
CSCO: Connectivity Search of Convolutional Operators

Tunhou Zhang1, Shiyu Li1, Hsin-Pai Cheng3, Feng Yan2, Hai Li1, Yiran Chen1

1ECE Department, Duke University, Durham, NC 27708
2Department of Computer Science, University of Houston, Houston, TX 77204

3 Qualcomm AI Research, San Diego, CA 92121
1 {tunhou.zhang,shiyu.li,hai.li,yiran.chen}@duke.edu,

2 fyan5@central.uh.edu,
3 hsinpaic@qti.qualcomm.com

Abstract

Exploring dense connectivity of convolutional operators
establishes critical “synapses” to communicate feature vec-
tors from different levels and enriches the set of transfor-
mations on Computer Vision applications. Yet, even with
heavy-machinery approaches such as Neural Architecture
Search (NAS), discovering effective connectivity patterns
requires tremendous efforts due to either constrained con-
nectivity design space or a sub-optimal exploration process
induced by an unconstrained search space. In this paper,
we propose CSCO, a novel paradigm that fabricates ef-
fective connectivity of convolutional operators with mini-
mal utilization of existing design motifs and further utilizes
the discovered wiring to construct high-performing Con-
vNets. CSCO guides the exploration via a neural predictor
as a surrogate of the ground-truth performance. We intro-
duce Graph Isomorphism as data augmentation to improve
sample efficiency and propose a Metropolis-Hastings Evo-
lutionary Search (MH-ES) to evade locally optimal archi-
tectures and advance search quality. Results on ImageNet
show ∼ 0.6% performance improvement over hand-crafted
and NAS-crafted dense connectivity. Our code is publicly
available here.

1. Introduction

The fundamental success of Convolutional Neural Net-

work (CNN) on Computer Vision lies in the effective

wiring pattern, represented by dense connectivity within

convolutional layers [20, 21] and atomic-level neurons [2].

Throughout neural synapses, a convolution operator, as an

elementary atomic building operator, establishes receptive

fields to extract spatial-local information in 2D images.

However, from classic CNNs [16, 25, 38] to modernized

CNNs driven by Neural Architecture Search (NAS) [40,

41], the construction of CNNs mainly innovates an effec-

tive building block composed of a combination of building

operators and directly stacks a few copies of these operators

to construct the overall architecture. On images, most CNN

designs are constrained to a chain-like structure without del-

icate consideration of building block connectivity. On the

one hand, hardware is designed to handle better chain-like

architectures such as MobileNets [18, 19, 37]. On the other

hand, chain-like CNN architectures are easier to study, re-

quiring less extensive efforts to fully explore, thus yielding

a better rate of improvement (ROI) in research and devel-

opment on vision benchmarks. The limitations in the afore-

mentioned chain-like designs may prevent the discovery of

effective inter-block synapses that enhance feature interac-

tion in different positions of CNN architectures.

As a result, more recent works start to scratch the surface

of dense connectivity by constructing a graph representa-

tion of the network design space [29, 33, 45, 52]. These

works explicitly seek a building cell with searchable wiring

of building operators via Directed Acyclic Graphs (DAGs)

as the design motif for CNN architectures. Various search

strategies are implemented to achieve a good architec-

ture outcome, such as differentiable-based search [27, 29],

Bayesian Optimization [24, 44], and local search [6, 43].

However, these methods employ brutal-force optimization

algorithms such as differentiable-based search [22, 29],

reinforcement-learning [33, 52] without any topology con-

sideration when seeking the optimal wiring of building op-

erators. Despite the remarkable success, existing methods

may have the following challenges: (1) The constrained de-

sign space does not support the dense connectivity of ver-

satile building operators that integrate feature vectors from

all building cell levels without limitations. (2) With uncon-

strained dense connectivity, exploring such design space is

difficult without topological information in the graph rep-

resentation of building cells, such as isomorphism in adja-

cency matrices and locality contained with similar graphs.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1685



In this paper, we tackle the above challenges by propos-

ing a new paradigm, CSCO (Connectivity Search of

Convolutional Operators), that enables the delicate explo-

ration of the structural wiring within building cells for CNN

architectures. CSCO establishes a hierarchical structure of

CNN architectures via a meta-graph comprising several Di-

rected Acyclic Graphs (DAGs). Each DAG represents a

building cell in each hierarchy. Within each building cell,

CSCO integrates a structural design space with versatile

building operators (e.g., convolution, depthwise convolu-

tion) with varying transformation capacities of input fea-

tures, allowing dense connectivity searches. The combi-

nation of dense edge connectivity and versatile heteroge-

neous operators we employ can craft various design mo-

tifs. For example, depthwise separable convolution [19],

Inverted Bottleneck [37], Inception-like [39], and Con-

densenets [21], etc. This covers most design motifs from

hand-crafted CNN design principles and more recent block-

based search spaces in NAS (e.g., ProxylessNAS [1], Mo-

bileNetV3 [18] etc.), providing more opportunities to ob-

tain top-performing CNN architectures with minimal design

space constraints and priors.

Intuited by predictor-based NAS [10, 42] that accu-

rately models the design space via a surrogate model of

the ground-truth performance, we follow this principle and

address two key factors to demystify search on dense con-

nectivity. First, we propose Graph Isomorphism to enrich

architecture-performance pairs during the sampling phase

of predictor-based NAS, enhancing the quality of perfor-

mance prediction with improved sample efficiency. As

a result, Graph Isomorphism advances prediction reliabil-

ity in dense connectivity design space with large cardinal-

ity. Second, we propose Metropolis-Hastings Evolutionary

Search (MH-ES), which evades local optimal solutions dur-

ing search space exploration. This allows us to approach

a better region of the dense connectivity design space and

discover better building cells for CNNs.

CSCO improves both the evaluation strategy (i.e., the

quality and reliability of prediction) and the search strategy

(i.e., the quality of top-performing architectures discovered)

in predictor-based NAS. As a result, CSCO discovers good

CNN architectures that achieve impressive empirical results

over existing hand-crafted and NAS-crafted connectivity on

ImageNet. We summarize our contributions as follows:

• We propose a new paradigm, CSCO, to automatically ex-

plore dense connectivity within building cells to fabri-

cate CNN architectures. CSCO supports dense connectiv-

ity search on structural wiring of versatile convolutional

building operators to seek the optimal CNN architecture.

• We pioneer using predictor-based NAS in dense connec-

tivity search and demonstrate two essential techniques

that advance search quality and efficiency. Specifically,

we propose Graph Isomorphism to improve sample ef-

ficiency and introduce Metropolis-Hastings Evolutionary

Search (MH-ES) to improve search quality.

• We thoroughly evaluate each component of CSCO and

demonstrate 0.6% accuracy gain over existing NAS-

crafted dense connectivity CNN architectures under mo-

bile computation regimes.

2. Related Work

Dense Connectivity of Convolutional Neural Networks.
Existing NAS methods emphasize cell design on a graph de-

sign space [29, 33]; these methods are primarily topology-

agnostic. For example, DARTS implies addressing the bi-

level optimization problem without considering any graph

information (e.g., graph adjacency and graph isomorphism).

More recent works [3, 11, 45, 51] manage to incorporate

topological information into search space design and im-

prove the flexibility of crafted CNN architectures. Yet, they

still focus on a constrained search space emphasizing ei-

ther a single-cell design (i.e., normal cell and./or reduction

cell) or macro-level connections between building cells with

constraints and limitations. Another line of research takes

advantage of network generators [36, 47, 48] to obtain the

best cluster of CNN architectures. Yet, these methods em-

phasize discovering the top-performing local regions of the

search space and may miss the opportunity to discover an

individual architecture with a globally optimal solution.

Predictor-based NAS. Neural predictors [42] are potent

tools to map candidate architectures to their performance

in a search space. Predictor-based NAS has two significant

phases: (1) train an accuracy predictor based on exploitable

architecture-performance samples collected from a search

space, and (2) utilize the accuracy predictor to probe the

whole search space and obtain the top-performing archi-

tectures. Existing works enhance predictor-based NAS in

sample-efficiency [10, 30], quality of prediction [4], and

better regions of the search space [46]. Yet, these works

focus on a constrained block-based search space without

considering topology, making them unsuitable for explor-

ing cell structures for better sample efficiency. In ad-

dition, existing approaches mostly employ Evolutionary

Search [5, 34, 35] as the backbone methodology to obtain

top-performing architectures on neural predictors, gradually

approaching a narrower local region of the dense connectiv-

ity design space and ending up with locally optimal archi-

tectures.

3. Dense Connectivity Design Space

CNN architectures comprise a series of building cells that

transform input features into learned representations. For

input features with varying properties (e.g., different spa-

tial sizes), CNN architectures employ stage to represent the

building cells with identical input sizes and repeat building

1686



Figure 1. Overview of dense connectivity design space.

cells to build deeper architectures. Our dense connectivity

design space delicately seeks the wiring of versatile convo-

lutional operators in a building cell. Figure 1 demonstrates

an overview of our dense connectivity design space. We

utilize existing positional settings (i.e., ×D, C denotes D
copies of DAG with C base channels) and delicately seek

the edge connections that wire versatile building operators

independently for all building cells. We first discuss the

graph representation of CNN architectures in dense con-

nectivity design space and then discuss versatile building

operators.

3.1. Graph Representation of CNN

Given a CNN architecture with K stages, we specify in-

dependent Directed Acyclic Graphs (DAG) for each hierar-

chical level of input features to represent the dense connec-

tivity of building versatile operators. A DAG is a building

cell with multiple CNN layers and identical spatial feature

sizes (i.e., image height and width). Each DAG G(k) =
(V(k), E(k)) contains N vertices and [N · (N − 1)/2] edges

with total capacity for dense connectivity search. Among N
vertices, vertex 0 is defined as the input vertex that receives

an output from the previous building cell, and vertex N is

the output vertex that sends an output to a succeeding build-

ing cell. We define vertex 1 ∼ N − 1 as intermediate ver-

tices. Each intermediate vertex takes input features X from

an arbitrary number of preceding vertices and produces an

output Y via an assigned building operator op. More specif-

ically, each intermediate vertex v can make a connection to

any preceding vertex u0, ..., uM , concatenates all these in-

puts, and use the assigned building operator op to produce

output representations as follows:

Yv = opv[Concat(Xu0
, Xu2

, ..., XuM
)], (1)

Concat denotes the feature concatenation in the channel

dimension, and M denotes the number of connections that

vertex v makes to preceding vertices.

The output vertex collects the output representations

from each leaf vertex in DAG and concatenates them as an

output to the succeeding building cells as follows:

YN = Concat({Yui
|dout(i) = 0}), (2)

where dout(·) denotes the out degree of a vertex. A

meta-graph G = (G(1), ...,G(K)) = (V,E) com-

poses K DAGs to build the overall CNN architec-

ture that processes input features of different hierar-

chies. We construct each candidate architecture A by a

function of vertices and edge connections on the meta-

graph (i.e., the union of all independent DAGs): A =
farch(V̂(1), ..., V̂(K), Ê(1), ..., Ê(K); ôp(1), ..., ôp(K)). In

dense connectivity design space, we assign each vertex an

atomic convolutional operator from a set of versatile build-

ing operators and seek the best connectivity by optimizing

edge connectivity Ê∗ as follows:

arg max
E∗⊂E

Perf(farch(V̂(1)
, ..., V̂(K)

, E∗(1)
, ..., E∗(K)

; ôp
(1)

, ..., ôp
(K)

)),

(3)

where Perf(·) denotes the performance metric, and

farch transforms a meta-graph representation to a concrete

CNN architecture. Given a meta-graph with K indepen-

dent DAGs (e.g., K stages) and N vertices each, a dense

connectivity design space optimizes O(K ·N2) dense edge

connections to seek the optimal architecture and contains a

much richer source of architecture fabrications.

3.2. Convolution Building Operators

The dense connectivity design space is built upon versatile

atomic building operators to remove the constraints in CNN

design and enhance flexibility during the search. An atomic

1687



Figure 2. Graph Isomorphism creates extra training examples without extra cost.

convolution operator should contain precisely one convo-

lution operation, followed by batch normalization [23] and

ReLU activation [38]. We collect the popular design mo-

tifs from the existing literature and use the following set of

building operators to craft the dense connectivity space:

• Convolution 1×1.

• Depthwise convolution 3×3, 5×5, or 7×7.

Convolution 1×1 and depthwise convolution are hetero-

geneous building operators with distinct functionality on in-

put features: convolution 1×1 learns a transformation of lo-

cal input features, and depthwise convolution learns a trans-

formation of spatial input features. Next, we instantiate two

dense connectivity spaces for ImageNet and CIFAR-10 as

follows:

• ImageNet Dense Connectivity Space. Each meta-graph

contains 4 stages which corresponds to the 4 × 4, 8 × 8,

16×16, 32×32 down-sampling region of an input image.

In each DAG, we employ one input vertex, one output

vertex, and 16 intermediate vertices assigned with one of

the aforementioned convolutional building operators. We

follow MobileNetV2 [37] for the design of stem archi-

tecture (i.e., first three blocks) and head architecture (i.e.,

last two blocks).

• CIFAR-10 Dense Connectivity Space. Each meta-graph

contains 4 stages which corresponds to the 1 × 1, 2 × 2,

4 × 4 down-sampling region of an input image. In each

DAG, we employ one input vertex, one output vertex, and

16 intermediate vertices assigned with one of the afore-

mentioned convolutional building operators. We follow

ResNet [16] to design stem architecture (i.e., first block)

and employ no head architecture.

Notably, we set the number of vertices to far exceed that

of versatile building operators in dense connectivity design

space to ensure scalability. The dense connectivity design

space is prohibitively large. Even with N = 8 vertices,

a single DAG contains 4.5 × 106 architectures. Conse-

quently, an ImageNet Dense Connectivity Space contains up

to 4 × 1026 architectures, calling for an effective and effi-

cient algorithm to demystify dense connectivity optimiza-

tion thoroughly.

4. Demystifying Dense Connectivity Search
A dense connectivity design space contains a rich source of

candidates to ensure flexibility. However, versatile building

operators and the dense connectivity design space challenge

the efficiency and quality of search. CSCO incorporates two

key techniques that facilitate architecture exploration in the

dense connectivity design space. First, CSCO adopts Graph

Isomorphism to augment architecture-performance pairs in

the dense connectivity design space to boost the accuracy

predictor’s prediction quality without additional cost. Sec-

ond, CSCO proposes a novel search strategy, Metropolis-

Hastings Evolutionary Search (MH-ES), as an in-place im-

provement over evolutionary search during full search space

exploration via a trained predictor. Inspired by the defi-

nition of Markov Chains, MH-ES rejects weaker samples

with a lower probability and effectively evades local opti-

mal solutions in discovery.

4.1. Graph Isomorphism as Data Augmentation

As is discussed in Section 3.2, a DAG within a dense con-

nectivity design space contains more building operators

than the number of vertices. This provides a chance to

find isomorphic structures in the dense connectivity design

space and further exploit these architectures to enhance the

performance of predictor-based NAS. We formally define

the isomorphism of meta-graphs as follows:

Definition 1. Two meta-graphs G, Ĝ are isomorphic if ev-
ery pair of DAG: (G(·), Ĝ(·)) is isomorphic.

Isomorphic meta-graphs represent the same architecture

1688



Figure 3. Accuracy surface of a performance predictor with/without Graph Isomorphism.

in the dense connectivity search space. This is because iso-

morphic meta-graphs have an identical set of building oper-

ators and identical dense connectivity of these building op-

erators, see Figure 2. As a result, isomorphic meta-graphs

represent the same neural architecture, leading to the same

level of performance during evaluation.

Thus, we propose Graph Isomorphism to augment the

architecture samples. Graph Isomorphism conducts a valid

vertex permutation to one of the DAGs within each sam-

pled meta-graph to construct a new isomorphic meta-graph

and incorporate it as a new architecture sample with no ex-

tra search cost. These isomorphic samples can augment the

architecture-performance pairs to brew a more accurate per-

formance predictor without additional search costs.

Prediction Surface. We visualize the prediction surface of

performance predictors with/without Graph Isomorphism in

Figure 3. Here, a higher z-axis value denotes better pre-

dictive performance on the target dataset. Notably, Graph

Isomorphism not only enhances the prediction quality of a

performance predictor but also provides a smooth perfor-

mance surface that eases the following search process in an

ample, dense connectivity design space.

4.2. Metropolis-Hastings Evolutionary Search

Evolutionary Search is a popular method that efficiently ex-

plores the best architecture in predictor-based NAS. Yet,

these methods may not efficiently explore our dense con-

nectivity design space, thus suffering from the sub-optimal

quality of discovered CNN architectures. We follow the

same intuition of evolutionary search and first define the

mutation space as follows:

• Re-sample a random edge connection for one DAG.

• Randomly add an edge connection for one DAG.

• Randomly remove an edge connection for one DAG.

Given an intermediate meta-graph with N vertices and

K stages, the mutation space covers up to O(N2K) pos-

sible candidate architectures, thus being prohibitively large

for existing evolutionary search algorithms to explore fully.

For example, (1) tremendous samples are needed to cover

the good regions of the dense connectivity space and obtain

the best child architecture, and (2) the complexity of predic-

tion surface in dense connectivity design space may lead to

the discovery of locally optimal solutions. This is because

evolutionary search judiciously accepts the strongest child

architectures during the evolutionary process and, thus, ob-

tains locally optimal solutions with high concentration on a

specific region of the dense connectivity design space.

We are inspired by Markov Chain Monte Carlo

(MCMC) optimization, especially Metropolis-Hastings Al-

gorithm [32], extensively addressing such issues by adopt-

ing an acceptance-rejection mechanism. Such mechanism

maintains a current best solution and admits weaker solu-

tions with an acceptance-rejection probability AC, defined

as follows:

AC = min(1, exp ((score′ − score)/T )), (4)

Where score denotes the score (e.g., predicted performance

of architectures) for a weaker solution, score′ denotes the

score of the current best solution, and T denotes the tem-

perature. The acceptance-rejection probability is propor-

tional to the gap between the weaker solution and the cur-

rent best solution. As a result, the optimization process may

not greedily stick to the current best solution and thus have

better potential to avoid locally optimal solutions.

Thus, we propose Metropolis-Hastings Evolutionary

Search (MH-ES) as an alternative to existing evolutionary

search algorithms on dense connectivity design space. MH-

ES allows the discovery of better architectures within the

large dense connectivity design space. MH-ES maintains

the best parent architecture, which is initialized among P0

randomly sampled candidate architectures in the initial pop-

ulation. Then, child architectures are obtained by randomly

mutating one of the stages (i.e., DAGs) in the parent archi-

tecture (i.e., meta-graph). Each evolution round selects the

best child architecture in the current population as a weaker

1689



Figure 4. The search progress and predicted accuracy of discovered architectures via MH-ES compared to ES and RS baselines.

solution. The aforementioned MH acceptance-rejection ra-

tio AC is applied to update the current best architecture.

The proposed MH-ES generalizes to local search when

T → 0 and evolutionary search when T → ∞. MH-ES also

adopts a cosine simulated annealing [34] of the temperature

to eliminate locally optimal solutions at early evolutionary

rounds.

Optimization Curve of MH-ES. We compare the op-

timization curve of MH-ES versus Evolutionary Search

(ES) [14] and Local Search (LS) [12] to demonstrate its ef-

fectiveness and efficiency. Figure 4 depicts the optimiza-

tion curve of accuracy on top-performing CNN architec-

tures for both CIFAR-10 and ImageNet. On a small-scale

CIFAR-10 dense connectivity design space, MH-ES per-

forms on-par as local search yet significantly outperforms

evolutionary search by ∼ 0.01. This is greatly attributed to

the capability of MH-ES to evade locally optimal solutions

during architecture exploration over the dense connectivity

design space. On large-scale ImageNet dense connectiv-

ity design space, MH-ES significantly edges other search

algorithms, highlighting its efficiency and effectiveness in

exploring dense connectivity design space.

5. Experiments
Following all NAS methods focusing on connectivity,

we apply CSCO to obtain promising CNN architec-

tures within mobile computation regimes on CIFAR-

10/ImageNet-1K [7] classification over CIFAR-10 Dense
Connectivity Space / ImageNet Dense Connectivity Space.

5.1. CSCO Setup

We first elaborate on the search settings on CSCO, including

search space configuration and MH-ES guided by a trained

neural predictor. Then, we discuss the evaluation settings of

CSCO over a dense connectivity design space.

Search Space Settings. We set a search budget of 4 GPU

days and employ a fixed assignment of the building oper-

ators in all DAGs of the meta-graph. This enhances the

reproducibility of our methods. We employ a large-scale

dense connectivity design space with N = 18 vertices,

where vertex 1, 5, 9, 13 are assigned with convolution 1×1,

vertices 2, 6, 10, 14 are assigned with depthwise convolu-

tion 3×3, vertex 3, 7, 11, 15 are assigned with depthwise

convolution 5×5, and vertex 4, 8, 12, 16 are assigned with

depthwise convolution 7×7. We define vertex 0/17 as the

input/output vertex.

Predictor Training and MH-ES. We train the above

MLP performance predictor on the sampled architecture-

performance pairs for 300 epochs with batch size 128, ini-

tial learning rate 0.1, and an L2 weight decay of 1e-4 for

ImageNet. During MH-ES, we employ an initial population

of 4096 to ensure the discovery of a good parent architec-

ture. We proceed with 10K rounds of MCMC optimization

with 96 child architectures sampled and evaluated in each

round. We set the sensitivity parameter to 0.001 for the best

solution in the dense connectivity design space.

Evaluation Settings. The outcome of CSCO leads to a pool

of candidate CNN architectures for both CIFAR-10 and Im-

ageNet, respectively. We simply evaluate the top-5 mod-

els on CIFAR-10/ImageNet proxy dataset for 20/10 epochs

and scale the best model to 600M Multiply-Accumulates

(MACs) mobile computation budget.

Table 1. CIFAR-10 evaluation of best models.

Architecture Test Params (M) Search Cost
Error (%) (GPU Days)

WRN-28-10 [50] 4.17 36.5 -

DenseNet-BC [20] 3.46 25.6 -

PNAS [28] 3.41±0.09 3.2 -

AmoebaNet-A [35] 3.34±0.06 3.2 3150

DARTS (1st-order) [29] 3.0±0.14 3.3 4

GDAS [9] 2.93 3.4 0.3

CSCO (Ours) 2.82 3.1 4

1690



Table 2. ImageNet-1K results. All models use 224×224 input under mobile settings.

Architecture Test Err.(%) MACs Params Search Cost
top-1 top-5 (M) (M) (GPU days)

CondenseNet [21] 26.2 8.3 529 4.8 N/A

MobileNetV2 1.4 [37] 25.3 7.5 585 6.9 N/A

ProxylessNAS-G [1] 25.4 7.8 320 4.1 8.33

MnasNet-A1 [41] 24.8 7.5 312 3.9 1.7K

DARTS [29] 26.7 8.7 574 4.7 4

NASNet-A [52] 26.0 8.4 564 5.3 2K

RandWire-WS [47] 25.3±0.25 7.8±0.15 583±6.2 5.6±0.1 N/A

MiLeNAS [15] 24.7 7.6 584 5.3 0.3

PC-DARTS [49] 24.2 7.3 597 5.3 3.8

TopoNAS [22] 24.1 7.2 598 5.3 6.2

GAEA + PC-DARTS [26] 24.0 7.3 N/A 5.6 3.8

DenseNAS [11] 23.9 - 479 - 2.67

CSCO (Ours) 23.3 6.7 598 5.7 8

5.2. CIFAR-10 Experiments

We first evaluate each component of the CSCO paradigm

and then proceed to evaluate the top-performing architec-

ture discovered on CIFAR-10.

Evaluating Best CIFAR-10 Model. In CIFAR-10, we fol-

low DARTS-series architectures [29, 49]) and stack 6 build-

ing cells in each stage to construct the final CNN architec-

ture. To match the number of parameters reported in the

DARTS-series paper, we apply a width multiplier to scale

up the candidate networks to ensure a fair comparison with

existing state-of-the-art.

We follow the DARTS protocol to train the best network.

Specifically, we train the best network discovered by CSCO

on 50K CIFAR-10 training data from scratch for 600 epochs

with batch size 96. We employ an initial learning rate of

0.025 with a cosine learning rate schedule [31]. Follow-

ing DARTS series works, we employ Dropout [17], Drop-

Path [13] and Cutout [8] with a L-2 weight-decay of 3e-4 to

combat overfitting.

The key results of CSCO on the CIFAR-10 dataset are

summarized in Table 1. CSCO outperforms SMBO-based

PNAS and EA-based AmoebaNet by up to 0.42%. Com-

pared with DARTS and GDAS, CSCO achieves up to 0.2%

better accuracy within a reasonable 4 GPU day search cost.

5.3. ImageNet Classification

We evaluate the best architectures crafted by CSCO on Ima-

geNet by training them from scratch using the same training

protocol as previous works. We compare the accuracy ver-

sus various metrics such as Multiply-Accumulates (MACs)

with hand-crafted and NAS-crafted models. We train the

best-discovered model on 1.28M ImageNet-1K training

data from scratch for 450 epochs with batch size 768. We

employ an initial learning rate of 0.6 with cosine learning

rate schedule [31]. Following DARTS series works, we

employ Inception pre-processing [39], Dropout [17], Drop

Path [13], an L2 weight-decay of 1e-5.

Table 2 demonstrates the critical results of CSCO on

the ImageNet-1K validation set within the mobile com-

putation regime (i.e., ≤ 600M MACs). CSCO outper-

forms Condensenet [21] by 3% higher accuracy, demon-

strating its superiority over prior art with dense connec-

tivity of building operators in CNN architectures. CSCO

outperforms SOTA hand-crafted models MobileNetV2 1.4

by 2.0% higher top-1 accuracy with similar MACs, where

the latter one is crafted via manual architecture engineer-

ing. Compared to existing NAS works that emphasize

dense connectivity [11, 15, 22, 26, 49], CSCO achieves ∼
0.6% accuracy gain under the mobile computation regime

with comparable parameter consumption. Despite having

a sizeable dense connectivity design space, CSCO main-

tains a reasonable search cost of 8 GPU days thanks to

Graph Isomorphism, which boosts sample efficiency. Fi-

nally, CSCO also achieves competitive performance com-

pared to existing block-based NAS methods [1, 41] under a

well-designed MobileNetV2-like search space, demonstrat-

ing the potential of optimizing dense connectivity to seek

high-performing CNN architectures in the future.

6. Discussion

CSCO employs two key components in dense connectivity

search space: Graph Isomorphism and Metropolis-Hastings

Evolutionary Search (MH-ES). In this section, we discuss

the individual contribution of Graph Isomorphism and MH-

ES towards better dense connectivity in discovery.

1691



Table 3. Evaluation of Graph Isomorphism and MH-ES on CIFAR-10.

Graph Isomorphism? Search Strategy Best Acc. Mean Acc. Std. Acc.
- Random Search (RS) 91.52 - -

MH-ES 92.26 92.11 0.10

� MH-ES 92.55 92.39 0.11

� Local Search (LS) 92.33 92.25 0.05

� Evolutionary Search (ES) 92.49 92.07 0.23

6.1. Ablation Studies

Due to the time-consuming process of complete architec-

ture evaluation from scratch, we adopt a simple training

protocol to evaluate the top models discovered by different

Graph Isomorphism and search strategies. Table 3 demon-

strates the detailed evaluation result, including the accuracy

of best-performing architectures and the statistics on top-5

models to reflect the stability of the proposed method. Here,

we compute all accuracies using top models selected by

the trained predictor. Notably, each model contains only 3

building cells in each stage, and the building operator adopts

16, 32, and 64 filters, respectively, within each stage. We

can see that the combination of MH-ES and Graph Isomor-

phism yields up to a 0.3% accuracy gain on the mean ac-

curacy of top-performing models while achieving the best

top-performing architecture among other baseline methods.

6.2. Ranking with Graph Isomorphism

We analyze the performance predictor trained with/without

Graph Isomorphism. Before Graph Isomorphism, we sam-

ple ∼ 800 samples from the dense connectivity design space

for both CIFAR-10 and ImageNet benchmark and aug-

ment 10× ∼ 12× more samples via Graph Isomorphism

without extra computation cost. We split all architecture-

performance pairs into 85% training pairs and 15% testing

pairs. We utilize a Multi-Layer Perceptron (MLP) perfor-

mance predictor to map architectures (i.e., the union of ad-

jacency matrices in each DAG within a meta-graph) to their

predicted performance (i.e., evaluated accuracy). We deli-

cately train the performance predictor on the training split

with/without Graph Isomorphism.

Prediction Quality. We measure the prediction quality of

neural predictors on the testing architecture-performance

pairs via two famous ranking metrics: Pearson’s ρ and

Kendall’s τ in Table 4. Here, all ranking coefficients are

computed on the testing pairs, which are not utilized to train

the performance predictor.

Using Graph Isomorphism, the prediction ranking qual-

ity (i.e., Kendall’s τ ) significantly increases from 0.215 to

0.904 on ImageNet and from 0.428 to 0.874 on CIFAR-

10. In addition, the ranking evaluation reveals that more

DAGs in the meta-graph lead to poorer sample efficiency

in predictor-based NAS and thus lead to a more challeng-

Table 4. Evaluation of prediction quality with/without Graph Iso-

morphism (GI).

Dataset GI? Pearson’s ρ Kendall’s τ Mean-Squared Error

ImageNet 0.342 0.215 5× 10−4

� 0.972 0.904 4× 10−5

CIFAR-10 0.581 0.428 4× 10−4

� 0.946 0.874 6× 10−5

ing search process on top-performing models. In con-

trast, Graph Isomorphism judiciously incorporates isomor-

phic graph transformation into each independent DAG in

the meta-graph, yielding an even more significant predic-

tion quality improvement on large-scale ImageNet Dense
Connectivity Space over small-scale CIFAR-10 Dense Con-
nectivity Space.

7. Conclusion
We propose CSCO, a novel paradigm that allows flexible

exploration of the dense connectivity of building operators

and innovates building cells in CNN architectures. CSCO

aims to seek the optimal building cells of CNN architec-

tures represented by Directed Acyclic Graphs (DAGs), con-

taining rich sources of dense connectivity of versatile build-

ing operators to cover CNN architecture designs flexibly.

CSCO crafts a dense connectivity space to fabricate the

building cells of the CNN architectures and further lever-

ages a performance predictor to obtain the best dense con-

nectivity. To enhance the reliability and quality of pre-

diction, we propose Graph Isomorphism as data augmen-

tation to boost sample efficiency and Metropolis-Hastings

Evolutionary Search (MH-ES) to efficiently explore dense

connectivity space and evade locally optimal solutions in

CSCO. Experimental on ImageNet demonstrates ∼ 0.6%

accuracy gain over other NAS-crafted dense connectivity

designs under mobile computation regime.

Acknowledgement. This project is partly supported

by NSF 2112562, ARO W911NF-23-2-0224 and NSF

CAREER-2305491.

References
[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Di-

rect neural architecture search on target task and hardware.

1692



In Proceedings of the International Conference on Learning
Representations, 2019. 2, 7

[2] Alain Chédotal and Linda J Richards. Wiring the brain: the

biology of neuronal guidance. Cold Spring Harbor perspec-
tives in biology, 2(6):a001917, 2010. 1

[3] Hsin-Pai Cheng, Tunhou Zhang, Yixing Zhang, Shiyu Li,

Feng Liang, Feng Yan, Meng Li, Vikas Chandra, Hai Li,

and Yiran Chen. Nasgem: Neural architecture search via

graph embedding method. In Proceedings of the Thirty-Fifth
Conference on Association for the Advancement of Artificial
Intelligence (AAAI), 2021. 2

[4] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-

jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu,

Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search

using predictor pretraining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 16276–16285, 2021. 2

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT

Meyarivan. A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii. IEEE transactions on evolutionary computa-
tion, 6(2):182–197, 2002. 2

[6] Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin,

and Peter AN Bosman. Local search is a remarkably strong

baseline for neural architecture search. In Evolutionary
Multi-Criterion Optimization: 11th International Confer-
ence, EMO 2021, Shenzhen, China, March 28–31, 2021,
Proceedings 11, pages 465–479. Springer, 2021. 1

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[8] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 7

[9] Xuanyi Dong and Yi Yang. Searching for a robust neu-

ral architecture in four gpu hours. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1761–1770, 2019. 6

[10] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah,

Royson Lee, Hyeji Kim, and Nicholas Lane. Brp-nas:

Prediction-based nas using gcns. Advances in Neural Infor-
mation Processing Systems, 33:10480–10490, 2020. 2

[11] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,

and Xinggang Wang. Densely connected search space for

more flexible neural architecture search. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10628–10637, 2020. 2, 7

[12] Zachary Friggstad, Mohsen Rezapour, and Mohammad R

Salavatipour. Local search yields a ptas for k-means in dou-

bling metrics. SIAM Journal on Computing, 48(2):452–480,

2019. 6

[13] Stuart Geman and Donald Geman. Stochastic relaxation,

gibbs distributions, and the bayesian restoration of images.

IEEE Transactions on pattern analysis and machine intelli-
gence, (6):721–741, 1984. 7

[14] David E Goldberg and Kalyanmoy Deb. A comparative anal-

ysis of selection schemes used in genetic algorithms. In

Foundations of genetic algorithms, pages 69–93. Elsevier,

1991. 6

[15] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-

nas: Efficient neural architecture search via mixed-level re-

formulation. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2020. 7

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1, 4

[17] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-

rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent

Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep

neural networks for acoustic modeling in speech recognition.

In IEEE Signal processing magazine, 2012. 7

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019. 1, 2

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications. In

arXiv preprint arXiv:1704.04861, 2017. 1, 2

[20] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4700–4708, 2017. 1,

6

[21] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

2752–2761, 2018. 1, 2, 7

[22] Tao Huang, Shan You, Yibo Yang, Zhuozhuo Tu, Fei Wang,

Chen Qian, and Changshui Zhang. Explicitly learning topol-

ogy for differentiable neural architecture search. arXiv
preprint arXiv:2011.09300, 2020. 1, 7

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 4

[24] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,

Barnabas Poczos, and Eric P Xing. Neural architecture

search with bayesian optimisation and optimal transport. In

Advances in Neural Information Processing Systems, pages

2016–2025, 2018. 1

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-
tems. Curran Associates, Inc., 2012. 1

[26] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet

Talwalkar. Geometry-aware gradient algorithms for neural

architecture search. arXiv e-prints, pages arXiv–2004, 2020.

7

[27] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,

Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:

1693



Improved differentiable architecture search with early stop-

ping. arXiv preprint arXiv:1909.06035, 2019. 1

[28] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018. 6

[29] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In Proceedings of the In-
ternational Conference on Learning Representations, 2019.

1, 2, 6, 7

[30] Yuqiao Liu, Yehui Tang, and Yanan Sun. Homogeneous ar-

chitecture augmentation for neural predictor. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 12249–12258, 2021. 2

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. 2017. 7

[32] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N

Rosenbluth, Augusta H Teller, and Edward Teller. Equa-

tion of state calculations by fast computing machines. The
journal of chemical physics, 21(6):1087–1092, 1953. 5

[33] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameter

sharing. In International Conference on Machine Learning,

pages 4092–4101, 2018. 1, 2

[34] Martin Pincus. Letter to the editor—a monte carlo method

for the approximate solution of certain types of constrained

optimization problems. Operations Research, 18(6):1225–

1228, 1970. 2, 6

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 4780–4789, 2019. 2, 6

[36] Robin Ru, Pedro Esperanca, and Fabio Maria Carlucci. Neu-

ral architecture generator optimization. Advances in Neural
Information Processing Systems, 33:12057–12069, 2020. 2

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1, 2, 4, 7

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 4

[39] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A. Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, pages 4278–4284. AAAI Press, 2017. 2, 7

[40] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019.

1

[41] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019. 1, 7

[42] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Ben-

der, and Pieter-Jan Kindermans. Neural predictor for neural

architecture search. In European Conference on Computer
Vision, pages 660–676. Springer, 2020. 2

[43] Colin White, Sam Nolen, and Yash Savani. Local search

is state of the art for nas benchmarks. arXiv preprint
arXiv:2005.02960, page 76, 2020. 1

[44] Colin White, Willie Neiswanger, and Yash Savani. Bananas:

Bayesian optimization with neural architectures for neural

architecture search. In Proceedings of the AAAI conference
on artificial intelligence, pages 10293–10301, 2021. 1

[45] Mitchell Wortsman, Ali Farhadi, and Mohammad Raste-

gari. Discovering neural wirings. arXiv preprint
arXiv:1906.00586, 2019. 1, 2

[46] Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,

Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei

Chen, and Lu Yuan. Stronger nas with weaker predictors.

Advances in Neural Information Processing Systems, 34,

2021. 2

[47] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-

ing He. Exploring randomly wired neural networks for im-

age recognition. In The IEEE International Conference on
Computer Vision (ICCV), 2019. 2, 7

[48] Sirui Xie, Shoukang Hu, Xinjiang Wang, Chunxiao Liu,

Jianping Shi, Xunying Liu, and Dahua Lin. Understand-

ing the wiring evolution in differentiable neural architecture

search. In International Conference on Artificial Intelligence
and Statistics, pages 874–882. PMLR, 2021. 2

[49] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations (ICLR),
2020. 7

[50] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016. 6

[51] Tunhou Zhang, Hsin-Pai Cheng, Zhenwen Li, Feng Yan,

Chengyu Huang, Hai Li, and Yiran Chen. Autoshrink: A

topology-aware nas for discovering efficient neural architec-

ture. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI 2020), 2019. 2

[52] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,

2018. 1, 7

1694


