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Abstract

Counterfactual estimation from observations rep-

resents a critical endeavor in numerous applica-

tion fields, such as healthcare and finance, with

the primary challenge being the mitigation of

treatment bias. The balancing strategy aimed at

reducing covariate disparities between different

treatment groups serves as a universal solution.

However, when it comes to the time series data,

the effectiveness of balancing strategies remains

an open question, with a thorough analysis of the

robustness and applicability of balancing strate-

gies still lacking. This paper revisits counterfac-

tual estimation in the temporal setting and pro-

vides a brief overview of recent advancements

in balancing strategies. More importantly, we

conduct a critical empirical examination for the

effectiveness of the balancing strategies within

the realm of temporal counterfactual estimation

in various settings on multiple datasets. Our find-

ings could be of significant interest to researchers

and practitioners and call for a reexamination of

the balancing strategy in time series settings.

1. Introduction

Temporal counterfactual outcome estimation (Cao et al.,

2023b; Morgan & Winship, 2015; Hernán & Robins, 2010;

Pearl, 2009; Brodersen et al., 2015; Liu et al., 2022; Meng

et al., 2023) aims to predict what the outcome would have

been under different treatment scenarios. It is a crucial task
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in various real-world applications, such as health care (Pros-

peri et al., 2020; Richens et al., 2019; Cao et al., 2023a), fi-

nance (Lundberg & Frost, 1992; Dhar, 1998; Castro-Iragorri,

2019), social media (Zhang et al., 2022), and e-commerce

(Hua et al., 2021; Goswami et al., 2022). For example, in

personalized medicine (Jain, 2002; Pazzagli et al., 2018;

Porcher et al., 2019), counterfactual outcome provides a

more comprehensive understanding of how the patient may

respond to each treatment over time, allowing for a data-

driven decision regarding the most suitable treatment strat-

egy; In e-commerce, counterfactual inference can give com-

panies guidance on when and to whom to issue coupons to

different groups of users for increasing sales.

Estimating counterfactual outcomes is inherently challeng-

ing, principally for two reasons. Firstly, the intrinsic nature

of observed data precludes the direct observation of counter-

factuals, rendering their estimation a complex endeavor as

acknowledged in the literature (Mandel & Lehman, 1996;

Pearl, 2009; Boninger et al., 1994; Hassanpour & Greiner,

2019). These outcomes, delineating the hypothetical sce-

nario under alternative treatments, are intrinsically unob-

servable. Furthermore, the confounding variables further

convolute this task (McNamee, 2003; VanderWeele & Sh-

pitser, 2013; Jager et al., 2008), since they affect both the

treatment and the outcome, leading to treatment bias and ob-

scuring the true causal effect. This results in a disparity be-

tween the distributions of observed (factual) and unobserved

(counterfactual) outcome and makes accurate estimation of

counterfactuals extremely difficult.

To address above challenges, the research community har-

nessed balancing technologies and developed a series of

work to address the confounding issue. Strategies like In-

verse Probability of Treatment Weighting (IPTW) (Ches-

naye et al., 2022; Allan et al., 2020), stratification (Im-

bens & Rubin, 2015; Miratrix et al., 2013) and match-

ing (Abadie et al., 2004; Abadie & Imbens, 2006), create

pseudo-populations to mitigate distributional discrepancies

between treatment groups. Alternative approaches, such

as G-computation (Robins, 1986; 1987), iteratively simu-

late potential outcomes based on Monte Carlo. With the

advance of deep learning, a new wave of methodologies has

emerged to uncover complex, nonlinear relationships in data.

These methods, as explored in studies by (Shalit et al., 2017;
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(a) Slight treatment bias.
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(b) Significant treatment bias.

Figure 1. Performance comparison between balanced models

(Causal Transformer and CRN) and their ERM variants in multi-

step counterfactual estimation on Tumor Growth dataset, the X-

axis represents Horizon, Y-axis represents RMSE, lower is better.

Hartford et al., 2017; Atan et al., 2018; Yao et al., 2018;

Hassanpour & Greiner, 2019), are geared towards encoding

covariates into a latent space. The goal is to derive represen-

tations that are devoid of treatment-related information and

minimize the correlations between the representations and

the treatment.

Despite the outlined effectiveness of balancing strategies

in estimating counterfactual outcomes, our initial empiri-

cal investigation into the time series scenarios unveiled a

counterintuitive phenomenon: in a temporal setting, models

that forego balancing strategies—specifically, empirical risk

minimization (ERM)—demonstrate superior performance

in counterfactual estimation tasks compared to their counter-

parts that impose balancing strategies, even in the presence

of treatment bias. Figure 1 illustrates two examples, i.e.,

Causal Transformer (Melnychuk et al., 2022) and CRN

(Bica et al., 2020a). We observed that their ERM variants

consistently outperforms Causal Transformer and CRN in

multi-step prediction tasks (in either slight and significant

treatment bias conditions). This surprising observation devi-

ates from the prevailing perception on the effectiveness of

balancing strategies and calls for an in-depth examination.

In this study, we undertake a comprehensive examination of

contemporary methodologies devised to mitigate treatment

bias via balancing techniques in time series analysis. We not

only demonstrate how these balancing strategies perform but

also discuss the underlying reasons through more in-depth

empirical analyses. This paper elucidates the development

in balancing methods for temporal counterfactual estimation,

sheds light into when and how balance can be achieved in

time series scenario, and discusses when it may be an elusive

goal through empirical studies. We hope that the analysis

results provide better understanding on balancing strategy

in temporal counterfactual estimation and useful insights to

researchers and practitioners.

The organization of this paper is as follows: Section 2 pro-

vides a review of the problem setting and basic assumptions

of temporal counterfactual outcomes. In Section 3, we

briefly revisit the advancements in balancing strategies from
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Figure 2. Causal structure in temporal setting, take time step T − 1

to T + 1 as an example, where green and red arrows denote the

current and time-varying treatment bias, respectively.

the perspective of balancing types and discusses popular

methods in practical applications. Section 4 conducts empir-

ical studies of these temporal causal models on benchmark

datasets and discusses the effectiveness of balancing strate-

gies in a temporal setting. Finally, Section 5 summarizes our

empirical analysis and sheds light into promising directions

to fundamentally address the problem of counterfactual esti-

mation for time series.

2. Foundations

Notations. Let i denote the i-th individual (a single unit

of analysis within a study, e.g., a patient) with historical

trajectories over multiple time steps from t = 1, ...T (i). For

each time step t, each individual i has the following obser-

vations: the time-varying covariates X
(i)
t ∈ Rdx , where dx

is the dimension of the time-varying covariates; the static

covariates V (i) that do not change over time; the treatment

assignments A
(i)
t ∈ {a1, ..., ada

} where da is the number

of treatment variables; the outcome Y
(i)∈R

dY

t . Then we

let D = {{x
(i)
t ,a

(i)
t ,y

(i)
t }T

(i)

t=1 }
N
i=1 denote the observation

dataset. For simplicity, we omit the superscript (i) for each

individual unless needed and use Xt to represent both static

and time-varying covariates at time step t.

Causal Structure. Figure 2 illustrates the causal structure

and relationships between key variables in a temporal setting.

Xt represents the time-varying covariates at time step t,
Yt denotes the outcome at time t, and At is the treatment

assigned at time step t. The diagram shows that at each time

step, the treatment assignment At is influenced by the time-

varying covariates Xt as well as the history, indicating the

presence of time-varying confounders. The outcome Yt is

affected by the historical treatment At−1, previous outcome

Yt−1, and current covariates Xt.

Target: Estimating E(yt+τ [āt:t+τ−1]|H̄t), where H̄t =
(X̄t, Āt−1, Ȳt,V ) is the observed history. X̄t =
(x1,x2, . . . ,xt), Āt−1 = (a1,a2, . . . ,at−1), Ȳt =
(y1,y2, . . . ,yt), and V = v. τ ≥ 1 denotes the projec-

tion horizon for a τ -step-ahead prediction. āt:t+τ−1 =
(at,at+1, . . . ,at+τ−1) is the sequence of the applied treat-

2
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Table 1. Summary of partial literature for counterfactual estimation.

Taxonomy Methods Blancing Type Balancing Tech Backbone Type

Non-temporal

Statistical Method

(Re-weighting,Stratification,Matching)
Pseudo-Population Re-sampling N/A

CB-IV IV-Regression IPM Balancing DNN

Deep-Treat Representation-Based Propensity Inverse DNN

CITE Representation-Based Contrastive Balancing DNN

CFR Representation-Based IPM Balancing DNN

MIM-DRCFR Representation-Based MI Minimization DNN

Temporal

MSM Reweighting Propensity Inverse Linear Regression

GNET G-compupation Monte-Carlo LSTM

RMSN Reweighting Propensity Inverse LSTM

CRN Representation-Based Gradient Reversal LSTM

Causal Transformer (CT) Representation-Based Domain Confusion Transformer

Statistical methods (Rosenbaum & Rubin, 1983; Miratrix et al., 2013; Abadie et al., 2004), CB-IV (Wu et al., 2022),

Deep-Treat (Atan et al., 2018), CITE (Li & Yao, 2022), CFR (Shalit et al., 2017), MIM-DRCFR (Cheng et al., 2022),

MSM(Robins et al., 2000),GNET(Li et al., 2021),RMSN (Lim, 2018),CRN (Bica et al., 2020b),CT(Melnychuk et al., 2022),

IV denotes the Instrumental Variable, IPM represents the Integral Probability Metric and MI denotes the Mutual Information.

ments in the future τ discrete time steps.

3. Balancing Techniques

Table 1 provides a concise overview of counterfactual esti-

mation methods from the perspective of balancing strategy.

These methods vary in their balancing techniques, ranging

from re-sampling and propensity inverse to more complex

strategies like gradient reversal and domain confusion. It

can be seen that the development of the solutions follow

the paths towards leveraging advanced machine learning for

causal inference. The table only lists a selection of represen-

tative methods. Many other models based on the balancing

strategies not mentioned in the table, such as (Hartford et al.,

2017; Yao et al., 2018; Hassanpour & Greiner, 2019; Gilbert-

son et al., 2016; Wodtke, 2020; Liu et al., 2020), because

the balancing strategies adopted by these unlisted methods

are already included in Table 1.

Representation-based balancing strategies have received sig-

nificant attention in recent years, especially those based on

deep learning, given its high performance in estimation ac-

curacy. Therefore, in this work, we focus our discussion

on representation-based balancing strategies for counterfac-

tual estimation. Specifically, we choose the following three

popular balancing methods for our empirical study:

Adversarial Gradient Reversal (AGR) (Bica et al., 2020b).

It aims to build a treatment classifier GA taking the represen-

tation ht as input, and maximize the following classification

loss to obtain the representation ht that is invariant to the

treatment assignment:

LGA
(θA, θR) = −

da∑

j=1

I(At=aj)logGA(ht; θA), (1)

where θR denotes the parameters for generating the rep-

resentation ht, θA denotes the parameter of the treatment

classifier GA, I is the indicator function. The adversarial

loss aims to make the inferred representation ht is not pre-

dictive to the treatment assignment.

Counterfactual Domain Confusion (CDC) (Melnychuk

et al., 2022). The CDC balancing method is designed to

ensure these representations are non-predictive of the cur-

rent treatment assignment. First, the CDC method is also

developed to fit the treatment classifier network GA using

the representation ht by minimizing classification loss:

LGA
(θA, θR) = −

da∑

j=1

I(At=aj)logGA(ht; θA), (2)

then CDC method proposes to minimize the cross-entropy

between a uniform distribution over treatment categorical

space and predictions of GA via the following objective:

Lconf (θA, θR) = −

da∑

j=1

1

da
logGA(ht; θA), (3)

PS-based Contrastive Balancing (PCB) (Li & Yao,

2022). The balancing method utilizes a contrastive learning

paradigm to infer the balanced representation based on the

propensity score, which is a two-stage procedure. First, we

pre-train a propensity score estimator e(·) supervised by the

treatment and get the propensity score for every instance.

Then we can build the positive and negative sample sets X+,

X− based on the above calculated propensity scores, where

X+ are identified by propensity scores near 0.5, suggesting

a higher likelihood of random treatment assignment, and

X− are characterized by propensity scores closer to 0 or 1,

indicating a more pronounced inclination towards a specific

3



An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series

treatment. Then, for every anchor sample i, the contrastive

loss for balancing the representation is as follows:

Lc =

N∑

i=1

−log
exp(hi · h

+
k /τ)∑K

j=1 exp(hi · h
−

j /τ)
, (4)

where h+
k is the representation of the randomly selected

one positive sample from X+, h−

j is the representation for

every negative sample from X−, τ determines how much

the contrastive loss inclines to the hard negative samples.

Minimizing the loss can force the representation of units

similar to that of positive samples while different from that

of negative ones.

4. Empirical Study

4.1. Experiment Settings

4.1.1. BASELINES AND METRIC

Although there are many proposed sequential models

for temporal counterfactual estimation, we focus on sev-

eral state-of-the-art models for examination, including (1)

Causal Transformer (CT) (Melnychuk et al., 2022): A

transformer-based counterfactual outcome prediction model

with domain confusion module (CDC) for balanced rep-

resentations; (2) Counterfactual Recurrent Network(CRN)

(Bica et al., 2020b): a sequence-to-sequence model with

adversarial gradient reversal (AGR) for balancing; (3) Recur-

rent Marginal Structural Networks(RMSN) (Lim, 2018): an

LSTM-based model with propensity reweighting to adjust

for time-dependent confounders; (4) G-Net (Li et al., 2021):

a sequential deep learning model based on G-computation;

and (5) Marginal Structural Model (MSM) (Robins et al.,

2000): a linear marginal structural model based on the

inverse-probability-of-treatment weighted estimator.

To ensure a thorough evaluation, we also explore the im-

pact of the PCB balancing strategy, which is not inherently

temporal, on both CT and CRN models. We refer to the bal-

anced representation module as BRM and designate models

without BRM as ERM (Empirical Risk Minimization) for

clarity in our discussion. We evaluate these models by the

Root Mean Square Error (RMSE) (i.e., lower is better).

4.1.2. DATASETS

Pure synthetic dataset. Synthetic datasets are generated

through autoregressive iterations based on a predefined

causal structure between variables, such as the data gen-

eration process in (Bica et al., 2020a). Such data closely

aligns with the causal assumptions formulated by practition-

ers, making it highly suitable for use in evaluating temporal

counterfactual estimation.

Tumor Growth Simulator (Lim, 2018; Bica et al., 2020b;

Melnychuk et al., 2022): The simulator employs a currently

E
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Figure 3. Road map of the experimental evaluation in this study.

popular and widely accepted biomedical model to simulate

the temporal evolution of tumor volume, adhering to rec-

ognized practices in the field of biomedical research. The

model consists of two types of binary treatment: (1) Radio-

therapy when assigned to a patient has an immediate effect

on the outcome of the next step; (2) Chemotherapy affects

several future outcomes with certain exponentially decaying

effects, and the tumor volume as outcome.

Semi-synthetic MIMIC III (Johnson et al., 2016): This

dataset underwent standardized preprocessing procedures

specifically designed for MIMIC-III data. It comprises ICU

data aggregated at hourly intervals. The covariates within

this dataset encompass 25 vital signs (dynamic features over

time) and 3 static attributes, namely gender, ethnicity, and

age. For additional information regarding to the data gener-

ation process, please refer to the Appendix of (Melnychuk

et al., 2022).

M5 dataset (Makridakis et al., 2022). This dataset, provided

by Walmart, captures the unit sales data of a diverse range of

products sold across the United States, structured as grouped

time series. It encompasses sales figures for 3,049 distinct

products, which are segmented into three main categories:

Hobbies, Foods, and Household. The original dataset does

not have any label information on counterfactual outcomes.

Therefore, we resort to factual evaluation and discuss the

results in the Appendix due to space limit.

4.1.3. EVALUATION

In temporal counterfactual estimation, we evaluate the mod-

els in a variety of scenarios to verify the effectiveness of

different balancing strategies, including:

Standard supervised learning. The scenario involves us-

ing the full historical data, including previous covariates

and treatment sequences, to predict future counterfactual

outcomes over several time steps by using the standard train-

test training procedure.

Short-term history cold-start. The scenario involves de-

veloping a short-term history test set for assessing the causal

models. In this context, the model has access only to the co-

variates and treatment sequence information from K steps

4
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before the predicted time step. This limitation in the extent

of historical information available to the model is referred

to as the truncation size.

Distribution shift cold-start. The scenario involves the

case where there is distributional difference between the

training data and the test data, particularly relevant in coun-

terfactual estimation. It specifically pertains to the discrep-

ancy in treatment bias between the data used during the

training phase and that used in the testing phase.

This empirical study is structured around three critical ques-

tions: (1) How do these temporal models perform for the

counterfactual estimation? (2) Does the balanced repre-

sentation module contribute to the temporal counterfactual

estimation? (3) Why is (not) the balanced representation

module effective for counterfactual estimation? To enhance

readability, the road map of the experimental evaluation for

this examination study has been shown in Figure 3.

4.2. Counterfactual Estimation in Standard Supervised

Learning

Results on synthetic Tumor dataset. Here, we report the

performance of the counterfactual prediction on the Tumor

Growth dataset. Specifically, let γ control the magnitude of

the time-dependent confounding bias, i.e., the extent of cor-

relation between covariates and treatment. Let τ denote the

projection horizon for multi-step ahead prediction. In this

evaluation setting, we set the γ = 1, 3, 10 to test the model

performance in the varying magnitude of confounding bias,

projection horizon to τ = 5, and we report the average

RMSE and standard deviation (STD) for 5 runs, the values

of these parameters in this setting (also the subsequent set-

ting) are chosen following previous work (Melnychuk et al.,

2022). The results are shown in Table 2. From this table,

we can have the following observations:

(1) When γ is relatively small (e.g., 1 and 3), the perfor-

mance of balanced (e.g., CT and CT-PCB) and ERM models

is similar. However, when γ becomes larger (e.g., 10), the

performance of the non-balanced models is better than the

balanced ones in most cases, and the PCB balancing module

performs the worst.

(2) With the increase of γ, the variance of the performance

for the models with BRM increases significantly. That

means, the existence of BRM will introduce the high vari-

ance, making the models unstable in the case where the

confounding bias is large.

(3) The performance of GNET, RMSN and MSM is unde-

sirable when the γ is small. However, they perform better

and are more stable methods when γ gets large (e.g., 10).

Overall, we did not observe a positive contribution from the

balanced representation module to counterfactual estimation,

instead tending to make the model’s predictions unstable.

Experiments on semi-synthetic MIMIC III dataset. We

adopt similar settings as in Tumor dataset to evaluate the per-

formance of these sequential models on the semi-synthetic

MIMIC III dataset, as shown in Table 3. We omit the exper-

iment results of the MSM model because the model cannot

converge on this dataset. Similar to the Tumor dataset, the

balanced representation module fails to improve the perfor-

mance on the MIMIC III dataset.

4.3. Counterfactual Estimation in Cold-start Case

Experimental results in standard supervised learning contra-

dict previous claims about the effectiveness and robustness

of balanced representation. Cold-start cases pose significant

challenges to counterfactual estimation, while the balanced

representation module could help alleviate the issue. Thus

we further examine the following evaluation scenarios:

Short term history cold-start. We created a short-term

history test set to evaluate causal models’ performance in

cold start situations. We used a history of truncation size,

assessing models’ ability to predict counterfactual outcomes

with limited historical data. We report the results for γ =
1, 3, 10 in Table 4. It can seen that even under the cold start

case, the models with balancing modules fail to help with

counterfactual estimation.

Distribution shift cold-start. In this case, we trained mod-

els using data with significant confounding bias (γ = 10)

and tested their performance on data with varying bias levels

(γ = 1, 3, 8). This approach aims to determine if balancing

modules enhance counterfactual prediction when there’s a

distribution shift between the source and target domains,

as those balancing modules are designed to balance repre-

sentations across different groups. Results in Table 5 show

that similar to the short-term history and standard super-

vised learning cases, there is little difference between bal-

anced models and non-balanced models with low γ (e.g., 1).

Meanwhile, the balancing module introduces high variance

in cases of significant treatment bias (e.g., γ = 8).

4.4. Why Balancing Module Does Not Work for the

Counterfactual Estimation?

The above study shows that using a balanced representa-

tion module in models does not help (and often worsens)

in various scenarios. In this section, we analyze the covari-

ate distribution among treatment groups and the models’

learned representations, in order to offer insights into why

the balancing module is ineffective.

Checking on covariate distribution. We investigate how

covariate distributions vary among groups under different

treatment bias levels. The balancing module aims to equal-

ize these distributions for counterfactual estimation, but
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Table 2. RMSE (mean ± std) with µ = 1, 3, 10 on Tumor dataset.

γ = 1

Methods τ=1 2 3 4 5

CT 0.808±0.064 0.715±0.071 0.754±0.067 0.791±0.059 0.832±0.059

CT-PCB 0.901±0.056 0.829±0.060 0.898±0.078 0.965±0.097 1.033±0.117

CT w/o BRM 0.794±0.068 0.695±0.057 0.734±0.056 0.771±0.054 0.808±0.051

CRN 0.818±0.044 0.727±0.046 0.755±0.044 0.785±0.041 0.817±0.041

CRN-PCB 1.071±0.103 0.962±0.154 0.961±0.144 0.974±0.133 0.992±0.120

CRN w/o BRM 0.845±0.062 0.712±0.035 0.736±0.031 0.760±0.028 0.787±0.030

RMSN 1.116±0.116 1.047±0.154 1.072±0.096 1.090±0.065 1.113±0.050

GNET 0.867±0.070 0.982±0.079 1.150±0.119 1.219±0.146 1.255±0.176

MSM 1.204±0.042 1.693±0.123 2.028±0.151 2.227±0.164 2.314±0.167

γ = 3

CT 1.033±0.122 0.827±0.097 0.913±0.127 0.984±0.135 1.043±0.145

CT-PCB 1.615±0.292 1.750±0.553 2.003±0.638 2.178±0.686 2.290±0.701

CT w/o BRM 1.003±0.108 0.785±0.084 0.855±0.109 0.916±0.128 0.965±0.142

CRN 1.070±0.108 1.139±0.358 1.380±0.518 1.560±0.604 1.690±0.641

CRN-PCB 1.582±0.120 1.426±0.259 1.472±0.286 1.549±0.322 1.599±0.350

CRN w/o BRM 1.046±0.111 0.795±0.056 0.853±0.079 0.907±0.105 0.957±0.129

RMSN 1.266±0.078 1.154±0.132 1.240±0.143 1.290±0.166 1.327±0.189

GNET 1.334±0.299 1.114±0.092 1.243±0.095 1.286±0.106 1.311±0.116

MSM 1.749±0.139 2.404±0.445 2.742±0.516 2.896±0.545 2.924±0.547

γ = 10

CT 5.746±1.709 6.722±2.875 7.326±2.989 7.497±2.941 7.493±2.829

CT-PCB 5.742±1.603 6.387±2.988 6.896±3.292 7.015±3.433 7.132±3.479

CT w/o BRM 4.395±0.958 4.338±1.939 4.840±1.997 4.991±1.818 5.080±1.736

CRN 4.963±0.345 6.526±2.435 7.085±3.204 7.289±3.384 7.326±3.210

CRN-PCB 5.280±0.619 8.982±2.904 10.403±3.541 10.617±3.603 10.304±3.394

CRN w/o BRM 4.707±0.394 6.502±2.026 7.342±2.174 7.690±2.174 7.727±2.093

RMSN 5.109±0.400 5.339±1.815 5.479±1.895 5.331±1.801 5.125±1.621

GNET 3.893±0.367 4.010±1.307 4.958±1.595 5.375±1.725 5.465±1.730

MSM 5.837±0.616 2.040±0.672 3.039±0.999 3.870±1.274 4.617±1.525

altering distributions might lower the model’s accuracy for

individual samples. If group differences in covariate distri-

butions are not significant, the benefits of balancing may

not outweigh its drawbacks. We examine the two covariates

on this dataset averaging on history, using kernel density

estimation (KDE) and a Gaussian kernel function to plot

their distribution shapes for γ = 0, 1, 3, 10. Figure 4 shows

the Gaussian fit distributions for two covariates. For the first

covariate, significant distribution differences among groups

only appear at higher treatment bias levels (γ equals 0, 1,

3 show minimal differences). In contrast, the distribution

of the second covariate among different groups is almost

identical, regardless of treatment bias intensity.

To check if our observation is general, we generate time-

series data using the universal method from (Bica et al.,

2020a) and analyze the covariate distribution across treat-

ment groups. This involves generating initial covariates and

treatments using Gaussian and Bernoulli distributions, and

then creating time-series under the proposed causal structure.

The generated dataset features 10-dimensional covariates, a

maximum sequence length of 30, and two-dimensional treat-

ment variables, following a p-order autoregressive process,

the detailed data generation can be found in Appendix.

We analyzed covariate distribution differences across treat-

ment groups under various gamma values (indicating treat-

ment bias strength) in our generated time-series data. Due

to space constraints, we only show the distribution for one

covariate, but similar patterns exist in others. Using KDE,

we plotted covariate distributions for time steps 1, 4, 8 and

16 under γ = 0.2 and 0.4. Figure 5 reveals that early in the

time series (e.g., time-step=1,4), covariate distribution dif-

ferences across groups grow with increasing gamma value.

However, at later time steps (e.g., time-step=8, 16), these

differences diminish, suggesting treatment bias lessens over

time and making balance-focused methods less effective.

Learned representations for reconstruction of covariates.

We analyze if models, specifically the Causal Transformer

and CRN, can accurately reconstruct original covariates with

and without the balancing module. The goal is to determine

if the balancing module leads to information loss. After

training these models using standard supervised learning,

we compare the representations of test data before and after

applying the balance module. We then use an LSTM-based

decoder to reconstruct the covariates from these representa-

tions. The reconstruction’s accuracy is measured using the

MSE between the reconstructed and original covariates.
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Table 3. RMSE (mean ± std) on MIMIC-III dataset.

Methods τ=1 2 3 4 5 6

CT 0.25±0.06 0.42±0.09 0.55±0.15 0.65±0.21 0.73±0.25 0.79±0.29

CT-PCB 0.70±0.24 1.15±0.67 1.30±0.70 1.41±0.74 1.50±0.78 1.56±0.81

CT w/o BRM 0.23±0.06 0.41±0.08 0.53±0.13 0.63±0.17 0.70±0.21 0.75±0.23

CRN 0.24±0.03 0.50±0.08 0.68±0.15 0.82±0.24 0.97±0.38 1.13±0.54

CRN-PCB 0.30±0.06 0.97±0.74 1.13±0.81 1.30±0.86 1.45±0.92 1.59±0.99

CRN w/o BRM 0.22±0.02 0.47±0.13 0.63±0.20 0.77±0.29 0.89±0.39 1.01±0.49

RMSN 0.29±0.08 0.59±0.19 0.78±0.27 0.91±0.30 0.99±0.29 1.06±0.28

GNET 0.40±0.12 0.72±0.14 0.98±0.23 1.17±0.30 1.34±0.35 1.47±0.40

Table 4. RMSE (mean ± std) with µ = 1, 3, 10 for the cold start case of short-term history on Tumor dataset, lower is better.

γ = 1

Methods τ=1 2 3 4 5

CT 0.827±0.052 0.715±0.074 0.770±0.077 0.819±0.075 0.869±0.075

CT w/o BRM 0.822±0.055 0.716±0.064 0.770±0.062 0.820±0.062 0.873±0.066

CRN 0.842±0.037 0.752±0.049 0.794±0.048 0.836±0.048 0.879±0.049

CRN w/o BRM 0.868±0.077 0.733±0.055 0.769±0.055 0.805±0.055 0.841±0.057

RMSN 1.134±0.117 1.031±0.143 1.079±0.099 1.121±0.084 1.165±0.083

GNET 0.899±0.053 6.062±1.338 7.162±1.425 7.385±1.442 7.180±1.423

MSM 1.242±0.050 1.906±0.102 2.286±0.122 2.508±0.129 2.600±0.125

γ = 3

CT 1.080±0.103 0.902±0.068 1.045±0.093 1.157±0.117 1.257±0.137

CT w/o BRM 1.082±0.105 0.888±0.065 1.034±0.069 1.146±0.071 1.241±0.071

CRN 1.147±0.103 1.330±0.274 1.660±0.418 1.900±0.477 2.073±0.493

CRN w/o BRM 1.127±0.103 0.923±0.116 1.036±0.137 1.138±0.156 1.226±0.171

RMSN 1.336±0.067 1.230±0.177 1.343±0.178 1.414±0.190 1.476±0.208

GNET 1.394±0.287 4.869±0.286 6.032±0.519 6.546±0.749 6.746±0.947

MSM 1.866±0.101 3.158±0.233 3.613±0.263 3.821±0.273 3.859±0.270

γ = 10

CT 5.385±1.876 5.732±2.804 7.312±3.635 8.222±3.640 8.573±3.542

CT w/o BRM 4.234±0.828 2.706±0.483 3.959±0.510 4.112±0.456 4.873±0.772

CRN 5.057±0.474 8.377±1.832 9.189±3.031 9.527±3.497 9.619±3.488

CRN w/o BRM 4.798±0.508 8.620±1.676 9.737±2.008 10.177±2.083 10.199±1.986

RMSN 5.313±0.562 7.433±1.207 7.429±1.171 7.116±1.060 6.737±0.913

GNET 3.854±0.370 6.614±0.892 7.774±1.029 8.222±1.069 8.264±1.054

MSM 5.980±0.742 2.663±0.465 3.962±0.684 5.042±0.864 6.016±1.029
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Figure 4. Distribution shape for the two covariates under different

strengths of treatment bias on Tumor. (a)-(f) for the first covariate,

(g)-(l) for the second covariate.

Figure 6 shows the reconstruction loss for the Causal Trans-

former with balanced and non-balanced representations.

At a high treatment bias (γ = 10), the balanced repre-

sentation’s error doesn’t converge, suggesting a significant

loss of original covariate information. Conversely, the non-

balanced representation’s error decreases, indicating better

retention of covariate information. When γ = 1, both rep-
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Figure 5. Distribution shape for the covariate under different

strengths of treatment bias and time-steps on pure synthetic dataset,

(a)-(d) for µ = 0.2, (e)-(h) for µ = 0.4.

resentations perform adequately, but the non-balanced one

has a lower final loss, because, at low treatment biases, the

balanced representation’s negative impact is less noticeable.

The results for the CRN model, not shown due to space

constraints, follow a similar pattern.

Learned representation visualization with or without bal-

anced module. We visualized the representations learned
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Table 5. RMSE (mean ± std) with µ = 1, 3, 8 for the cold start case of distribution shift on Tumor dataset, lower is better.

µ = 1

Methods Ä=1 2 3 4 5

CT 1.654±1.190 2.491±2.630 3.030±3.469 3.452±4.001 3.595±4.049

CT w/o BRM 0.941±0.077 0.991±0.084 1.076±0.105 1.177±0.129 1.263±0.138

CRN 1.566±0.069 2.065±0.146 2.067±0.322 2.095±0.376 2.127±0.390

CRN w/o BRM 1.339±0.079 1.308±0.068 1.466±0.098 1.575±0.103 1.631±0.094

RMSN 1.374±0.097 1.188±0.072 1.220±0.061 1.273±0.074 1.338±0.115

GNET 1.074±0.050 4.238±0.043 4.884±0.117 5.023±0.233 5.050±0.369

MSM 1.160±0.033 0.507±0.043 0.763±0.063 0.976±0.081 1.167±0.096

µ = 3

CT 1.889±0.987 2.600±2.463 3.148±3.207 3.554±3.676 3.718±3.693

CT w/o BRM 1.211±0.141 1.138±0.148 1.285±0.170 1.405±0.200 1.521±0.216

CRN 1.810±0.098 2.231±0.396 2.375±0.668 2.456±0.752 2.506±0.740

CRN w/o BRM 1.619±0.103 1.734±0.289 1.971±0.309 2.106±0.300 2.162±0.287

RMSN 1.704±0.117 1.504±0.216 1.548±0.224 1.570±0.199 1.595±0.169

GNET 1.297±0.096 3.909±0.075 4.313±0.202 4.372±0.335 4.387±0.458

MSM 1.605±0.185 0.617±0.104 0.930±0.161 1.193±0.207 1.430±0.250

µ = 8

CT 4.942±1.938 5.723±3.801 6.532±4.389 6.937±4.525 7.091±4.416

CT w/o BRM 3.495±0.622 3.287±1.403 3.776±1.577 3.925±1.445 4.080±1.442

CRN 4.124±0.235 5.346±1.846 5.782±2.433 5.957±2.570 6.019±2.427

CRN w/o BRM 3.871±0.281 5.218±1.717 5.932±1.849 6.249±1.847 6.311±1.775

RMSN 4.163±0.255 4.201±1.535 4.326±1.581 4.240±1.486 4.123±1.324

GNET 3.167±0.260 4.643±0.749 5.269±1.086 5.539±1.289 5.625±1.401

MSM 4.788±0.438 1.608±0.544 2.403±0.813 3.065±1.040 3.659±1.249

(a) µ = 1, Balanced CT (b) µ = 1, Non-balanced CT

(c) µ = 10, Balanced CT (d) µ = 10, Non-balanced CT

Figure 6. Reconstruction loss curves for Causal Transformer.

with and without balancing modules at various time steps

to investigate their balancing differences. Given that previ-

ous results showed minor covariate distribution differences

among treatment groups at low treatment bias intensities,

we focus on visualizations at µ = 10 in the synthetic tu-

mor dataset for a clearer demonstration of the balancing

module’s distribution adjustment capabilities. The represen-

tation visualization for the Causal Transformer is illustrated

in Figure 7. We can see that the representations with or

without the balancing module do not differ much in terms of

balancing degree across different groups (similar observa-

tions are also made for CRN). However, it is evident that the

(a) t = 1, CT, Balanced (b) t = 10, CT, Balanced

(c) t = 1, CT, Non-balanced (d) t = 10, CT, Non-balanced

Figure 7. Visualization for balanced and non-balanced representa-

tion for different time steps from Causal Transformer.

distribution of representations after balancing significantly

differs from that before balancing. In other words, the bal-

ancing module not only fails to eliminate treatment bias, but

also leads to a decline in predictive performance due to the

altered distribution of covariate representations.

The experiments above suggest that models with balanced

module struggle to reconstruct covariates under high treat-

ment bias since they lose essential information during train-

ing. Conversely, with lower treatment bias and minor differ-

ences in group covariate distributions, the balanced module

can result in over-adjustment of variables and decreased

predictive performance for counterfactual estimation.
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Table 6. RMSE (mean ± std) comparison between sequential and non-sequential models in terms of different strengths of treatment bias.

Tumor µ=0 1 2 3 6 8 10

Sequential

CT 0.307±0.072 0.259±0.049 0.444±0.142 0.935±0.178 3.657±1.670 4.336±1.335 3.827±1.952

CT w/o BRM 0.299±0.071 0.325±0.105 0.456±0.109 0.852±0.234 2.406±0.646 3.108±0.307 3.891±3.241

CRN 0.239±0.017 0.295±0.088 0.323±0.049 0.488±0.124 0.812±0.164 1.146±0.151 1.483±0.173

CRN w/o BRM 0.243±0.018 0.271±0.042 0.282±0.042 0.496±0.220 0.902±0.127 1.197±0.173 1.324±0.133

Non-Sequential

CFR 0.340±0.024 0.390±0.036 0.511±0.103 0.749±0.139 1.727±0.235 2.107±0.278 2.419±0.297

TARnet 0.330±0.025 0.393±0.040 0.512±0.097 0.767±0.124 1.827±0.236 2.382±0.286 2.842±0.330

OLS1 0.557±0.017 0.617±0.033 0.738±0.056 0.951±0.075 1.667±0.131 1.872±0.136 1.866±0.128

OLS2 0.594±0.036 0.590±0.009 0.595±0.031 0.629±0.038 0.800±0.021 0.892±0.020 0.959±0.046

Random 0.824±0.025 0.868±0.034 0.940±0.055 1.076±0.062 1.538±0.120 1.724±0.122 1.835±0.131

MIMIC III µ=0.25 1.0 2.5 5 10 15 50

Sequential

CT 0.084±0.015 0.108±0.016 0.128±0.012 0.152±0.023 0.188±0.049 0.226±0.066 0.490±0.128

CT w/o BRM 0.085±0.014 0.106±0.017 0.125±0.010 0.145±0.014 0.177±0.045 0.202±0.031 0.480±0.130

CRN 0.104±0.013 0.159±0.009 0.225±0.044 0.265±0.048 0.310±0.054 0.352±0.057 0.445±0.094

CRN w/o BRM 0.099±0.012 0.122±0.013 0.133±0.016 0.147±0.028 0.188±0.081 0.238±0.108 0.503±0.137

Non-Sequential

CFR 0.265±0.058 0.307±0.055 0.328±0.051 0.336±0.049 0.341±0.049 0.341±0.044 0.366±0.052

TARnet 0.271±0.057 0.318±0.059 0.349±0.061 0.358±0.060 0.364±0.054 0.375±0.048 0.428±0.046

OLS1 0.465±0.091 0.525±0.071 0.535±0.072 0.545±0.076 0.559±0.080 0.566±0.083 0.586±0.097

OLS2 0.300±0.042 0.353±0.038 0.385±0.049 0.403±0.065 0.405±0.073 0.403±0.065 0.437±0.078

Random 0.353±0.004 0.427±0.038 0.440±0.070 0.443±0.081 0.452±0.087 0.458±0.088 0.470±0.090

4.5. When Are the Temporal Dependencies Informative

for Counterfactual Estimation?

We examined the effectiveness of temporal dependency

modeling in counterfactual outcome estimation by com-

paring the performance of sequential models (Causal Trans-

former, CRN, and their ERM variants) against classical

non-sequential models. The non-sequential baselines in-

cluded: (1) Counterfactual Regression (CFR) (Shalit et al.,

2017); (2) TarNet (Shalit et al., 2017), a CFR variant with-

out the balancing module; (3) OLS1, a linear regression

model combining treatment assignment and covariates; (4)

OLS2, with separate linear regression models for treatment

and control groups; and (5) the Random method, predicting

outcomes by randomly selecting from historical outcomes.

The results are shown in Table 6. When the treatment bias is

relatively low, sequential models outperform non-sequential

models and the Random method. However, as the treatment

bias increases to a certain extent, the sequential models,

as mentioned in the previous analysis, tend to lose a con-

siderable amount of original covariate information due to

excessive treatment bias. Consequently, the performance of

counterfactual estimation falls behind that of non-sequential

models, and in some cases, even the Random method. This

suggests that temporal dependency information can be over-

shadowed when the treatment bias is too large, rendering it

ineffective for model generalization.

5. Summary and Future Work

In this paper, we conduct a thorough empirical study on

existing popular methods for counterfactual estimation in

temporal settings. It has been observed that the effective-

ness and applicability of representation-based balancing

strategies could differ from previously reported results. We

identify the limitations of existing representation balance

techniques in various scenarios. Our analysis results suggest

three promising directions to pursue when developing new

solutions to temporal counterfactual estimation:

• Trade-off between balancing and prediction accu-

racy. Although balancing strategies can mitigate the

impact of treatment bias, they inevitably disrupt the

data distribution, which in turn affects the accuracy

of outcome predictions. Therefore, one promising fu-

ture direction is to investigate appropriate strategies to

balance these two factors.

• More stable balancing technologies. Our analysis

reveals that balancing strategies can lead to instability

in temporal model training, resulting in high variance

in prediction. Therefore, new balancing strategies that

can offer strong stability should be explored.

• Treatment bias checking in advance. Excessive treat-

ment bias can results in various challenges, such as

masking important temporal information in the data

and leading to overall model collapse. Furthermore,

treatment bias may change over time (e.g., gradually

diminishing). Therefore, exploring strategies to assess

how significant treatment bias is and decide if the bal-

ancing strategies are needed could effectively help to

mitigate the model collapse issue.
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Appendix

A. Assumptions

The task of counterfactual outcome estimation is based on the potential outcome framework, where three fundamental

assumptions ensure its causal identifiability. Here, we introduce the three basic assumptions of causal identifiability in a

temporal setting.

Assumption A.1. Consistency. If Āt=āt represents a sequence of treatments assigned to a specific individual, then under

this treatment sequence, the potential outcome Ȳt+1(Āt = āt) = Yt, where Yt is the observed outcome conditioned on

Āt = āt. This implies that the potential outcome for an individual, given their observed exposure history, corresponds to

the actual (factual) outcome that will be observed for that individual.

Assumption A.2. Overlap. In the entire historical timeline, there is a nonzero likelihood of either receiving or not receiving

any treatment, i.e., given the history of an individual, the probability of treatment assignment holds 0 < P (At = at|H̄t =
h̄t) < 1 if P (H̄t = h̄t) > 0.

Assumption A.3. Unconfoundedness. Given the observed history, the current treatment assignment is independent of the

potential outcome, i.e., At ⊥ Yt+1(at)|H̄t, ∀at. This implies that all the possible confounders that affect both treatment

and outcome are observed.

B. Data Generation of Pure Synthetic Dataset

We generate random time-series data using the universal method from literature (Bica et al., 2020a), analyzing covariate

distribution across treatment groups. This involves generating initial covariates and treatments using Gaussian and Bernoulli

distributions, and then creating time-series data under the proposed causal structure. The generated dataset features 10-

dimensional covariates, a maximum sequence length of 30, and the two-dimensional treatment variables, following a p-order

autoregressive process:

Xt =
1

p

p∑

i=1

(´iXt−i +

k∑

j=1

¼i,jAt−i,j + ϵt),

Ãtj = µ

p∑

i=1

Xt−i, Atj |Ãtj ∼ B(Ã(Ãtj)),

Yt = ¼Y · f(W · Zt) + ϵY ,

(5)

where k denotes the dimension of treatment variables, ´i ∼ N (1− ( i
p
), 1

p
), ϵ ∼ N (0, 0.01); Ã denotes the sigmoid active

function, f denotes the nonlinear mapping function (e.g., tanh function), µ represents the strength of treatment bias and µY
controls the amount of confounding applied to the outcome.

C. Related works

Counterfactual outcome estimation under I.I.D setting. Due to the prohibitive costs and potential ethical concerns

associated with randomized experiments (Guo et al., 2020), there has been a growing interest in recent years in causal

inference from observational data, with a majority of existing studies primarily focusing on independent and identically

distributed (i.i.d.) data. Traditional statistical methods aim to construct one or more pseudo-populations that differ from the

original data to achieve a balance in the distribution of sample covariates among different groups, like sample re-weighting

(Rosenbaum & Rubin, 1983; Cerulli, 2014) based on IPTW (Chesnaye et al., 2022), Stratification (Imbens & Rubin, 2015;

Miratrix et al., 2013) and matching (Abadie et al., 2004; Abadie & Imbens, 2006). Some instrument variables-based methods

have also been introduced. DeepIV (Hartford et al., 2017), for instance, introduced a two-stage approach comprising a

first-stage network for treatment prediction and a second-stage network incorporating a loss function that encompasses

integration over the conditional treatment distribution for counterfactual predictions. Confounder Balanced IV Regression

(CB-IV) (Wu et al., 2022) jointly remove the bias from the unmeasured confounders and balance the observed confounders

by twp stage IV regression. Recently, more methods have been proposed based on representation learning to enable more

effective and more accurate counterfactual estimation. CFR (Shalit et al., 2017) frames counterfactual inference as a

form of domain adaptation and employs neural networks to learn ITEs by creating balanced representations through the

minimization of distribution differences between control and treated groups. CEVAE (Louizos et al., 2017) proposes a

novel approach, mapping the original observed features to a latent space to capture hidden confounders using a variational
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autoencoder (Kingma & Welling, 2014). Atan et al. (Atan et al., 2018) introduce Deep-Treat, which mitigates bias by

learning representations and crafting effective treatment policies using deep neural networks on transformed data for

counterfactual estimation. Yao et al. (Yao et al., 2018) introduce a method for counterfactual estimation, known as SITE,

grounded in deep representation learning, capable of capturing hidden confounders and preserving the local similarity of

data. Hassanpour et al. (Hassanpour & Greiner, 2019) proposed to learn three underlying sources of the observation data

as the disentangled representations to account for the treatment bias and then conduct unbiased counterfactual outcome

estimation. Then MIM-DRCFR (Cheng et al., 2022) was proposed to identify disentangled representations by mutual

information minimization for the counterfactual outcome estimation.

Counterfactual outcome estimation over time. Early methods for temporal counterfactual outcome estimation primarily

included G-computation, marginal structural models (MSMs), and structural nested models (Robins, 1986; 1994; Robins

et al., 2000; Robins & Hernan, 2008). However, these methods heavily rely on linear assumptions to predict counterfactual

outcomes, and they become inadequate when dealing with data that contains intricate temporal dependencies. Subsequent

research endeavors have aimed to overcome the limitations of model expressiveness. This has been accomplished through

the adoption of Bayesian non-parametric methods (Xu et al., 2016; Soleimani et al., 2017; Schulam & Saria, 2017) or

more sophisticated deep neural networks, such as recurrent neural networks (RNNs). Notably, in the realm of Bayesian

non-parametric methods, recurrent marginal structural networks (RMSNs) (Lim, 2018) have emerged, replacing the linear

model of MSM with an RNN-based architecture to forecast treatment outcomes. Similarly, G-Net (Li et al., 2021) integrates

RNNs into the g-computation framework in place of classical regression models. Inspired by the successes of representation

learning for domain adaptation and generalization (Ganin et al., 2016; Tzeng et al., 2015), recent research ventures have

delved into the development of learned representations that serve both predictive purposes for outcome estimation and

alleviating treatment bias within training data. For instance, the Counterfactual Recurrent Network (CRN) (Bica et al.,

2020b) employs an RNN-based model trained with dual objectives: the factual outcome regression loss and the gradient

reversal (Ganin et al., 2016) with respect to treatment prediction. The former fosters the development of informative outcome-

predictive representations, while the latter encourages the creation of uniform representations across different treatments.

This joint training target yields representations that are both informative and balanced. Motivated by similar objectives,

a recent study by (Melnychuk et al., 2022) replaces the RNN-based architecture with a Transformer-based (Vaswani

et al., 2017) one and employs a domain confusion loss (Tzeng et al., 2015) to facilitate the learning of treatment-agnostic

representations.

D. Additional Experiment Results

D.1. Detailed Description of Baselines

Transformer-based:

• Causal Transformer (CT) (Melnychuk et al., 2022): A transformer-based counterfactual outcome prediction model,

which is specifically designed to capture complex, long-range dependencies among time-varying confounders. The

model proposed a domain confusion module (CDC) to obtain the adversarial balanced representations for addressing

confounding bias.

LSTM-based:

• Counterfactual Recurrent Network(CRN) (Bica et al., 2020b): A sequence-to-sequence model that leverages the

increasingly available patient observational data to estimate treatment effects over time and maximize the loss of

treatment classifier for eliminating the confounding bias by adversarial gradient reversal.

• Recurrent Marginal Structural Networks(RMSN) (Lim, 2018): A LSTM-based model for time series data, which uses

propensity weighting to adjust for time-dependent confounders.

• G-Net (Li et al., 2021): A sequential deep learning framework for counterfactual prediction under dynamic time-varying

treatment strategies in complex longitudinal settings based on G-computation.

Linear-based:

• Marginal Structural Model (MSM) (Robins et al., 2000). A linear marginal structural model based on the inverse-

probability-of-treatment weighted estimator.
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Table 7. RMSE (mean ± std) with µ = 2, 6, 8 on Tumor dataset in standard supervised learning.

µ = 2

Methods Ä=1 2 3 4 5 6

CT 0.8607±0.0636 0.7316±0.0381 0.7889±0.0362 0.8443±0.0497 0.8979±0.0605 0.9441±0.0765

CT w/o BRM 0.8589±0.0605 0.7193±0.0399 0.7695±0.0543 0.8156±0.0608 0.8603±0.0709 0.9004±0.079

CRN 0.8874±0.0643 0.7512±0.042 0.8365±0.0647 0.9305±0.087 1.0186±0.1041 1.0914±0.1144

CRN w/o BRM 0.9081±0.0833 0.7253±0.0648 0.7647±0.0711 0.8093±0.0791 0.8549±0.0865 0.8978±0.09

RMSN 1.1192±0.1139 0.9905±0.1068 1.0193±0.1189 1.0485±0.1388 1.0817±0.1596 1.1184±0.1782

GNET 1.0014±0.0542 1.0301±0.07 1.1816±0.0999 1.2527±0.135 1.2944±0.1635 1.3194±0.1811

MSM 1.4126±0.1091 2.0351±0.2576 2.387±0.3079 2.5739±0.3327 2.6381±0.3357 2.6038±0.3251

µ = 6

CT 2.9329±1.0845 3.6032±1.7021 4.1373±1.9675 4.4685±2.1355 4.6556±2.2183 4.6891±2.2337

CT w/o BRM 2.8848±0.2065 2.8963±1.0772 3.1507±1.1061 3.2695±1.1335 3.2695±1.1335 3.3876±1.146

CRN 2.5019±0.2458 3.0962±1.2731 3.5662±1.6316 3.763±1.7179 3.8416±1.7144 3.8249±1.66

CRN w/o BRM 2.452±0.2341 3.1151±1.1059 3.5853±1.3143 3.7225±1.3755 3.6914±1.3697 3.5311±1.3101

RMSN 2.4291±0.2032 1.9708±0.6216 2.3183±0.8332 2.5352±0.8919 2.6429±0.866 2.6645±0.7951

GNET 2.1158±0.15 1.6777±0.3713 2.099±0.4588 2.3431±0.5212 2.4959±0.5712 2.5896±0.6363

MSM 2.9828±0.2093 2.1097±0.67 1.8604±0.605 1.8862±0.5998 1.8448±0.5613 1.656±0.4577

µ = 8

CT 4.045±0.7598 4.9419±1.9872 5.5432±2.1325 5.9236±2.2364 6.1506±2.346 6.189±2.445

CT w/o BRM 4.1487±1.0624 4.4726±1.9057 4.8615±1.8993 5.05±1.8558 5.1302±1.7835 5.0791±1.6694

CRN 3.8468±0.2727 5.7004±2.4747 6.294±3.0082 6.4696±3.0877 6.4373±2.9626 6.2295±2.7222

CRN w/o BRM 3.5992±0.2349 4.6192±1.3005 5.3959±1.5165 5.709±1.5527 5.7371±1.504 5.5302±1.3913

RMSN 3.4263±0.4333 2.8244±1.2188 3.5567±1.4583 3.7758±1.4774 3.7013±1.5067 3.5593±1.3595

GNET 3.1364±0.3073 2.856±0.8067 3.5623±1.0225 3.9387±1.143 4.1182±1.1899 4.1359±1.1703

MSM 4.1831±0.371 1.5761±0.5207 2.1267±0.7158 2.5203±0.853 2.7747±0.9489 2.9511±1.0315

D.2. Factual Outcome Estimation on Real-world M5 dataset

The dataset for M5 Forecasting, as referenced in (Makridakis et al., 2022), encompasses daily transaction figures from

Walmart outlets in three American states, supplemented by detailed information on products and stores, in addition to

factors like pricing and notable occurrences. This dataset is restructured for the purpose of estimating treatment outcomes,

identifying the pricing of products as the treatment factor and product sales figures as the result variable. All other attributes

are considered as covariate variables.

Given that this dataset is derived from real-world data and lacks information on counterfactual outcomes, we demonstrate

the performance of various models and their Empirical Risk Minimization (ERM) variants in estimating factual outcomes.

We omit GENT and MSM here because they can not converge on this dataset. Similarly, we set the horizon Ä from 1 to 6,

and the results, as shown in Table 8, indicate that ERM variants without a balancing module generally outperform those with

a balancing module. This outcome is intuitive since we are dealing with factual outcomes, and the presence of a balancing

module alters the original distribution of covariates, causing a loss of information beneficial to outcome prediction.

D.3. Multi-step Counterfactual Outcome in Standard Supervised Learning

reports on the performance of various models and their ERM variants in counterfactual estimation on the Tumor dataset,

with the treatment bias strength parameter µ, set as 2, 6, and 8. The results, illustrated in Table 7, corroborate the phenomena

discussed in the main text. It was found that ERM variants without a balancing module generally exhibit superior predictive

performance compared to those with a balancing module. Moreover, as the intensity of treatment bias increases, the negative

impact on model performance brought about by the balancing strategy becomes more pronounced (as evidenced by the

increase in the Root Mean Square Error (RMSE) average) and more unstable (as can be discerned from the standard deviation

of the RMSE). This highlights the challenges in managing treatment bias in models, especially when balancing mechanisms

are employed, suggesting a careful consideration of the trade-off between bias correction and predictive accuracy.
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Table 8. RMNSE (mean ± std) for M5 real-world dataset in factual outcome estiamtion.

Methods Ä=1 2 3 4 5 6

CT 4.5934±0.0823 8.9863±0.1888 9.5868±0.1934 9.9135±0.2266 10.1454±0.2535 10.3476±0.2838

CT w/o BRM 4.5908±0.0855 8.9802±0.1814 9.5806±0.1789 9.9029±0.2047 10.1342±0.2273 10.3354±0.2551

CRN 4.9843±0.316 9.1488±0.1674 9.7878±0.1619 10.1161±0.1683 10.3767±0.1921 10.5927±0.2228

CRN w/o BRM 4.6808±0.0554 9.0483±0.1636 9.6803±0.1535 10.004±0.1625 10.2566±0.1779 10.4691±0.1971

RMSN 5.1912±0.1169 9.7308±0.2557 10.4807±0.3374 11.069±0.4258 11.632±0.532 12.1559±0.6548
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(e) CRN, µ = 3
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(f) CRN, µ = 10

Figure 8. Model performance comparison in different weights of balancing module, where CT with Counterfactual Domain Confusion,

CRN with Adversarial Gradient Reversal.

D.4. Additional Short-term History Cold-start Case for Counterfactual Estimation

In this report, we detail additional findings on the performance of counterfactual outcome estimation in the context of

short-term history cold-start cases on the Tumor dataset, under varying intensities of treatment bias. Specifically, we

compared the performance of different counterfactual estimation models and their Empirical Risk Minimization (ERM)

variants in multi-step prediction scenarios, with γ values set at 2, 6, and 8, as depicted in Table 9. Our observations reveal

that while models with a balancing strategy may exhibit lower average Root Mean Square Error (RMSE) values in certain

cases compared to those without a balancing strategy, the significant difference in the standard deviation between the two

groups undermines the potential advantages of balanced models in these instances. Furthermore, it is noteworthy that in the

majority of cases, models lacking a balancing strategy tend to perform better. This suggests that the purported benefits of

implementing a balancing mechanism for counterfactual outcome prediction in cold-start scenarios with short-term history

may not be consistently demonstrable across different levels of treatment bias, especially when considering the variability in

model performance.

D.5. Additional Distribution Shift Cold-start Case for Counterfactual Estimation

In this report, we present additional experimental results on counterfactual outcome estimation under the scenario of

distribution shift cold-start Case, involving various models and their ERM variants. These models were trained with a

treatment bias strength of γ = 10, and then tested on datasets constructed with the treatment bias strength of γ = 2, 6 to

evaluate the effectiveness of balancing strategies when there are distributional differences between the source and target

domains. The findings, as displayed in Table 10, consistently show that ERM variants without a balancing module generally

outperform those with a balancing module. We did not observe any benefit from the balancing strategy in the context of

distribution shift cases for counterfactual estimation tasks; instead, it appears to have a detrimental effect, introducing
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Table 9. RMSE (mean ± std) performance on Tumor for short-term history cold-start case.

γ = 2

Methods τ=1 2 3 4 5 6

CT 0.9233±0.0605 0.7834±0.0572 0.8694±0.0643 0.9514±0.0669 1.0158±0.0741 1.0733±0.0801

CT w/o BRM 0.9215±0.0527 0.7955±0.0575 0.8797±0.0698 0.9564±0.077 1.0177±0.0863 1.0709±0.0884

CRN 0.9411±0.045 0.848±0.0838 0.9751±0.0981 1.1063±0.1163 1.2235±0.1292 1.3169±0.1323

CRN w/o BRM 0.9632±0.0622 0.8061±0.0956 0.8835±0.1173 0.9631±0.1374 1.0368±0.1517 1.1018±0.1573

RMSN 1.1651±0.0931 1.0225±0.1023 1.0943±0.1043 1.1698±0.1118 1.2383±0.1237 1.3018±0.1319

GNET 1.0559±0.058 5.0544±0.1537 6.1204±0.2822 6.4523±0.4056 6.4235±0.5026 6.174±0.5921

MSM 1.4994±0.0684 2.4804±0.1105 2.9169±0.1328 3.1447±0.1411 3.2205±0.142 3.1734±0.1437

γ = 6

CT 3.1077±1.0199 4.3539±3.144 5.0768±3.6509 5.4948±3.9159 5.7599±3.951 5.7262±3.8615

CT w/o BRM 2.8129±0.3076 3.0805±1.2024 3.4053±1.2094 3.6102±0.9977 3.8604±0.8948 3.991±0.8221

CRN 2.7107±0.295 4.5699±1.1237 5.1567±1.2849 5.356±1.289 5.3911±1.2332 5.2859±1.1368

CRN w/o BRM 2.6608±0.2909 4.7513±0.871 5.4321±0.8854 5.5918±0.8353 5.4986±0.7715 5.2123±0.6938

RMSN 2.6146±0.174 2.7629±0.6637 3.4115±0.7996 3.7641±0.8695 3.9148±0.8473 3.9114±0.7832

GNET 2.2245±0.2132 4.6513±0.4998 5.4084±0.6527 5.6466±0.7452 5.6574±0.7861 5.5463±0.7823

MSM 3.2872±0.2421 3.0459±0.4111 2.7305±0.3868 2.7901±0.4116 2.7366±0.4222 2.4671±0.4189

γ = 8

CT 4.1338±0.5542 5.7549±2.494 6.7353±2.8143 7.2575±2.9254 7.4752±2.8458 7.6408±2.7925

CT w/o BRM 4.0003±0.6324 4.0751±1.4148 4.568±1.5578 4.8±1.5702 4.8626±1.5929 5.1146±1.4664

CRN 4.0312±0.2933 8.3633±3.9551 9.1368±4.2186 9.3202±4.063 9.23±3.8222 8.8752±3.4921

CRN w/o BRM 3.7808±0.2239 6.6869±1.2202 7.7847±1.3929 8.2069±1.4314 8.217±1.4154 7.8825±1.3351

RMSN 3.6366±0.4517 3.8651±1.5634 5.0449±1.6389 5.3907±1.5291 5.248±1.5433 5.0034±1.3334

GNET 3.1837±0.2193 5.6514±0.9173 6.5778±1.0536 6.9325±1.0519 6.987±0.9693 6.8128±0.8408

MSM 4.3752±0.4191 2.2088±0.3828 2.9991±0.5359 3.5619±0.6461 3.9347±0.7295 4.2067±0.8001

instability into the model’s performance. This suggests that in scenarios where the training and testing data distributions

differ significantly, employing a balancing strategy may not enhance, and could potentially impair, the stability and accuracy

of counterfactual outcome predictions.

D.6. Exploring the Impact of Contribution Weight for Balancing Module

In this section, we conduct the experiments to explore the impact of the contribution weights of the two balanced repre-

sentation methods: Adversarial Gradient Reversal, Counterfactual Domain Confusion on model performance in temporal

counterfactual outcome estimation tasks for the synthetic Tumor Growth dataset. Due to the poor performance of PS-based

Contrastive Balancing, we omit the exploration for it. These methods were initially mentioned in Section 3. In our

analysis, we denote the contribution weights of these balancing modules as α, with values set within the range of [0.5,

1.5, 2.5, 10.0]. We then compare their results with the ERM version (where α = 0) of each model, while keeping other

hyperparameters consistent with those used in standard supervised learning settings. Experimental results, as illustrated

in Figure 8, demonstrate the performance of different balanced representation module weights under varying values of

γ = [1, 3, 10].

Our observations indicate that when γ values are relatively low (e.g., 1 or 3), signifying less significant treatment bias, the

weight values of the balanced representation modules have a minimal impact on the performance of counterfactual outcome

estimation, the model performance in terms of different balancing weights is almost the same. However, as the γ value

increases, a general trend emerges: with the rise in the balancing module’s weight, there is a corresponding decline in

performance. Notably, compared to the ERM models, the performance of models with higher balancing module weights

tends to be less effective, which is consistent with the previous observation in the standard supervised learning setting. This

finding underscores the negative role that balancing module weights play in temporal counterfactual outcome estimation,

particularly in scenarios characterized by more pronounced treatment biases.
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Table 10. RMSE (mean ± std) performance on Tumor for distribution shift cold-start case.

γ = 2

Methods τ=1 2 3 4 5 6

CT 1.7095±1.0786 2.4904±2.5066 3.0249±3.2811 3.4384±3.7743 3.5949±3.8012 3.702±3.8142

CT w/o BRM 1.0343±0.1086 1.0491±0.102 1.1595±0.1364 1.2747±0.1549 1.3739±0.1682 1.4078±0.1844

CRN 1.626±0.0804 2.0827±0.2604 2.1672±0.4988 2.2263±0.5693 2.2678±0.563 2.284±0.5354

CRN w/o BRM 1.4259±0.0824 1.4815±0.1531 1.6756±0.1583 1.7945±0.1491 1.8476±0.1399 1.834±0.1368

RMSN 1.4809±0.1192 1.3126±0.1 1.3464±0.1102 1.3807±0.1043 1.4222±0.1102 1.4675±0.1519

GNET 1.1463±0.0576 4.022±0.0451 4.5349±0.1598 4.6286±0.2901 4.6283±0.4205 4.6054±0.5494

MSM 1.3067±0.1205 0.5554±0.0677 0.8374±0.1064 1.0729±0.1382 1.2844±0.1669 1.4894±0.1901

γ = 6

CT 3.3542±1.0787 4.0092±2.9922 4.7749±3.7048 5.2517±4.0412 5.4713±4.013 5.5775±3.9294

CT w/o BRM 2.2628±0.1719 2.0385±0.6964 2.4144±0.8376 2.5979±0.8042 2.7848±0.8568 2.8334±0.8094

CRN 2.9282±0.0577 3.831±1.3974 4.1685±1.8389 4.3323±1.9419 4.4152±1.8572 4.4311±1.6918

CRN w/o BRM 2.7046±0.0917 3.5286±1.2803 4.0347±1.3757 4.2852±1.3728 4.3668±1.3267 4.2864±1.2416

RMSN 2.8807±0.1817 2.8372±1.121 2.9339±1.1156 2.9181±1.0219 2.893±0.8884 2.8541±0.7413

GNET 2.1707±0.1345 4.068±0.4381 4.5058±0.6647 4.6623±0.8378 4.723±0.9577 4.7171±1.0359

MSM 3.1887±0.2687 1.0831±0.3845 1.6306±0.5812 2.0902±0.7477 2.5028±0.9024 2.9196±1.0679
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Figure 9. Distribution shape for the two covariates under different strengths of treatment bias. (a)-(f) for the first covariate, (g)-(l) for the

second covariate.

D.7. Detailed Analysis for the Covariate Distribution

Tumor Growth. Here we present the covariate distribution averaged on the all-time steps for treatment bias strength

gamma = {0, 1, 2, 3, 6, 10}. The Gaussian fit distributions of the first covariate and the second covariate are shown in

Figures 9. We can observe that for the first covariate, when the treatment bias intensity is relatively low (e.g., γ equals 0, 1,

2, 3), the differences in the distribution of this variable among different groups are not very pronounced. It’s only when

the treatment bias is relatively high that noticeable differences in distribution between groups emerge. As for the second

covariate, regardless of the intensity of the treatment bias, the distribution of this covariate among different groups remains

nearly identical.

Therefore, based on the results presented above, this may be the reason why the balanced representation module of the

causal time-series model doesn’t work: in this dataset, the distribution of one covariate is the same across different groups,

and the distribution of the other covariate only exhibits noticeable differences among groups when the treatment bias is

relatively high. As mentioned at the outset, the Balanced Representation Module aims to reduce the distance between

covariate distributions among different groups. However, if the disparities in covariate distributions among different groups

in the data are not sufficiently large, this module is likely to become a burden to the model, leading to a decrease in predictive

performance.

Pure Synthetic Data. Furthermore, to avoid losing generality, we present the visualization of covariate distribution for more
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time-step selection. We set the sampled time step to {1,2,4,8,16}. We plot the visualization of one certain covariate over the

sampled time steps as shown in Figure 10. The results reveal that at the onset of the timeline (e.g., at time-steps 1 and 2), an

increase in the gamma value correlates with a more pronounced disparity in covariate distributions among different treatment

groups. Yet, as the timeline progresses to later stages (e.g., at time step 8 and 16), the variance in covariate distributions

between treatment groups diminishes. This pattern suggests that, in line with typical time series assumptions, treatment bias

tends to decrease over time, thereby reducing the efficacy of strategies aimed at balancing representation distributions.
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(e) µ = 0.2, t = 16
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(j) µ = 0.4, t = 16

Figure 10. Distribution shape for the covariate under different strengths of treatment bias and time-steps on pure synthetic dataset.

D.8. Learned Representations for Reconstruction of Covariates

In the main text, we present the reconstruction results of the original covariates by the Causal Transformer under scenarios

of both mild and significant treatment bias, indicated by γ = 1 and 10, respectively. This is done to validate the impact of

the balanced representation strategy on the loss of covariate information when employing balancing strategies versus not.

Here, we also display the capability of the CRN model to reconstruct the original covariates under the same settings, using

two types of representations as illustrated in Figure 11. We observe that under conditions of mild treatment bias (γ = 1), the

training for the task of reconstructing original covariates with non-balanced representation is more stable than with balanced

representation. The loss for the former reasonably and steadily declines, whereas the latter’s loss fluctuates continuously.

However, under conditions of significant treatment bias (γ = 10), both balanced and non-balanced representations show

poor convergence in training. This suggests that excessive treatment bias can distort the training process of capturing useful

information from the original covariates, leading to unstable prediction outcomes.

(a) µ = 10, Balanced CRN (b) µ = 10, Non-balanced CRN (c) µ = 1, Balanced CRN (d) µ = 1, Non-balanced CRN

Figure 11. Reconstruction loss curves for CRN model.

D.9. Representation Visualization for CRN model

Here, we report on the visualization of representations derived from the CRN model, both with and without the implementa-

tion of a balancing strategy. Similarly, we set the intensity of treatment bias, γ, to 10 and obtained representations for time

steps t = 1 and t = 10. The visualization results, as shown in Figure 12, indicate that the distribution differences between

the balanced and non-balanced representations, after dimensionality reduction, are not significant. Under conditions of

pronounced treatment bias, the balancing module does not appear to be effective. This observation corroborates our previous

discussion and analysis that excessive treatment bias can disrupt the model’s learning process. The visualizations provide a
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(a) t = 1, CRN, Balanced (b) t = 10, CRN,Balanced (c) t = 1, CRN, Non-balanced (d) t = 10, CRN, Non-balanced

Figure 12. Visualization for balanced and non-balanced representation for different time steps for CRN models.

tangible insight into how, in the presence of significant treatment bias, both balanced and non-balanced strategies result in

similar distributions of representations. This suggests a limitation in the balancing module’s ability to mitigate the effects of

treatment bias when it is substantial, affirming the notion that an overly pronounced treatment bias poses a challenge to the

model’s ability to learn and differentiate effectively between treated and untreated groups based on the original covariates.
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