works, we
employ Inception pre-processing [39], Dropout [17], Drop
Path [13], an L2 weight-decay of le-5.

Table 2 demonstrates the critical results of CSCO on
the ImageNet-1K validation set within the mobile com-
putation regime (i.e., < 600M MACs). CSCO outper-
forms Condensenet [21] by 3% higher accuracy, demon-
strating its superiority over prior art with dense connec-
tivity of building operators in CNN architectures. CSCO
outperforms SOTA hand-crafted models MobileNetV2 1.4
by 2.0% higher top-1 accuracy with similar MACs, where
the latter one is crafted via manual architecture engineer-
ing. Compared to existing NAS works that emphasize
dense connectivity [11, 15, 22, 26, 49], CSCO achieves ~
0.6% accuracy gain under the mobile computation regime
with comparable parameter consumption. Despite having
a sizeable dense connectivity design space, CSCO main-
tains a reasonable search cost of 8 GPU days thanks to
Graph Isomorphism, which boosts sample efficiency. Fi-
nally, CSCO also achieves competitive performance com-
pared to existing block-based NAS methods [1, 41] under a
well-designed MobileNetV2-like search space, demonstrat-
ing the potential of optimizing dense connectivity to seek
high-performing CNN architectures in the future.

6. Discussion

CSCO employs two key components in dense connectivity
search space: Graph Isomorphism and Metropolis-Hastings
Evolutionary Search (MH-ES). In this section, we discuss
the individual contribution of Graph Isomorphism and MH-
ES towards better dense connectivity in discovery.
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Table 3. Evaluation of Graph Isomorphism and MH-ES on CIFAR-10.

Graph Isomorphism? Search Strategy Best Acc. | Mean Acc. | Std. Acc.
- Random Search (RS) 91.52 - -
MH-ES 92.26 92.11 0.10
v MH-ES 92.55 92.39 0.11
v Local Search (LS) 92.33 92.25 0.05
v Evolutionary Search (ES) 92.49 92.07 0.23

6.1. Ablation Studies

Due to the time-consuming process of complete architec-
ture evaluation from scratch, we adopt a simple training
protocol to evaluate the top models discovered by different
Graph Isomorphism and search strategies. Table 3 demon-
strates the detailed evaluation result, including the accuracy
of best-performing architectures and the statistics on top-5
models to reflect the stability of the proposed method. Here,
we compute all accuracies using top models selected by
the trained predictor. Notably, each model contains only 3
building cells in each stage, and the building operator adopts
16, 32, and 64 filters, respectively, within each stage. We
can see that the combination of MH-ES and Graph Isomor-
phism yields up to a 0.3% accuracy gain on the mean ac-
curacy of top-performing models while achieving the best
top-performing architecture among other baseline methods.

6.2. Ranking with Graph Isomorphism

We analyze the performance predictor trained with/without
Graph Isomorphism. Before Graph Isomorphism, we sam-
ple ~ 800 samples from the dense connectivity design space
for both CIFAR-10 and ImageNet benchmark and aug-
ment 10x ~ 12x more samples via Graph Isomorphism
without extra computation cost. We split all architecture-
performance pairs into 85% training pairs and 15% testing
pairs. We utilize a Multi-Layer Perceptron (MLP) perfor-
mance predictor to map architectures (i.e., the union of ad-
jacency matrices in each DAG within a meta-graph) to their
predicted performance (i.e., evaluated accuracy). We deli-
cately train the performance predictor on the training split
with/without Graph Isomorphism.

Prediction Quality. We measure the prediction quality of
neural predictors on the testing architecture-performance
pairs via two famous ranking metrics: Pearson’s p and
Kendall’s 7 in Table 4. Here, all ranking coefficients are
computed on the testing pairs, which are not utilized to train
the performance predictor.

Using Graph Isomorphism, the prediction ranking qual-
ity (i.e., Kendall’s 7) significantly increases from 0.215 to
0.904 on ImageNet and from 0.428 to 0.874 on CIFAR-
10. In addition, the ranking evaluation reveals that more
DAGs in the meta-graph lead to poorer sample efficiency
in predictor-based NAS and thus lead to a more challeng-

Table 4. Evaluation of prediction quality with/without Graph Iso-
morphism (GI).

Dataset | GI? | Pearson’s p | Kendall’s 7 | Mean-Squared Error
ImageNet 0.342 0.215 5x 101
agenet | 0.972 0.904 4x1075
0.581 0.428 4x1071
CIFAR-10 |, 0.946 0.874 6x 1077

ing search process on top-performing models. In con-
trast, Graph Isomorphism judiciously incorporates isomor-
phic graph transformation into each independent DAG in
the meta-graph, yielding an even more significant predic-
tion quality improvement on large-scale ImageNet Dense
Connectivity Space over small-scale CIFAR-10 Dense Con-
nectivity Space.

7. Conclusion

We propose CSCO, a novel paradigm that allows flexible
exploration of the dense connectivity of building operators
and innovates building cells in CNN architectures. CSCO
aims to seek the optimal building cells of CNN architec-
tures represented by Directed Acyclic Graphs (DAGs), con-
taining rich sources of dense connectivity of versatile build-
ing operators to cover CNN architecture designs flexibly.
CSCO crafts a dense connectivity space to fabricate the
building cells of the CNN architectures and further lever-
ages a performance predictor to obtain the best dense con-
nectivity. To enhance the reliability and quality of pre-
diction, we propose Graph Isomorphism as data augmen-
tation to boost sample efficiency and Metropolis-Hastings
Evolutionary Search (MH-ES) to efficiently explore dense
connectivity space and evade locally optimal solutions in
CSCO. Experimental on ImageNet demonstrates ~ 0.6%
accuracy gain over other NAS-crafted dense connectivity
designs under mobile computation regime.
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