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Abstract

An encryption scheme is Key Dependent Message (KDM) secure if it is safe to encrypt mes-
sages that can arbitrarily depend on the secret keys themselves. In this work, we show how to
upgrade essentially the weakest form of KDM security into the strongest one. In particular, we
assume the existence of a symmetric-key bit-encryption that is circular-secure in the 1-key setting,
meaning that it maintains security even if one can encrypt individual bits of a single secret
key under itself. We also rely on a standard CPA-secure public-key encryption. We construct a
public-key encryption scheme that is KDM secure for general functions (of a-priori bounded circuit
size) in the multi-key setting, meaning that it maintains security even if one can encrypt arbi-
trary functions of arbitrarily many secret keys under each of the public keys. As a special case,
the latter guarantees security in the presence of arbitrary length key cycles. Prior work already
showed how to amplify n-key circular to n-key KDM security for general functions. Therefore,
the main novelty of our work is to upgrade from 1-key to n-key security for arbitrary n.

As an independently interesting feature of our result, our construction does not need to
know the actual specification of the underlying 1-key circular secure scheme, and we only rely
on the existence of some such scheme in the proof of security. In particular, we present a uni-
versal construction of a multi-key KDM-secure encryption that is secure as long as some 1-key
circular-secure scheme exists. While this feature is similar in spirit to Levin’s universal con-
struction of one-way functions, the way we achieve it is quite different technically, and does
not come with the same “galactic inefficiency”.

1 Introduction

An encryption system is Key Dependent Message (KDM) secure if it maintains security even if the
messages can arbitrarily depend on the secret key. KDM security has several interesting connec-
tions to both the application and theory of cryptography. For instance, the Bitlocker encryption
utility will sometimes encrypt its own secret key resulting in a KDM ciphertext. The anonymous
credential system of Camenisch and Lysyanskaya [CLO1] requires users encrypt their own secret
keys in an effort to deter users from delegating their keys. More recently the work of Koppula and
Waters [KW19] showed how to build chosen ciphertext security [RS92] PKE via a key dependent
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type primitive they called hinting PRG. Their methods were subsequently adapted [KMT19] to
apply a similar transformation using KDM secure encryption. Following this [LOR"19, KM19]
showed how to leverage these techniques to build resuable designated verifier zero knowledge
proofs. In addition, earlier connections to CCA were made [HK15], but using an additional repro-
ducibility property.

On the flipside one can gain many insights from the technically challenging problem of creat-
ing cryptosystems that meet the traditional notion of CPA security [GM82], but are not KDM se-
cure. Multiple works [ABBC10, CGH12,Rot13, BHW15, KRW15, KW16, AP16, GKW17b, GKW17c]
have explored such questions employing a variety of number theoretic assumptions. Notably, the
KDM insecure bit encryption system of [GKW17c] forms the machinery upon which lockable or
compute and compare obfuscation is built [GKW17a, WZ17].

Initially, the only provably KDM secure constructions of encryption systems relied on the
random oracle heuristic [BRS03]. In a breakthrough result Boneh, Halevi, Hamburg and Ostro-
vsky [BHHOO8] showed how to achieve public key encryption system that were n-key KDM
secure for affine functions under the Decisional Diffie-Hellman (DDH) assumption. At a very
high level their solution consisted to two core ideas. First, they manipulated algebraic properties
of DDH hard groups to allow for the creation of a ciphertext with a message that depended on
a chosen affine function of a secret key, but without knowing the secret key. Second, they cre-
ated a proof technique that allowed for a reduction to (undetectably) derive several public keys
from one “master” public key. This second idea is what allowed them to get KDM security for n
keys. It also relied on the underlying algebraic properties of the groups. Subsequently, [ACPS09]
showed how these concepts applied in domains beyond DDH hard groups. They achieved n-
KDM security for affine functions from the Learning with Errors (LWE) assumption for public key
encryption and from the Learning Parity with Noise (LPN) assumption for secret key encryption.
The work of [BLSV18] showed how to construct 1-KDM security for affine functions generically
from a building block called batch encryption (a variant of chameleon encryption [DG17] and la-
conic OT [CDG"17]), which can be instantiated from the CDH assumption, the LWE assumption,
or LPN with extremely small noise.

At first glance having KDM security for just affine functions seems limited as one would ide-
ally like to achieve security for arbitrary functions of the secret key. To this end a second set of
works [BHHI10, BGK11, App11, KM20] looked to amplify security from weak to more expressive
functions. Barak et al. [BHHI10] first showed how to get n-key KDM security for functions of
bounded circuit-size from the DDH or LWE assumptions. Applebaum [App11] then showed a
generic technique for amplifying any n-key KDM security for projection functions to n-key KDM
security to arbitrary functions of bounded circuit-size using garbled circuits.! Projection functions
are intuitively functions where every output bit depends on at most a single bit from the secret
keys. That is an output bit can be a constant 0 or 1 bit, one that copies a key bit, or one that flips
it. Critically, projections are captured by the class of affine functions from the work of [BHHOO08]
and [ACPS09]. Kitagawa and Matsuda [KM20] later employed garbling to amplify from an even
weaker class of functionality, which allowed for constant functions or copying a secret key bit, but
not flipping it, which they call circular security. (We note in the KDM literature the term “circular
security” can also refer a different notion of just encrypting key cycles.)

The most recent works give an eloquent and generic way to move from a scheme supporting

! Applebaum [App11] describes his transformation using the terminology of randomized encodings; however, we
refer to it in terms of garbled circuits to simplify comparisons.



a very weak form of KDM queries to an expressive over a given number of keys. However, there
do not exist techniques that allow for amplification of the number of keys a KDM supports. These
techniques are essentially “stuck with” whatever number of keys are supported in the base scheme
leaving fundamental questions.” For example, if we start with a 1-KDM secure scheme can we
achieve KDM security for n-key cycles for n > 1? Or arbitrary functions on n keys?

Our Results. In this work we answer these questions in the affirmative. Starting with any stan-
dard CPA-secure public key encryption (PKE), we create a PKE that is n-key KDM secure for
arbitrary n and for any functions of a-priori bounded circuit size, as long as there exists some
symmetric-key encryption scheme that is 1-key circular secure. As a concrete corollary of our
work, by relying on the existence of 1-key circular secure encryption from the CDH assump-
tion [BLSV18], we get the first n-key KDM secure scheme under CDH.

Like prior works [BHHI10, App11, KM20] our construction leverages garbled circuits, but with
a different twist. Remarkably, our construction does need to know the specification of any 1-key
circular secure scheme. Instead the 1-key circular scheme only manifests in our proof of security.
Thus we are able to achieve a form of universal security, where our concrete scheme is secure so
long as there exists some 1-key circular secure scheme, without needing to know which one.® Even
though our construction is universal, it does not employ any “algorithm enumeration” style tech-
niques associated with most other universal constructions starting with [Lev85]. It also avoids
the “galactic inefficiency” tied to such approaches, where huge constant factors in the resulting
schemes imply that they likely cannot be executed in the lifetime of the universe if we want rea-
sonable concrete security. Interestingly, our proof would still work even if the underlying 1-key
circular scheme only had a non-uniform instantiation, meaning that the description of the algo-
rithms themselves could depend on A but their specification could take superpolynomial time to
generate. This is in contrast to other prior universal constructions based on “algorithm enumer-
ation”, which crucially rely on the underlying secure scheme having a uniform (constant-sized)
algorithmic description.

A core contribution is that we devise a proof method to link several disparate secret keys to
a single master key. At the beginning of the proof all n secret keys are independently generated,
but at the end they can all be viewed as being derived from an introduced master key. This
matches in spirit the key linking concept pioneered by [BHHOO8], but with the difference that we
generically utilize 1-key circular security to achieve the linking as opposed to algebraic properties
of a particular number theoretic domain.

1.1 Overview

We now give an overview of our construction and proof of security. A feature of our construc-
tion is its simplicity and we begin by describing the algorithms. We will utilize a CPA-secure
public-key encryption scheme CPA = (CPA.KeyGen, CPA.Enc, CPA.Dec) that is not necessarily
KDM secure and a garbled circuit scheme (Garble, Eval). In the security proof, we will further
assume the existence of some symmetric-key encryption scheme that is 1-key KDM secure for

>We note that there are some trivial amplifications one can do by scaling the security parameter. For example, if we
had a scheme that supported n = A keys, then for any constant ¢ we could achieve KDM security for n = A° keys. The
transformation is to simply let A’ = A° and then run the same scheme with security parameter X".

*While our construction does not need to know the 1-key circular secure scheme, it does need to know the specifi-
cation of the CPA secure PKE.



projection functions (this is implied by 1-key circular security via [KM20]), denoted by PRJ =
(PRJ.KeyGen, PRJ.Enc, PRJ.Dec), but we do not need to know this scheme for our construction.

Our key generation algorithm KDM.KeyGen(1*) begins by randomly sampling an “indicator
value” u + {0,1}*. Next it samples 2\ public secret key pairs as (pk; ;, sk; ) < CPA.KeyGen(1*)
for i € [A, b € {0,1}. The public key and secret key is set as pk = {pk;;}icxpef0,1}, Sk =
(u, {8kiu,; ficp)- Intuitively, all 2\ public keys are published, while only half of the secret keys
as chosen by u are kept. This means that for all i any value which is later encrypted to pk; ,, can
be recovered by the secret key and any value encrypted to pk; ;_,,, cannot.

Our encryption algorithm KDM.Enc(pk, 11) takes as input the public key and a message . It
begins by first constructing a circuit C), that is a constant circuit of A input bits that outputs
on any input. (We pad it to an appropriate size, but leave details of padding to the main body
description.) Next we created a garbling of C,, as (C, {1ab; b }icn pefo,1)) < Garble(1*,C),). Finally,
we encrypt each label to the corresponding public key component as ct;;, <= CPA.Enc(pk; ;, lab;p).
And output the ciphertext as ct = (C, {ctip}icin,pef0,1})- The ciphertext consists of the garbled

circuit C plus an encryption of each label.

The decryption algorithm utilizes the indicator value u to guide it to which labels it should
attempt to recover. The algorithm recovers lab;,, by decrypting ct;,, with sk;,, to for each i.
At this point it has a label for each input and can recover the message by evaluating the garbled
circuit. Since C is a garbling of the constant circuit C), it will output the message p regardless of
what set of label are recovered.

One can easily observe that our construction uses plain PKE and does not use any KDM
scheme whatsoever. We also observe that our decryption process communicates the indicator
value u to the garbled circuit. This doesn’t matter much for the correctness of the construction
since C), is a constant circuit; however, this feature will come into play further along in the proof.

Security for n-keys by key linking. We consider KDM security for n-keys where the attacker
will get a single challenge ciphertext under the public key of the ¢-th user of some function f
applied to the secret keys of all the users. The adversary chooses ¢, f, where the function f can be
an arbitrary function of some a-prior bounded circuit size.* The general case of multiple challenge
ciphertexts is handled almost as easily, but we restrict ourselves to a single one here for ease of
exposition. Our proof proceeds over multiple steps.

In the first step we begin by linking the indicator values of these keys as follows. First, we
introduce a 1-key KDM scheme PRJ for projection functions and sample k < PRJ.KeyGen(1%).
Without loss of generality, we can assume |k| = A\. Next choose random v/ «+ {0,1}* and set
uw) =k @ for all j € [n] where v/ is the indicator component of the j-th key. This concludes
the first step where we can now view the indicator components of the j-th key as being derived
from a single k& by XORing with v/. Arguing indistinguishability of this step is immediate as it
only involves a syntatic change and the distribution is the same as the prior hybrid. At this point
the secret key of user j is only partly derived (in the indicator component) from &.

In the second step of the proof we let ct;; ¢ CPA.Enc(pkf;lf“t‘, 0")}iep- That is replace
the encryption of lab; ,» with the all 0’s string, which effectively erases la b, ¢ from the ciphertext.
Indistinguishability of this step follows immediately from CPA security cou};led with the fact that
Sk;‘t,kut is not part of user t’s secret key as it was discarded during key generation.

i,1—u

*The bound on the circuit size affects the size of the padding we need to add to the circuit C, in the construction.
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In the third step, we now move to fully derive the all the secret keys from k when creating
our ciphertext. To do this, we first encrypt all the secret keys sk’ under k to derive ciphertexts
!« PRJ.Enc(k, sk’ ) for j € [n]. We then change from garbling the constant circuit C), to garbling
anew circuit C that has the ciphertext ct’ hard-coded and performs the following steps:

1. Takes in an input z, which should be v’ when decrypting properly with the t-th secret key.

2. Computes x & v/. Under the presumption x = u?, this is equal to k.
3. Derives from k the secret keys sk’ for all n users by decrypting sk = PRJ.Dec(k, & )0

4. Evaluate the function f (Jl, ...,sk"") on the secret keys obtained from the previous step
where f is the KDM query supplied by the attacker.

This proof step can be fulfilled by garbled circuit security. We can employ this argument since at
this stage only one label per input bit is contained in the ciphertext.

At this point the keys are fully derived from the “master key” k. Before we can apply KDM
security to erase the message we must first erase knowledge of k from the challenge ciphertext.
Currently, & is indirectly embedded in the challenge ciphertext by the fact that labels are only
encrypted in ct; .+ and not ct;;_,:. To remedy this we reverse an earlier step and add labels
lab, ; _,+ back to ct; '

i,1—ut i,1—ut*

With this modification the only information regarding k is inside the KDM ciphertexts ct/
contained within the garbled circuit. But now that k is gone elsewhere we can (finally) leverage
KDM security to change &’ to each be encryptions of the all 0’s strings. Finally, now that all
information regarding sk’ is gone we can apply CPA security to remove all labels by changing
both ct; o and ct;; to be encryptions of the all 0s string. And follow this by changing C to be a
garbling of the constant function encrypting outputing the all 0’s string.

1.2 Extensions and Comparisons

We conclude by mentioning a few extensions to our work as well as exploring technique compar-
isons.

Symmetric-Key KDM. The scheme described above shows how to go from 1-key KDM security
to n-key KDM security for public key encryption, by additionally using standard CPA-secure PKE.
We can also achieve the same results for secret key encryption without the additional assumption
via a small modifications to our approach. One might try to achieve this by running the same
system and simply replacing the use of a CPA secure public key encryption with CPA secure
secret key encryption. This runs into the issue of how the encryption algorithm generates the
values ct; 1, without a public key. One possibility is to add the components sk; ;_,,, to the secret
key; however, doing this will break our security argument. Instead, we will use a symmetric
key encryption scheme with pseudorandom ciphertexts. (This is known from pseudorandom
functions.) Then we can encrypt by setting ct; 1_,, to be a random string. The proof of security

We actually only need to derive the secret keys j that are used in the computation of f. For a bounded size function
f this may be considerably fewer than all n. However, for this overview we act as though all keys are derived here.



then proceeds in a mostly similar way to before. We give further details in the main body. Note
that the resulting scheme depends on the symmetric-key CPA-secure encryption, but not on the
1-key KDM secure one — we only assume the latter exists, without knowing what it is.

In many applications it will be desirable to have KDM security with respect to an adversary
that can also make chosen ciphertext attacks. As mentioned at the beginning starting with [KW19]
several recent works have explored ways of achieving CCA security from key dependent type
primitives. After applying our transformation for CPA security one can apply a theorem statement
from [KM20] to then make the scheme CCA secure while maintaining KDM security for n-keys.

Given that prior schemes (e.g. [BHHI10, App11, KM20]) applied garbled circuits for function
amplification, it is instructive to take a slightly closer look into the similarities and differences with
our construction. We focus on the work of Applebaum [App11]. The construction of Applebaum
is fairly straightforward. A user’s public and secret key is created by calling the key generation
algorithm for a scheme that is KDM secure for some weak functionality. To encrypt, one first
simulates a garbled circuit that outputs the message ;. — the simulation includes a simulated
circuit and a single label for each input. These are all encrypted under the public key. To obtain
the message the algorithm first decrypts the KDM ciphertext to get the garbled circuit and labels
and then performs an evaluation which produces the message.

To prove security the challenge ciphertext is modified so that it is a garbling of a circuit which
KDM function query f provided by the attacker and the labels given out correspond the the secret
key of the underlying KDM scheme. The properties of the garbling construction imply that this
garbling itself can be viewed as a projection function of the secret key. Security then follows from
the fact that the underlying scheme was KDM with respect to projection functions.

One critical structural difference between our approach and the above is that in [App11] the
starting KDM scheme is exposed on the outside. If we run an n-key KDM experiment the attacker
will see all n keys. If the underlying scheme were only 1-key KDM secure, it is unclear how one
would argue n-key security from an attacker that sees many 1-key secure schemes. In contrast
our proof starts with a 1-key secure scheme, but it is hidden within the garbled circuit and not
exposed to the outside. Moreover, the security proof only uses a single 1-KDM secure key. If there
are multiple KDM ciphertexts, it will be under the same key over and over again. Interestingly, the
structure of our key amplification is arguably closer to the structure used by [KMT19] in showing
that hinting PRGs implied a encryption system that was one time KDM secure.

Another interesting comparison point is the construction of Kitagawa and Tanaka [KT18] for
realizing KDM secure public key encryption from KDM secure secret key encryption and standard
IND-CPA secure public key encryption. Their construction shares some stylistic features similar
to ours in that A pairs of public keys are generated and a symmetric key £ is used to select which of
each pair to keep in the secret key and which one to drop. Likewise, encryption will communicate
a set of labels and the decryptor gets a set corresponding to the key k.

There are also some crucial differences in the approaches. First, in the Kitagawa and Tanaka
scheme the evaluation of the garbled circuit during decryption produces a symmetric key KDM
which must be then decrypted by k to get the message. In contrast our scheme never exposes
the symmetric key ciphertext outside the garbled circuit during decryption. In fact (as mentioned
before) no such scheme is actually used in the main construction and the value u is simply a
random value and not a KDM secret key. This distinction allows us to instead link u to a single
KDM key in our proof. And during the proof the symmetric key KDM ciphertexts are used within
the garbled circuit giving us our universal property.



2 Preliminaries

For any integer n > 1, define [n] = {1,...,n}. A function v : N — N is said to be negligible,
denoted v(n) = negl(n), if for every positive polynomial p(-) and all sufficiently large n it holds
that v(n) < 1/p(n). We use the abbreviation PPT for probabilistic polynomial time. For a finite set
S, we write a <— S to mean a is sampled uniformly randomly from S. For a randomized algorithm
A, we let a < A(-) denote the process of running A(-) and assigning the outcome to a; when A
is deterministic, we write a := A(-) instead. We denote the security parameter by A. For two
distributions X,Y parameterized by A we say that they are computationally indistinguishable,
denoted by X =, Y if for every PPT distinguisher D we have |Pr[D(X) = 1] — Pr[D(Y) = 1]| =
negl(\).

2.1 Garbled Circuits

Definition 2.1 (Garbling Scheme). A garbling scheme (Garble, Eval) has the following syntax:

. (C, {1ab; b }icm) pefo,1}) < Garble(1*, O): Takes as input a circuit C having n input wires and m
output wires, and outputs the garbled circuit C along with 2n labels la b,y € {0, 1},

o y = Eval(C,{lab;,}): Given a garbled circuit C' and n labels {1ab; 4z, }ic[n) for some input x €
{0,1}™, outputs y = C(x).

Correctness: For all circuits C with n input wires, for all x € {0,1}", we have:
Pr(Eval(C, {labj, }icjn) = C(2)] = 1 — negl()),
where the probability is over (C, {lab; 3 }icin) befo,1})  Garble(1*, O).

Security: There exists a PPT simulator Sim such that, for all circuits C' with n input wires and m output
wires, for all x € {0, 1}" we have

(6¢ {Iab%xz}ze[n]) e Sim(lAv o, 1|C‘) C(.Z‘))
where (C, {lab; y }icin vefo.1y) < Garble(14,C).

Claim 2.1.1 (Indistinguishability Security). Assume (Garble, Eval) is a garbling scheme. Then for any
circuits Cy, Cy with n input wires, m output wires and equal circuit size |Cy| = |C4|, for any input
x € {0,1}" such that Cy(x) = C1(x) and we have:

(503 {lab?,u}ze[n}) e (61, {labzl,:ci}ie[n})
where (56, {|ab§b}i€[n}7b€{071}) — Garble(1>‘, Cﬁ)

Proof. Follows via a hybrid argument. By the definition of garbled circuit security, there is a sim-
ulator Sim such that the following holds. Let s := |Cy| = |C}| and y = Cp(x) = Ci(x). Then:

(CY, {1ab?,, Yiep)) ~e SIm(1*, 17,1, 1%, y) & (C*, {lab!, }iepn))-



Claim 2.1.2 (No-Label Security ). Assume (Garble, Eval) is a garbling scheme. Then for any circuits
Co, C1 with n input wires, m output wires and equal circuit size |Cy| = |C}| we have

C° ~, C*
where (C?, {1abl, Yicinl vejo.1y) < Garble(1*, Cp).
Proof. Let yo = Cp(0™) and y; = C1(0™). Define the circuits

ifx =0"

Calt(b) ($) = { Oy:z else

and pad these circuits to be the same size as Cj, C,.°
Let (Cﬁ, {labfb}ie[n],be{o,l}) — Garble(l’\, Cg) for ,B € {0, 1, alt(O), alt(l)}.
Then o
~ ~a alt
(C°, {136 }ie)) e (C), {laby @Y icp)

by Claim 2.1.1 and the fact that Cp(0") = Cy(g)(0"). Therefore C° . C*(°).
Also, ! !
~a alt(0 Fa att(l
(C’ “5(0)7 {|abi71( )}ie[n}) e (C lt(l)’ {labi,l( )}z‘e[n])

by Claim 2.1.1 and the fact that Clyy(g)(1") = Cyry(1) (1) = 0™, Therefore Calt(0) ~, Cali(1),
Lastly,
~a al o
(€D, {1abig " ieu) e (€', {Iaboiein)

1y

by Claim 2.1.1 and the fact that C(1)(0") = C1(1"). Therefore Caltl) ~, O,
By a hybrid argument, we therefore get C° ~, C. O

2.2 KDM Security Definitions

Definition 2.2 (KDM Security [BRS03]). Let (KeyGen, Enc, Dec) be a public-key encryption scheme
with the usual correctness property. Let n = n(\) be some polynomial and let F = {F} be some family of
functions. We say that the scheme is (n, F)-KDM if for all PPT adversary A we have

| Pr[KDMGameY (1*) = 1] — Pr[KDMGame!; (1")]| = negl())
where KDMGameﬁ(l)‘) is defined as the output of A in the following game:
e For j € [n], the challenger chooses (pk?, sk?) <+ KeyGen(1*) and gives pk!, ... pk™ to A.
* The adversary A makes arbitrary many KDM encryption queries:

— The adversary A chooses a pair (t, f) wheret € [n]and f € F).
— The challenger replies with ct < Enc(pk’, i) were 1 is defined as:
« If B =0, then p := 0° where { is the output length of f.

+ If f =1 then p := f(skt, ..., sk™).

*We assume that |Cy| is at least as large as Cy;¢(3), which is of some fixed size O(n 4+ m). We can make this hold
without loss of generality by always padding all circuits to be at least of that size before garbling them.




By default, we only consider bit-encryption schemes whose native message space is 1-bit.
However, we will abuse notation and write Enc(sk, x) for longer messages 1 to denote encrypt-
ing 1 bitwise, one bit at a time. Also, we always allow the adversary to choose the constant-0
or constant-1 functions, which corresponds to encrypting 0 or 1, even when we do not explicitly
define these as part of the class F. Lastly, we note that the definition of (n, F) security only makes
sense syntactically when F, contains functions f whose inputs consist of n(\) secret keys. We
specify some classes of interest below.

(n, s)-circuit-KDM. For a polynomial s = s(\), we say that an encryption scheme is (n,s)-
circuit-KDM secure if it is (n, F)-KDM secure, where F = {F),} is the class of circuits having
size s(\). Although we think of functions f € F as taking the input sk', ..., sk, it will be mean-
ingful to talk about (n, s)-KDM security for s < n. In this case, the function’s circuit size is too
small for it to even read the entire input. Instead, we think of the circuit f as specifying, for each
input wire, a pair of indices (i, j) indicating that this input wire reads the j'th bit of the i'th secret
key sk’. We let inp(f) C [n] denote the subset of the secret keys that the input wires of f depend
on, and we can write f({ski}ieinp(f)) in place of f(sk!, ... sk™).

n-circular. We say that a scheme is n-circular secure if it is (n, F)-KDM secure where F consists
of the class of functions f; j(sk',...,sk™) that output the j’th bit of the i’th secret key sk’ for some

(4,7)-

n-projection-KDM. We say that a scheme is n-projection-KDM secure if it is (n, F)-KDM secure
where F consists of the class of functions fl-7j7b(sk1, ..o.,5k) = fm(skl, ...,sk™) @ b for arbitrary
(4,7,b) and for f; ; as defined above. When extended to multi-bit messages encrypted bit-wise,
n-projection-KDM implies security for the class of functions F where each output bit can depend
arbitrarily on any single bit of sk', ..., sk™.

(00, F)-KDM. We say that a scheme is (0o, F)-KDM secure if it (n, F)-KDM secure for all poly-
nomial n = n(\). The notions of (oo, s)-circuit-KDM security and co-circular-security are defined
analogously.

Symmetric-Key KDM. We define KDM security for symmetric-key encryption analogously to
the above definition for public key encryption. In particular, sk < KeyGen(1*) now only outputs
a secret key (and no public key), and ct < Enc(sk, 1) now takes a secret key as an input instead
of the public key. Security is defined analogously by modifying the KDM security so that (i) the
adversary does not get any pk', ..., pk", (i) the KDM encryption queries are now answered via a
symmetric-key encryption ct < Enc(sk’, u).

3 Amplifying KDM

Let CPA = (CPA.KeyGen, CPA.Enc, CPA.Dec) be a CPA-secure public-key encryption scheme. Let
(Garble, Eval) be a garbled circuit scheme (Definition 2.1). We construct a public-key encryption
scheme KDM = (KDM.KeyGen, KDM.Enc, KDM.Dec), parameterized by some padding parameter
p = p(\) to be specified later, as follows:



(pk,sk) <— KDM.KeyGen(1*): For i € [A], b € {0,1}, sample (pk, , ski) < CPA.KeyGen(1*). Sam-
ple u « {0, 1}/\- Let pk = {pki,b}ie[/\],be{o,l}/ sk = (u, {Ski,ui}z’e[,\})-

ct + KDM.Enc(pk, u): Let C,, be the constant circuit that takes any input = € {0,1}* and always
outputs p. We pad C), to be of size p(\) for the padding parameter p. Let

(6, {Iabi,b}ie[)\],be{o,l}) A Garb"‘-(lA» Cp).-
Fori € [A],b € {0,1}, samplect; j, CPA.Enc(pk; , lab; ;). Output ct = (5, {Cti,b}z’e[}\],be{o,l})-

p = KDM.Dec(sk, ct): Fori € [)\], letlab; ,, := CPA.Dec(sk; y,, Cti ;). Output p := EvaI(C~'7 {lab; u, }).

Correctness Let pk = {pk; ; }ic\ bef0,1}, Sk = (u, {skiu, }ic[y) be akey pair output by the KDM.KeyGen
algorithm. And let ct = (C, {ctip}icin pefo,1}) be a ciphertext produced from KDM.Enc(pk, 1) for

some p. When the algorithm KDM.Dec(sk, ct) is run it first produces lab; ,,; := CPA.Dec(sk; v, , Cti v, )-
By the correctness of the underlying CPA secure encryption scheme lab; ,,, = Iabgﬂui for all i where

lab; ,,, are the labels generated during the encryption procedure. Next, we have that Eval( C,{ lab; ., }) =
Cy(u) by the correctness of the garbling scheme where p is the message encrypted. Finally,
C,(u) = p since C}, is the constant function and correctness holds.

3.1 Security

Theorem 3.1. Let CPA be a CPA-secure public-key encryption scheme and let (Garble, Eval) be a secure
garbling scheme. Then for any polynomial s(\) there exists some polynomial padding parameter p(\)
such that the following holds. Assume that there exists some 1-circular symmetric-key encryption scheme.
Then the above KDM scheme with padding parameter p is an (oo, s(X))-circuit-KDM secure public-key
encryption.

Proof. We define the polynomial p(\) further below. Assume there exists some symmetric-key 1-
circular secure bit-encryption scheme. Then by [KM20] there also exists 1-projection-KDM secure
symmetric-key encryption denoted by PRJ = (PRJ.KeyGen, PRJ.Enc, PRJ.Dec).

By rescaling the security parameter, we can assume without loss of generality that: (i) the secret
key size of k <+ PRJ.KeyGen(1%) is of size |k| < X and (ii) the circuit size of the decryption function
PRJ.Dec(-, ct) (which has a hard-coded bit-ciphertext ct, takes as input the key k, and outputs
PRJ.Dec(k, ct)) is bounded by |PRJ.Dec(-,ct)| < A. In particular, assume we have some scheme
PRJ" where the maximum of the keys size |k| and the circuit size of PRJ'.Dec are bounded by some
potentially large polynomial g(A) < ¢; - A*? for some constants ¢, c;. We can define the scheme
PRJ by taking PRJ.KeyGen(1*) = PRJ .KeyGen(1"') where X' = A'/2 /¢, to satisfy (ii) and ensure
|[E| < A. It is easy to see that asymptotic security is preserved, although exact security degrades.
Furthermore, we can strengthen (i) to require that the key size is exactly |k| = X while preserving
(ii). We do this by padding the key with dummy bits, which the decryption circuit ignores (this
allows us to have a potentially smaller decryption circuit than key size).

For any polynomial n = n(\), we prove the (n, s)-circuit-KDM security of the KDM scheme
via the followng sequence of hybrids:

Hybrid 0. This is (n, s)-KDM security game of the scheme KDM with the challenge bit 5 = 1,
which proceeds as follows:

10



e For j € [n], the challenger chooses (pk’,sk’) + KDM.KeyGen(1*) and gives pk ..., pk"
to A.

* The adversary A makes arbitrary many KDM encryption queries:
— The adversary A chooses a pair (¢, f) where t € [n] and f is a circuit of size | f| < s.

— The challenger sets y := f({s?j}jeinp(f)) and replies with ct + KDM.Enc(pk', ).

Hybrid 1. We modify how the values (pk’,sk’) are chosen by the challenger.
In Hybrid 0, the challenger chooses (ﬂj, Jj) < KDM.KeyGen(1%) as follows:

e Sample v/ + {0,1}*.

e Sample (pkgyb,skg’b) < CPA.KeyGen(1%). Letpk’ := {Pkgyb}ie[,\],be{(m}/?k = (u?, {sk:juj Yien)-

In Hybrid 1, the challenger first samples k + PRJ.KeyGen(1%) . The challenger sets (pk’, sk’)
as:

e Sample v’ « {0,1}* and set v/ := k @ v.

o Sample (pk! sk’ ,) - CPA.KeyGen(1*). Let pk” := {pk!, }ic(xj pefo.1), 5K := (uf, {skiuj_.},-em).

The challenger uses the PRJ scheme to encrypt all the secret keys: &’ PRJ.Enc(k, &j) for
J € [n]. It stores the ciphertexts ct’/, but does not do anything with them yet in this hybrid.

It is easy to see that the above only introduces a syntactical difference, but the distribution of hybrids

0 and 1 is identical since uw/ = k @ v7 is uniform over the choice of v7. Note that the ciphertexts ct’
do not appear in the view of the adversary.

Hybrid 2. We now modify how KDM encryption queries (t, f) are answered.

In Hybrid 1, the challenger chooses ct < KDM.Enc(ﬁt, 1), where ct = (C, {ctintien befo,1})
with (6, {1ab; b Ficn pefo,1)) < Garble(1%, C,),and {ct;p < CPA.Enc(pkﬁyb, lab; p) }ien,pef0,1} -

In Hybrid 2, the challenger replaces ct; , with a dummy encryption of 0’s when b = 1 — u!.
That is, the challenger chooses ct = (C, {ctip}icinpefo,13) With (C,{lab;p}icin peq0,1)) <
Garble(1*,C},), and {ctsue < CPA.Enc(pk! ., lab; 1) , Cti1_ut CPA.Enc(pk’?lfut.,O)‘)}ie[/\] .

7

These hybrids are computationally indistinguishable by the CPA security of the encryption scheme
CPA. In particular, the secret keys {sk!, . }ic(n are not used anywhere in the game and are not
¢ <= CPA.Enc(pk;, . lab; ;_,¢)

¢ < CPA.Enc(pk!, ,.,0%). Formally, proving indistinguishability of Hybrid 1 and 2 re-

i

a part of K. Therefore, CPA security allows us to replace ct; ;_,,

by ct;;
quires an internal hybrid argument over all the encryption queries and all the indices i € [X], where

we replace each such ciphertext ct + one by one.

1, 1—u;
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Hybrid 3. We modify how the KDM encryption queries (¢, f) are answered once more. This time
we change how the garbled circuit is sampled.
In Hybrid 2, we set ct := (C, {ctipticin peq0,1}) where (C, {lab; p}icpppefo,1})  Garble(1*,Cy)
and {ct; ¢ <= CPA.Enc(pk; ¢, lab; ) , ct; 1yt <= CPA.Enc(pk; | ¢, 0%)}icpy)-

In Hybrid 3, for each KDM encryption query (¢, f) the challenger constructs a circuit C that
contains hard-coded values f, v!, {ct’} jelinp(f)] @and is defined as follows:

C() {
e Compute k' := v & .
e For j € inp(f): compute sk’ < PRJ.Dec(k’, ct’).
* Output f({sk'}jeinp(s))

}

The challenger sets ct := (C, {ctibtien pef0,1}), Wwhere (C, {1ab; b e peq0,13) < Garble(1*, C),
and
{ct; ¢ + CPAEnc(pk i, lab; 1), ct;y_,r + CPA.Enc(pk, ..,0M)}icpy:

3 i

We also now define the padding parameter p()) to be the circuit size of the circuit C. Note
that p(\) only depends on s(\) but is independent of n. It is also independent of the exact
parameters of the 1-circular secure bit-encryption, since no matter which such encryption
we started with, we ensured the PRJ decryption circuit has size < A to decrypt each bit.

These hybrids are computationally indistinguishable by the indistinguishability security of garbled
circuits (see Claim 2.1.1). In particular, recall that v* = u* @ k and therefore, on input v = u*

we have k' = k during the computation of C(z) and hence C(ut) = f({sk’ Ficinp()) = Cu(u').
Furthermore, in both hybrids, the adversary’s view only depends on the garbled circuit C and the
labels {lab; ..t }ic[), but not on the other labels {lab; ;¢ }e[y). Therefore, we can rely on indistin-

guishability security of garbled circuits to replace the circuit being garbled from C,, to C. Formally,
proving indistinguishability of Hybrids 2 and 3 requires an internal hybrid argument over all the
KDM encryption queries, where we replace the circuit being garbled in each query one by one.

Hybrid 4. We modify how the KDM encryption queries are answered once again.

In Hybr1d 3, we set ct = (5’, {Cti,b}ie[)\],be{o,l}) where (5’, {|abi7b}i€[)\}’b€{0’1}) — Garble(l)‘, C\)
and {cti ut < CPAEnc(pkt (. 1ab; ), ct; 1 e < CPA.Enc(pkél_ut,oA)} o
sU; Uy bt ’ D % 1€

i K3
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In Hybr1d 4, we set ct = (5, {Cti,b}ie[)\],be{o,l}) where (6’, {|abi’b}i€[)\},b€{0’1}) — Garble(l/\, 6)
and {ct@b — CPA.Enc(pkib, labi’b)}ie[x],be{o,l} .

These hybrids are computationally indistinguishable by the CPA security of the encryption scheme
CPA. In particular, the secret keys {sk!,  .}ic are not used anywhere in the game and are

not a part of sk'. Therefore, we can replace ct;; .+ < CPA.Enc(pkl, .,0%) by ct;) ,+ +

7

i, 1—u
CPA.Enc(pk! | .+, lab; ). Formally, proving indistinguishability of Hybrid 3 and 4 requires an
internal hybrid arqument over all the encryption queries and all the indices i € [\], where we replace

how we sample each such ciphertext ct; ; _,+ one by one.

Hybrid 5. We now change how the ciphertexts ct’ are chosen during key generation. Recall that
these ciphertexts are hard-coded in the circuits C used to answer KDM encryption queries.

In Hybrid 4, the challenger chooses &« PRJ.Enc(k,s_kj) for j € [n].

In Hybrid 5, the challenger chooses & PRJ.Enc(k,0%) for j € [n], where o = ‘&J‘

These hybrids are computationally indistinguishable by the 1-projection-KDM security of the scheme
PRJ. To see this at a high level, note that we can think of sk’ = {skf u?} as being defined by the
function sk’ = ¢ (k), where ¢/ knows the values v’ and {Sk{,b}/ computes v = k @ v’ and sets
sk’ = {skg )7 each bit of sk’ depends on a single bit of u?, which in tun depends on a single bit of k,

making ¢’ a projection function.

Formally, we give a reduction showing the indistinguishability of Hybrid 4 and 5. The reduction
samples:

o v/ + {0,1}* for j € [n].
o (pkl,,skl,) + CPA.KeyGen(1*)for j € [n],i € [A],b € {0,1}. Let pk’ := {pk!  }ie(xj pefo,1}-

Define the functions ¢’ (k) where ¢/ has the values v’ and {Skg,b} hard-coded, computes v/ = k @ v’

and sets sk’ = {skz iy }. This is a projection function. The reduction makes encryption queries to the

PRJ scheme with the function ¢/ and gets back ciphertexts & for j € [n]. The reduction then runs
the adversary A by giving it the public keys pk’ and answering KDM encryption queries exactly as
the challenger in Hybrid 4 using the values v7, {ct’}. It outputs whatever A outputs at the end.

If the reduction received ciphertexts &« PRJ.Enc(k, ¢/ (k)) then the above matches the distri-

bution of Hybrid 4, and if the reduction received ciphertexts & PRJ.Enc(k,0%) then the above
matches the distribution of Hybrid 5. Therefore, the reduction break the projection-KDM security of
the PRJ scheme with the same advantage as that of A in distinguishing Hybrids 4 and 5.
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Hybrid 6. We modify how the KDM encryption queries (¢, f) are answered.

In Hybrid 5, we set ct = (C, {ctipticin,pef0,1}) Where (C, {1ab; b }icn peq0,1}) < Garble(1%, é)

and {ct;p < CPA.Enc(pk;, IabLb)}ie[)\]’be{O’l} .

In Hybrid 6, we set ct = (C, {ctip}icn pefo,1}) where (C, {1ab; b }icpn pef0,1}) < Garble(1*, C)
and {ct;) « CPA.Enc(pkﬁ,b,OA))}iG[A]’bE{O’l} :

These hybrids are computationally indistinguishable by the CPA security of the encryption scheme
CPA. In particular, now the secret keys {sk},} are not used anywhere in the game after they are
generated! Formally, proving indistinguishability of Hybrid 5 and 6 requires an internal hybrid ar-
gument over all the encryption queries and all the indices i € [A],b € {0, 1}, where we replace how
we sample each such ciphertext ct; j, one by one.

Hybrid 7. We modify how the KDM encryption queries are answered again.

In Hybrid 6, we set ct = (C, {ctibtiein pefo,1y) where (C, {1ab; b }ien pef0,1}) < Garble(1*, 0)
and ct;p < CPA.Enc(pk! ;,0%).

()

In Hybrid 7, wesetct = (5, {Cti,b}ie[)\],be{o,l}) where (6, {|3bi,b}ie[>\],be{0,1}) = Garble(1>‘, Coe) ’
for ¢ being the output size of f, and ct;;, «— CPA.Enc(pk! ;,0"). The circuit Cj(z) always out-
puts the constant 0¢ on every input z, but we pad the circuit to be of size p()).

These hybrids are computationally indistinguishable by the garbled circuit security with no labels
(Claim 2.1.2). In particular, the labels lab; j, are not used anywhere else in game after they are gener-
ated. Formally, proving indistinguishability of Hybrids 6 and 7 requires an internal hybrid argument
over all the KDM encryption queries, where we replace the circuit being garbled in each query one by
one.

Hybrid 8. We modify how the KDM encryption queries are answered once more.
In Hybrid 7, we set ct = (C, {ctibtien pefo,1}) where (C, {1ab; b }ien befo,1}) < Garble(1*, Cye),
for ¢ being the output size of f, and ct;; < CPA.Enc(pkib7 0M).

In Hybrid 8, we setct = (C, {ctibtiein pefo,1}) where (C, {lab;}iepn pefoy) < Garble(1*, Cye),
for £ being the output size of f, and ct;p <~ CPA.Enc(pk; ;, lab; ).

These hybrids are computationally indistinguishable by the CPA security of the encryption scheme
CPA. In particular, the secret keys {sk; , } are not used anywhere in the game after they are generated.
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Formally, proving indistinguishability of Hybrids 7 and 8 requires an internal hybrid argument over
all the encryption queries and all the indices i € [A],b € {0, 1}, where we replace how we sample each
such ciphertext ct; j, one by one.

Note that Hybrid 8 is equivalent to the (n, s)-KDM security game of the scheme KDM with the
challenge bit 3 = 0, which proceeds as follows:

e For j € [n], the challenger chooses (@j,s?j) <+ KDM.KeyGen(1*) and gives ok, ... pk" to
A.

¢ The adversary .4 makes arbitrary many KDM encryption queries:

— The adversary A chooses a pair (¢, f) where t € [n] and f is a circuit of size | f| < s.
— The challenger set ;1 = 0° where / is the output size of f and replies with ct «+~ KDM. Enc(ﬂt, ).
Therefore, the indistinguishability of Hybrid 0 and Hybrid 8 as shows above implies the secu-

rity of the scheme KDM as claimed.
O

3.2 Symmetric-Key Setting

We show the same amplification from 1-circular to KDM security also holds in the symmetric-
key setting. Let CPA = (CPA.KeyGen, CPA.Enc, CPA.Dec) be a CPA-secure symmetric-key encryp-
tion scheme with pseudorandom ciphertexts and ciphertext space Cy. Let (Garble, Eval) be a gar-
bled circuit scheme (Definition 2.1). We construct a symmetric-key encryption scheme KDM =
(KDM.KeyGen, KDM.Enc, KDM.Dec), parameterized by some padding parameter p = p(\) to be
specified later, as follows:

sk < KDM.KeyGei(IA): For i € [\, b € {0,1}, sample sk;;, + CPA.KeyGen(1*). Sample u <
{0,1}*. Let sk = (u, {skiu, }iep)-

ct < KDM.Enc(sk, u1): Let C,, be the constant circuit that takes any input z € {0,1}* and always
outputs p. We pad C, to be of size p(\) for the padding parameter p. Let

(C, {1ab; s }icin pefo.1y) < Garble(1*,C,).
Fori e [\:
e Sample ct;,,, < CPA.Enc(sk;,,lab; ;).
* Sample ct; 1y, < Ca.
Output ct = (C, {ctip }icpy vefo.n))-
= KDM.Dec(sk, ct): Fori € [)\], letlab; ,, := CPA.Dec(sk; y,, Cti ;). Output p := Eval((NZ’7 {lab; u, }).

Theorem 3.2. Let CPA be a CPA-secure symmetric-key encryption scheme with pseudorandom ciphertexts
and let (Garble, Eval) be a secure garbling scheme, both of which follow from one-way function. Then for
any polynomial s(\) there exists some polynomial padding parameter p(\) such that the following holds.
Assume that there exists some 1-circular symmetric-key encryption scheme. Then the above KDM scheme
with padding parameter p is an (oo, s(\))-circuit-KDM secure secret-key encryption scheme.
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The proof of correctness and security are essentially the same as in the public-key scheme, with
the following minor changes. Firstly, we can skip hybrid 2 since, already in the actual scheme,
we choose ct; 1, < Cy as dummy ciphertexts that don’t contain any information about the label
lab; .., All other hybrids are defined analogously with all occurrences of ct; ;, < CPA.Enc(pk ;, lab; 5)
replaced by ct; j, CPA.Enc(skab, lab; ;) and all occurrences of ct;; + CPA.Enc(pk’;b, 0%) replaced
by ct;, < C). Lastly, we can again skip hybrid 8 for the same reason as why we skipped hybrid
2.
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