Monotone Policy BARGs from
BARGs and Additively Homomorphic Encryption

Shafik Nassar Brent Waters David J. Wu
UT Austin UT Austin and NTT Research UT Austin
shafik@cs.utexas.edu bwaters@cs.utexas.edu dwud@cs.utexas.edu
Abstract
A monotone policy batch NP language L p is parameterized by a monotone policy P: {0, 1}* — {0,1} andan NP
relation R. A statement (x1, ..., x%) is a YES instance if there exists wy, . . ., wg where P(R(x1, w1), ..., R(xg, wg)) = 1.
For example, we might say that an instance (x1, ..., xx) is a YES instance if a majority of the statements are true. A

monotone policy batch argument (BARG) for NP allows a prover to prove that (xi,...,x;) € Lg p with a proof of
size poly(4, |R], log k), where A is the security parameter, |R| is the size of the Boolean circuit that computes R, and
k is the number of instances. Recently, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) gave the
first monotone policy BARG for NP from the learning with errors (LWE) assumption.

In this work, we describe a generic approach for constructing monotone policy BARGs from any BARG for NP
together with an additively homomorphic encryption scheme. This yields the first constructions of monotone policy
BARGs from the k-Lin assumption in prime-order pairing groups as well as the (subexponential) DDH assumption in
pairing-free groups. Central to our construction is a notion of a zero-fixing hash function, which is a relaxed version
of a predicate-extractable hash function from the work of Brakerski et al. Our relaxation enables a direct realization
of zero-fixing hash functions from BARGs for NP and additively homomorphic encryption, whereas the previous
notion relied on leveled homomorphic encryption, and by extension, the LWE assumption.

As an application, we also show how to combine a monotone policy BARG with a puncturable signature scheme
to obtain a monotone policy aggregate signature scheme. Our work yields the first (statically-secure) monotone policy
aggregate signatures that supports general monotone Boolean circuits from standard pairing-based assumptions.
Previously, this was only known from LWE.

1 Introduction

A non-interactive batch argument (BARG) for NP allows a prover to convince a verifier that a collection of k statements
X1, - - ., Xk is true with a proof whose size scales sublinearly with k. Beyond the immediate application to amortizing
the communication cost of NP verification, batch arguments for NP also play a key role in constructing delegation
for RAM programs (also known as a succinct non-interactive argument (SNARG) for P) [KVZ21, CJJ21b, KLVW23]
and incrementally verifiable computation [DGKV22, PP22]. These objects have received extensive study recently, and
to date, we have constructions from most standard algebraic assumptions in cryptography such as the learning with
errors (LWE) assumption [CJJ21b], the k-Lin assumption on groups with bilinear maps [WW22], the (sub-exponential)
decisional Diffie-Hellman (DDH) assumption in pairing-free groups [CGJ*23], or combinations of quadratic residuosity
and (sub-exponential) DDH in pairing-free groups [CJJ21a, HJKS22].

Beyond batch NP and P. The recent successes in constructing succinct arguments for batch NP and for P from
standard cryptographic assumptions has motivated the study of other (sub)-classes of NP for which we can build
succinct non-interactive arguments from standard (falsifiable) assumptions. Very recently, Brakerski, Brodsky, Kalai,
Lombardi, and Paneth [BBK*23] showed how to construct SNARGs for monotone policy batch NP. At a high level,
the monotone policy batch NP language L p is defined with respect to an NP relation R together with a monotone
policy P: {0,1}* — {0, 1} as follows:

Lep={(x1,....,x¢) | (w1, ..., wk) : P(R(x1, w1), ..., R(xk, w)) = 1}

In words, an instance (x, ..., xx) is true as long as an acceptable subset of the statements are true (as determined by
the policy P). Such “monotone policy batch arguments” capture policies like majority, general thresholds, and more.
The standard batch argument corresponds to the special case where the policy P is a simple conjunction.

Brakerski et al. [BBK*23] provided two constructions of monotone policy BARGs for NP. The first construction
only relies on standard (somewhere extractable) BARGs and collision-resistant hash functions, but could only support
monotone policies of logarithmic depth (i.e., monotone NC!). To extend to monotone policies of arbitrary polynomial
depth, they combine standard BARGs with a new notion of a predicate-extractable hash function, which they then
build from the LWE assumption (specifically, they rely on leveled homomorphic encryption). This yields a monotone
policy batch argument for arbitrary monotone policies from the LWE assumption. Due to the current reliance on
leveled homomorphic encryption to construct the predicate-extractable hash function, instantiations of monotone
policy BARGs for arbitrary-depth policies rely on the LWE assumption.

1.1 Our Results

Our main result in this work is showing how to construct BARGs for monotone policies by combining a (standard)
BARG with an additively homomorphic encryption scheme (which can in turn be built from most number-theoretic
assumptions [Gam84, Pai99, Reg05]). Combined with the recent progress on constructing BARGs from pairing-based
groups [WW22] and pairing-free groups [CGJ*23], we obtain the first monotone policy BARGs for NP from the
k-Lin assumption over pairing groups and from the (sub-exponentially) DDH assumption in pairing-free groups. We
provide an overview of our techniques in Section 1.2 and summarize our main results in the following theorem:

Theorem 1.1 (Informal). Assuming any of (1) the plain LWE assumption, (2) the k-Lin assumption over pairing groups
for any constant k € N, or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a monotone policy
BARG for all polynomial-size monotone circuit policies. The monotone policy BARG satisfies non-adaptive soundness and
the proof size is poly (A + |C| + log |P|), where |C| denotes the size of the Boolean circuit computing the NP relation, and
|P| is the size of the monotone policy.

Monotone policy aggregate signatures. A key difference between Theorem 1.1 and the previous LWE-based
construction [BBK*23] is that we obtain a non-adaptively-sound BARG for monotone circuit policies whereas the
[BBK*23] construction satisfied a stronger “somewhere extractability” notion. That is, in [BBK*23], the common
reference string (CRS) can be sampled in a trapdoor mode and the trapdoor can be used to recover a witness for
some x; given a valid proof on statements (x, . .., x;). While extractability is often useful to have in a cryptographic
primitive, it is not always essential.

As an illustrative example, we show how to use monotone policy BARGs in conjunction with (puncturable)
signatures [GVW19] to construct a monotone policy aggregate multi-signature scheme. In an aggregate multi-
signature scheme, there is a set of k signers, each with a signing/verification key-pair (sk;, vk;). Given a policy P and
a set of signatures o; for i € S (where o; verifies with respect to vk;) on a common message m, if the set S satisfies
the policy P, then it is possible to aggregate {o;},c¢ into a single short signature whose size is sublinear in |S|. For
instance, P might encode a “threshold” policy that accepts all sets of size at least t. Crucially, static security of our
monotone policy aggregate signature scheme only relies on non-adaptive soundness of the monotone policy BARG and
security of the puncturable signature scheme. There is no need for an explicit extraction requirement. Very briefly, a
puncturable signature scheme allows one to sample a “punctured” verification key vk (and associated signing key) for
some message m*. The punctured verification key is computationally indistinguishable from a normal verification
key, but has the property that there does not exist any signatures on the punctured message m* with respect to the
punctured key. As shown in [GVW19], puncturable (or “all-but-one signatures”) can be constructed from many
standard number-theoretic assumptions. We summarize this result in the following theorem:

Theorem 1.2 (Informal). Assuming the existence of a non-adaptively sound monotone BARG and a puncturable signature
scheme, there exists a monotone policy aggregate multi-signature scheme. The scheme satisfies static unforgeability and
the size of the aggregate signature is poly(A + log |P|), where |P| denotes the size of the circuit computing the monotone

policy.

Theorem 1.2 shows that in combination with puncturable signatures, soundness alone is sufficient for building
aggregate signatures for general monotone policies. Notably, Theorem 1.2 also provides the first monotone policy
aggregate signature from pairing-based assumptions (in the plain model). Previous work have shown how to build
vanilla aggregate signatures using (vanilla) non-interactive batch arguments [WW22, DGKV22]. In an independent
and concurrent work, [BCJP24] also show how to construct a monotone policy aggregate multi-signature. Their work
provides two constructions of monotone policy aggregate (multi)-signatures. The first scheme supports monotone
policies that can be implemented by a read-once, bounded-space Turing machine and is also adaptively secure. This
scheme relies on somewhere extractable BARGs and a verifiable private information retrieval scheme [BKP22],
and can be instantiated from standard pairing-based or lattice-based assumptions. The second scheme supports
policies implemented by an arbitrary monotone Boolean circuit, but achieves a weaker security definition (closer to
static security) and also relies on fully homomorphic encryption (which to date, is not known from pairing-based
assumptions). Theorem 1.2 gives a statically-secure monotone policy aggregate signature scheme that supports all
monotone Boolean circuits, and does not rely on fully homomorphic encryption. This enables a new instantiation
from pairings.

Soundness vs. extraction. While Theorem 1.2 shows that extraction is unnecessary for all applications of mono-
tone policy BARGsS, our proof strategy for arguing soundness can nonetheless be extended to achieve a notion of
extractability (see Section 8). The notion we achieve is similar to the somewhere extractability notion from [BBK*23],
where for every monotone policy P, they define a notion of a “necessary set” associated with P (i.e., a set with
the property that for every satisfying input (xi,...,x,) to P, there exists i € S where x; = 1). The somewhere
extractability notion from [BBK*23] programs S into the common reference string, and asserts that whenever the
prover comes up with an accepting proof for statements (xi,. .., x) for an NP relation R and policy P, then the
extractor will output w; for i € S where R(x;, w;) = 1. Our construction satisfies a looser variant of this property
where the success probability of the extractor is smaller by a factor of 1/k. We refer to this notion as semi-somewhere
extractability. While our construction does achieve this notion of extraction with essentially no modification (see
Section 8), we choose to focus on the simpler notion of non-adaptive soundness in the core part of this paper. Our
rationale is twofold:

« First, there is a lack of consensus on what the “right” notion of extraction is when it comes to the setting of
monotone policy BARGs. Notably, the recent and concurrent work of [BCJP24] that builds monotone policy
aggregate signatures highlighted the inadequacy of the somewhere extractability notion from [BBK*23] for
their particular application to constructing monotone policy aggregate signatures. Indeed, the work of [BCJP24]
propose two different and seemingly incomparable notions of extraction for their application. This illustrates
that the most useful or desirable notion of extraction for monotone policy BARGs may be application-dependent.

« Second, while it is straightforward to show that our construction satisfies some notion of extractability, proving
this property does not appear to confer additional capabilities. For the main application to statically-secure
aggregate signatures, we showed above that non-adaptive soundness already suffices. There is no need for
extraction if this is the end goal. The main advantage of having some kind of extractability definition is we can
apply this construction to compile any digital signature scheme into a monotone policy aggregate signature
scheme, as opposed to restricting ourselves to puncturable signatures (and we show this in Section 8.1). While
there is a qualitative benefit to this, we do not view it as strong evidence that semi-somewhere extractability is
a clearly more powerful or more useful notion than non-adaptive soundness.

A new application: general-policy BARGs for NP N coNP. We also highlight a simple application of BARGs for
monotone policy batch NP to constructing a BARG that supports arbitrary policies over languages in NP N coNP.
Our observation essentially follows the similar strategy of extending monotone closure of SZK to non-monotone
closure [Vado6]. Specifically, for a language X € NP N coNP and an arbitrary policy P: {0,1}* — {0, 1}, we define
the language

Lxp={(1....xx) | P(b1,...,br) = 1 where b; = 1 {x; € X}},

where 1 {x; € X} is the indicator function that outputs 1 if x; € X and 0 otherwise. Importantly, in this context,
we allow P to be any arbitrary (possibly non-monotone) Boolean circuit. It is not difficult to see that a BARG for

monotone policy batch NP immediately implies a BARG for £ x p. Namely, we first re-express the circuit P on k
inputs by, ..., by as a new monotone circuit P’ on 2k inputs corresponding to the original input bits by, . . ., by as well
as their negations by, . . ., by. We can then apply a BARG for monotone policy batch NP on the set of 2k inputs with
the policy P’. For this transformation to work, it is important that for each statement x;, the prover can either provide
a proof of membership x; € X (which sets b; = 1) or a proof of non-membership x; ¢ X (which sets b; = 1).

1.2 Technical Overview

The starting point of our BARG construction is the “canonical protocol” from [BBK*23, §2.1]. We recall this below. In
our description, we will consider the NP relation of Boolean circuit satisfiability.

« Given a Boolean circuit C: {0,1}" x {0,1}* — {0, 1}, a monotone policy P: {0,1}* — {0, 1}, statements
X1, ..., xx € {0,1}", witnesses wy, ..., wx € {0, l}h, the prover first computes b; < C(x;, w;) for all i € [k].

« The prover then evaluates the circuit P(by, .. ., b). The prover commits to all of the wire values in P(by, .. ., bx)
using a succinct commitment com that supports local openings. We index the input wires with the integers
1,...,k, the output wire by s (where s is the number of wires in P), and the intermediate wires with k+1,...,s—1.

« The prover uses a batch argument to prove the following statements with respect to the commitment com:

— Input wires: For every input wire j € [k], it proves that there exists a local opening of com to a value
b; € {0,1} at index j, and moreover, b; = C(x;, w;).

- Gate computation: For every gate g in P with input wires ji, j, and output wire j, it proves that there
exists a local opening of com to wire values b;, bj,, b; € {0, 1} at indices ji, jz, j € [s], respectively, and
moreover, b; = g(bj, bj,).

— Output wire: It proves that there exists a local opening to the value 1 at index s for com.
The proof consists of the commitment com together with the batch argument 7.

When the policy circuit P has logarithmic depth, the authors of [BBK*23] describe a simple inductive argument to
argue the security of this construction by relying on somewhere extractability of the underlying BARG. Somewhere
extractability says that the common reference string of the BARG can be programmed at a small number of (hidden)
indices iy, . . ., ip. Given a valid proof 7 for (xy,...,x,) along with a trapdoor, one can extract witnesses for x;,, ..., x;,.
However, when P has super-logarithmic depth, the basic inductive argument no longer suffices (specifically, the
security loss of the reduction decays exponentially in the depth of P).

Predicate-extractable hash functions for bit-fixing constraints. To construct monotone policy BARGs for
policies P of arbitrary depth, the authors of [BBK*23] replace the Merkle hash of the wire values with a more
sophisticated “predicate-extractable” hash function for bit-fixing constraints.!

A predicate-extractable hash function for bit-fixing predicates is a hash function where the hash key can be
programmed in one of two computationally indistinguishable modes: (1) a normal mode and (2) a bit-fixing mode. In
bit-fixing mode, the setup algorithm takes as input a set of indices S C [n] along with a collection of bits {(i, y;) };es,
where n is the input length. It outputs a hash key hk and an extraction trapdoor td. The correctness requirement says
that if dig = Hash(hk, x) for an input x where x; = y; for all i € S, then Extract(td, dig) = Matching. Alternatively,
if dig is a digest for an input x where x; # y; for some i € S, then Extract(td, dig) should output (NotMatching, i*)
where i* € S is an index where x;: # y;-. Essentially, the extractor is deciding whether dig corresponds to the hash
of an input that is consistent with {(i, y;) },.s. If the hash is declared inconsistent, the extractor outputs one of the
inconsistent indices. Finally, the hash function supports succinct local openings to individual bits of an input. The
two key security properties are as follows:

« For a hash digest dig where Extract(td, dig) = Matching, then it should be computationally difficult to construct
an opening for dig to a value x; # y; for any i € S.

IThis is conceptually similar to the notion of function-binding hash functions introduced concurrently in [FWW23].

« For a hash digest dig where Extract(td, dig) = (NotMatching, i*), then it should be computationally difficult
for the adversary to open index i* to the value y;-.

In the monotone BARG construction, the prover takes the Boolean circuit C, the policy P, the statements (xi, . . ., xk)
and the witnesses (wy, . .., W), and computes b; < C(x;, w;) and P(by, ..., bx). Let (by, ..., bs) be the complete set
of wire values in P(by, ..., by), arranged in topological order. The prover hashes the wire values (by, ..., bs) using

the predicate-extractable hash function. In fact, the prover computes two independent hashes dig;, dig, of the wire
values, and the BARG will check validity of the openings against both hashes. To argue non-adaptive soundness, the
authors of [BBK*23] first define the zero-set J associated with a circuit C, policy P, and statement (x1, ..., xg):

« For each i € [k], let B} = 1 if there exists w; such that C(x;, w;) = 1 and let 5] = 0 otherwise.
« Let By,..., s = P(B], ..., B;) be the wire values in P(f], ..., f;), where the wires are ordered topologically.

e LetJ = {i €[k]:p;= O}. For a layer index ¢, define J; C J to just contain the indices of wires in layer ¢ of P.
The proof of non-adaptive soundness now proceeds as follows:*

« Take any circuit C, monotone policy P, and statements xy, . .., xx. The invariant they use roughly says the
following: if hko, hk; are programmed to bind to the all-zeroes string on the zero-sets Jj, J;_1 for layers i and
i — 1 of P, and the digest associated with the upper layer is NotMatching, then the digest associated with the
lower layer is also NotMatching.

« To establish this invariant, the proof critically relies on BARG security and security of the predicate-extractable
hash function. Namely, if the extractor declares an index j € J; in the upper layer to be NotMatching and the
BARG is set to be extracting on wire j, then that means the adversary must have opened one of the input
wires j’ (to the gate computing wire j) to a 1 where j* € J;_; (since the policy P is monotone). Security of
the hash function then says that the extractor must declare the digest associated with the lower layer to be
NotMatching.

« To complete the proof, they argue that the output layer must be NotMatching (by programming the BARG
to be extracting on the output wire). By propagating the invariant to the input wires, they conclude that the
input layer must be NotMatching (when one of the hash keys is programmed to bind on the input layer). In
this case, programming the BARG to be extracting on the wire identified by the NotMatching input (output
by the extractor for the hash function) yields a contradiction (in this case, the BARG extractor would need to
output a witness for a false NP statement).

The authors of [BBK*23] then show how to construct a predicate-extractable hash function for bit-fixing predicates
using the learning with errors (LWE) assumption. Their construction specifically relies on leveled homomorphic
encryption (similar to the construction of somewhere statistically binding hash functions [HW15]). In conjunction
with BARGs for NP based on LWE [C]]21b], this yields a monotone policy BARG for NP from LWE.

This work: zero-fixing hash functions. The starting point of our work is a relaxation of a predicate-extractable
hash function for bit-fixing predicates we call a zero-fixing hash function. Like the predicate-extractable hash
function, the zero-fixing hash function supports succinct local openings and moreover, the hash key for a zero-fixing
hash function can be sampled in one of two computationally-indistinguishable modes: (1) a normal mode and (2)
a zero-fixing mode. In zero-fixing mode, the setup algorithm takes as input a set S C [n] of indices (that should
be zero) and outputs a hash key hk along with a trapdoor td. There is also an extract algorithm Extract that takes
as input the hash key hk and a digest dig, and outputs either Matching or NotMatching. The key distinction with
predicate-extractable hash functions is that Extract only outputs the flag; it does not output an index when it declares a
digest NotMatching. Correspondingly, the zero-fixing security requirement only imposes a requirement for matching
digests:

2With a suitable strengthening of the notion of predicate-extractable hash functions, the authors of [BBK*23] also show how to obtain a somewhere
extractable monotone policy BARG. In this work, we focus on achieving the core notion of non-adaptive soundness.

« Zero-fixing: Suppose (hk, td) are sampled in zero-fixing mode for a set S. Then, for any digest dig where
Extract(td, dig) outputs Matching, it should be hard to find an opening to an index i € S to the value 1.

While this distinction of having the extractor output a mismatching index j or not might seem like a small difference,
it has two significant implications:

« Simpler to construct: By only requiring the zero-fixing hash function declare whether a digest is Matching
or NotMatching, we significantly simplify the construction of the hash function. Whereas computing and
propagating an index of a “mismatching bit” (as in [BBK*23]) relies heavily on (leveled) homomorphic encryption,
checking whether there exists a mismatching index or not can be realized from simpler tools. As we show
in this work (and describe later on), we can construct zero-fixing hash functions generically from BARGs
for NP together with any additively homomorphic encryption scheme (Section 5). If we prefer to avoid non-
black-box techniques altogether, we also describe a direct algebraic construction using composite-order pairing
groups (Section 6). This is the critical distinction that allows us to obtain monotone policy BARGs from group-
based assumptions (which give additively homomorphic encryption [Gam84] but not leveled homomorphic
encryption).

« Sufficient for monotone policy BARGs: A second important fact is that our notion of zero-fixing hash
function still suffices to build monotone policy BARGs. As noted in the preceding sketch, the soundness analysis
from [BBK*23] critically relied on the hash function extractor outputting an index of a mismatching bit. This
is so that when the BARG is programmed to bind on the wire associated with the mismatching index, the
NotMatching invariant propagates from the output layer to the input layer. In our setting, the zero-fixing
extractor only outputs Matching or NotMatching, and in the case where the extractor outputs NotMatching,
we cannot definitively declare an index to be “mismatching” This requires a new proof strategy as well as
imposing additional security requirements on the zero-fixing hash function. We describe these properties as
well as our new proof strategy in more detail below.

Monotone policy BARGs from zero-fixing hash functions. Our main construction is similar to the canonical
protocol from [BBK*23] sketched above, except the prover commits to all of the wires of the policy circuit P using two
zero-fixing hash functions (with hash keys hk; and hk;). Our security analysis takes a different bottom-up approach
rather than the previous top-down approach. The bottom-up approach is more natural when using our zero-fixing
hash function. Here, we provide a sketch of our non-adaptive soundness analysis.

To argue non-adaptive soundness, fix a Boolean circuit C, a monotone policy P (assumed to be a layered Boolean

circuit), and a false statement (xi, ..., xx). Similar to [BBK"23], we define the zero-set J associated with C, P, and
(x1,...,xx). The zero-set J contains the indices of the wires with value 0 in the computation P(ﬁ; e ﬂ;) where
Bi = 1if there exists w; where C(x;, w;) = 1 and 0 otherwise. Since P is monotone, for all wy, ..., w, the wire values

of P(C(x1, wy), ..., C(xk, wi)) on the set J will be zero. As before, let J; C J be the subset of wires in layer i of P.

Our soundness argument proceeds layer-by-layer, starting from the input layer (i.e., layer 1) and progressing to
the output layer (i.e., layer d, where d is the depth of P). Our goal establishes the following invariant: if the hash keys
hk; and hk, are zero-fixing on J; and Ji+1 and the digest associated with the lower layer (i.e., layer i) is Matching,
then the digest associated with the upper layer (i.e., layer i + 1) is also Matching. We provide a sketch of this step. For
ease of exposition, suppose hk; is zero-fixing on J; and the digest dig; is Matching. The goal is to show that hk; is
zero-fixing on Ji11, then the digest dig, is also Matching:’

« Initially, we set hk; to be binding on the empty set. We require in this case that dig, is always Matching. We
refer to this property as an extractor validity property on the zero-fixing hash function.

« We now iteratively build up hk;,. Let Ji41[1] be the first element of Ji1;. We set hk; to be binding on the set
{Ji+1[1]}. Our goal is to argue that dig, is still Matching. While it might seem like this property should follow

3This step is straightforward if we had a predicate-extractable hash function where the extractor outputs a mismatching index. Namely, if the
upper layer digest is NotMatching, then the extractor outputs an index j € Ji;1 that is mismatching (i.e., cannot be opened to a 0). This means
the efficient adversary can only open wire j to the value 1. Now, if the BARG is extracting on the statement associated with wire j, then we either
(1) obtain the opening of some index j’ € J; to a 1, which breaks security of the hash function (since the lower layer digest is Matching); or (2)
the value of wire j is inconsistent with the input wires associated with the gate computing wire j, which breaks security of the BARG.

assuming a basic index hiding property on the zero-fixing hash function (i.e., that the hash key hk hides which
set it is binding on), this is insufficient. The reason is that when hk; is binding on @, the adversary might output
a Matching digest dig,, but if hk; is binding on {Ji41[1]}, the output digest dig, might be NotMatching. We
cannot use such an adversary to construct an index hiding distinguisher, because in the index hiding security
game, the distinguisher does not have the extraction trapdoor. As such, an attempted reduction algorithm
cannot efficiently decide whether the adversary was successful or not. Indeed, this is a fundamental issue since
knowledge of the extraction trapdoor would trivially break index hiding.

« To advance the proof, we introduce a stronger notion of index hiding security for zero-fixing hash functions,
which essentially requires that no efficient adversary can output a digest dig that causes the output of Extract
to differ depending on whether the hash key is binding on a set S or a set S \ {i}.* Of course, this is only
meaningful when the digest is computed over an input that is 0 on index i.° Thus, we require this stronger
index hiding with extracted guess property to hold only for digests dig where the adversary can provide an
opening to index 0 for the target index i. We define this property formally in Definition 3.1.

« To leverage the index hiding with extracted guess property, we need to enforce the fact that dig, opens to
a 0 on index Ji+1[1]. We ensure this by appealing to the somewhere extractability of the BARG along with
zero-fixing security of the hash function. Specifically, suppose that the BARG is binding on wire Ji41[1]. The
BARG extractor then produces openings to the wire Ji11[1] with respect to dig, as well as opening to the
wires ji, jz with respect to dig; (corresponding to the input wires for the gate computing Ji+1[1]). Since dig, is
zero-fixing on J; and dig, is also Matching, if either j;, jz € J;, then the extracted openings must be openings
to 0 (otherwise, we break zero-fixing of the hash function). But by monotonicity of P, this means the value of
the output wire J;;1[1] must also be 0, and thus the BARG extractor produces an opening to 0 for wire Ji1[1].
Now, by the index hiding with extracted guess property, we conclude that programming hk; to zero-fix on set
{Ji1[1]} will still cause dig, to be Matching (except with a negligible loss in probability).

« We can now iteratively apply the argument and build up hk, until it is binding on all of Ji;.
To complete the proof, we consider the input and output layers for P:

« Handling the input layers: The base case in our analysis is to show that if hk; is binding on J; (the input layer),
then it is Matching. This follows using the same layer-wise strategy sketched above for proving our invariance,
except for each index J;[i], we rely on the fact that the associated statement x; is false (i.e., no witness exists) to
argue that the only valid opening for dig; on index i is 0. Otherwise, we either break somewhere extractability
of the BARG (i.e., extracting an invalid witness for index i) or the index hiding with extracted guess property.

« Output layer: Starting from the input layer, we now iteratively apply our basic invariant to argue that when
the hash keys are binding to J; (the output layer), the associated digests are also Matching. Now, if we have a
valid proof, and the BARG is set to extract on the output layer, then the BARG extractor outputs an opening of
the output wire to 1 with respect to the hash digests. However, since the output wire is contained in J; (since
the statement is false), and the digest is matching, this breaks zero-fixing security of the hash function.

Thus, the above analysis suffices to show non-adaptive soundness of our construction. The critical security requirement
we require on our zero-fixing hash function is the strengthened index hiding with extracted guess property. This
property allows us to complete the proof via an iterative approach without needing to rely on the extractor outputting
a mismatching index as in previous work [BBK*23]. As we discuss below, this is an easier property to realize than
full-fledged index extraction. We refer to Section 3 for the formal definition of zero-fixing hash functions and Section 4
for our construction of monotone policy BARGs.

4This type of property where the output of the extractor does not change for different choices of the CRS is often referred to as a “no-signaling”
extraction property [PR17, KPY19, GZ21, KVZ21, CJJ21b].

SOtherwise, an honest digest on the input that is 1 at index i (and 0 everywhere else) would be declared Matching if the hash key was zero-fixing
on a set S that contains i and NotMatching if the hash key was zero-fixing on the set S \ {i}

Constructing zero-fixing hash functions. Our second contribution in this work is a generic construction of
zero-fixing hash functions from vanilla BARGs together with an additively homomorphic encryption scheme. We
start with a basic construction that captures the key ideas underlying our construction and refer to Section 5 for the
formal description and analysis:

- Let n € N be the input length. For ease of exposition, we assume that n = 2¥ is a power-of-two. Suppose we
want to zero-fix on a (possibly-empty) set S C [n]. The setup algorithm first samples a public/secret key-pair
(pk, sk) for an additively homomorphic encryption scheme. For each i € [n], the setup algorithm construct an
encryption ct; « Enc(pk, 1) of 1if i € S and an encryption of ct; « Enc(pk,0) of 0if i ¢ S. It also constructs an
encryption ctyero < Enc(pk,0) of 0. Finally, it constructs a commitment compy to the ciphertexts (cty, ..., cty).
The hash key is then hk = (pk, ctzero, ct, . . ., Ctp, compi), and the extraction trapdoor is the decryption key sk.

« To hash an input x € {0, 1}", the user constructs a complete binary tree where each of the n leaves is associated
with a ciphertext. If x; = 1, then the user associates leaf i with ct;, and if x; = 0, then the user associates
leaf i with ctzero. The value of each internal node in the binary tree is defined to be the sum of the ciphertexts
associated with its two children. By construction, the value of the root node is an encryption of the sum of the
values associated with the n leaf nodes. We refer to the tree of ciphertexts as the “ciphertext-evaluation tree”
The digest dig then consists of the ciphertext ct,oot associated with the root node along with a commitment
comg to all of the ciphertexts in the ciphertext-evaluation tree.

« A local opening for index i* and value b+ € {0, 1} for the digest dig = (ctyoot, cOmct) is a BARG proof. The
BARG statements correspond to the indices of the nodes in the ciphertext-evaluation tree. The associated
relation is parameterized by the target index i*, the root ciphertext ct,oot, the encryption ctyero of 0 from the
hash key, and the commitment to the input ciphertexts compy. The BARG relation then checks the following:

— Leaf nodes: For each leaf node i, com opens to either ct,e,, or ct; at index i. For the particular index i*, it
checks that com¢; opens to ctyeo if b+ = 0 and com; opens to ct;« if b = 1. Since the BARG relation only
has compi and not ct; itself, the prover provides ct; as part of its witness along with a proof of opening
for ct; with respect to compi. The proof of opening ensures that the correct ct; is provided.

— Internal nodes: For an internal node i (with children indexed ji, jz), the BARG checks that com¢ opens
to ciphertexts ct;, ct;,, ct; where ct; is the sum of ciphertexts ct; and ctj,.

— Root node: For the root node, the BARG checks that com¢ opens to ctoot-

« To test whether a digest dig = (ctroot, cOM(t) is matching or not, the Extract algorithm outputs Matching if
ctroot decrypts to 0 and NotMatching otherwise.

By definition, the ciphertext ctyoo in any (honestly-generated) hash digest is the sum of the ciphertexts associated with
the leaves of the ciphertext-evaluation tree. On an input x, if x; = 0, then the associated ciphertext is an encryption of
0 and does not contribute to the sum. If x; = 1, then the ciphertext associated with the leaf is an encryption of 1 if
i € S and encryption of 0 otherwise. Thus, the sum is only incremented if x; = 1 for some i € S. This is precisely
when Extract outputs NotMatching (i.e., the digest is for an input x where x; = 1 for i € S).

To argue that it is hard to open a Matching, but possibly-malformed digest to a 1 at an index i € S, we appeal to
soundness of the BARG. In this case, the root ciphertext ctoot in dig decrypts to a non-zero value, and yet the user
constructed a valid BARG proof of opening for an index i € S. The key observation is that the structure of the BARG
used in the above construction is very similar to the structure of the canonical protocol from [BBK*23] described
at the beginning of Section 1.2 for demonstrating correct evaluation of a monotone circuit. Moreover, because the
ciphertext-evaluation tree is perfectly balanced, it has depth log n, where n = poly(2) is the input length. As such, we
are able to adapt the proof strategy for arguing soundness of the monotone policy BARGs for log-depth circuits to
directly argue zero-fixing security of our hash function. Specifically, we rely on BARG security to ensure that if the
adversary uses an encryption of 1 as one of the leaves to the ciphertext (which it must if it opens an index i € Sto a 1),
then the root ciphertext necessarily is an encryption of a non-zero value. We provide the full details in Section 5.1.3.

While the core construction described here satisfies zero-fixing security, we need to augment the construction to
satisfy the additional security requirements we impose on a zero-fixing hash function. We summarize these here, and
defer to the technical sections (Sections 5, 5.1.4 and 5.1.5) for the full details:

« Extractor validity: Recall that this property says that when the hash function is zero-fixing on the empty set,
it should be hard for an adversary to come up with a “valid” digest that is NotMatching. To satisfy this property,
we simply include a BARG proof of validity to the digest, where the BARG proof of validity simply checks that
the ciphertext-evaluation tree was correctly constructed. When the hash key is binding to the empty set, all of
the ciphertexts ct; are an encryption of 0, so the root of a properly computed ciphertext-evaluation tree will
also be an encryption of 0. We provide the details in Section 5.1.4.

+ Index hiding with extracted guess: Recall that this property says that the adversary cannot produce a digest
dig where the extractor output disagrees depending on whether the hash key is zero-fixing on a set S or a set
S\ {i} (provided that the adversary provides an opening to 0 for index i). The only difference between the
hash keys in these two cases is ct; in the CRS changes from an encryption of 0 to an encryption of 1, which
we could in principle show using semantic security. However, the reduction algorithm would have no way
of checking whether a digest dig output by the adversary is Matching or NotMatching (since it does not and
cannot know the decryption key). Thus, to argue this we adopt a Naor-Yung type of strategy [NY90] and
encrypt twice. Namely, we introduce two parallel copies of the scheme (i.e., two independent public keys and
two independent sets of ciphertexts). The digest now consists of two ciphertexts ctﬁggt, ctfégt for the roots of the
two ciphertext-evaluation trees. The same BARG would validate both roots. The key idea now is we can switch
ctgo) from an encryption of 0 (i.e., zero-fixing at S \ {i}) to an encryption of 1 (i.e., zero-fixing at S) while being
able to decrypt (i.e., extract) for the parallel encryption scheme. We can leverage soundness of the BARG to

argue that for a valid digest/opening, both ct® and ct?) encrypt identical values. This allows us to leverage

root root
semantic security to switch the ciphertexts for one scheme while being able to detect whether the output of
Extract changed or not (using knowledge of the secret key for the parallel scheme). We provide the full details

in Section 5.1.5.

Taken together, we obtain a zero-fixing hash function from any standard BARG together with an additively-
homomorphic encryption scheme. By instantiating with BARGs from the k-Lin assumption over groups with
bilinear maps [WW22] or the (sub-exponential) DDH assumption over pairing-free groups [CGJ*23], we obtain
zero-fixing hash functions from the same underlying assumptions. In conjunction with our generic construction from
above, this yields Theorem 1.1.

An algebraic construction of zero-fixing hash functions. As another contribution, we also describe an algebraic
approach to construct zero-fixing hash functions directly from (composite-order) bilinear maps. This construction
has the advantage that it only makes black-box use of cryptography. We give a brief sketch of the construction here,
but defer the details to Section 6. The basic version is an adaptation of the Catalano-Fiore vector commitment [CF13]:

« Let G = (G,Gr, N, g, e) be a composite-order bilinear group of order N, generator g, and an efficiently-
computable non-degenerate bilinear map e: G X G — Gr. In the actual construction, we will require that N be
a product of six primes. In the description here, we will just describe the basic scheme that operates primarily
in just two subgroups. Let g; and g, be generators of two orthogonal subgroups of G.

« To sample a hash key for a set S C [n], the setup algorithm samples exponents a;, f; & Zy. Ifi € S, it
sets A; «— (g192)% and if i ¢ S, it sets A; « g‘ll". It sets B; < g’fi and for i # j, it computes the cross term
Cij — gfiﬂj. The hash key then contains A;, B; for i € [n] and C;; for all i # j.

« The hash of an input x € {0, 1}" is then dig = [];c[,) A}’. The opening to an index i is V =[] ;; Cj’l To verify
an opening to a bit b at index i, the verifier checks

e(dig, B;) = e(A1, By)" - e(g1, V).

+ To check whether a digest dig is Matching or not, the extraction algorithm output Matching if e(dig, g») = 1
and NotMatching otherwise.

The basic principle is to move the “encoding elements” A; for i € S to have a component in the span of g,. The
components A; for i ¢ S are only in the span of g;. Then, any digest that includes an index i € S will contain a
non-zero element in the span of g, and thus, be declared NotMatching. Arguing the security of this scheme is more
delicate and will require introducing a number of additional randomizing components (and subgroups). We refer to
Section 6 for the details.

Constructing monotone policy aggregate multi-signatures Our final contribution is a construction of monotone
policy aggregate multi-signatures. While previous construction of aggregate signatures relied on extractable BARGs
[WW22, DGKV22], a similar implication is possible by combining a non-adaptively-sound BARG together with a
“puncturable signature” scheme (also called an all-but-one signature scheme) [GVW19]. We sketch our construction
below, and provide the full details in Section 7.

In a puncturable signature scheme, it is possible to puncture a verification key on a message m*. The property
is that there does not exist signatures on m* that verify with respect to the punctured verification key. Moreover, a
punctured verification key is computationally indistinguishable from an honestly-generated verification key, even if
the adversary is able to see signatures on arbitrary messages m # m*. Goyal, Vusirikala, and Waters [GVW19] showed
how to construct puncturable signatures from most standard number-theoretic assumptions (e.g., RSA, pairing-based
assumptions, and LWE). We can use a non-adaptively-sound monotone policy BARG together with a puncturable
signature scheme to construct a (statically-secure)® aggregate multi-signature scheme for any policy computed by a
monotone Boolean circuit. We provide a sketch below:

+ Setup: Consider a scheme with k signers. Each signer i € [k] has a signing key sk; and a verification key vk;
for the punctured signature scheme. The public parameters of the aggregation scheme contain the common
reference string for a monotone policy BARG.

« Signing: To sign a message m, each user signs with their individual signing key.

« Aggregation: Given a set of signatures {0;};.5 on the same message m and a (monotone) aggregation policy
P, a user can aggregate the signatures by giving a monotone policy BARG proof for the policy P with respect
to the natural relation R[m] = {(vk, o) : Verify(vk, m, 0)}. The aggregate signature is simply the BARG proof
for the statements (vky, ..., vky) with the witness (o71,. .., o%).

« Verification: To verify an aggregate multi-signature with respect to a policy P, the verifier just checks the
BARG proof.

Note that one could also construct an aggregate multi-signature by sending the set S where P(S) = 1 and then
use a vanilla BARG to prove knowledge of a signature o; for every i € S. However, this approach would require
communicating the set S as part of the aggregate signature. Using monotone policy BARGs, the aggregate signature
only consists of the BARG proof, and thus has size, poly(A,log|P|). It is straightforward to prove static security of
the above multi-signature scheme just assuming non-adaptive-soundness on the underlying BARG. We sketch the
reduction below:

« In the static security game, the adversary has to pre-commit to the message m* it wants to forge on, the set
of verification keys (vkj, ..., vk;) it wants to use (which can be a mix of honest verification keys chosen by
the challenger and verification keys chosen adversarially), and the aggregation policy P before seeing the
aggregation parameters.

+ Let S C [k] be the set of indices i where the chosen key vk] is uncorrupted (i.e., chosen by the challenger). The
admissibility requirement is that P(by,...,bx) = 0 where b; = 0if i € S and b; = 1 otherwise; this is saying that
the adversary cannot satisfy the policy P just by providing signatures under keys it controls.

« In the security reduction, we first puncture the honest users’ verification keys vk; on the challenge message m*.
This means that there does not exist valid signatures on the challenge message m* with respect to the honest
users’ verification keys vk;

®In the static security model, we require that the adversary declare the set of corrupted verification keys, its challenge message, and the aggregation
policy at the beginning of the security game.

10

« Consider the relation R[m*] used for verification. By definition of the set S and the fact that the honest
verification keys are punctured at m*, the statement (vkj, ..., vk;) is false for the policy P with respect to the
relation R[m*]. By non-adaptive soundness of the monotone policy BARG, the probability that the adversary
can produce a valid aggregate signature (i.e., a valid proof on a false statement) is negligible.

Observe that in the above sketch, the verification time is linear in k. However, using a RAM delegation scheme, we
can achieve fast verification. We refer to Remark 7.8 for additional details.

2 Preliminaries

Throughout this work, we write A to denote the security parameter. For n € N, we write [n] to denote the set
{1,...,n}. For a,b € N we write [a, b] to denote the set {a,a+1,...,b}. We write poly(A) to denote a function that
is bounded by a fixed polynomial in A, and negl(A) to denote a function that is 0(17¢) for all ¢ € N. We say an event
happens with overwhelming probability if its complement occurs with negligible probability. For a finite set S, we
write x €- S to denote that x is a uniformly random element of S. For a distribution D we write x < D to denote
that x is a random draw from D.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. A non-uniform
algorithm A consists of a pair of algorithms (A;, A,) where A; is a (possibly-unbounded) algorithm that takes as
input 1* and outputs an advice string p; of poly(A) size. Algorithm A, is an efficient algorithm. The output of A on
an input x € {0, 1}* is defined as first computing the advice string p; « A;(1%) and then outputting A, (x, p;). We
say two ensembles of distributions D; = {1)1, ,1} ey and D = {Dz, ,1} Jen are computationally indistinguishable if no
efficient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if their statistical distance is bounded by negl(1).

2.1 Cryptographic Building Blocks

In this section, we recall the definition of a few standard cryptographic building blocks we use in this work.

Additively-homomorphic encryption. We start by reviewing the notion of an additively homomorphic en-
cryption. For our applications, it suffices to consider constructions that only support decryption of values residing
in a bounded message space. Such additively homomorphic encryption schemes can be built from most standard
number-theoretic assumptions that imply public-key encryption such as the decisional Diffie-Hellman (DDH) assump-
tion [Gam84], decisional composite residuosity (DCR) [Pai99], or the learning with errors (LWE) assumption [Reg05].

Definition 2.1 (Additively Homomorphic Encryption). An additively homomorphic encryption with bounded
support is a tuple of polynomial time algorithms ITjj¢ = (Gen, Enc, Dec, Add) with the following syntax:

« Gen(1%,1") — (sk, pk): On input a security parameter A € N and a range parameter n € N, the key-generation
algorithm outputs a secret key sk and a public key pk. We assume that the secret key and the public key
includes an implicit description of the range parameter 1".

+ Enc(pk, msg) — ct: On input a public key pk and an integer msg € {0, ..., n}, the encryption algorithm outputs
a ciphertext ct.

« Dec(sk,ct) — msg: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
plaintext msg € {0,...,n} or a special symbol msg = L. The decryption algorithm is deterministic.

« Add(pk,cty, ctz) — ct’: On input a public key pk and two ciphertexts ct;, ct;, the homomorphic addition
algorithm outputs a new ciphertext ct’. The addition algorithm is deterministic.

We require the following properties:

« Correctness: For all A, n € N and all messages msg € {0, ..., n}, it holds that:

(sk, pk) « Gen(1%4,17") _

Pr [Dec(sk, ct) = msg : ct « Enc(pk, msg) =1

11

« Evaluation correctness: For all A,n € N, all (sk, pk) in the support of Gen(lA, 1™) and all ciphertexts cty, ct,
where Dec(sk, ct;) # L, Dec(sk,cty) # L, and Dec(sk, ct;) + Dec(sk, cty) € {0,...,n}, it holds that

Dec(sk, Add(pk, cty, cty)) = Dec(sk, ct;) + Dec(sk, ct,).

« Compactness: There exists a polynomial poly(-) such that for all A,n € N, all (sk, pk) in the support of
Gen(1%,1%), all ciphertexts ct in the support of Enc(pk, -) and Add(pk, -, -), it holds that |pk| < poly(A +log n)
and |ct| < poly(A +logn).

+ CPA-security: For an adversary A and a bit b € {0, 1}, define the CPA-security experiment ExptSS 4 (A, b) as
follows:
1. On input the security parameter 1%, the adversary A starts by outputting a range parameter 1”.
2. The challenger samples a key pair (sk, pk) «— Gen(1%,1") and sends pk to the adversary.

3. The adversary can now make (arbitrarily many) queries on pairs of messages (msg,, msg;). On each
query, the challenger replies with Enc(pk, msg,,).

4. After the adversary A is done making queries, it outputs a guess b’ € {0, 1}.

We say that I is semantically secure if for every efficient adversary A, there exists a negligible function
negl(-) such that |Pr[ExptSSﬂ(/L 1) = 1] — Pr[ExptSS 4(4,0) = l]i = negl(4).

Fact 2.2 (Additively Homomorphic Encryption [Gam84, Pai99, Reg05]). Assuming any of (1) the decisional Diffie-
Hellman assumption (DDH), (2) the decisional composite residuosity assumption (DCR), or (3) the learning with
errors (LWE) assumption, there exists an additively homomorphic encryption scheme with a bounded support.

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.
Such commitments can be built from any collision-resistant hash function [Mer87].

Definition 2.3 (Vector Commitment). A vector commitment with local openings is a tuple of efficient algorithms
IIcom = (Setup, Commit, Verify) with the following properties:

« Setup(14,17,£) — crs: On input the security parameter A € N, the block length n € N, and the vector length
¢ € N (in binary), the setup algorithm outputs a common reference string crs. We assume the common reference
string implicitly contains the parameters 1" and ¢.

« Commit(crs, (x1,...,x:)) — (com, 01, ...,0:): On input the common reference string crs and a vector of t < ¢
messages xi, . . ., Xy € {0, 1}", the commit algorithm outputs a commitment com and openings oy, ..., 0;.

« Verify(crs, com, i,y,0) — b’: On input the common reference string crs, the commitment com, an index i € [£],
amessage y € {0,1}", and an opening o, the verification algorithm outputs a bit b’ € {0, 1}.

Moreover, IIcom should satisfy the following properties:

« Correctness: For all 4, n, ¢ € N, and all positive t < ¢, all x1,...,x, € {0,1}", and indices i € [¢],

crs « Setup(1%, 17, 1%),

Pr [Verify(crs, com, i, x;,0;) =1 : . =
ify(i» 0i) (com, oy,...,0;) «— Commit(crs, (x1,...,x:))

« Computational binding: For an adversary A, define the computational binding experiment as follows:

1. On input the security parameter 1%, algorithm A starts by outputting the block length 1" and vector
length ¢.

2. The challenger responds with crs « Setup (14,17, ¢).

3. Algorithm A outputs a commitment com, an index i € [£], and openings (yo, o) and (y;, 01).

12

4. The output of the experiment is b = 1 if Verify(crs,com, i, yp, 09) = 1 = Verify(crs,com,i,y;,01) and
Yo # y1. Otherwise, the output is b = 0.

The commitment scheme is binding if for all efficient adversaries A, there exists a negligible function negl(-)
such that Pr[b = 1] = negl(4) in the binding experiment.

« Succinctness: There exists a universal polynomial poly(-) such that for all A, n, £ € N, all crs in the support of
Setup(lA, 1",¢),all t < ¢, and all (com, 07, . .., 0;) in the support of Commit(crs, -), the following holds:

- Succinct CRS: |crs| = poly(A + logn + log ¢).
— Succinct commitment: [com| = poly(A +logn + log ?).

- Succinct local opening: For all i € [¢], |o;| = poly(A + logn + log ¢).

Fact 2.4 (Vector Commitments from Collision-Resistant Hash Functions [Mer87]). Assuming the existence of
collision-resistant hash functions, there exists a vector commitment scheme with local openings.

2.2 Batch Arguments for NP

In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG for
index languages (i.e., an “index BARG” [CJJ21b]) and the notion of a BARG for monotone policy batch NP [BBK*23].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our
presentation is adapted from [C]JJ21b, WW22]. Here, we provide a more general syntax where the batch arguments
supports extraction on up to ¢ indices.

Definition 2.5 (Boolean Circuit Satisfiability). We define the circuit satisfiability language Lcsat as

: " h n
Lesar = :(C,x) C: {0,1}" x {0, 1} {0,1},x € {0,1} }

Iw e {0,1}* : C(x,w) =1

Definition 2.6 (Non-Interactive Batch Argument). A somewhere extractable non-interactive batch argument (BARG)
for Boolean circuit satisfiability is a tuple of efficient algorithms IIgarc = (Gen, Prove, Verify, TrapGen, Extract) with
the following syntax:

. Gen(lA, 1k 1n, 15, 1Y) — (crs, vk): On input the security parameter A € N, the number of instances k € N,
the instance length n € N, a bound on the size of the Boolean circuit s € N, and a bound on the size of the
extraction set £ € N, the generator algorithm outputs a common reference string crs and a verification key vk.

« Prove(crs,C, (x1,...,%k), (W1,...,wr)) — m: On input the common reference string crs, a Boolean circuit
C: {0, 1}" x {0, l}h — {0, 1}, statements x1,...,xx € {0, l}k, and witnesses wy, ..., wg € {0, 1}”, the prove
algorithm outputs a proof x.

« Verify(vk,C, (x1, ..., Xg), m) — b: Oninput the verification key vk, a Boolean circuit C: {0, 1}"x{0,1}* — {0, 1},
statements xi, ..., xx € {0, 1}" and a proof 7, the verification algorithm outputs a bit b € {0, 1}.

. TrapGen(14,1%,17,1%,1¢,S) — (crs, vk, td): On input the security parameter A € N, the number of instances
k € N, the instance size n € N, a bound on the size of the Boolean circuit s € N, a bound on the size of the
extraction set £ € N, and a set S C [k] of size at most ¢, the trapdoor generator algorithm outputs a common
reference string crs, a verification key vk and an extraction trapdoor td.

« Extract(td,C, (x1,...,xk), 7, i) — w. On input the trapdoor td, a Boolean circuit C: {0, 1}" x {0, 1}” — {0, 1},
a collection of statements x1,. .., x; € {0,1}", a proof = and an index i € [k], the extraction algorithm outputs
a witness w.

13

For notational convenience, when ¢ = 1, we omit the final input 1¢ and instead, write Gen(l’l, 1k 1n, 1%) to denote
Gen(l’l, 1k 1m 13, 1. Similarly, we write TrapGen(lA, 1k 1m 15, i) to denote TrapGen(l’l, 1k, 17, 15,1, {i}). Finally,
we require that IIgarg satisfy the following properties:

« Completeness: For all A, k,n,s, £ € N, all Boolean circuits C: {0, 1}" X {0, 1}” — {0, 1} of size at most s, all
statements x = (xi,...,x%) € {0, 1}*" and witnesses w = (w1, ..., wx) € {0, 1}*" where C(x;, w;) = 1 for all
i € [k,

(crs,vk) « Gen(1%,1%,1",15,1%)

=1
7 < Prove(crs, C, x, w)

Pr [Verify(vk, C,(x1,...,xx),m)=1:

+ Set hiding: For an adversary A and a bit b € {0, 1}, define the set hiding experiment ExptSH 4 (4, b) as follows:

1. On input the security parameter 14, algorithm A starts by outputting the number of instances 1¥, the
instance size 17, the bound on the circuit size 1°, the bound on the size of the extraction set 1¢, and a set
S C [k] of size at most £.

2. If b = 0, the challenger gives (crs,vk) « Gen(ll, 1k 17 18, 1) to A. If b = 1, the challenger samples
(crs, vk, td) « TrapGen(l’l, 1k o1m 15,1, S) and gives (crs, vk) to A.

3. Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.
Then, Igarc satisfies set hiding if for every efficient adversary (A, there exists a negligible function negl(-)

such that
|Pr[ExptSHﬂ(/1, 0) = 1] — Pr[ExptSH (A, 1) = 1]\ = negl(}).

When ¢ = 1, we might refer to this property as index hiding.

- Somewhere extractable in trapdoor mode: For an adversary A, define the somewhere extractable security
game as follows:

1. On input the security parameter 1%, algorithm A starts by outputting the number of instances 1%, the
instance size 1%, the bound on the circuit size 1°, a bound on the size of the extraction set 1¢, and a
nonempty set S C [k] of size at most £.

2. The challenger samples (crs, vk, td) < TrapGen(1%,1%,17, 1%, 1¢,S) and gives (crs, vk) to A.

3. Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}" — {0,1} of size at most s, statements
X1, .-, Xm € {0,1}", and a proof .

4. The output of the game is b = 1 if Verify(vk,C, (x1,...,xm), r) = 1 and there exists an index i € S for
which C(x;, w;) # 1 where w; « Extract(td, C, (xy, ..., xx), 7, i). Otherwise, the output is b = 0.

Then Ilgarc is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible
function negl(-) such that Pr[b = 1] = negl(A) in the somewhere extractable game.

« Succinctness: There exists a fixed polynomial poly(-) such that for all A, k, n, s, £ € N, all crs in the support
of Gen(14,1%,17, 1%, 1%), and all Boolean circuits C: {0, 1}" x {0, 1} — {0, 1} of size at most s, the following
properties hold:

— Succinct proofs: The proof 7 output by Prove(crs, C, -, -) satisfies || < poly(A +logk + s + £).
— Succinct CRS: [crs| < poly(A+k +n+£) + poly(A+logk + s+ ¢).
— Succinct verification key: |vk| < poly(A +logk + s + ¢).
Fact 2.7 (Batch Arguments for NP [CJJ21b, WW22, KLVW23, CGJ*23]). Assuming any of (1) the plain LWE assumption,

(2) the k-Lin assumption over pairing groups for any constant k € N, or (3) the (sub-exponential) DDH assumption in
pairing-free groups, there exists a non-interactive batch argument for NP.

14

Set hiding with extraction. For our main construction (Section 5), we require a slight strengthening of the
somewhere extractability property from Definition 2.6. Our stronger set-hiding property essentially says that if the
extraction key is programmed to extract either on Sy C [k] or S; C [k], then the extracted witness on “common
indices” i* € Sy N S; is computationally indistinguishable in the two cases. This type of property is often referred to
as a “no-signaling” extraction property [PR17, KPY19, GZ21, KVZ21, CJ]J21b] . We define this formally below and

show that it follows generically from the standard vanilla extractability in Appendix A.

Definition 2.8 (Set Hiding with Extraction). Let IIgarg = (Gen, Prove, Verify, TrapGen, Extract) be a somewhere
extractable batch argument for Boolean circuit satisfiability (Definition 2.6). For an adversary A and a bit b € {0, 1},
define the set hiding with extraction experiment ExptSHWE 4 (A, b) as follows:

1. On input the security parameter A, algorithm A starts by outputting the number of instances 1, the instance
length 17, the bound on the circuit size 1%, the bound on the extraction set 1, a set S C [k] of size at most ¢,
and an index i* € S.

2. If b = 0, the challenger samples (crs, vk, td) « TrapGen(lA, 1k, 17 15, 1¢, S). If b = 1, the challenger samples
(crs, vk, td) « TrapGen(l’l, 1k 17 15,1, {i*}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit C: {0,1}" x {0, 1}” — {0, 1}, statements xq,...,xx € {0,1}", and a
proof 7.

4. If Verify (vk, C, (x3, . . ., x¢), w) # 1, then the experiment halts with output 0. Otherwise, the challenger replies
with w* « Extract(td, C, (x1, ..., x¢), 7, i*).

5. Algorithm A outputs a bit b” € {0, 1}, which is the output of the experiment.

Then, IIgarc satisfies set hiding with extraction if for every efficient adversary A, there exists a negligible function
negl(-) such that for all A € N,

|Pr[ExptSHwEﬂ(/1, 0) = 1] — Pr[ExptSHWE 5 (4,1) = 1]| = negl(}).

Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index language where the instance is
always the tuple (1, ..., k). Since the statements are the integers, they have a succinct description, so we can impose
a stronger requirement on the running time of the Verify algorithm. We define this below:

Definition 2.9 (Index BARG [C]]21b]). An index BARG is a special case of a BARG where the instances (xi, .. ., xk)
are restricted to the integers (1,. .., k). In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length n as a separate input. Moreover, instead of providing xi, . . ., xx as input to the Prove, Verify,
and Extract algorithms, we just give the single index k (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

« Succinct verification time: There exists a fixed polynomial poly(-) such that for all A, k, n, s, £ € N, all (crs, vk)
in the support of Gen(l’l, 1k, 1m, 15, 1°) and all Boolean circuits C: {0, 1}"* x {0, 1}h — {0, 1} of size at most s,
the running time of Verify(vk, C, k, -) is bounded by poly(A + logk + s + £).

Monotone policy BARG. Next, we recall the notion of a SNARG for monotone policy BatchNP [BBK*23], which
we refer to more succinctly as a “monotone policy BARG” In this work, we just focus on the simplest notion of
non-adaptive soundness.

Definition 2.10 (Monotone Policy BatchNP). A Boolean circuit P: {0,1}* — {0, 1} is a monotone Boolean policy if
P is a Boolean circuit comprised entirely of AND and or gates. Let C: {0,1}" x {0,1}* — {0, 1} be a Boolean circuit
and P: {0,1}* — {0, 1} be a monotone Boolean policy. We define the monotone policy BatchNP language Lp-csat
to be

C: {0,1}" x {0,1}" — {0,1}, P: {0,1}* — {0,1},x1,...,x% € {0, 1}" }

LMP-CSAT = {(C,P,XI: .. .,xk) le,' Wi € {0, l}h ZP(C(Xl,Wl),.) .,C(Xk, Wk)) =1

15

Definition 2.11 (Monotone Policy BARG [BBK'23, adapted]). A monotone policy BARG is a tuple IIpp-garc =
(Gen, Prove, Verify) of efficient algorithms with the following syntax:

. Gen(ll, 1",1%,1°%) — crs: On input the security parameter A € N, the instance size n € N, a bound on the size
of the Boolean circuit s. € N, and a bound on the size of the policy s, € N, the generator algorithm outputs a
common reference string crs.

« Prove(crs,C, P, (x1,...,xk), (Wq,...,wg)) — m: On input the common reference string crs, a Boolean circuit
C: {0,1}" x {0,1}"* — {0, 1}, a monotone Boolean policy P: {0, 1}¥ — {0, 1}, statements x1, ..., xx € {0,1}",
and witnesses wy, ..., wg € {0, l}h, the prove algorithm outputs a proof 7.

« Verify(crs,C, P, (x1, ..., %), 7) — b: On input the common reference string crs, a Boolean circuit C: {0, 1} X

{0, l}h — {0, 1}, a monotone Boolean policy P: {0, l}k — {0, 1}, statements x1, ..., xx € {0, 1}", and a proof 7,
the verification algorithm outputs a bit b € {0, 1}.

Moreover, ITpp-garc should satisfy the following properties:

+ Completeness: Forall A, n, s, s, € N, Boolean circuits C: {0, 1}" x {0, l}h — {0, 1} of size at most s., monotone
Boolean policies P: {0,1}* — {0, 1} of size at most sp, statements x = (xy,...,xx) € {0, 1} and witnesses
w = (wy,...,wr) € {0, 1}¥" where P(C(x1, w1), . .., C(xx, wr)) = 1, it holds that

crs «— Gen(l’l, 17, 1%, 1°¢)

=1.
7 <« Prove(crs,C, P, x, w)

Pr | Verify(crs,C, P, (x1,...,x¢), m) =1

» Non-adaptive soundness: For any adversary A, define the non-adaptive soundness game as follows:

1. On input the security parameter 1%, algorithm A starts by outputting the instance size 1", the bound on the
size of the NP relation 1%, the bound on the size of the policy 1°#, a Boolean circuit C: {0, 1}" x {0, l}h —
{0, 1} of size at most s., a monotone Boolean circuit P: {0, 1}* — {0, 1} of size at most sp, and statements
X1, ..., %k € {0, 1}

2. The challenger samples crs « Gen(lA, 1", 1%, 1°7) and gives it to A.
3. Algorithm A outputs a proof x.
4. The output of the game is b = 1 if Verify(crs,C, P, (x1,...,xx),) = 1 and (C, P, (x1,...,xk)) € Lmp-CSAT-

We say that IImp-garc is non-adaptively sound if for every efficient adversary A, there exists a negligible
function negl(-) such that Pr[b = 1] = negl(A) in the non-adaptive soundness game.

+ Succinctness: There exists a fixed polynomial poly(-) such that for all A, n,s.,s, € N, all crs in the support
of Gen (1%, 1™, 1%, 1°), all Boolean circuits C: {0, 1} x {0,1}* — {0, 1} of size at most s, and all monotone
Boolean policies P: {0, 1}* — {0,1} of size |P| < sp, the following properties hold:

- Slightly succinct proofs: The proof & output by Prove(crs, C, P, -, -) satisfies |7| < poly(A + s, +logs,).
— Succinct proofs: The proof 7 output by Prove(crs, C, P, -, -) satisfies || < poly(A + s. + log |P|).

Remark 2.12 (Slightly Succinct Proofs to Succinct Proofs). In a “slightly succinct” proof system, the size of the proof
scales logarithmically with the bound s, on the size of the policy circuit, rather than the size of the policy circuit
itself. It is straightforward to transform a scheme with slightly succinct proofs into one that satisfies the standard
notion of succinctness. We use a “powers-of-two” construction. Namely, we generate ¢ = [log s, different common
reference strings, where the i CRS supports policies of size at most 27, The prover and verifier will use the CRS for
scheme i when proving or verifying statements with respect to policies of size between 2!~! and 2’. In this case, the
size of the proof scales polylogarithmically with the size of the policy P rather than the bound s,,. This approach only
incurs logarithmic overhead in the CRS size. In the rest of this work, we will focus on constructions satisfying the
simpler requirement of having slightly succinct proofs.

16

Remark 2.13 (Short Verification Key via RAM Delegation). In Definition 2.11, the setup algorithm outputs a single
CRS that is used both for generating proofs and for verifying proofs. The size of the CRS is allowed to grow with the
size of both the circuit C and the size of the monotone policy P. It is possible to obtain a construction with a short
verification key (that grows polylogarithmically with |C| and |P|) by “delegating” the verification process using a RAM
delegation scheme [CJJ21b, WW22, KLVW23, CGJ*23]. In this case, the verification key would be a succinct hash of
the actual CRS. Since this provides a generic approach for realizing a short verification key, in our constructions, we
will not explicitly decompose the CRS into a proving key and a separate short verification key. A similar approach
was also used in [BBK*23] in their construction of predicate-extractable hash functions.

3 Zero-Fixing Hash Functions

In this section, we formally introduce the notion of a zero-fixing hash function. As we show in Section 4, we can
combine a zero-fixing hash function with a vanilla BARG to obtain a monotone policy BARG. Recall from Section 1.2
that a zero-fixing hash function is a keyed hash function that supports succinct local openings. Moreover, the hash
key is associated with a set of indices S C [n], where n is the input length. Moreover, there is a trapdoor td associated
with the hash key hk that can be used to decide whether a hash digest dig is Matching or NotMatching on the set
S. The zero-fixing security requirement then says that if the extractor outputs Matching for a digest dig, it must be
computationally hard to open dig to a 1 on any index i € S.

As discussed in Section 1.2, our zero-fixing hash function is similar to the predicate-extractable hash function for
bit-fixing predicates from [BBK*23]. A key distinction is that when the extraction algorithm outputs NotMatching,
the predicate-extractable hash function also outputs an index i € [n] where it is computationally infeasible to open
the digest to a 1. In contrast, with our zero-fixing hash function, the extraction algorithm only outputs a single
Matching or NotMatching flag. At the same time, we require our zero-fixing hash functions to satisfy additional
security requirements that were not required in [BBK*23]. These additional security properties are necessary for our
construction of monotone policy BARGs (Section 4). We now give the formal definition:

Definition 3.1 (Zero-Fixing Hash Function). A zero-fixing hash function is a tuple of polynomial-time algorithms
Iy = (Setup, Hash, ProveOpen, VerOpen, Extract, ValidateDigest) with the following syntax:

. Setup(l’l, 1",8) — (hk, vk, td): On input a security parameter A, an input length n, and a set S C [n], the setup
algorithm outputs a hash key hk, a verification key vk and a trapdoor td. We implicitly assume that hk includes
A and n.

« Hash(hk,x) — dig: On input a hash key hk and a string x € {0, 1}", the hash algorithm outputs a digest dig.
This algorithm is deterministic.

« ValidateDigest(vk, dig) — b: On input a hash key vk and a digest dig, the digest validation algorithm outputs
abit b € {0, 1}. This algorithm is deterministic.

« ProveOpen(hk,x, i) — o: On input a hash key hk, a string x € {0, 1}" and an index i € [n], the prove algorithm
outputs an opening o.

« VerOpen(vk, dig, i, b,0) — b’: On input a hash key vk, a digest dig, an index i € [n], a bit b € {0,1} and an
opening o, the verification algorithm outputs a bit b” € {0, 1}. The verification algorithm is deterministic.

« Extract(td,dig) — m: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value
m € {Matching, NotMatching}. This algorithm is deterministic.

We require Iy satisfy the following efficiency and correctness properties:

« Succinctness: There exists a universal polynomial poly(-) such that for all parameters A, n € N, all (hk, vk, td)
in the support of Setup(1%,17, -), all inputs x € {0, 1}" and all indices i € [n], the following properties hold:

— Succinct verification key: |vk| < poly(A + log n).

17

— Succinct digest: The digest dig output by Hash(hk, x) satisfies |dig| < poly(A + log n).
- Succinct openings: The opening o output by ProveOpen(hk, x, i) satisfies |o| < poly(A + logn).

- Succinct verification: The running time of VerOpen(vk, -, -, -, -) is poly(4 + log n).
« Correctness: For all A,n € N, every x € {0,1}", and every i € [n], the following properties hold:
- Opening correctness:

(hk, vk, td) « Setup(14, 1", @)

Pr| VerOpen(vk,dig, i, x;,0) = 1 dig « Hash(hk, x), o < ProveOpen(hk, x, i) =1L

- Digest correctness:
Pr [ValidateDigest(vk,dig) =1: (hk,vk, td) < Setup(1%,1", @), dig < Hash(hk, x)] =1.

We additionally require the following security properties:
+ Set hiding: For a bit b € {0, 1} and an adversary A, we define the set hiding game ExptSH 4 (4, b) as follows:

1. On input 14, the adversary A outputs 1" and a set S C [n].

2. If b = 0, the challenger samples (hk, vk, td) « Setup(l)‘, 1",@) and if b = 1, the challenger samples
(hk, vk, td) « Setup(1%4,17,S). It gives (hk, vk) to A.

3. Algorithm A outputs a bit b” which is the output of the experiment.
The hash function satisfies set binding if for all efficient adversaries A, there exists a negligible function negl(-)

such that
|Pr[ExptSH 4 (A, 0) = 1] — Pr[ExptSH 4 (4, 1) = 1]| = negl(2).

« Index hiding with extracted guess: For an adversary A and a bit b € {0, 1}, we define the index hiding
with extracted guess game ExptIHE 4 (4, b) as follows:
1. On input 14, algorithm A outputs 1%, a set S C [n], and an index i* € S.

2. If b = 0, the challenger samples (hk, vk, td) « Setup(1%4,17, S\ {i*}). Otherwise, it samples (hk, vk, td) «
Setup(1%, 17, S). The challenger sends (hk, vk) to A.

3. Algorithm A outputs a digest dig and an opening o.

4. The output of the experiment is 1 if VerOpen(hk, dig, i*, 0, o) = 1 and Extract(td, dig) outputs Matching.
Otherwise, the output is 0.

The hash function satisfies index hiding with extracted guess if for all efficient adversaries A, there exists a
negligible function negl(-) such that

[Pr[ExptIHE 4(A,0) = 1] — Pr[ExptIHE 4 (A, 1) = 1]| = negl(A).

+ Zero fixing: For an adversary A, we define the adaptive zero-fixing game ExptZF 4 (1) as follows:

. On input 14, algorithm A outputs 1" and a set S C [n].
. The challenger samples (hk, vk, td) « Setup(1%,17,S) and gives (hk, vk) to A.
. Algorithm A outputs a digest dig, an index i € S and an opening o.

W N =

. The output of the experiment is 1 if VerOpen(hk, dig, i, 1, 0) = 1 and Extract(td, dig) outputs Matching.
Otherwise, the output is 0.

The hash function satisfies zero-fixing if for all efficient adversaries A, there exists a negligible function negl(-)
such that Pr[ExptZF z(A) = 1] = negl(4).

18

+ Extractor validity: For an adversary A, we define the extractor validity game ExptEV 4 (1) as follows:

. On input 14, the adversary A outputs 1".
. The challenger samples (hk, vk, td) « Setup(1%,1", @) and sends (hk, vk) to the adversary.
. Algorithm A outputs a digest dig.

B W N =

. The output of the experiment is 1 if ValidateDigest(hk, dig) = 1 and Extract(td, dig) outputs NotMatching.
Otherwise, the output is 0.

The hash function satisfies the extractor validity property if for every efficient adversary A, there exists a
negligible function negl(-) such that Pr[ExptEV 4 (1) = 1] = negl(A).

Remark 3.2 (Selective Zero-Fixing Security). We can define a weaker selective notion of zero-fixing security where
the adversary outputs the index i € S at the beginning of the security game (i.e., before seeing hk and vk). Note
that the selective zero-fixing security definition is equivalent to the zero-fixing definition in Definition 3.1. To see
that selective zero fixing implies standard zero-fixing, consider a reduction algorithm that guesses the index i < S
at the beginning of the security reduction and aborts whenever the guess is incorrect. This reduction succeeds
with probability 1/|S|; since |S| = poly(A), this incurs only a polynomial loss in advantage. In our construction
(Construction 4.4), we will work with the adaptive notion of security, but in our constructions (Constructions 5.2
and 6.3), we will work with the simpler selective definition.

One-sided index hiding. For our application, it suffices to consider a weaker notion of “one-sided” index hiding
where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security
is often easier than proving two-sided security, so we define the simpler notion here:

Definition 3.3 (One-Sided Index-Hiding with Extracted Guess). We say a zero-fixing hash function IT}; satisfies
one-sided index-hiding with extracted guess security if for all efficient adversaries A, there exists a negligible function
negl(-) such that

Pr[ExptIHE 4(4, 1) = 1] > Pr[ExptIHE 4(4, 0) = 1] — negl(2).

4 Constructing Monotone Policy BARGs

In this section, we describe how to construct monotone policy BARGs from a standard batch argument for NP together
with a zero-fixing hash function. We start by defining the conventions we use for describing Boolean circuits.

Definition 4.1 (Monotone Circuit Wire Indexing). Let P: {0,1}* — {0, 1} be a monotone Boolean circuit consisting
exclusively of AND and oRr gates with fan-in two. Let s be the size of P (i.e., the number of wires in P). A topological
indexing of the wires of C is an assignment of an index i € [s] to each wire in P with the following properties:

« Input wire: For i € [k], the i input to P is associated with the index i.
« Output wire: The output wire is associated with the index s.

- Intermediate wires: The intermediate wires are associated with an index i € {k+1,...,s — 1} with the
property that the value of index i is completely determined by the values of the wires with indices jj 1, ji2 €

(1,....i—1}

Every monotone circuit P has a canonical topological indexing that can be computed efficiently (e.g., by applying a
deterministic topological sort to the wires of P).

Definition 4.2 (Layered Monotone Circuit). Let P: {0,1}* — {0,1} be a (monotone) Boolean circuit of size s. We
denote by Lp(i) the layer of the wire i and define it as follows:

« Ifi € [k] (i.e., an input wire), then Lp(i) = 1.

19

o Ifi > k then Lp(i) = 1+ max{Lp(ji1), Lp(ji2)}, where ji1, jiz € {1,...,i — 1} are the indices of the input wires
to the gate that computes the value of wire i.

The depth of the circuit is defined to be the layer associated with the output wire: d = Lp(s). A circuit is layered if
foreveryi € {k+1,...,s}, it holds that Lp(ji;1) = Lp(ji2). For a layer index ¢ € [d], we define layer,(P) = {i € [s] :
Lp(i) = £} to be the set of wire indices in layer ¢ of the circuit.

Remark 4.3 (Layered Monotone Circuit). Every monotone circuit P: {0,1}¥ — {0, 1} of size s can be converted
into a layered monotone circuit of size poly(s). Thus, without loss of generality, we exclusively consider layered
monotone circuits in the remainder of this work.

4.1 Monotone Policy BARG Construction

We now describe our construction of a monotone policy BARG for NP.

Construction 4.4 (Monotone Policy BARG). Let IT; o = (Gen’, Prove’, Verify’, TrapGen’, Extract’) be a somewhere
extractable BARG for Boolean circuit satisfiability. Let ITyy = (H.Setup, H.Hash, H.ProveOpen, H.VerOpen, H.Extract,
H.ValidateDigest) be a zero-fixing hash function. We construct a monotone policy BARG IIpp-garc = (Gen, Prove,
Verify) as follows:

. Gen(1’1, 1", 1%, 1%): On input the security parameter A, the input length n, the bound on the size of the Boolean
circuit s, and the bound on the size of the monotone policy s, the setup algorithm proceeds as follows:

— Sample two hash keys

(hko, vk, tdg) « H.Setup(1*, 1, @)
(hkq, vk, tdy) « H.Setup(l’l, 1%, 9).

— Let s’ be a bound on the size of the circuit that computes the relation R[C, k, s,, vk, vk, dig, dig;] from
Fig. 1 when instantiated with an arbitrary Boolean circuit C of size at most s., an input length k < s,
and digests dig,, dig, associated with the hash and verification keys (hky, vky) and (hky, vk;). Let n’ =
3 - [logs,] + 1 be the bound on the statement length. Sample (crsgarc, Vkparg) < Gen’(1%, 15,17, 15).7

It outputs the common reference string crs = (crsgarc, Vksarac, hko, hki, vko, vki).

« Prove(crs,C, P, (x1,...,xk), (wq,...,wg)): On input a CRS crs = (crsparc, Vksarac, hko, hki, vko, vki), a circuit
C: {0,1}" x {0,1}"* — {0,1}, a monotone layered Boolean policy circuit P: {0,1}* — {0,1}, statements
X1, ..., X € {0,1}", and witnesses wy, ..., wg € {0, 1}h, the prove algorithm does the following:

— Let s be the size of P. Index the wires of P under a canonical topological ordering (Definition 4.1). For
eachwirei € {k+1,...,s}, let g; € {AND, OR} be its type. Let ji1, jiz € {1,...,i — 1} be the indices of the
input wires to the gate i.

— For each i € [s], let B; € {0,1} be the value of the i" wire in the evaluation of P on the input bits
(C(x1,w1),...,C(xg, wi)). Fori € {s +1,.. .,sp}, let §; = 0. (This corresponds to “padding” the Sp—s
unused slots).

- Compute the digest dig, «— H.Hash(hko, (... .. fs,)) and dig, < H.Hash(hky, (f1,...,5s,)).

— For each i € [s] and each b € {0, 1}, compute o) H.ProveOpen(hkp, (B1, ..., Bs,),)

1

- Let Cyyg be the circuit that computes the relation R[C, k, s, vk, vk, dig,, dig;] shown in Fig. 1.

- For each i € [s,], construct the statement X; and witness w; as follows:

« Ifi € [k], let % = (i,x;) and W; = (B, o', 61, wy).

A

7Recall that when the bound on the extraction set parameter ¢ is not given, it defaults to the value 1.

20

Statement: index i and auxiliary statement x
Witness: value b, openings (¢(?), ¢(!)) and auxiliary witness w
Hard-Coded: circuit C: {0,1}" x {0,1}" — {0, 1}, the number of inputs k, the policy size s, the hash keys
hko, hki, and the digests dig,, dig,
On input a statement (i, x) and a witness (b, (%, (™), w):
- If i <k, output 1 if all of the following conditions are met, otherwise output 0:
+ Opening validity: For all « € {0, 1}, H.VerOpen (vkg, dig,,. i, b, 0(“)) =1.
+ Wire consistency: C(x,w) = b.
- Ifi € {k+1,...,s}, parse x = (g, j1,j2) where g € {aAND,0R} and ji,j, € {1,...,i—1}. Parse w =

(b1, 61(0), 01(1), b,, 02(0), (72(1)). Check each of the following conditions for a € {0, 1}: Output 1 if all of the

following conditions are met, otherwise output 0:
» Opening validity: For all « € {0, 1}, all of the following holds:
— H.VerOpen (vka, dig,,, jl,bl,al(a)) =1;
- H.VerOpen (vka, dig,,. jz,bz,az(“)) =1
- H.VerOpen (vk,, dig,, i, b, 6(“)) =1.

+ Wire consistency: b = g(by, b).
« Output gate: If i = s, check that b = 1.

- Ifi > s, then output 1.

Figure 1: The relation R[C, k, s, vk, vky, dig,, dig,].

« Ifi e [k+1,s], let x; = (i, (g, ji, jiz)) and
P () (1) (0) (1) 0) (1)
wi = (ﬁi’ 9 »0; (ﬁjlll’ Uji,l i Gjm ’ﬁji,z’ Uji,Z > O..I'i,z))
» Ifi>s letx;=Landw; = L.
Essentially, there is an instance %; associated with each wire i of P.

- Compute the BARG proof mgarg < Prove’(crsgarg, Caug, (X1, - - .,fcsp), (wi,..., wsp)) and output 7 =
(dig,, dig,, mBARG)-

o Verify(crs,C, P, (x1, ..., xx),): On input a common reference string crs = (crsparc, vksara, hko, hky, vk, vky),
a Boolean circuit C: {0,1}" x {0,1}* — {0,1}, a layered monotone Boolean policy P: {0,1}* — {0,1},
statements x1, . .., xx € {0,1}", and a proof = = (dig,, dig;, 7sarc), the verification algorithm does the following:

- If H.ValidateDigest(vko, dig,) = 0 or H.ValidateDigest(vk;, dig;) = 0, then output 0.

— Let s be the size of P. Index the wires of P under a canonical topological ordering (Definition 4.1). For
each wire i € {k+1,...,s}, let ji1,jiz € {1,...,i — 1} be the indices of the input wires of the gate
gi € {AND, oRr} that computes wire i. For each i € [s,], construct the statement %; as follows:

« Ifie [k], let X = (i,xi).
« Ifie {k +1,... ,S}, let)Ei = (i, (gi’ji,l,ji,z))~
«» If i > s, letx; = L.

21

— Let Cyyg be the circuit that computes the relation R[C, k, s, vk, vk, dig,, dig,] from Fig. 1.
— Output Verify’ (vkparc, Caug, (X1, - - -, X5,), TBARG)-

Theorem 4.5 (Completeness). IfII}, .« is complete and I1y is correct, then Construction 4.4 is complete.

Proof. Take any A,n, s, s, € N, any Boolean circuit C: {0, 1}" x {0, 1}" — {0, 1} of size at most s, and any monotone
Boolean policy P: {0, 1}k — {0,1} of size s < sp. Let x1,...,x € {0,1}" and wy, ..., wi € {0, l}h be a collection of
statements and witnesses such that P(C(x1, w1), ..., C(xs, w;)) = 1. We start by defining the following quantities:

« For each i € [s,], let §; € {0,1} be the value of wire i for predicate P on input (C(x1, w;), ..., C(xs, wy)).

« Let crs = (crsgarg, Vksara, hko, hky, vko, vky) « Gen(lA, 1%, 1%,1°2). By construction, the hash keys are
sampled as (hkp, vk, tdy) < H.Setup(14, 1%, @) for each b € {0, 1}.

o Let & « Prove(crs,C, P, (x1,...,%k), (Wg,...,wg)). Let

dig, = H.Hash(hko, (B1,...,6,)) and dig, = H.Hash(hk,, (B1,...,fs,))

be the digests computed by the Prove algorithm. Moreover, by correctness of ITj, for each b € {0, 1}, we have
H.ValidateDigest(vkp, dig,) = 1.

Consider now the relation R[C, k, s, vko, vki, dig, dig, | defined in Fig. 1. We show that for all i € [s,], the statement
(%;, W;) defined in Prove satisfies the relation. First, for all i € [s,] and b € {0, 1}, the Prove algorithm computes

O'l-(b) «— H.ProveOpen(hkp, (Bi, ..., Bs,), i). Correspondingly, by correctness of IIiy, we conclude that for all i € [s,]
and b € {0, 1},
H.VerOpen(vkb, digy, i, Bi, ol.(b)) =1. (4.1)

We now consider each index i € [s,]:

« If i € [k], then %; = (i,x;) and w; = (B, Ui(o), oW, w;). In this case, the opening validity passes by Eq. (4.1).

1
Moreover, by definition, we have that §; = C(x;, w;). Hence, the relation is satisfied.

cIfie {k+ 1.5} let % = (i (g jirs jiz) and w; = (B, 0", 01, (B o-j.;)l), o-.]('jl)’ﬁji,z’ aj(.if)z), O'J(.;Z))). Again, the
opening validity check passes by Eq. (4.1). Moreover, by definition, §; = g;(f},,. Bj,,) so the wire consistency-
check passes. Finally, if i = s, then s = P(C(x1, wy), ..., (xs, ws)) = 1 by construction.

« Finally, if i > s, the relation is always satisfied.

Thus, we conclude that for all i € [s,], the relation R is always satisfied. By completeness of Hg ARG this means

Verify’ (vksarG, Caugs (X1, - - -, X5,), 78ARG) = 1, where mparc < Prove’(crsparc, Caugs (%1, - -5 Xs,)s (Wi, .., Ws,))-
Letting 7 = (dig,, dig,, 78arc), we conclude that Verify(crs,C, P, (X1, ..., xx), 7) = 1, and completeness follows. O

Theorem 4.6 (Succinctness). IfTl}, ., and Iy satisfy succinctness, then Construction 4.4 has slightly succinct proofs.

Proof. Fix A, n,s.,sp € N, a Boolean circuit C: {0, 1}" x {0, 1} — {0, 1} of size at most s, and a monotone Boolean
policy P: {0, 1}* — {0,1} of size s < sp. Take any crs = (crsgarc, vksara, hko, hkq, vko, vky) in the support of
Gen(l’l, 1", 1%, 1°2). Consider any collection of statements xy,...,xx € {0, 1}" and witnesses wy, ..., wx € {0, l}h
where P(C(x1, w1),...,C(x;:, ws)) = 1. We bound the size of ngarg < Prove(crs,C, P, (x1,...,xk), (W, ..., wWg)):

» First, the Prove algorithm computes dig, and dig; using the hash keys hk, and hk;, respectively. Since
(hk, vk, td) « H.Setup(1%, 1%, @), we appeal to succinctness of ITy; to conclude that |dig,l, [dig;| < poly(A +

log sp).

+ Next, consider the size of the BARG proof mgarc. We first bound the size of the circuit C,.g for computing the
relation R[C, k, s, vk, vky, dig,, dig,] from Fig. 1. By construction, C,,¢ performs a constant number of calls to
H.VerOpen and also needs to evaluate the underlying circuit C (which has size at most s.). By succinctness of
Iy, each invocation of H.VerOpen can be computed by a circuit of size poly(A + logs,). Hence, the size of the
circuit Cyyg can be bounded by poly(A +log s, + sc). By succinctness of IIgarc, we conclude that the size of the
proof mgarc output by Prove’ is bounded by poly(A + [Caug| +logs,) < poly(A + 5. +1ogs,).

22

Putting the pieces together, the proof 7 = (dig,, dig;, 7garc) output by Prove is bounded by poly(A +s. +logs,), and
(slight) succinctness follows. O

Soundness. We now state the soundness theorem, but give the proof in the subsequent section (Section 4.2).

Theorem 4.7 (Non-Adaptive Soundness). IfIIy satisfies set hiding, index hiding with extracted guess, zero fixing and
extractor validity against non-uniform adversaries, and IIgarg is somewhere extractable and satisfies set hiding against
non-uniform adversaries, then Construction 4.4 satisfies non-adaptive soundness against non-uniform adversaries.

4.2 Proof of Theorem 4.7 (Non-Adaptive Soundness)

In this section, we prove non-adaptive soundness of Construction 4.4. Take any efficient non-uniform adversary
A = (A, Ay) for the non-adaptive soundness game. Then let (17, 1%,1°7,C, P, x,st.g) « ﬂl(lk) for any 1 € N,
where

« C:{0,1}" x {0,1}" — {0, 1} is a Boolean circuit of size at most s;
« P: {0,1}* — {0, 1} is a layered monotone Boolean circuit of size s < sp; and
e x=(x1,...,x%) € {0, 1}*" where x; € {0,1}" for all i € [k].

Let d be the depth of P. For each i € [k], let §; € {0,1} be equal to 1 if (C, x;) € Lcsar and 0 otherwise. Extending
the definition to all i € [s], let f; € {0, 1} be the value of wire i in the evaluation of P on input (f, ..., fi). For each
layer i € [d], define

Ji = {j € layer,(P) : §; = 0} (4.2)

to be the indices of the zero wires in layer i of P(f1, ..., fx). We model each J; as an ordered set (ordered in ascending
order). We write J;[] to denote the ™ element in J; and Ji[1,...,t] = Ujers) JilJ] to denote the first ¢ elements of J;.

4.2.1 Hybrid Experiment Specification

To prove Theorem 4.7, we start by defining a sequence of hybrid experiments. Each of these hybrids is indexed
implicitly by the security parameter A, but we omit this for ease of exposition.

Outer games. We start by defining a sequence of “outer hybrids” Here, we provide a general overview of our
methodology. The initial hybrid Hyb, corresponds to the real non-adaptive soundness game, while Hyb; corresponds
to the hybrid where one of the zero-fixing hash keys is binding on the set J; (as defined by Eq. (4.2)). We show that
the outputs of each adjacent pair of hybrid distributions can only change by a negligible amount, and moreover, that
the zero-fixing hash function binding on J; in Hyb, outputs Matching. Finally, in hybrid Hyb,, the following two
conditions hold:

« The hash key is zero-fixing on the single output wire (since we know that P(f, ..., fx) = 0, where f; is the
indicator bit for whether (C, x;) € Lcsar)-

« The hash function declares the output bit to be Matching.
Consider the probability that the proof verifies in Hyb;:

« Suppose the BARG is extractable on the instance associated with the output wire of P. In this case, if the proof
verifies in Hyb, then somewhere extractability of the BARG allows us to extract an opening to 1 with respect
to both zero-fixing hash functions. This follows by definition of the instance % in Prove and Verify (where s is
the size of P).

« Since P(fs, ..., Br) = 0, one of the zero-fixing hash functions will be zero-fixing on the output wire in hybrid
Hyb,. Moreover, this hash function outputs Matching. If we can extract an opening to 1 for the output wire,
this breaks zero-fixing security of the hash function.

23

Thus, when the BARG is extractable on the instance associated with the output wire, the probability that the proof
verifies in Hyb is negligible. Finally, if the outputs of each adjacent pair of hybrids cannot differ by a non-negligible
amount, we conclude the probability that the proof verifies in Hyb is also negligible. This demonstrates non-adaptive
soundness. We now define the sequence of games:

+ Hyb,: This is the non-adaptive soundness game. For ease of exposition, we partition the game into two phases:

— Phase 1: On input the security parameter 14, algorithm A; outputs 17, 1%, 1°7, a Boolean circuit C: {0, 1}" X
{0,1}" — {0, 1} of size at most s,, a monotone Boolean circuit P: {0, 1} — {0, 1} of size s < sp, an instance
x=(x,...,x¢) € {0, l}k", and the state st 4. If (C, P,x) € Lmp-csar, then the experiment outputs 0.

- Phase 2: The challenger computes crs < Gen(1%,1",1%,1%). Specifically, the challenger samples the
following components:

* (crsparG, VKBARG) < Gen’(lA, 15,17 1%).

« (hko, vko, tdg) « H.Setup(1%, 1%, @).

« (hky,vky, tdy) < H.Setup(14, 1%, @).
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, 7sarc). Let X = (%1,...,%;,) and Cyyg be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig;) = 1.

« Verify’ (vkgarc, Caug, X, ARG) = 1.

+ Hyb, for i € [d]: Same as Hyb, but hkje,, binds on J;, where low = i mod 2 and high = 1 — low. Specifically,
the game proceeds as follows:

- Phase 1: On input the security parameter 1%, algorithm A; outputs 17, 1%, 1%, a Boolean circuit C: {0, 1}"* x
{0,1}* — {0, 1} of size at most s., a monotone Boolean circuit P: {0, 1} — {0, 1} of size s < sp, an instance
x = (x1,...,x¢) € {0, 1}k", and the state stg. If (C, P,x) € Lmp-csat, then the experiment outputs 0. In
addition, the challenger computes the following quantities:

« For j € [k], let f; = 1if (C, x;) € Lcsar (Definition 2.5) and f8; = 0 otherwise.
« For j € [k +1,s], let B; to be the value of the wire j in the evaluation of P on (f4,. .., k).
« For each layer ¢ € [d], let J, = {j € layer,(P) : f; = 0}.
— Phase 2: The challenger samples the following components:
« (crsparg, vkparg) < Gen’(14,1%,17,1%).
» (hkiow, VKiow, tdiow) < H.Setup(1%, 1%, J;).
» (hknigh, Vkhigh, tdhigh) < H.Setup(1%, 1%, 2).
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, mgarc). Let X = (Xy,.. .,J?SP) and C,,4 be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
* Verify'(kaARG, Caugs X, 7TBARG) =1.
« H.Extract(tdjow, dig,,,) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we now define a
sequence of “inner hybrids” Whereas the outer hybrids advance layer by layer, the inner hybrids advance across
a layer. In more detail, recall that the difference between Hyb, and Hyb,,, is that one of the two hash keys (i.e.,
hkiow) goes from binding on J; to binding on Ji;;. The idea in the inner hybrids is to program the other hash key (i.e.,
hkpign) to be binding on Ji;;. Initially, hky;gp is binding on the empty set. We then step through |Ji;;| intermediate
hybrids, where on the ' step, the hash key hkpigh goes from being binding on Ji11[1,...,t — 1] to being binding on
Ji+1[1,...,t]. Each transition relies on the security of the BARG and the zero-fixing hash function. We now define
the full sequence of hybrids; each one is indexed by i € {0,...,d}.

24

« Hyb;,, for t € [|Ji+1]]: Same as Hyb;, but hkpigh binds on the first ¢ — 1 wires in Ji;1.

- Phase 1: Same as Hyb,.
— Phase 2: The challenger samples the following components:
« (crsparc, vkparg) < Gen’(1%,1%,17,1%),
« If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(l/l, 1’2,). Otherwise, it samples (hkjow, VKiows tdjow) <
H.Setup(l’l, %7, J;).
» (hknigh, Vhigh, tdnigh) < H.Setup(14, 1%, Ji i [1,..., ¢ — 1]).
The challenger sets crs = (crspara, hko, hki, vko, vk;) and runs A, on input (crs, st #). Algorithm A, outputs
a proof string 7 = (dig,, dig;, msarc). Let X = (x4, .. .,325?) and C,,¢ be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig;) = 1.
« Verify’ (vkgarc, Caug, X, ARG) = 1.
« If i > 1, then H.Extract(tdjow, digy,,,) = Matching.
« H.Extract(tdpigh, dighigh) = Matching.

« Hyb;,, for t € [|Ji+1]]: Same as Hyb, , |, but crsgarg is set to be extractable on index Ji1[t].

- Phase 1: Same as Hyb,.
— Phase 2: The challenger samples the following components:
» (crsparcs tdgarc) < TrapGen’ (14, 19,17, 1, Jiq[¢]).
« If i = 0, then (hkjow, VKiow, tdiow) < H.Setup(l’l, 1°7,). Otherwise, it samples (hkjow, VKiow tdjow) <
H.Setup(l’l, 1°r, J;).
+ (hknhigh, Vknigh, tdnign) < H.Setup(1%, 1, Jiq [1,.... £ = 1]).
The challenger sets crs = (crsgarc, hko, hky, vk, vky) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, 7garc). Let X = (x4, .. .,fsp) and C,,4 be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkgarG, Caug» X, 8ARG) = 1.
« If i > 1, then H.Extract(tdew, dig,,,,) = Matching.
* H.Extract(tdhigh,dighigh) = Matching.

« Hyb;,; for t € [|Ji+1]]: Same as Hyb, , ,, but the challenger additionally checks that it extracts a valid witness
for X7, 4]

- Phase 1: Same as Hyb,.
— Phase 2: The challenger samples the following components:
« (crsarc, tdparg) < TrapGen’(14,1%,1", 1%, Ji1[1]).
« If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(l’l, 1%, @). Otherwise, it samples (hkiow, Vkiow, tdiow)
H.Setup(1%, 1%, J;).
« (hknigh, Vknigh, tdnign) < H.Setup(1%, 1%, Jui[1,...,t — 1]).
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, msarc). Let X = (%1,.. .,ﬁsp) and C,,¢ be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkgarc, Caug: X, T8ARG) = 1.
« If i > 1, then H.Extract(tdow, dig,,,,) = Matching.

25

+ H.Extract(tdnigh, digy,;zn) = Matching.
* Caug (X],,[¢1> W) = 1 where w = (b,a(()),crm,w) «— Extract’(tdgarc, Caug: X, 7BARG Ji+1 [1])-
« Hyb;,, for t € [|Jis1|]: Same as Hyb, , 5, but the challenger additionally checks that the extracted value for
wire Ji11[t] isa 0.
- Phase 1: Same as Hyb;.
— Phase 2: The challenger samples the following components:
» (crspara, tdpara) < TrapGen’ (14, 12,17 ,1%, Ji11 [t]).
« If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(l’l, 1%, @). Otherwise, it samples (hkiow, Vkiows tdiow) <
H.Setup(1%, 1%, J;).
» (hknigh, VKnigh, tdhigh) < H.Setup(14, 1%, Jiq[1, ..., ¢t — 1]).

The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, 7sarc). Let X = (X1,...,%;,) and Cyyg be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
» Verify’ (vkpara, Caug, X, 7ARG) = 1.

« If i > 1, then H.Extract(tdew, dig,,,,) = Matching.

+ H.Extract(tdnigh, digp,;gn) = Matching.

* Caug(XJ,, 1), W) = 1 and b = 0 where w = (b, o 6D w) Extract’ (tdparG, Caug, X, BARG, Jis1[t]).
« Hyb;, 5 for t € [|Ji+1]]: Same as Hyb, , , but hkpigh now binds on Ji+1[1,...,t].

- Phase 1: Same as Hyb;.
— Phase 2: The challenger samples the following components:
» (crsparcs tdparg) < TrapGen’ (14, 152,17, 1%, Jiz1 [t]).
« If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(l’l, 1%, @). Otherwise, it samples (hkjow, Vkiow, tdjow) <
H.Setup(l’l, 1°r, J;).
« (hknhigh, Vkhigh, tdnign) < H.Setup(1*, 1%, Ji.1[1,....1]).
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig,, 78arG). Let X = (%1,...,%;,) and Caug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkarc, Caug, X, TARG) = 1.
« If i > 1, then H.Extract(tdew, dig,,,,) = Matching.
* H.Extract(tdhigh,dighigh) = Matching.

* Caug(X7,, 17> W) = 1 and b = 0 where w = (b, 0@ 6D w) Extract’ (tdgarG, Caug» X, ARG, Jis1[t]).
« Hyb;, ¢ for t € [|Ji+1]]: Same as Hyb, , ; but the challenger does not check the extracted witnesses.

- Phase 1: Same as Hyb,.
— Phase 2: The challenger samples the following components:
« (crsparc, tdparg) < TrapGen’ (1%, 1, 17, 1%, Jiy1[t]).
« If i = 0, then (hKjow, VKiow tdiow) < H.Setup(1%, 1%, @). Otherwise, it samples (hkiow, VKiow, tdjow) <
H.Setup(1%, 1%, J;).
* (hkhigh> thigh’ tdhigh) — H.Setup(l’l, 1°7, Jiv1l1, ..., t]).

26

The challenger sets crs = (crsgarc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string 7 = (dig,, dig;, mgarc). Let X = (xy,.. .,)?sp) and C,,4 be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.

« Verify’ (vkparG, Caug, %, T8ARG) = 1.

« If i > 1, then H.Extract(tdjow, digy,,,) = Matching.

* H.Extract(tdhigh,dighigh) = Matching.
In particular, the challenger does not extract a witness w « Extract’(tdgarc, Caug, X, 78ARG, Ji+1[]) nor
checks any conditions on it.

« Hyb;,, for t € [|Ji+1]]: Same as Hyb, , , except the BARG is restored to normal mode.

- Phase 1: Same as Hyb;.
— Phase 2: The challenger samples the following components:
* CISBARG — Gen’(l/l, 15, 1", lsl).
» If i = 0, then (hkjow, VKiow, tdiow) < H.Setup(l’l, 1°7, @). Otherwise, it samples (hkjow, VKiows tdiow) <
H.Setup(l’l, 1°r, J;).
* (hkhigh> thighs tdhigh) «— H.Setup(l’l, %7, Jin1l1, ..., t]).
The challenger sets crs = (crspara, hko, hki, vko, vk;) and runs A, on input (crs, st #). Algorithm A, outputs
a proof string 7 = (dig,, dig;, 7garc). Let X = (x4, .. .,J%Sp) and C,,¢ be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkarG, Caug, X, TARG) = 1.
« If i > 1, then H.Extract(tdew, dig,,,,) = Matching.
+ H.Extract(tdnigh, digp,;gn) = Matching.

* Hyb, g, Same as Hyb, |, ;. but we no longer checks that dig,,, matches the binding set J;.

- Phase 1: Same as Hyb,.
— Phase 2: The challenger samples the following components:
« crsgarg — Gen’(1%4,1%,17 1),
« If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(l/l, 1°2, @). Otherwise, it samples (hkjow, VKiows tdjow) <
H.Setup(1%, 1%, J;).
* (hkhigl’b thighs tdhigh) — Hsetup(ll’ ISP’]i+1)'
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st #). Algorithm A, outputs
a proof string 7 = (dig,, dig;, 78arG). Let X = (%1,...,%;s,) and Caug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):
« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk,, dig;) = 1.
« Verify’ (vkgarc, Caug, X, T8ARG) = 1.
* H.Extract(tdhigh,dighigh) = Matching.
In particular, the challenger no longer checks if H.Extract(tdoy, dig,.,,) = Matching when i > 1.

4.2.2 Analysis of Hybrid Experiments

We now show that the probability of a hybrid experiment outputting 1 cannot decrease by a non-negligible amount
when transitioning from one hybrid to the next. The goal is to eventually show that Pr[Hyb,_;(A) = 1] is negligibly
close to Pr[Hyb,;(A) = 1] for all i € [d]. We argue this via a sequence of non-uniform reductions to the security
properties of the underlying zero-fixing hash function and BARG. Specifically, our reduction algorithms construct

27

a non-uniform adversary where there is an initial (inefficient) preprocessing phase that outputs an advice string
of polynomial size, and a polynomial-time online algorithm that takes the advice as input and interacts with the
challenger according to the specifications of the target security game. Our reductions share a common preprocessing
phase, which we abstract out as a standalone Preprocess algorithm defined as follows:

« Preprocess(C, P,x): On input a Boolean circuit C: {0,1}" x {0,1}" — {0,1}, a monotone Boolean policy
P: {0,1}* — {0,1} of size s, and an instance x = (xy,...,xx) € {0, 1}*", the preprocessing algorithm first
checks if (C, P,x) € Lmp-csat- If so, it outputs L. Otherwise, it computes f; € {0, 1} for i € [s] as follows:

— Fori € [k], set f; = 1 if and only if (C, x;) € LcsaT-
— Fori € [k +1,s], set §; to be the value of the wire i in the evaluation of P on (i, ..., fk).

Output 7 = (C, P,x, (fi,.. .,,Bs)).
We now analyze each pair of adjacent hybrid experiments.

Claim 4.8. IfIly satisfies extractor validity against efficient non-uniform adversaries, then there exists a negligible
function negl(-) such that for everyi € {0,...,d — 1}, it holds that

[Pr[Hyb,(A) = 1] — Pr[Hyb,,, (A) = 1]| < negl(A).

Proof. Take any i € {0,...,d — 1} and suppose \Pr[Hybi(ﬂ) =1] = Pr[Hyb, , ;(A) = l]i = ¢(A) for some non-
negligible e. By construction, the only difference between Hyb; and Hyb, , ; is the additional check in Hyb, , ;:

H.Extract(tdhigh, digp,;z,) = Matching.

Thus, with probability at least ¢, the adversary A in an execution of Hyb,,, and Hyb; outputs a proof = =
(dig,, dig;, marc) Where H.VaIidateDigest(vkhigh,dighigh) = 1and H.Extract(tdhigh,dighigh) = NotMatching. In
all other cases, the output of the two experiments are identical. We use A to construct a non-uniform adversary 8
that breaks extract validity of ITj as follows:

« Preprocessing phase: On input the security parameter 14, run (1", 1%, 1%, C, P, X, st) «— .7[1(11). Compute
7 « Preprocess(C, P, x) and output stg = (1", 1%, 1°7, 7, st 1).

« Online phase: On input the state stg = (17, 1%, 1°¢, 7, st #) where 7 = (C, P,x, (f1, .. .,/33)), proceed as follows:

1. Send 1°# and the set @ to the challenger. The challenger replies with a hash key hk and a verification key
vk.

2. Sample (crsparc, VKBARG) < Gen'(l’l, 1%,1",1%"), where n’, s’ are defined as in Construction 4.4. If i = 0,
sample (hkjow, Vkiow, tdiow) H.Setup(ll, 1°2, @). Otherwise, if i # 0, sample (hkjow, VKiow, tdiow) <
H.Setup(1%,1°%, J;), where J; = {j € layer;(P) : B; = 0}. Let hkpigh < hk and vkpigp < vk.

3. Let crs = (crsparc, hko, hky, vko, vky) and run 7 « Ay (crs, st). Parse 7 = (dig,, dig,, 7sarc) and output
digpioh-
igh

By construction, algorithm 8 perfectly simulates an execution of Hyb; and Hyb, , ; for A, so with probability at
least ¢, the digest dighigh satisfies H.ValidateDigest(vkpigh, dighigh) = 1 and H.Extract(tdpigh, dighigh) = NotMatching.
Correspondingly, algorithm B breaks extractor validity with advantage . O

Claim 4.9. IfIlgarc satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {0,...,d — 1} and t € [|Ji+1l], it holds that

[Pr[Hyb, , (A) = 1] — Pr[Hyb, , ,(A) = 1]| < negl(2).

Proof. Take any i € {0,...,d — 1} and t € [|Ji+1|]. Suppose |Pr[Hybi,t’1(ﬂ) = 1] = Pr[Hyb; , ,(A) = 1]| = ¢(A) for
some non-negligible £. We construct a non-uniform adversary 8 that breaks set hiding of ITgarg:

28

« Preprocessing phase: On input the security parameter 14, run (1", 1%, 1%, C, P, x, st) «— ﬂl(ll). Compute
7 « Preprocess(C, P, x) and output stg = (1", 1%, 1°7, 7, st 5).

+ Online phase: On input the state stg = (1", 1%, 1°7, 7, st #) where 7 = (C, P.x, (fy,... ,ﬁs)), proceed as follows:

1. Compute J; = {j € layer;,(P) : f; =0} and Ji41 = {j € layer,;(P) : f; = 0}.
2. Send 1%, 1", 1%, and the index Ji+1[¢] to the challenger, where n’, s’ are computed as in Construction 4.4.
The challenger replies with crsgagrg.

3. If i = 0, then (hkjow, Vkiow, tdiow) H.Setup(l’l, 17, @). Otherwise, sample (hkiow, VKiow, tdiow) <
H.Setup(1%, 1%, J;).

4. Sample (hknigh, VKnhigh, tdhigh) < H.Setup(l’l, 17, Jivi[1,...,t —1]).

5. Let crs = (crspara, hko, hky, vko, vki) and run 7 « A;(crs, stx).

6. Let 7 = (dig,, dig;, marc) and let X = (X3, .. .,fcsp) and C,g be as defined in Prove and Verify in Con-
struction 4.4. Output 1 if all of the following conditions hold (and abort with L otherwise):

- H.ValidateDigest(vko, dig,) = H.ValidateDigest(vky, dig;) = 1.

Verify” (vkgarG, Caug, X, TBARG) = 1.

If i > 1 then H.Extract(tdjow, dig,,,) = Matching.

H.Extract(tdhigh, digp;e,) = Matching

We consider two possibilities:

+ In ExptSH g (4, 0), the challenger samples crsgarg < Gen’(l’l, 15,17, 15/). In this case, by the construction of
8, it holds that crs is sampled exactly as in Hyb, , ;. Moreover, 8 computes its output exactly as specified by
Hyb; ; ;- This means that 8 perfectly simulates Hyb, , ; (A) and thus

Pr[ExptSHg(4,0) = 1] = Pr[Hybi’tll(ﬂ) =1].

« In ExptSHg(A, 1), the challenger samples crsgarc < TrapGen’(lA, 152,1" 1%, Jis1[t]). In this case, by the
construction of B, it holds that crs is sampled exactly as in Hyb, , ,. Moreover, 8 computes its output exactly
as specified by Hyb, , ,. This means that 8 perfectly simulates Hyb, , ,(A) and thus

Pr[ExptSHg(4,1) = 1] = Pr[Hyb, , ,(A) = 1].

We conclude that algorithm B breaks the index hiding property of IIgarc With the same advantage «.]

Claim 4.10. IfIlgarc satisfies somewhere extractability in trapdoor mode against efficient non-uniform adversaries,
then there exists a negligible function negl(-) such that for everyi € {0,...,d — 1},t € [|Ji+1]], it holds that

[Pr[Hyb; , ,(A) = 1] = Pr[Hyb, , ;(A) = 1]| < negl(2).

Proof. Take any i € {0,...,d —1} and t € [|Ji+1]]. Suppose |Pr[HybiJ’2(ﬂ) =1] = Pr[Hyb; , ;(A) = 1]| = ¢(A) for
some non-negligible e. By construction, the only difference between Hyb, , , and Hyb, , ; is the additional check in
Hyb; , 5:

Caug(X,,[¢1» W) = 1 where w « Extract’(tdgarc, Caug: X, TBARG Ji+1[t])- (4.3)
Thus, with probability at least ¢, the adversary A in an execution of Hyb,,, and Hyb,, ; outputs a proof 7 =
(dig,, dig,, mgarg) Where Verify’(kaARG,Caug, X, mgarg) = 1 and Eq. (4.3) does not hold (i.e., Caug (X7, (¢, W) = 0).
In all other cases, the outputs of Hyb, , , and Hyb, , ; are identical. We use A to construct an adversary 8 for the
somewhere extractability game of IIgarc:

« Preprocessing phase: On input the security parameter 1, run (1",1%,1%,C, P, X, st) «— ﬂl(l’l). Compute
7 « Preprocess(C, P, x) and output stg = (1", 1°, 1°7, 7, st 5).

29

« Online phase: On input the state stg = (1", 1%, 1°7, 7, st 4) where 7 = (C, P.x, (fy,... ,ﬂs)), proceed as follows:

1. Compute J; = {j € layer;(P) : f; = 0} and Jix1 = {j € layer,,;(P) : B; = 0}.
2. Send 1%, 1", 1" and the index Ji+1[t] to the challenger, where n’, s’ are computed as in Construction 4.4.
The challenger replies with crsgarc.

3. If i = 0, then (hkjow, VKiow, tdjow) < H.Setup(ll, 1°7,). Otherwise, sample (hkjow, VKiow, tdiow)
H.Setup(lA, 1°r, ;).

4. Sample (hkpigh, VKnigh, tdhigh) < H.Setup(ll, 17, Jiq[1,...,t —1]).

5. Let crs = (crsparc, hko, hky, vkg, vki) and run 7 « A, (crs,stg). Let x = (xy,.. .,fcsp) and C,g be as
defined in Prove and Verify in Construction 4.4. Parse 7 = (dig,, dig;, 7sarc) and output the circuit Cyyg,
the statements %, and the proof 7gargG.-

By construction, algorithm 8 perfectly simulates an execution of Hyb, , , and Hyb, , ; for A, so with probability ¢, it out-
puts mgarc such that Verify’ (vkgarc, Caug, X, 78ArG) = 1 and Eq. (4.3) does not hold. In particular, this means the proof
mparG verifies with respect to crsparg and yet Caug (%5, 1], W) = 0 where w < Extract’ (tdgarc, Caug: X, m8ARG, Ji+1[£]),
and tdparg is the trapdoor associated with crsgarg that the challenger sampled. This means 8 wins the somewhere
extractability game with the same advantage ¢. O

Claim 4.11. IfIly satisfies zero-fixing against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {0,...,d — 1},t € [|Ji+1]], it holds that

|Pr[Hybi,,’3(ﬂ) = 1] = Pr[Hyb; , ,(A) = 1]| < negl(2).

Proof. By construction, the only difference between Hyb, , ; and Hyb, , , is the additional check in Hyb, , , that the
extracted bit b satisfies b = 0. We consider two cases in our analysis:

« Suppose i = 0. In this case, J;[t] refers to an input wire in P, which means J;[t] < k. Suppose Hyb, , ;(A)
outputs 1. This means that Cy,g (fc]l[k], 17\1) = 1 where

w= (6,0, 6, w) Extract’ (tdgarc, Caug: X, 8ARG, J1 []).

Since Ji[k] < k and by construction of X, we have that %, (¢} = (Ji[k], x},[x]). By definition of C,yg (see Fig. 1),
we have that Caug (X, (%], W) = 1 only if C(x},x], w) = b. However, by definition of J;, it must be the case that
(C.xp1x1) ¢ Lcsar. This means C(xj[x), w) = 0 = b. In this case, Hyb, , ,(A) also outputs 1. Conversely,
since the verification conditions in Hyb, , , are a superset of the conditions in Hyb, , 5, if Hyb; , ,(A) = 1, then
Hyb; , 3(A) = 1. We conclude that in this case

Pr[Hyb;,;(A) = 1]] =Pr[Hyb,,, = 1].
« Suppose i > 0. In this case, security reduces to the zero-fixing security of II;. We give this proof below.
To argue the second case, take any i € {1,...,d — 1} and t € [|J;+1]], and suppose that
[Pr[Hyb, 5(A) = 1] = Pr[Hyb;, , () = 1]| = e(A)

for some non-negligible ¢. By construction, the only difference between Hyb, , ; and Hyb, , , is the additional check in
Hyb;, 4 that b = 0 where w = (b, 0@ 6D w) Extract’ (tdgarG, Caug, X, BARG, Ji+1 [1]). Thus, with probability at
least ¢, the adversary A in an execution of Hyb, , ; and Hyb, , , will output a proof 7 = (dig, dig,, 78arc) Where

H.Extract(tdjow, digy,,,) = Matching and Caug(%),,[;, W) =1 and b #0. (4.4)
In all other cases, the outputs of Hyb, , ; and Hyb, , , are identical. We use A to construct an adversary 8 for the

zero-fixing game for I:

30

« Preprocessing phase: On input the security parameter 14, run (1", 1%, 1%, C, P, x, st) «— ﬂl(ll). Compute
7 « Preprocess(C, P, x) and output stg = (1", 1%, 1°7, 7, st 5).

« Online phase: On input the state stg = (1", 1%, 1°7, 7, st #) where 7 = (C, P.x, (fy,... ,ﬁs)), proceed as follows:

1. Compute J; = {j € layer;(P) : f; = 0} and Jiz1 = {j € layer,,;(P) : B; = 0}.
2. Send 1°¢ and the set J; to the challenger. The challenger replies with a hash key hk and a verification key
vk.

3. Set (hkhigh, VKhigh, tdhigh) < H.Setup(l’l, 17, Jiv[1,...,t = 1]), hkiow < hk, and vkjoy, < vk. Finally,
sample (crsparG, tdparc) «— TrapGen’(lA, 152,1",15, Jiz1[t]), where s is defined as in Construction 4.4.
4. Let crs = (crsgara, hko, hky, vko, vky) and run 7 «— Ay (crs, st z).

5. Let & = (dig,, dig;, mearc) and suppose X = (X1, .. .,J?Sp) and C,g be as defined in Prove and Verify in
Construction 4.4. Compute

W= (b0, 0, w) « Extract’ (tdsarc, Caug, X, T8ARG Jis1 [1]),

and parse the extracted witness w as w = (bl, (0) 1(1), b, 0'2(0) 0'2(1)).

6. Parse X, ;] = (g, j1, j2). If there exists & € {1, 2} such that j, € J; and b, = 1, output the digest dig,,.

the index j,, and the opening o’

By construction, algorithm 8 perfectly simulates an execution of Hyb, , ; and Hyb, , , for A. Thus, with probability
at least ¢, algorithm A will output a proof 7 = (dig,, dig,, 78arc) where Eq. (4.4) holds. Since Cayg (%}, [+, W) = 1,
the following properties hold:

« b =g(by,by), where g = gj,,(¢] € {AND, OR} is the gate in the circuit P that computes wire Ji,1[¢].

« H.VerOpen (vkiow, dig;o\,» jl,bl,al(low)) =1 and H.VerOpen (vkiow, digjo, j2 b2, ([0‘”)) =1.

By definition, ji, j, are the indices of the input wires to the gate whose output wire is Ji;1[t]. We consider two
possibilities:

+ Suppose by < f;, and by < f;,. By definition (see the details of the Preprocess algorithm), B..,(,] = 9(B,, B},)-
Since Jiy1[t] € Ji+1, this means B, [;] = 0. Since g is a monotone gate and b; < f;, and b, < f3j,, we have that
b =g(b1,by) < g(Bj,, Bj,) = 0. Since b € {0, 1}, this means that b = 0. However, if Eq. (4.4) holds, then b # 0, so
this case does not happen.

« Suppose there exist & € {1,2} such that b, > ;. . This means that f;, = 0 and b, = 1. Since P is a layered
monotone circuit, this means ji, j; € layer;(P). Since §;, = 0, this means that j, € J;. In conjunction with
Eq. (4.4), this means

([ow))

H.Extract(tdjow, digy,,,) = Matching and H. VerOpen(vk]OW, digous Jas 1 =1and j, € J;,

where (hkjow, VKiow, tdiow) < H.Setup(l’l, 1°7, J;) is the hash function parameters sampled by the zero-fixing
challenger. In this case, algorithm $B wins the zero-fixing game.

We conclude that if the proof 7 output by A satisfies Eq. (4.4) with probability ¢, then algorithm $B wins the zero-fixing
game with advantage at least ¢. O

Claim 4.12. IfTIy satisfies one-sided index hiding with extracted guess security against efficient non-uniform adversaries,
then there exists a negligible function negl(-) such that for everyi € {0,...,d — 1},t € [|Ji+1]], it holds that

Pr[Hyb;,s(A) = 1] > Pr[Hyb;, ,(A) = 1] — negl(1).

31

Proof. Take any i € {0,...,d — 1} and t € [|/i+1]]. Suppose Pr[Hyb,; , s(A) = 1] < Pr[Hyb,, ,(A)] — &(1) for some
non-negligible e. We use A to construct a non-uniform adversary 8 for the index hiding with extracted guess game
of HH:

« Preprocessing phase: On input the security parameter 1, run (1", 1%, 1%, C, P, x, st) «— ?{1(11). Compute
7 « Preprocess(C, P, x) and output stg = (1", 1%, 1°7, 7, st 5).

« Online phase: On input the state stg = (17, 1%, 1%, 7, st 5) where 7 = (C, P, x, (f1, . . ., f5)), proceed as follows:

1. Compute J; = {j € layer;(P) : f; = 0} and Jiz1 = {j € layer,,,(P) : §; = 0}.
2. Send 1°7, the set Ji41[1,...,t], and the index Ji1[¢] to the challenger. The challenger replies with hk and
vk.

3. If i = 0, then (hkjow, VKiow, tdiow) H.Setup(l’l, 1°7,@). Otherwise, sample (hkiow, VKiow, tdiow) <«
H.Setup(lA, 1°7, J;). Let hkpigh < hk and vkpigp < vk.
4. Sample (crsgarG, tdparg) < TrapGen'(lA, 19,1715, Jiz1[t]), where ¢’ is defined as in Construction 4.4.

5. Let crs = (crsparc, hko, hky, vko, vky) and run 7« A (crs,stn). Let x = (fl,...,ﬁsp) and C,g be
as defined in Prove and Verify in Construction 4.4. Parse w = (dig, dig;, 7garc) and compute w =
(6,09, 0, w) — Extract’ (tdparc, Caug: X, T8ARG, Jiv1 [£])-

6. Check each of the following conditions:

H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk,, dig;) = 1.

Verify’ (vkgarG, Caug> X, 8ARG) = 1.

If i > 1, then H.Extract(tdjow, dig,,,,) = Matching.

- Caug(ﬁ],-ﬂ[t],ﬁ’) =landb=0.

If any condition fails to verify, then output L. Otherwise, output the digest digy;,, and the opening othigh)
We consider the two possibilities:

+ Suppose the challenger responds according to the specification of ExptIHE 4 (4, 0). In this case, the challenger
samples (hkpigh, VKnigh, tdhigh) < H.Setup(l’l, 1%7, Jis1[1, ..., t — 1]). By construction, algorithm 8B perfectly
simulates an execution of Hyb, , , for A. The output of ExptIHE (4, 0) is 1 if and only if all of the following
events occur:

- H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig;) = 1.

Verify’(kaAR(;, Caug, X, mARG) = 1.
Ifi > 1, then H.Extract(tdjow, dig,,,) = Matching.

- Caug(ffjm[t],ﬁ’) =1land b =0.

H.VerOpen (vkhigh, digpigns Ji+1 [£],0, o(hie)) = 1 and H.Extract(tdhign, dighigh) = Matching.

We now argue that
ExptlIHEg(4,0) =1 &= Hyb,;,,(A) = 1.

The forward direction is immediate since the set of conditions under which ExptIHE 5(A, 0) outputs 1 is a strict
superset of the conditions under which Hyb, , ,(:A) outputs 1. For the backward direction, we show that if

Caug (X111, W) = 1 and b = 0, then H.VerOpen (vkhigh, digpigh, Ji+1[t], 0, o(high)) = 1. By construction of Caug:
we have that C,u4(%j,,[s], W) = 1 implies that for all & € {1, 2}, it holds that

H.VerOpen (vkg, dig,, Ji+1[t], 0, 0(”)) =1.
In particular, this holds for & = high, so the claim holds. We conclude then that

Pr[ExptIHE 5 (2, 0) = 1] = Pr[Hyb,, ,(A) = 1].

32

« Suppose the challenger responds according to the specification of ExptIHE 4 (4, 1). In this case, the challenger
samples (hkpigh, Vkhigh, tdhigh) < H.Setup(14, 1%, Jiu1[1,.. ., t]). Thus, algorithm B perfectly simulates an
execution of Hyb; , 5 for A. Since Hyb; , , and Hyb, , 5 share identical verification conditions, we can appeal to
the same argument as before to argue that

ExptlIHEg(4,1) =1 & Hyb,;,(A) = 1.

Correspondingly,
Pr[ExptIHEg(4,1) = 1] = Pr[Hyb, , ;(A) = 1].

We conclude that B breaks the one-sided index hiding with extracted guess with the same advantage ¢. O
Claim 4.13. Foreveryi € {0,...,d — 1},t € [|Jir1]], it holds that
Pr[Hyb;, ((A) = 1] > Pr[Hyb,, ;(A) = 1].

Proof. The only difference between Hyb, , ; and Hyb, , ; is that Hyb, , ; performs an additional check that the extracted
witness w satisfies certain properties. Thus, whenever Hyb, , , outputs 1, hybrid Hyb, , 5 also outputs 1 and the claim
follows. O

Claim 4.14. IfTIgargG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {0,...,d — 1} and t € [|Ji41l], it holds that

[PrlHyb; o (A) = 1] = Pr[Hyb;, 7 (A) = 1]] < negl(2).
Proof. This follows by a similar argument as the proof of Claim 4.9. O
Claim 4.15. Foreveryi € {0,...,d — 1}, it holds that
Pr[Hyb; g, (A) = 1] = Pr[Hyb, ;. - (A) =1].

Proof. The only difference between Hyb, |, |, and Hyb
dig,,,, is Matching. Thus, whenever Hyb

i final 1S that Hyb; |, ; performs an additional check that
| outputs 1, hybrid Hyb, |, ; also outputs 1 and the claim follows. O

ifinal

Claim 4.16. IfIly satisfies set hiding property against efficient non-uniform adversaries then there exists a negligible
function negl(-) such that for everyi € {0,...,d — 1}, it holds that

[Pr[Hyb, gna (A) = 1] = Pr[Hyb,,; (A) = 1]| < negl(1).
Proof. We consider two cases in our analysis:

« Suppose i = 0. Then, in hybrid Hybo,ﬁnah the challenger samples (hko, vko, tdg) « H.Setup(lA, 1°7, @) and
(hkyq, vk, tdy) « H.Setup(l/l, 1%, J1). This is identical to how the challenger samples hk, and hk; in Hyb;.
Similarly, the verification conditions in the two experiments are identical, so we conclude that

Pr[Hybyg ¢ (A) = 1] = Pr[Hyb,,, (A) = 1].

« Suppose i > 0. Let & = i mod 2. By construction, in hybrid Hyb the challenger samples

i,final®
(hkg, vkg, tdg) < H.Setup(l/l, 1°r, J;) and (hki_g, vki_g, tdi_g) <« H.Setup(l’l, 1°7, Jir1).

In hybrid Hyb,, ;, the challenger samples
(hky, vke, td,) « H.Setup(1%, 1%, @) and (hki_g vki_g tdi_g) «— H.Setup(1*, 1%, Jiz1). (4.5)

Both experiments check H.Extract(td;-4, dig;_,) = Matching. Thus, the only difference between Hyb, , ., and
Hyb,,, is the distribution of hk,. In this case, security reduces to the set hiding security of ITy;. We give this
proof below.

33

To argue the second case, take any i € {1,...,d — 1} and suppose that | Pr[Hyb, ;. ,(A) = 1] = Pr[Hyb,,,(A) = 1]| =
£(A) for some non-negligible ¢. We use A to build an efficient non-uniform adversary 8 that breaks set hiding of ITy

as follows:

« Preprocessing phase: On input the security parameter 14, run (1", 1%, 1%, C, P, X, st) « ﬂl(ll). Compute
7 <« Preprocess(C, P, x) and output stg = (1", 1%, 1°7, 7, st 5).

« Online phase: On input the state stg = (1", 1%, 1°7, 7, st 4) where 7 = (C, P.x, (f1,... ﬂs)) proceed as follows:

1.
2.
3.

Compute J; = {j € layer;(P) : f; = 0} and Jix; = {j € layer;,;(P) : B; = 0}.
Send 1°7 and the set J; to the challenger. The challenger replies with hk and vk.

Sample (crsparcs VKearRG) «— Gen’(l’l, 1%,1"%,1%), where s’ is defined as in Construction 4.4. Let a =
i mod 2. Sample (hk;_q, vki_o, td1_4) « H.Setup(l’l, 1%, Ji+1) and set hk, « hk, vk, < vk.

Let crs = (crsgarc, hko, hky, vko, vk;) and run 7 « A, (crs, st z).

Let 7 = (dig, dig;, msarG)- Let X = (X1,...,%;s,) and Cyyg be as defined in Prove and Verify in Construc-
tion 4.4. Output 1 if all of the following conditions hold (and 0 otherwise):

- H.ValidateDigest(vky, dig,) = H.ValidateDigest(vk;, dig;) = 1.

= Verify’ (vkgarG, Caug» X, TBARG) = 1.

- H.Extract(td;_4, dig;_,) = Matching.

We now consider two possibilities:

+ In ExptSHg(4, 0), the challenger samples (hk, vk, td) « H.Setup(l’l, 1%, @). In this case, algorithm 8B samples
crs according to the specification of Hyb,, ;. Moreover, algorithm B computes its output exactly as described in
Hyb,,,. This means that 8 perfectly simulates Hyb, , (A) and thus

Pr[ExptSHg(4,0) = 1] = Pr[Hyb,,, (A) = 1].

+ In ExptSHg (A, 1), the challenger samples (hk, vk, td) « H.Setup(l’l, 1%, J;). In this case, algorithm 8B samples
crs according to the specification of Hyb; ;.. Moreover, algorithm 8 computes the output exactly as described
in Hyb, ¢ This means that 8 perfectly simulates Hyb, ¢ .,(A) and thus:

Pr[ExptSHg(4, 1) = 1] = Pr[Hyb, g.,((A) = 1].

We conclude that algorithm 8 breaks the set hiding property with advantage ¢ in this case and the claim follows. O

Completing the proof. Combining Claims 4.8 to 4.16, we conclude that there exists a negligible function p(-) such
that for all i € [d],

Pr[Hyb, (A) = 1] > Pr[Hyb,_,(A) = 1] - 0(1) - |Ji] - u(A).

Moreover, by the same sequence, we conclude that

Pr[Hyb,_,;4(A) = 1] > Pr[Hyb,_,(A) = 1] - O0(1) - p(1).

Putting the pieces together,

Pr[Hyb,_;,4(A) = 1] > Pr[Hyby(A) = 1] = O(1) - d - |Ji| - p(4) = Pr[Hyby(A) = 1] — negl(A),

since d - |Ji| < s = poly(4). Note that we take Hyb,_, , , to be our final hybrid since it imposes the most constraints
(subsequent hybrids remove requirements from the experiment). To complete the proof we show that for all adversaries

A, Pr[Hyby_, ; 4(A) = 1] = negl(A).

Claim 4.17. For all adversaries A, Pr[Hyb,_, ; ,(A) =1] = 0.

34

Proof. Fix an adversary A = (A, A,) and let (17, 1%, 1%, C, P, x, st 4) be the output of .?{1(1/1). Lets = |P| and d be
the depth of P. As usual, for i € [k],let f; = 1if (C, x;) € Lcsar and f; = 0 otherwise. For i € [k + 1,s], let f; be the
value of wire i in the evaluation of P on (f, ..., fx). By construction, all hybrids require that s = P(f1,..., k) =0,
and therefore J;[1] = {fs}. However, the conditions for I-Fl;/Tod_l)l’4 to output 1 cannot hold simultaneously:

« On the one hand, there must exist a witness w = (b, a0 1), w) for instance X (of the relation in Fig. 1) where
b=0.

« On the other hand, by definition of instance x;, since s is the output wire, it must be that b = 1.
Therefore I:I;/ybd_l,l’4 is unwinnable. O

Combining Eq. (4.5) and Claim 4.17, we conclude that there exists a negligible function negl(-) such that
0 > Pr[Hyb,(A) = 1] — negl(4).

This means that Pr[Hyb,(A) = 1] < negl(4), which proves Theorem 4.7. O

5 Generic Construction of Zero-Fixing Hash Functions

In this section, we show how to construct a zero-fixing hash function by combining an index BARG (Definition 2.9), an
additively homomorphic encryption scheme with bounded support (Definition 2.1), and a vector encryption scheme
with succinct local openings (Definition 2.3).

Binary tree indexing. In the following construction, we will work with complete binary trees. We will use the
following procedure to associate a unique index with each node in the binary tree:

Definition 5.1 (Binary Tree Indexing). Let 7~ be a complete binary tree with n = 2¥ leaves. Then 7~ contains exactly
2n — 1 nodes. We associate a unique index i € [2n — 1] via the following procedure:

« First, associate the value v = 1 to the root node.

« Ifvis the value associated with a node, then associate values 2v and 20+ 1 with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

« The index i associated with a node is defined to be 2n — v, where v is the value associated with the node.
By design, Definition 5.1 has the following properties:

« The leaf nodes are indexed 1 through n and the root node is indexed 2n — 1.

+ The index of every non-leaf node is greater than the index of its children.

« Given the index of any non-leaf node, we can efficiently compute the indices of its left and right child.
Construction 5.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

o LetII/

sarG = (Gen’, Prove’, Verify’, TrapGen’, Extract’) be a somewhere extractable index BARG (Definition 2.9).

« LetITye = (HE.Gen, HE.Enc, HE.Dec, HE.Add) be an additively homomorphic encryption scheme with bounded
support (Definition 2.1). For a security parameter A and a range parameter n, let £ (A, n) be a bound on the
length of the ciphertexts output by either HE.Enc(pk, -) or HE.Add(pk, -, -) for any (sk, pk) in the support of
HE.Gen(1%,17).

o Let IIcom = (Com.Setup, Com.Commit, Com.Verify) be a vector commitment scheme with succinct local
openings (Definition 2.3).

35

We construct a zero-fixing hash ITy; = (Setup, Hash, ProveOpen, VerOpen, Extract, ValidateDigest). In the following
description, we assume without loss of generality that the bound on the input length n € N is a power of two (i.e.,
n = 2F for some integer k € N). Next, we define the following NP relation which we will be using in our construction:

Statement: index i € [n]
Witness: ciphertexts 50 1) openings c®. 61 and an auxiliary witness w
Hard-coded: the common reference string crscom for IIcom, an index i* € [n] U {1}, avalue y € {0,1, L}, and

for each b € {0, 1}, a public key pk,, for ITjg, commitments comff(() and two ciphertexts ctﬁfr)o, ctffgt

On input a statement i € [n] and a witness (6,511, 6(®, o)).

() 1 _(0) (1))

¢t , 0,

g Output 1 if the following conditions hold:

- Leaf nodes: If i € [n], then parse w = (ct

1. Opening to ciphertext: for b € {0, 1}, Com.Verify (crscom, comp, i, o), O'(b)) =1
2. Opening to ciphertext in hk: for b € {0, 1}, Com.Verify(crsCom, comf}i),l ct() (b)) =1.

3. Consistent choice of ciphertexts: (6(*) = ctQ A = ctiézo) or (6 = &9 A = ct(l))
4. Validity of ciphertext at target index: If i = i*, then additionally check that:

b
A(b)_{tier)o y=0
R BN

ct y=1.

If any of these conditions are not satisfied, output 0.

+ Non-leaf nodes: If i € [n+ 1,2n — 1], then parse w = (w,, wg), where wy = (5(0) A((il), éo), (1)) for
d € {1, r}. Output 1 if all of the following conditions hold for all b € {0, 1}:
1. Opening to ciphertext: Com.Verify(crscom, comp, i,ﬁ(b),a(b)) =1
2. Opening to child ciphertexts: Com.Verify(crscom, comp, iy, o0, o) = 1 and
Com.Verify(crscom, comp, ig, 6I§b),GRb)) = 1, where i; and iy are the indices of the left and

right child of i (according to the indexing scheme from Definition 5.1).
3. Correctness of evaluation: (*) = HE.Add(pk,, o), A(b)).

4. Validity of root: If i = 2n — 1 then 6(¥) = ctf(l:)

If any of these conditions are not satisfied, output 0.

Figure 2: The index relation R [crscOm, {pkb, comf}i), comy, ctﬁfm, ctfoot}be{0 1y i, y].

We describe our construction below:

« Setup(14,17,S): On input a security parameter A, the input length n = 2, and a set S C [n], the setup algorithm
starts by sampling the following:

- Sample two key pairs: (sko, pk,) < HE.Gen(1%,1") and (sk;, pk,) < HE.Gen(14,1").

— Sample the CRS for the commitment scheme with block length £ (A, n) and up to 2n — 1 blocks: crscom
Com.Setup(l’l, 16t(dn) op 1).

— Sample the CRS for an index BARG: (crsparc, VKsarG) < Gen’(14,1%771,15,1%), where s is a bound on
the size of the circuit computing the index relation from Fig. 2. Here, the CRS is extractable on up to 3
positions. Note that since IIgarg is an index BARG, Gen’ does not separately take the statement length as
input (Definition 2.9).

36

£

Next, for each b € {0, 1}, construct an encryption of 0: ct,e;, < HE.Enc(pk,,0). Next, for each i € S and
b € {0, 1}, construct the hash key ciphertexts as follows:

Ifi € S, compute ctgb) < HE.Enc(pk,, 1).
Ifi ¢ S, compute ctgb) « HE.Enc(pk,, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Specifically,
for each b € {0, 1}, it computes

(b) _(b) (b)

hk * 9] Ohin

TR) « Com.Commit(crscom, (ctib), .. .,ct,(lb))).

(com

Finally, the setup algorithm constructs the hash key hk, the verification key vk, and the trapdoor td as follows:

b b b b b
hk = (crscom,crsBARG, {pkb, tier)o, ti), . ..,ct() 0'}(11()1, ... ék)rz}be{OI}) (5.1)
vk = (crscom, Vkgara, kg, pk, ot) comﬁ?(), com}(’}()) (5.2)
td = (sko, sky). (5.3)

« Hash(hk, x): On input a hash key hk (parsed as in Eq. (5.1)) and a string x € {0, 1}", the hashing algorithm
proceeds as follows:

Construct two complete binary trees 75, 71, each with n leaves. For each tree 73, we assign a ciphertext
vl.(b) to each node i € [2s — 1] in the tree as follows (where the nodes are indexed using Definition 5.1):

« Ifi € [n], let U(b) t§§20 if x; =0and vl.(b) — ctgb) ifx; = 1.

» For each internal node i € [n + 1,2n — 1], compute vl.(b) — HE.Add(pk,, vff’), Z);Rb)), where i and iy
are the indices associated with the left and right child of node i under the canonical tree indexing
scheme (Definition 5.1).

For b € {0, 1}, construct commitments (comy, (b), . 2(2) "

to the ciphertexts associated with 75.

) « Com.Commit(crscom, (vib), .. ;? N))

For b € {0, 1}, let ctd) = (b) _, (i.e., the ciphertext associated with the root of 7;). Let C, be the circuit

root
that computes the followmg instantiation of the relation from Fig. 2:

b b b
R [crsCOm, {pkb, com}gk),comb, tier)o, tgogt}be{o,u’ 1, J_] .

Foreachie [2n—1],letr; = (050), oM o, 1(1)) be the opening for the ciphertexts associated with node

[]
iin 75 and 7. Then, for each i € [2s — 1], define the auxiliary witness w; to be

» If i € [n] then w; = (c t(o) t(l) l(i)z Uﬁi’)i).
« Ifi € [n+1,2n — 1] then w; = (7;,, 7;,) where iy, iy are the indices of the left and right child of node i,

respectively.
Finally, let w; = (1;, w;) for each i € [2n — 1]. Compute the BARG proof rgjs < Prove’(crsgarg, Ci,2n —
L (Wi,..., Wan—1)).
Output the digest
root> ~ “root’

dig = (t(o) ctW

comg, comy, ﬂdig) .

« ProveOpen(hk, x, i*): On input a hash key hk (parsed as in Eq. (5.1)), a string x € {0, 1}" and an index i* € [n],
the opening algorithm proceeds as follows:

Let Cj« «,. be the circuit that computes the following instantiation of the relation from Fig. 2:

(b)

®) (b) ((®)

R [crscom, {pky, com,”, comy, ctyem, ctoony pefor) ! i*, x|

37

— Compute the witnesses w; for each i € [2n — 1] using the same procedure as in the Hash algorithm.

- Output the opening o < Prove’(crsgarg, Ci* x;, 21 = 1, (W1, ..., Wan_1))

« VerOpen(vk, dig, i, b, 0): On input the verification key vk (parsed according to Eq. (5.2)), a digest dig =
(ctiggt, ctggt,como, coml,ﬂdig), an index i* € [n], abit b € {0,1} and an opening o, the verification algo-
rithm outputs Verify’ (vkgarc, Ci b, 21 — 1, 0) where C;«, is the circuit computing the following relation from
Fig. 2:

(®)

b b "
R[crscOm, {pkb, com,,’, comy, ctier)o, ctfogt pefoay ! ,b].

ct(o) ct(l)

roat> Ctroot COMo, COMy, 7gig), the ex-

« Extract(td, dig): On input a trapdoor td = (sko, sk;) and a digest dig = (
(0)
ct

root

traction algorithm outputs Matching if HE.Dec(sko,) = 0. Otherwise, the algorithm outputs NotMatching.

« ValidateDigest(vk, dig): On input the verification key vk (parsed according to Eq. (5.2)) and a digest dig =

(ctfggt, ctf;gt, comg, comy, ﬂdig), the digest-validation algorithm outputs Verify’ (vkgarg, Ci, 2n — 1, T4ig) Where

C, is the circuit computing the following relation from Fig. 2:

b b b
R [crscom, {pkb, Comr(\k)’ comyp, ctier)o, Ct:oczt}be{o,n’ 1, J_] .

Theorem 5.3 (Correctness). Suppose Ilcom is correct and I1§ , o is complete. Then, Construction 5.2 is correct.

Proof. Take any A, n € N and x € {0, 1}". Suppose (hk, vk, td) « Setup(l’l, 1", @). Parse

b b b b b
hk = (crscom, CI'SBARG, {pkb, ctier)o, ctg), e, ct,g), O'Iik,)l’ e O.lr(\k,)n}be{o,l})

0 1 0 1
vk = (crscom, vksarc, kg, pk, ct'®) com:]k), comﬁk))

td = (Sko, Skl).

We now show each property individually.

Opening correctness. Take any index i* € [n] and let ¢ < ProveOpen(hk, x,i"). By definition, this means
o « Prove’ (crsparg, Cicx;+» 21 — 1, (w1, . .., Wan_1)), where Cp- . is the circuit that computes the index relation

b b b -
R [crsCOm, {pkb, comlgk), comy, ctﬁer)o, thogt}be{o,l}’l ,xi*]

from Fig. 2. By construction of ProveOpen (and by correspondence, Hash), w; = (7;, w;) and 7; = (vl.(o)

We now show that Cj+ . (i, w;) = 1 forall i € [2n - 1]:

(1) _(0) _(1)
0 50; 5, 0;).

(1)) ()

(0)
t i > 7hki’ “hki

« Leaf nodes: Suppose i € [n]. Then, w; = (c ;sct) Consider each of the conditions:
1. Opening to ciphertext: By construction of Hash, for b € {0,1}, the commitment comy is a vector

commitment to (vib), ey vz(z)_l), and the opening for position i is cri(b). This check follows by correctness
of the vector commitment scheme.

2. Opening to ciphertext in hk: By construction of Setup, for b € {0, 1}, the commitment com:li) isa

vector commitment to (ctgb), el ct,(lb)) with opening aéi)i. This check follows by correctness of the vector

commitment scheme.

3. Consistent choice of ciphertexts: By construction of Hash, for b € {0, 1}, we have that depending on

the value of x;, either ol.(b) = ct§520 or vl.(b) = ctgb), and the check passes.

4. Validity of ciphertext at target index: By construction of Hash, vl.(*b) = ctié’,)o if x; =0and v

if x;+ = 1. As such, this check passes.

(B) _ t(®)

i*

38

« Non-leaf nodes: Suppose i € [n+ 1,2n — 1]. Then, w; = (rl-L, Tik). Consider each of the conditions:

1. Opening to ciphertext: This follows by the same reason as above.

2. Opening to child ciphertexts: This also follows by construction of com; (namely, com; is a vector

6§b) 5 () (b)

commitment to (yeees 2n71) with openings 01 5509, 1)

3. Correctness of evaluation: By construction of Hash, for all non-leaf nodes i € [n+ 1,2n — 1], it holds
that vi(b) — HE.Add(pkb, vl.(Lb), vl.(kb)), and the checks passes (since HE.Add is deterministic).
(b) _ (b)

root = Uy 1s SO this condition is trivially satisfied.

4. Validity of root: The Hash algorithm defines ct

Since Cj+ x,. (i, w;) = 1 for all i € [2n — 1], correctness follows by completeness of IIj, , ;.

Digest correctness. This follows by an analogous argument as that used to argue opening correctness, with the
one difference being the circuit C, computes the the index relation

b b b
R [crscom, {pkb, comr(]k),comb, ctier)o, Ctﬁogt}be{o,l}’ 1, J_] .
In other words, C, (as defined in Hash and in ValidateDigest) does not define a target index i* or value b € {0, 1},
and thus checks a strict subset of the conditions as C;« x,. defined in VerOpen. Finally, the witness (wy, ..., wa,_1) is

defined in an identical manner as before, so all of the required conditions checked by C, are satisfied. O
Theorem 5.4 (Succinctness). IfIIyg is compact and Icom, Iparg are succinct, then Construction 5.2 is succinct.

Proof. Take any A, n € N and any (hk, vk, td) in the support of Setup(1%, 1%, @). Take any input x € {0,1}" and index
i € [n], and let dig «— Hash(hk, x), 7proveopen < ProveOpen(hk, x, i). Parse
b b b) (b b
hk = (crsCOm, CI'SBARG> {pkb, ctﬁer)o, cti), ct,g), O'ng’)l, .. .,o}sk,)n}be{o’l})

(0)

0 1
vk = (crscoms VKBARG: PKgs PKys Ctiogos Ctiomos com,

td = (sko, sky)
dig = (ct(o) ct

root> ~ “root>

comf‘}())

comyg, comy, ﬂHash)

By compactness of ITyg, the lengths of the public keys pk,, pk; as well as the ciphertexts ctifr)o, ctl@ foralli € [n] and

b € {0,1} are bounded by poly(A + log n). By succinctness of Ilcom, it holds that crscom, comr(]?(), comr(]}(), comy and
com; all have length poly(A + log n). Next, let s be a bound on the size of the circuits computing the relation in Fig. 2
The relation in Fig. 2 requires a constant number of opening of ciphertext checks, each of which can be implemented
by a circuit of size poly(A + log n). Similarly, the correctness of homomorphic evaluation check and the constant
number of ciphertext comparisons also require a circuit of size poly(A + log n). Thus, the size s of the circuit in Fig. 2
is bounded by poly (A + log n). By succinctness of IIgarg, it holds that the length of the verification key vkgarg and
the proofs myash and 7proveopen have size poly(A +logn). In total, everything is polynomial in poly(A + log n) and
therefore all of the succinctness requirements (Definition 3.1) are satisfied by Construction 5.2. o

Security. In the subsequent sections, we prove each of the required security properties on Construction 5.2.
Instantiating the underlying batch argument (Fact 2.7), the additively homomorphic encryption (Fact 2.2), and the
vector commitment scheme with existing constructions (Fact 2.4), we obtain the following corollary:

Corollary 5.5 (Zero-Fixing Hash Functions). Assuming any of (1) the plain LWE assumption, (2) the k-Lin assumption
over pairing groups for any constant k, or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a
zero-fixing hash function.

Theorem 1.1 now follows in conjunction with our generic construction (Construction 4.4).

39

5.1 Security Analysis of Construction 5.2

In this section, we prove that Construction 5.2 satisfies the security requirements on a zero-fixing hash function.

5.1.1 Additive Invariants on Ciphertexts and Predicate Propagation

At a high level, the different security properties of the zero-fixing hash function (zero fixing, extractor validity, and
index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext associated
with the root node in our tree of ciphertexts (i.e., the hash digest). The analysis of each of these properties follow
a similar strategy where we first establish that a certain predicate holds for the ciphertexts in the leaves (i.e., the
honestly-generated ciphertexts in the hash key). Then, we appeal to the security of the BARG to “propagate” the
invariants to the root ciphertext. In this section, we describe a general abstraction for this predicate-propagation
strategy that will help unify the analysis of the different security requirements. This construction exploits the fact
that the ciphertext tree is perfectly balanced and has depth log n (where n is the input length); as such, we can rely
on a similar type of inductive analysis as that in [BBK"23] for arguing soundness of a monotone policy BARG for
log-depth predicates. We start by formally defining the type of invariants we consider in our security analysis.

Definition 5.6 (Tree-Based Additive Invariant on Ciphertexts). Let n be a power of two and let ITjjz = (Gen, Enc,
Dec, Add) be a homomorphic encryption scheme. We say that an efficiently-computable predicate P: {0,1}* — {0, 1}
is a tree-based additive invariant for Iy if for all A, n € N, all indices i* € [n] U{L}, all key-pairs (sko, pky), (ski, pk;)
in the support of Gen(1%,1%), all indices j, ji, jx € [2n — 1] where j, and j; are the children of j according to the
indexing scheme in Definition 5.1, and all ciphertexts (ct,EO), ctEl)), (ct,&o), ctgl)) where

P(i*, et etV sksk’, ji) =1 and P(i*,ctl”, et sk sk, i) = 1,

it holds that
P(i*, ctoum, Ctoyms sk, sk’, j) = 1,

sum?

where ct!?) = Add (pko» ct®, ct,go)) and ct!), = Add (pky, D, ct,gl)). This implies that if P holds for the two children
of a node, then it also holds for the parent node.

Predicate propagation experiment. We now define the general predicate propagation experiment we use in the
analysis of Construction 5.2. This is a general experiment specification that captures the structure of the security
definitions for a zero-fixing hash function.

Definition 5.7 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 5.2 is
parameterized by the following two components:

« A tree-based additive invariant P (Definition 5.6) for the homomorphic encryption scheme ITj.

« An efficiently-computable “challenge-derivation” function DeriveChal(S, i) that takes as input a set S C [n]
and an index i € [n] and outputs two sets Sy, S; € [n] and an index idx that is either a pair (i*,y*) or L. In the
predicate propagation experiment, the sets Sp and S; will determine the distribution of the ciphertexts in the
common reference string. The index idx will determine the verification check. Each of the security properties
(i.e., zero fixing, extractor validity, and index hiding with extracted guess) will induce a different choice of
DeriveChal (to be specified in their respective proofs).

We now define the predicate propagation experiment Expt[P, DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 14, algorithm A outputs the input length 1", a set S C [n], and an index i* € §
(or a special symbol L).

2. The challenger computes (Sp, S, idx) « DeriveChal(S, i*).

3. The challenger now samples the following quantities as in Setup:

40

« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk,) « HE.Gen(1%4,17).
« Sample crscom «— Com.Setup(l’l, le(hn) op _ 1).

« Sample (crsparc, Vkarg) < Gen’ (1%, 1277115, 1%), where s is a bound on the size of the circuit computing
the index relation from Fig. 2.

« For each b € {0,1}, sample ctﬁﬁ’,)o < HE.Enc(pk,,0). Then, for each i € [n] and b € {0,1},if i € S,
sample ctgb) < HE.Enc(pk,, 1); otherwise, if i ¢ Sp, sample ctgb) « HE.Enc(pk,, 0).

« For each b € {0, 1}, let (com}(ﬁ), aéﬁ)l, e, O'}Et)n) — Com.Commit(crscom, (ctib), e ctﬁlb)))

4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

b b b b b
hk = (crscOm,crsBARG, {pkb, ctier)o, cti), . ..,ctf,)’Gr(nk,)l’ .. .,aék’)n}be{o,l})

vk = (crscom, VkparG, pkg, pk, tl et comlg?(), comﬁ}())

The challenger gives (hk, vk) to A.

©

root> ~ “root?

5. Algorithm A outputs a digest dig = (ct comyg, comy, 7gig) and a proof .

6. The output of the experiment is 1 if

Verify’ (vkparg, Cidxs 21 — 1, 1) =1 and P(i*,ct(o) ct'

root’> ~ “root?

sko, ski, 2n — 1) = 0.

Otherwise, the output is 0. Here, the circuit Cj4x computes the relation from Fig. 2:

(b) t® @

« If idx = (i,y), then Cjgx computes the relation R[crsc(,m, {pkb, comy, ', €OMp, Ctzeros Clioot 4 (0.1 i, y] as

in VerOpen.

(b) t® o ®

« Ifidx = L, then Cigx computes the relation R[crscom, {pkb, com,,’, comp, Ctzero, root}be{o,l}’ 41, J_] as in

ValidateDigest.

In words, the adversary “wins” the game if it produces a proof 7 that verifies, but the digest does not satisfy the
tree-based additive invariant P.

Proof strategy. As we show in the subsequent sections (Sections 5.1.2 to 5.1.5), most of the security properties for
the zero-fixing hash function (zero fixing, extractor validity, and index hiding with extracted guess) are a special case
of the general predicate propagation experiment (with a suitable choice of the tree-based additive invariant P and the
challenge-derivation function DeriveChal). Our goal below is to show that if specific “pre-conditions” hold, then for
all efficient adversaries A, the probability that Expt[P, DeriveChal] outputs 1 is negligible. In turn, this will imply
the desired security properties on the zero-fixing hash function.

Predicate propagation hybrid experiment. The proof 7 the adversary outputs is a BARG on 2n — 1 statements.
We can associate these 2n — 1 statements with the nodes of a complete binary tree with n leaves. For each j € [2n—1],
we now define an intermediate predicate propagation experiment Expt; [P, DeriveChal] where instead of checking

the tree-based additive invariant holds for the values ctiggt, ctf;gt from the digest dig, the challenger instead checks
the invariant for the value associated with node j in the tree obtained by extracting a witness from the BARG. In the
subsequent analysis (Theorem 5.9), we show (inductively) that if the invariant holds for the values extracted from the
children of a node j, then it also holds for the values extracted from node j itself. In this way, if the invariant P holds
for all the values associated with the leaves of the tree, then the invariant also holds for the values associated with
the root of the tree. Finally, the relation in Fig. 2 from Construction 5.2 enforces that the adversarially-chosen values
ctfg())t, ctf;c),t are consistent with the values that would be extracted from the root of the tree. This allows us to reason
about properties of the adversarially-chosen values ctfg(),t, ctfsgt.
main predicate propagation theorem (Theorem 5.9).

We define this experiment below and then state the

41

Definition 5.8 (Predicate Propagation Hybrid Experiment). Let j € N be an index. For a tree-based additive
invariant P and a challenge-derivation function DeriveChal, we define the predicate propagation hybrid experiment
Expt; [P, DeriveChal] between a challenger and an adversary A as follows:

1. On input the security parameter 1%, algorithm A outputs the input length 1%, a set S C [n], and an index i* € S.
2. The challenger computes (So, S, idx) « DeriveChal(S, i*).
3. The challenger now samples the following quantities as in Setup:

- Sample (sko, pk,) < HE.Gen(1%,1") and (sk;, pk,) « HE.Gen(1%,1").

« Sample crscom « Com.Setup (14, 1%(Am) 2n — 1),

« Sample (crsgarc, vkpara, tdgarc) < TrapGen’(1%,17771,1%,13, {j}), where s is a bound on the size of the
circuit computing the index relation from Fig. 2.

« For each b € {0, 1}, sample c’[Zero < HE.Enc(pky, 0). Then, for each i € [n] and b € {0,1}, if i € S,
sample ctl@ « HE.Enc(pky, 1); otherwise, if i ¢ Sp, sample ctgh) < HE.Enc(pk,, 0).

« Foreach b € {0,1}, let (comﬁi), O'éi)l, e crlgi)n) «— Com.Commit(crscom, (ct(b) .,ctﬁ,b)))

4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

b b b b b
hk = (crscom, CISBARG, {pkb, ctﬁer)o, ct(). ct() P(]k)l, o ék)rz}be{o,l})
vk = (crscom, Vkgara, kg, pk, ct§220, tiér)o, com:]?(), com](i))

The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct'), ct'V)

root> Clroots COMo, COMy, ﬂdig) and a proof 7.

6. The challenger computes (zij(.o) 5 O'](.O}, 0;1),\2/]) «— Extract’ (tdgagrc, 7, J).

7. The output of the experiment is 1 if the following conditions hold:
. Verify'(kaAR(;,CidX, 2n—1,71) = 1.
. Cldx(] (U(O)a A‘(-l)> 0—](0) ‘(1) ~])) =1

'P(*A(O,A- Sko,Sk],)—0

Otherwise, the output is 0. As in Definition 5.7, the circuit Ci4x computes the relation from Fig. 2:

« Ifidx = (i, y), then Cigx computes the relation R [crscom, {pkb, com}(]hk), comyp, ctifr)o, Ct£o<3t befoay b y].
« Ifidx = L, then Cigx computes the relation R [crscom, {pkb, comﬁi), comy, C tigr)o, root}be{o 1y 1, L].

Otherwise, the output is 0.

Theorem 5.9 (Predicate Propagation). Let P be a tree-based additive invariant and let DeriveChal be a challenge-
derivation function. Suppose Ilcom satisfies computational binding and Ilgarc satisfies set hiding with extraction, set
hiding, and somewhere extractability. Let A be any efficient adversary for the predicate propagation experiment. Suppose
that for every index j € [n] (where n = n(2) is the input length chosen by A), there exists a negligible function ¢;(-)
such that

Pr[Expt;[P, DeriveChal](A) = 1] = ¢;(4).

Then there exists a negligible function negl(-) such that

Pr[Expt[P, DeriveChal](A) = 1] = negl(1).

42

Proof. To simplify notation, we write Expt := Expt[P, DeriveChal] and Expt; := Expt; [P, DeriveChal] in the following
proof. Fix an adversary A and let n be the input length chosen by A. We proceed by induction on the index j € [2n—1].
In the following, we will view the index j as an index of a node in a (complete) binary tree with n leaves (indexed
according to Definition 5.1). As such, we can refer to the “height” of an index j. Then, we show the following lemma:

Lemma 5.10. Suppose the conditions of Theorem 5.9 hold. Take any index j € [2n — 1] and let h be the height of node j
(where the leaf nodes have height 0). Then, there exists a negligible function ;(A) such that
Pr[Expt;(A) =1] = 2" - £;().

Proof. Suppose the conditions of Theorem 5.9 hold. We prove the lemma by induction on the height h of the index
je[2n-1].

Base case. For the indices j € [n] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.

Inductive step. Suppose the inductive hypothesis holds for every index j* € [2n — 1] of height h. Let j € [2n — 1]
be an index with height A + 1. Let ji, jz € [2n — 1] be the indices of the left and right child of node j (as defined in
Definition 5.1). By construction, j; and j, have height h. The inductive hypothesis now asserts that for j* € {ji, jx},

Pr[Expt;. (A) =1] = 2" - ;- (D), (5.4)
for some negligible function &;+(1). We now define an intermediate experiment Expt for each node j of height h > 0:

1. On input the security parameter 1%, algorithm A outputs the input length 1%, a set S C [n], and an index i* € S.
2. The challenger computes (S, S, idx) < DeriveChal(S, i*).
3. The challenger now samples the following quantities as in Setup:

« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk;) < HE.Gen(1%, 17).

« Sample crscom — Com.Setup(l", 1t (An) 2pn — 1),

« Sample (crsgarc, vksarc, tdparc) < TrapGen’ (14, 1277115, 1% {}, j., ju}), where s is a bound on the size
of the circuit computing the index relation from Fig. 2.

« For each b € {0,1}, sample ct§620 « HE.Enc(pk,,0). Then, for each i € [n] and b € {0,1},if i € S,
sample ctﬁb) < HE.Enc(pk,, 1); otherwise, if i ¢ Sp, sample ctgb) < HE.Enc(pk,, 0).

« Foreach b € {0,1}, let (comﬁi), éﬁ)l,) ..,O'}Eﬁ)n) — Com.Commit(crscom, (ctib),) ..,ctflb)))

4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

b b b) (b b
hk = (crscOm,crsBARg, {pkb, ctier)o, ct<).. ct() ék)l,...,aék?n}be{o’l})

vk = (crscom, VkparG, pkgs Pk, ctigr)o, ctiér)o, comlg?(), com}(i))

The challenger gives (hk, vk) to A.
t© W

root> Clroot: €OMo, COMy, ”dig) and a pI'OOf TT.

5. Algorithm A outputs a digest dig = (c

6. The challenger computes (6 (.0), Aj(l), (,0), 0;1)

,wj) « Extract’ (tdgarc, 7. j)-
7. The output of the experiment is 1 if the following conditions hold:

« Verify’ (vkgara, Cidx, 2n — 1,) = 1.
. Cldx(] (0(0), (1) (0) (1) ~])) -1

43

. P(* A(O), N Sko,Sk],) =0.
Otherwise, the output is 0.

In our analysis below, we define an additional set of events in an execution of Expt; with A. First, define the following
two quantities:

. ((0) A(l) Q) (1)

Ju]L]L ’ W]L) «— Extract’ (tdBARG>7T]L)

C (69,60, 60 6

i 50,0050, 0; 0 W),)« Extract’(tdparc, 7, ji)-

Now, define the following events:

. E\(/i)”fy This is the event that Verify’ (vkgara, Cidx, 2n — 1,) = 1.

. E;j;* for each j* € {J, ji, jr}: This is the event where P(v(,?), 0 ,sko,skl,) =1.

. E\(/thCOm] for each j* € {ji, jr}: This is the event

Com.Verify (crscom, comg, j*, 23(9), cr(f))

x A1) (1)
J)

=1 = Com.Verify(crscom, comy, j*, 9. 0.

. Eg\)T for each j* € {J, ji, ju}: This is the event Cigx (j*, (9](0) 6](3),6]@), 0';.3),»1)1-*)) =1.
We now relate the probability that Expt ;(A) outputs 1 to the probability that Expt; (A) and Expt; (A) outputs 1. To
do so, we first program the BARG to be extracting on the set {J, j,, jr}. We then argue via somewhere extractability
of the BARG and computational binding of the commitment scheme that if the values associated with the nodes j,
and ji satisfy the predicate P and the proof verifies, then the value associated with j must also satisfy the predicate P.
In this case, the output of Expt;(A) is guaranteed to be 0.

Claim 5.11. IfTIgarG satisfies set hiding with extraction, then there exists a negligible function negl(-) such that for all
j* € {J, jL, jR}, it hOldS that

Pr[Expt;.(A) =1] - Pr [Ei/Je?'lfy A Eg\)T] A ﬁEI(,Jj)]‘ = negl(A).

Proof. Take any j* € {}, ji, jr} and suppose

Pr[Expt;. (A) = 1] = Pr [E{) A By . A ﬁEI‘;J)]‘ > £(A),

for some non-negligible ¢. Importantly, note that the events E\(/i : fy EEQT,“ and E(]) are defined for Expt’ and not

Expt;.. We use A to construct an adversary B for the set hiding with extraction game of TIgarG:

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs 12”71, 1%, 13, the challenge set J = {j, ji, jz}, and the challenge index j* € J to the chal-
lenger, where s is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsgarc, VKBARG)-

3. Algorithm B computes (Sy, S1, idx) « DeriveChal(S, i*). It then samples the following components:

« Sample (sko, pk,) «— HE.Gen(1%,1") and (skj, pk,) < HE.Gen(14,1").
« Sample crscom < Com. Setup(l’1 1) 2pn — 1),

« For each b € {0,1}, sample ctzem < HE.Enc(pk,,0). Then, for each i € [n] and b € {0,1},if i € S,
sample ctg) HE.Enc(pk,, 1); otherwise, if i ¢ S, sample ctgb) « HE.Enc(pk,, 0).

44

« Foreach b € {0,1}, let (com::;), O":ﬁ))l, .. G}Ei)n) — Com.Commit(crsCom, (ctgb), e ct,(,b)))

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk = (CrSCom, CrSBARGS {pkb, tier)o’ t<) t() I'(]k)l’ e O-P(lk,)n}be{o,l})
vk = (crscom, VkparG, pkgs Pk, ctier)o, ctiér)o, comlg?(), com}(i))

Algorithm 8 gives (hk, vk) to A.
RONPNEY

root> ~ “root>

5. Algorithm A outputs a digest dig = (c comyg, comy, 7gig) and a proof .

6. Let Cigx be the circuit as defined in Definition 5.7. Algorithm 8 first checks
Verify’ (vkgara, Cidx, 2n — 1,) = 1.

If the check fails, algorithm B aborts with output L. Otherwise, algorithm B sends the circuit Cj4y, the instance
number 2n — 1, and the proof 7 to the challenger. The challenger replies with a string which 8 parses as
(61,6, 6\, 0! 0<3), W),

7. Algorithm B outputs 1 if

Ciax (j°, (81,6, 0\ 01D je)) =1 and P(i",61, 8, sko, sky, j) = 0.

Otherwise, algorithm 8 outputs 0.

Let (crsgarc, VkparG, tdparc) be the parameters sampled by the challenger in the set hiding with extraction game.
In the game, after B outputs (Cigx, 2n — 1,), the challenger checks Verify’ (vkgarg, Cidx, 2n — 1,) = 1. If the check
(0) 51 () (1)

passes, it replies with (v 050,050, 0 S W)) «— Extract’ (tdparc, 77, j*). We now consider the two possibilities:

+ Suppose the challenger responds according to the specification of ExptIHE 4(A,0). In this case, the chal-
lenger samples (crsparc, Vksarc, tdgarc) ¢« TrapGen’(14,12771 1513, {j, j., jx}). Thus, algorithm B per-
fectly simulates for A an execution of Expt. We claim that algorithm B outputs 1 if and only if the event

Ei,é)”fy Eg\)T] ﬂE;{;* occurs. This event corresponds to the following set of conditions:

Verify’ (vkgarc, Cidx, 2n—1, 7) = 1and Cigx (j, (ﬁ(i)), A(,}),](»?),GJ(-*I),W]-*)) = 1andP(i*,zﬁj(.?),zﬁj(.,}),sko,skl,j*) =0.

(50](),](0) 0(3), j+) < Extract’ (tdgarc, 7, j*). This is the same set of conditions that algorithm B

checks, so algorithm B outputs 1 with probability Pr [Ei/e i ity Eg\)T] —|El(Dj J)] in this case.

where

+ Suppose the challenger responds according to the specification of ExptIHE 4 (4, 1). In this case, the challenger
samples (crsgarc, Vksarc, tdparg) < TrapGen’ (14, 12%71, 15,13, {j*}). Thus, algorithm B simulates for A an
execution of Expt;.. We claim that algorithm 8 outputs 1 if and only if Expt;.(A) outputs 1. The latter
corresponds to the following conditions being satisfied:

Verify’ (vksara, Cigx, 2n—1, 1) = 1 and Cigx (j, (v(f), (3),01(.?), 1(3),\41])) = land P(i* v(?), i). sko, ski, j) =o.

where (](0), A](*l), aj(?), GJ(.*I), wj+) « Extract’ (tdparc, 77, j*). Once again, this is the same set of conditions that

B checks. Thus, in this case algorithm 8 outputs 1 with probability Pr[Expt;.(A) = 1].

We conclude that the distinguishing advantage of B is precisely

E’

}Pr[Exptj*(.?{) =1]-Pr [Ei,glfy A E&)T] A E(J) I|=

which completes the proof. O

45

Claim 5.12. IfIlgarc is somewhere extractable then there exists a negligible function negl(-) such that for all j* €

{J, ju, Jr}, it holds that Pr [Ef/;ify A ﬂng‘\)T’j*] = negl(1).

Proof. Take any j* € {j, j., ja} and suppose Pr [E\(/i)rify A _‘ng)Tj*] > ¢(A) for some non-negligible ¢. We use A to

construct an adversary 8 that breaks somewhere extractability of IIgarc:

1. On input the security parameter 14, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs 12771, 1%, 13, the challenge set J = {}, ji, jx}, and the challenge index j* € J to the challenger,
where s is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsgarc, VKsarG)-

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk,) « HE.Gen(1%4,17).

« Sample crscom «— Com.Setup(l’l, () op _ 1).

« For each b € {0, 1}, sample ct§520 < HE.Enc(pk,,0). Then, for each i € [n] and b € {0,1}, if i € S,
sample ctfb) < HE.Enc(pk,, 1); otherwise, if i ¢ Sp, sample ctfb) < HE.Enc(pk,, 0).

« Foreach b € {0, 1}, let (comai), O'F(]ﬁ)l, e Géﬁ)n) «— Com.Commit(crscom, (ctgb), e ctf,b)))

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk = (crscom, CISBARG» {pkb, ctier)o, ctg), e, ct,(l), 0'}(11(?1, e O-fsk,)n}be{o,l})

0 1 0 1
vk = (crscom, Vkgara, kg, Pk, ot) comﬁk), comf]k))

Algorithm 8 gives (hk, vk) to A.

@ 4

root> ~ “root?

5. Algorithm A outputs a digest dig = (comyg, comy, 7gig) and a proof .

6. Let Cigx be the circuit as defined in Definition 5.7. Algorithm 8 outputs the circuit Cigx, the instance number
2n — 1, and the proof =.
By construction, algorithm B perfectly simulates an execution of Expt;. Thus, with probability at least ¢, the digest

Y) but not EY) ... This means

dig and proof 7 output by A satisfies E,;,,. fy SAT]

Verify’(kaARG,Cidx, 2n —1, 7[) =1 and Cidx (]*, (23](9), 251(3), U;?), O'j(j), \N/Vf)) =0.

This means algorithm 8B successfully breaks somewhere extractability of IIgarg and the claim holds. m]

Claim 5.13. Suppose the conditions in Claims 5.11 and 5.12 hold. Then, there exists a negligible function negl(-) such
that
Pr [Expt)(A) = 1 A (<EY) v -EY) v -EY) V=B)] < 2" g5(2) + negl(2),

ValidCom, j, ValidCom, j
where £; (1) = max(ej, (1), ¢;, (1)).

Proof. By Claim 5.11 there exists a negligible function negl, (-) such that for all j* € {j, jz}, it holds that:

Pr[Expt;. (A) = 1] - Pr [E\(/e'>rify AES - A ﬂEI(,fJ’]| < negl,(1). (5.5)

By Claim 5.12 there exists a negligible function negl,(-) such that for all j* € {ji, jx} it holds that

.)
Pr[Ey)e A —Egh: .| < negl, (1), (5.6)

46

By definition, if Expt}. (A) =1, then event EY) also occurs. Thus, for all events E, it holds that

Verify
Pr[Expt}(A) =1 AE] < Pr [E\%)ﬁfy AE]. (5.7)
Similarly, by construction of the circuit Cigx, the event _'E\(/i :i dCom,j* implies event ﬁEéf;\)T o Thus, for any event E, it
holds that 0 0
J J
Pr [ﬁEValidCom,j* A E] < Pr [_‘ESAT,j* A E] (5'8)

Take any j* € {ji, jr}. Since the height of j* is h, the inductive hypothesis applies and Eq. (5.4) holds. We first show
that

Pr [Expt}(A) = 1 A —EY).| < 2" £):(A) + negl, (1) + negl,(2). (5.9)
This follows by the following sequence of calculations:
Pr [Expt)(A) = 1 A ~E)).] < Pr[E() A =E). by Eq. (5.7)
_ () () () () () ()
=Pr [Evjerify A ESi\T,j* A _'EP],j*] +Pr [EV{srify A _'ESi\T,j* A _'EPj,j*
< Pr[E() AES . A —ER).] +negly(2) by Eq. (5.6)
< Pr[Expt;. (A) = 1] + negl, (1) + negl, (1) by Eq. (5.5)
< 2" g () + negl, (1) + negl, (1) by Eq. (5.4).
Next, we have
Pr [Expt’;(A) = 1 A ~Evaiidcom,j+ | < Pr [E\(/{;)rify A =Evalidcom,j*] by Eq. (5.7)
< Pr[E) A ~Esar;] by Eq. (5.8)
< negl, (1) by Eq. (5.6).

Combined with Eq. (5.9) and applying a union bound, we have
Pr [Expt}(A) = 1A (SE) ycom s ¥ 7ES L V BV icoms V"B)] < 2"+ (i, (1) + &, (1) + 5(D)
<2 g (1) +8(R),
where 6(A) = 2negl, (1) + 4negl, (1) = negl(4) and ¢;(1) = max(e;, (1), ¢, (1)). O

Claim 5.14. IfP is a tree-based additive invariant and llcon, is computationally binding, then there exists a negligible
function negl(-) such that

_ () () () ()
Pr [Expt/(A) = 1A Evatiacom,i. ™ EP, A Evatigcom. EP’].R] < negl(2).
Proof. Suppose
’ _ () () () ()
Pr [Expt}(A) = 1A E L ycoms AES) A Eliacoms A Epy] 2 €(A),

for some non-negligible e. We use A to construct an adversary 8 for the binding game for ¢, as follows:

1. On input the security parameter 1, algorithm 8 runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs the block length 1%(4") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:

« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk;) « HE.Gen(1%4,17).

47

+ Sample (CFSBARG,VkBARG,tdBARG) — TrapGen’ (1%, 12771, 15,13, {}, ji, ju})-
« For each b € {0,1}, sample ctZerO < HE.Enc(pk,,0). Then, for each i € [n] and b € {0,1},if i € S,
sample ctl() HE.Enc(pky, 1); otherwise, if i ¢ S, sample ctfb) < HE.Enc(pk,, 0).

« Foreach b € {0, 1}, let (comﬁi), O'F(]ﬁ)l, e crlgi)n) «— Com.Commit(crscom, (ctgb), e ctﬁ,b)))

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk (CrSCOm, CrsBARG> {pkb’ Ctiel‘)o’ ()> C 51)’ O-f(lk,)l’ LI) l’(lk)n}bE{O 1})
vk = (crscom, Vkpara, pkgs pk, ct!® ot comlg?(), comﬁ}())

Algorithm 8B gives (hk, vk) to A.
5. Algorithm A outputs a digest dig = (ct(o) ct'V)

root> Clroot> COMo, COMy, ﬂdig) and a proof 7.

6. Algorithm B computes the following:

. (A(.O) A(.l) (.O) (.1) Y) «— Extract’ (tdgarg, 7, Jj).

- j(LO) AJ(LI) j(LO) U;'Ll) wj,) « Extract’ (tdgarc, 7, ji)-
. ((0) A(l) (0) (1)

Jr]R]R R

ij) «— Extract’ (tdgagrc, 7T, jr).

5O,50, 60, 60) and oy = (69,50, 60,61V).

JL’]L’O. i,R jR’ JR? 7R

In addition, it parses w; = (Wj, Wjg) and w;, = (100y

7. Algorithm 8B checks if there exists b € {0,1} and d € {1, R} such that 6](.:) # zij(.};) and

Com.Verify (crscom, comp, jg, o](!"1)’ (b)) 1 and Com.Verify(crscom, comp, jg, (b)’](:)) =1.
If so, it outputs the commitment com,, the index j; € [2n — 1], and the value-opening pairs (9 (Z), (.b)) and

b b
(](d) ())

By construction, algorithm 8 perfectly simulates an execution of Expt; for adversary A. By assumption, with
probability at least ¢, algorithm A will output a digest dig and a proof 7 such that the following conditions hold:

Otherwise, algorithm B aborts with output L.

. Expt;(ﬂ) = 1: This means Verify’ (vkgarc, Ciax, 2n — 1, 1) = 1, Cidx(J, (5;0),5;1),0;0),O'J(.l),ﬁ/j)) = 1, and
P8}, sko, sky, j) = 0.

‘ Ei/ja)hdcomj for j* € {ji, ju}: This means
Com'verify(chCOm’ comy, j*, U(S)’o}(‘?)) =1=Com. Verlfy(chCOm,Coml,J 0(1) }(3))
: E(]) for j* € {ji, ja}: This means P(50 Sko,skl, =1

We consider two possibilities:
« Suppose for all b € {0, 1}, we have 6 b) = Aj(h) and 6(b) = A() . Since Cy+ y (j, (0(0), A(l) crj(o) otV ,wj)) = 1, this
means that v(b) HE.Add (pk,, A(b) ot)) forall b € {0, 1}. Combmed w1th the thlrd condltlon this means

P(i*, 13<0) sko,skl,]L) =P(i*, A(O) ;i sko,skl,]L) =1

J.L?] L’
P(i* 231(1)]R,sko,skl,]R) =P(i", A(O) sko,skl,]R) =1.

Since P is a tree-based additive invariant, this means that

P(i*,6\", 5", sko, ski, j) = 1.

sko, skq,) =0, so this case does not occur.

However, this contradicts the condition that P(* AJ(O)

48

« Suppose there exists b € {0,1} and d € {1, R} where 15](.:) # 13](2) From Fig. 2, since

. A(0) A(1 0 1) ~
Croy (1 6,0, 61" 0V))) =1,

(b) (b)

this means that Com.Verify(crscOm, comy, ja, z“)j 4 05d) = 1. By the second condition, we also have

.) (b
Com.Verify (crscom, comp, jg, vj(.d),cr](.d)) =1.

In this case, algorithm 8 outputs the commitment comy, the index j;, and the value-opening pairs (6;?, gj(f;))

and (zij(.j), 0'](.:)). This is a pair of valid openings for comy, so algorithm 8B wins the binding game.
We conclude that algorithm B succeeds with the same advantage ¢ and the claim follows. O

Claim 5.15. Suppose the conditions of Claims 5.13 and 5.14 hold. Then there exists a negligible function negl(-) such that
Pr[Expt}(A) = 1] < 2M1 g5 () + negl(Q),
where ¢;(A) = max(e;, (1), 5, (1)).

Proof. By the law of total probability, we have

Pr[Expt)(A) = 1] < Pr [Expt),(A) = 1 AEY), acom, El(jj) NEY) aComs, Ej,{]?“]+
’ _ () ()) ()
Pr [Expt;(A) =1 A (_'EValidCom,jL v =Bpj, vV 2 Eyiacom,j, v _'EP,jR)]'

By Claims 5.13 and 5.14, there exist negligible functions negl, () and negl,(-) such that:

_ () () () () h+1
Pr [Expt}(ﬂ) =1A (_|EVJaIidCom,jL % —|EP],jL % _|EV]a]idCom,jR Y% _'EPJ,jR)] < 2™ £;(A) + negly (1)
_ () () () ()
Pr [Expt.,l(ﬂ) =1A EVaIidCom,j,_ A EP,jL A EVaIidCom,jR A EP,jR] s neglz (/1)
where ¢;(4) = max(¢j, (1), €, (4)). The claim follows. o

Completing the proof of Lemma 5.10. To complete the proof of the inductive step (for Lemma 5.10), we first
appeal to Claim 5.15 to conclude that there exists negligible function negl, (-) such that

Pr[Expt;(A) =1] < 2" - £;(2) + negl, (1),

where ¢;(4) = max(ej, (1), ¢j, (A)). From the inductive hypothesis, ¢; (1) and ¢;, (1) are both negligible functions. By
definition of Expt}, we have that

PrExpt)(A) = 1] = Pr [EY)\ AEYL A -EY)].

By Claim 5.11, there exists a negligible function negl,(-) such that

Pr[Expt; (A) = 1] - Pr[Expt)(A) = 1]‘ < negl,(1).

We conclude that
Pr[Expt;(A) =1] < ah+t. €j(A) + negl; (1) + negl, ().

Setting ¢/(4) = max (¢;(4), (negl, (1) + negl, (1))/2"*1), we have that Pr[Expt;(A) =1] < ohtl £/(1), where €}(1)
is a negligible function. Lemma 5.10 now follows by induction on the height A. O

49

Completing the proof of Theorem 5.9. We now use Lemma 5.10 to complete the proof of Theorem 5.9. Suppose
the conditions of Theorem 5.9 hold. Noting that the index 2n — 1 has height A = log n in a complete binary tree with n
leaves, we appeal to Lemma 5.10 and conclude that there exists a negligible function negl(-) such that

Pr[Expt,,_; (A) = 1] < n-negl(A). (5.10)
To complete the proof, we define a sequence of hybrid experiments:
+ Hyb,: This is the experiment Expt,,_; [P, DeriveChal] with adversary A.
+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if the following properties hold:
— Verify’ (vkgarc, Cidx, 2n — 1,71) = 1;
~ Ciaxl(2n—1, (852 880 ol L oft) Wsn1)) = 1; and

2n-1°"2n-1°"2n-1°> " 2n-1’
(1)

root’

- P(i, ct?

roups Ctioo s sko, sky, 2n = 1) = 1.

+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if the following properties hold:

- Verify'(kaAR(;, Cidx; 2n — 1,7) = 1; and
- P(i*,ct(o) ct'™V) sko, sky, 21 — 1) =1

root’> = “root’
In particular, the challenger no longer checks the value of Ci4y. Note that in this experiment, the challenger’s
behavior no longer depends on the BARG trapdoor tdgarc.

+ Hyb;: Same as Hyb,, except when sampling the BARG parameters at the beginning of the experiment, the
challenger now samples (crsparc, VKBaRG) Gen’(l’l, 12771 15,1%), This corresponds to the experiment
Expt[P, DeriveChal] with adversary A.

For an adversary A, we write Hyb,(A) = 1 to denote the output of Hyb; with adversary A. We now analyze each
pair of adjacent experiments.

Claim 5.16. It holds that Pr[Hyb, (A) = 1] = Pr[Hyb,(A) = 1].
Proof. These experiments are identical. Specifically, by definition of Ci4x (and specifically, the relation in Fig. 2), if

Ciax(2n — 1, (522)_1 ﬁg}}_l, 62(2)_1, 0'2(,1!)_1, Wan-1)) = 1, then 5% = ct®) for b € {0, 1}. This means that

2n-1 root

(i, 6,80 | sko,sky, 2n — 1) = P(i",ct® ct)

1091 V1> root® Ctroot? SkOa Skl, 2n — 1).

Thus, the output of Hyb,(A) is identical to that of Hyb, (A). O
Claim 5.17. IfTlgarc is somewhere extractable, then there exists a negligible function negl(-) such that
|Pr[Hyb2(ﬂ) =1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Suppose Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1] > £(A), for some non-negligible ¢. Since the only difference
between Hyb, and Hyb, is the conditions the challenger checks at the very end of the experiment, this means that
with probability at least ¢, the adversary in Hyb; will output a digest dig and a proof 7 such that the following
conditions hold:

. Verify'(kaARG, Cidx> 2n—1, 77.') =1.

. P(i*,ct(o) ctW

root’> ~ “root?

sko, sky, 2n — 1) =1.

» Ciax(2n -1, (652)—1’ 65113—1’ 02(2)—1’ Gz(rlz)—l’ Wan-1)) = 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary 8 that
breaks somewhere extractability of IIgarg (similar to the proof of Claim 5.12):

50

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Let j = 2n—1and j,, jg be the indices of the input wires that determine the value of the output wire j. Algorithm
B outputs 12771 15,13, the challenge set J = {j, j, j.}, and the challenge index j = 2n — 1 to the challenger.
Here, s is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsgarc, VKBARG)-

3. Algorithm 8B computes (S, Sy, idx) < DeriveChal(S, i*). It then samples the following components:
« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk;) « HE.Gen(1%4,17).
« Sample crscom < Com. Setup(l’1 1) 2pn — 7).

« For each b € {0, 1}, sample ctZero < HE.Enc(pk,, 0). Then, for each i € [n] and b € {0,1}, if i € Sp,
sample ctg) HE.Enc(pk,, 1); otherwise, if i ¢ Sp, sample ctgb) < HE.Enc(pk,, 0).

« Foreach b € {0,1}, let (com}(f;(), éi)l,) ..,a}(’i)) « Com.Commit(crscom, (ct(b) ...,ctflb)))

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

(b b b b b
hk (CrSCom, CI'SBARG> {pkb’ Ctzer)o’ Ct<) Ct() f(lk)l’ R o-l’(lk,)n}bE{O,l})

vk = (crscom, VkparG, pkgs pk, ctigr)o, tiér)o, comlg?(), com}(i))

Algorithm 8 gives (hk, vk) to A.
t© W

root> ~ “root?

5. Algorithm A outputs a digest dig = (c comg, comy, 7gig) and a proof 7.

6. Let Cigx be the circuit as defined in Definition 5.7. Algorithm 8 outputs the circuit Cigx, the instance number
2n — 1, and the proof x.

By definition, the challenger samples (crsgarc, vksara, tdparg) < TrapGen’ (14,1271, 15,13, {j, ji, j}). This means
algorithm 8B perfectly simulates an execution of Hyb,. Thus, with probability at least ¢, the digest dig and proof =
output by A satisfies

Verify’ (vkgara, Cigx, 2n — 1,7) =1 and Cigx(2n — 1, (vég) " 13;,11) " 02(2) " 02(31) s Wan—1)) =0,

where (02(2) 1 zié? o 0'2(3) o O'z(n) b Wan— 1) «— Extract’ (tdparG, 77, 2n — 1). This means algorithm B successfully breaks

somewhere extractability of IIgarg and the claim holds.]

Claim 5.18. IfTIgarc satisfies set hiding then there exists a negligible function negl(-) such that
[Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| = negl(2).

Proof. Suppose |P1r[Hyb3 (A) =1] = Pr[Hyb,(A) = 1]| > ¢£(A) for some non-negligible ¢. We use A to construct an
adversary B that breaks set hiding of IIgarc:

1. On input the security parameter 14, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Let j = 2n—1and j,, jg be the indices of the input wires that determine the value of the output wire j. Algorithm
B outputs 127=1 15 13 and the challenge set J = {J, ji, ja} to the challenger. Here, s is the bound on the size of
the circuit in Fig. 2. The challenger responds with (crsgarc, vkparc)-

3. Algorithm B computes (Sy, ;) « DeriveChal(S, i). It then samples the following components:
« Sample (sko, pk,) < HE.Gen(14,1") and (skj, pk,) « HE.Gen(1%4,17).

« Sample crscom «— Com.Setup(lA, 1fe(An) 2pn — 1),

51

« For each b € {0,1}, sample ct§£20 < HE.Enc(pk,, 0). Then, for each i € [n] and b € {0,1}, if i € Sp,
sample ctgb) <« HE.Enc(pk,, 1); otherwise, if i ¢ Sp, sample ctl?b) « HE.Enc(pk,, 0).

« Foreach b € {0,1}, let (com}(f;(), Géi)l, e a}(]i)n) «— Com.Commit(crscom, (ctib), e ctflb)))

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk = (crsCOm, CI'SBARG» {pkb, ctﬁer)o, cti), e, ctf,), cr[sk’)l, .. "O'ng,)n}be{o,l})

vk = (crscom, VkBarG, ks Pk, ctigr)o, ctiégo, com}(]?(), comf}}())

Algorithm 8 gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct(o) ct't)

root> Ctroots COMo, COMy, ﬂdig) and a proof 7.

6. Let Cj« 1. be the circuit as defined in Definition 5.7. Algorithm 8 outputs 1 if

Verify’ (vkparg, Cidx, 2n — 1, 1) =1 and P(i*, ct'® W

root> ~ “root?

sko, sk, 2n—1) =1
Otherwise, algorithm 8 outputs 0.

We now consider the two possibilities:

« Suppose the challenger responds according to the specification of ExptSH 4 (4, 0). In this case, the challenger
samples (crsgarc, vkparg) < Gen’(14,12%71, 15, 13). In this case, algorithm B perfectly simulates an execution
of Hyb, for A. Moreover, algorithm 8 computes the outputs according to the same specification of Hyb,, so
we conclude that algorithm $ outputs 1 with Pr[Hyb,(A) = 1].

« Suppose the challenger responds according to the specification of ExptSH (4, 1). In this case, the chal-
lenger samples (crsgarc, vksarc, tdarg) < TrapGen’ (14,1277 15,13, {}, ji., jz}). In this case, algorithm B
perfectly simulates an execution of Hyb, for A, and correspondingly, algorithm B outputs 1 with probability
Pr[Hyb,(A) =1].

We conclude that the distinguishing advantage of B is exactly ¢, which concludes the proof. O

Combining Claims 5.16 to 5.18, we conclude that |Pr[Hyb0 (A) =1] = Pr[Hyby(A) = 1]| = negl(4). By construction,
Hyb,(A) = Expt,,_,(A) and Hyb,(A) = Expt(A). From Eq. (5.10), we have that Pr[Expt,,_,(A) = 1] = negl(1)
and Theorem 5.9 follows. O

5.1.2 Set Hiding

In this section, we show that Construction 5.2 satisfies set hiding. This follows immediately from CPA-security of the
underlying encryption scheme. Recall that in Construction 5.2, the only difference between a hash key that binds to
the empty set @ versus the set S is that some of the ciphertexts in the hash key switch from encryptions of 0 (when
binding to the empty set) to an encryption of 1 (when binding to the set S). We formalize this below:

Theorem 5.19 (Set Hiding). IfIIy is CPA-secure, then Construction 5.2 satisfies set hiding.

Proof. Let A be an adversary for the set hiding game. We define a hybrid experiment Hyb for each f§ € {0, 1,2} as
follows:

1. On input 1%, algorithm A outputs the input length 1" and set S C [n].
2. The challenger now samples the following quantities:

« Sample (sko, pk,) < HE.Gen(1%,1") and (skj, pk,) < HE.Gen(1%,1").

« Sample crscom «— Com.Setup(14, 1€A™ 21 — 1), and (crspare, vkparg) < Gen’ (14, 1277115, 13).

52

« For each b € {0, 1}, sample ctifr)o < HE.Enc(pk,, 0).
« Foreachi € [n] and b € {0,1}, if i € Sand b < f, the challenger samples ctsb) < HE.Enc(pky, 1).

Otherwise, if i ¢ S or b > B, it samples ctgb) «— HE.Enc(pk,, 0).
« Foreach b € {0,1}, let (com::;), O'éi)l, e O'}Ei)n) — Com.Commit(crscom, (ctib), e, ct,(lb)))
3. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):
b b b b b
hk = (crsCOm,crsBARG, {pks,) cti) ctd)’Ulsk,)l’ . .,oékfn}be{o’l})

vk = (crScom, VkBARG: PKg: PKy, Ctiano, Ctido, com?, com(!))
Algorithm 8 gives (hk, vk) to A.
4. Algorithm A outputs a bit b” which is the output of the experiment.

Let Hyb(A) be the output of Hybs with adversary A. By construction ExptSH 4 (4,0) = Hyb,(A) and similarly,
ExptSH (A, 1) = Hyb,(A). We now argue that each adjacent pair of hybrid distributions are computationally
indistinguishable.

Claim 5.20. IfTIyg is CPA-secure, then there exists a negligible function negl(-) such that
|Pr[Hyb1(ﬂ) = 1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Suppose that \Pr[Hybl(ﬂ) =1] = Pr[Hyby(A) = 1]| = 1] > &(A) for some non-negligible ¢. We construct a
CPA-security adversary 8B against ITyjg as follows:

1. On input 1%, algorithm B runs A to obtain the input length 1” and a set S C [n]. Denote S = {iy, ..., i;} C [n],
where t = |S|. Algorithm 8B sends 1" to the challenger as the input range. The challenger replies with a public
key pk,.

2. Algorithm B samples (ski, pk,) < HE.Gen(1%,1"). It also samples the common reference strings crscom <
Com.Setup(lA, 16 (An) op 1) and (crsgarG, VKBARG) < Gen’(l’l, 127, 1°,1%). Finally, for b € {0,1}, it computes
ct§§’20 « HE.Enc(pk,, 0) for b € {0,1}.

3. Then, for each i € [n], algorithm B does the following:

« If i € S, then it makes an encryption query on the pair (0, 1) and receives the ciphertext ct;. Algorithm 8
sets ctfo) =ct;. Ifi ¢S, it sets ct§0> «— HE.Enc(pk,, 0).

« It computes ctgl) «— HE.Enc(pk, 0).
4. Finally, for b € {0, 1}, compute (comf}?, Géi?l, e, Gl(]i)n) — Com.Commit(crscom, (ctib), .. .,ct,(lb))).
5. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2) and gives (hk, vk) to A.
6. Algorithm A outputs a bit b’ € {0, 1}, which 8 also outputs.

Observe that if the ct} are encryptions of 0 then 8B perfectly simulates Hyb,. If ct} are encryptions of 1, then 8
perfectly simulates Hyb, for A. We conclude that the advantage of 8 is . O

Claim 5.21. IfTIyg is CPA-secure, then there exists a negligible function negl(-) such that
|Pr[Hyb2(3l) =1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Follows by an analogous argument as the proof of Claim 5.20. The only difference is the reduction algorithm
8 sets pk, and the ciphertexts ctgl) for i € S to be the public key and challenge ciphertexts it receives for the CPA
challenger, respectively. O

Theorem 5.19 now follows by combining Claims 5.20 and 5.21. O

53

5.1.3 Zero Fixing

In this section, we show that Construction 5.2 satisfies zero-fixing security. In the zero-fixing game, the hash key in
Construction 5.2 is chosen to bind to a set S. This means that the ciphertext in the hash key associated with the set S
are replaced by encryptions of 1. Suppose the adversary constructs an opening to 1 for an index i € S. This means the
adversary must have “used” the ciphertext associated with index i (which encrypts 1) when constructing the digest;
formally, this will be enforced by the BARG. Since one of ciphertexts in the ciphertext tree is an encryption of 1, we
can appeal to the predicate propagation property (Theorem 5.9) to argue that the root of the tree must encrypt a
value that is non-zero. In this case, the extraction algorithm would declare the digest NotMatching and zero-fixing
holds. We now give the formal argument:

Theorem 5.22 (Zero Fixing). Suppose Iy satisfies perfect correctness and evaluation correctness, Ilcom is compu-
tationally binding, and Ilgarg satisfies set hiding with extraction, set hiding, and is somewhere extractable. Then
Construction 5.2 satisfies selective zero-fixing.

Proof. We will leverage Theorem 5.9. We start by defining a tree-based additive invariant P as follows. Let n be a

power-of-two and take any index i* € [n]. We now inductively associate an interval I (") with each node je[2n—-1]
of a complete binary tree with n leaves (indexed according to Definition 5.1) as follows:

« For j € [n],if j =i then let I}i*) = [1,1]. Otherwise, let I;i*) =[0,1].

- For an index j € [n + 1,2n — 1], let ji, jz be the indices of the children of j according to Definition 5.1. If
I]gl') = [ay, b,] and IJY) = [ax, b:], then define 1) = [a, + ag, by + bg] = I<.Ll) 4 IJ(R') where we define interval
addition to be component-wide addition: [ay, b,] + [ag, br] = [ay + agr, by + bz].

We now define the interval-validity predicate Py,jiqint as follows: Pyajidint: {0, 1}* — {0, 1} as follows:

1 HE.Dec(skO, ct(O)) € I;i*)

. 5.11
0 HE.Dec(sko, ct(o)) ¢ IJ(.l), (6-11)

Pyaiidint (1%, Ct(o),ct(l),sko,skl,j) = {

We now show that Py,jidint is a tree-based additive invariant. We start by characterizing the intervals IJ(.i*) for all
je[2n-1].

Claim 5.23. For alli* € [n] and any node j € [2n — 1] of height h in the binary tree, if i* is in the subtree rooted at j
then I;l) = [1,2"]. Otherwise, I;l) = [0, 2"].

Proof. This follows by induction starting from the leaves. For every leaf node j € [n], the associated interval I}i*) is
[0,1]if j # i* and [1, 1] if j = i*. Thus, the claim holds for all of the leaf nodes. For the induction step, suppose j is a
node of height h + 1. Let ji, jr be the indices of the children of j. If i* is in the subtree of j, then it is either in the
subtree of j; or j; but not both. By the induction hypothesis, I;Li*) + I](.‘f*) = [0,2"] + [1,2"] = [1, 2"*']. If i* is not in

the subtree of j, then by the induction hypothesis, I}Li*) + I;‘f*) = [0,2"] + [0, 2"] = [0, 2"+1]. O
Claim 5.24. IfTIyg satisfies evaluation correctness, then Py,jiqint is a tree-based additive invariant.

Proof. Take any i* € [n], (sko, pky), (ski, pky) in the support of HE.Gen (1%, 1), any triple of indices j, j,, jx € [2n—1]
where j, ji are the indices of the children of j, and any set of ciphertexts (ct£0), ctil)), (ct,ﬁ‘”, ct}gl)). Suppose j has
height h < logn. Let ctgg,)n = HE.Add (pkg, ctio), ctgo)) and ctgzn = HE.Add(pk,, ct£l), ct,gl)). Suppose

PVandum(i*,ctﬁo),ctfl),sko,skl,jL) =1 and PVandum(i*,ctﬁo),ctﬁl),sko,skl,ja) =1
This means HE.Dec(skq, ctﬁo)) € I}:*) and HE.Dec(sko, ctlﬂo)) € I;‘f*). By Claim 5.23, this means

HE.Dec((sko, ctio)), HE.Dec(sko, ctff’)) € [0,2"1].

54

Since 2"~! < n/2, we can appeal to evaluation correctness of ITy; and conclude that

HE.Dec(sko, HE.Add (pk,, ctﬁo), ctgo))) = HE.Dec(sko, ctEO)) + HE.Dec((sko, ctl(zo)) € I;Li*) +I]§Ri*) = I;i*).

We conclude that Pyajigint (i*, ctl® ctll) sk, sk, j) = 1. O

Proof of Theorem 5.22. Returning now to the proof of Theorem 5.22, let A be any efficient adversary for the
zero-fixing security game. We start by defining a mapping DeriveChal as

DeriveChal(S, i) := (S,i) — (S, S, (i, 1)).

Let Expt := Expt[Pyajidint, DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we claim
that
Pr[ExptZF 4(A) = 1] < Pr[Expt(A) =1]. (5.12)

By construction, the adversary’s view in ExptZF and Expt is identical. It suffices to consider the outputs of the two
experiments. Suppose ExptZF 4 (1) = 1. This means the adversary A outputs dig = (ctfggt, ctggt, comg, comy, TTdig)

and an opening 7 such that VerOpen(hk, dig, i, 1, r) = 1 and Extract(td, dig) = Matching. This means the following:

« By construction, Extract(td, dig) outputs Matching if HE.Dec(sko, ct(o)t) = 0. From Claim 5.24, we have that

. e roo
Iz(;_)l = [1,n]. Hence, in this case, HE.Dec(sko, ctiggt) ¢ IZ.(;_)I, which implies that

o 0 1
Pyaiidint (i ,ctfogt, ctﬁogt, sko,sky,2n— 1) =0

in the predicate propagation experiment Expt(A).

« By definition, VerOpen outputs 1 if Verify’ (vkgarc, Civ.1, 2n — 1, &) = 1, where i* € S is the index chosen by the
adversary at the beginning of the (selective) zero-fixing game. By construction of DeriveChal, we have that
idx = (i*, 1) in the execution of Expt(A). This means that Verify’ (vkgarc, Cidx, 2n — 1, 7) = 1.

Since PVandmt(i*, ctfgc))t, ctgégt, sko, sky, 2n — 1) = 0 and Verify’ (vkgarc, Cidx, 21 — 1, r) = 1, the predicate propagation

experiment Expt(A) also outputs 1. We now show using Theorem 5.9 that Pr[Expt(A) = 1] < negl(4). To leverage

Theorem 5.9, we analyze the predicate propagation hybrid experiment Expt; := Expt;[Pvaiidint, DeriveChal] from

Definition 5.8.

Claim 5.25. IfIIyg is perfectly correct and Uconm satisfies computational binding, then there exists a negligible function
negl(-) such that for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(4).

Proof. Suppose there exists some j € [n] where Pr[Expt;(A) = 1] > ¢(A) for some non-negligible e&. We use A to
construct an adversary B that breaks computational binding of IIcom:

1. On input the security parameter 14, algorithm B runs algorithm A to obtain the input length 17, the set S C [n],
and an index i* € S.

2. Algorithm B outputs the block length 1%(4") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (S, S, (i*, 1)) « DeriveChal(S, i*). It then samples the following components:
« Sample (sko, pk,) < HE.Gen(1%,1") and (skj, pk,) < HE.Gen(1%,1").
. Sample (CrSBARG, VkBARG, tdBARG) — TrapGen'(lA, 12n_1, 1%, 13, {]})

« For each b € {0, 1}, sample ctifr)o < HE.Enc(pk,, 0). Then, for each i € [n] and b € {0,1},if i € S, sample
ctgb) «— HE.Enc(pk,, 1); otherwise, if i ¢ S, sample ctgb) < HE.Enc(pk,, 0).

« Foreach b € {0,1}, let (comff{(), O'éi)l, e alii)n) «— Com.Commit(crscom, (ctib), e ctﬁlb)))

55

4. Algorithm B constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk = (crscOm,crsBARG, {pkb, tier)o, t().. t() r(1k)1"" ék)n}be{m})

vk = (crscom, VkparG, kg, Pk,) ctiér)o, comﬁ?(), comﬁ}())

Algorithm 8B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig = (ct(o) ctV

root> Clroots COMo, cOMy, erig) and a proof 7.

6. Algorithm B extracts (6;0), 6;1), 0'](0), 0'](.1), Wj) « Extract’ (tdparc, 7, j) and parses the auxiliary witness w; =

~(0) ~(1) _(0) (1)
(ct ,ct Oy hk)

7. Output the commitment com'”, the index j, and the value-opening pairs (ct() (0)) and (ft() crf(]ﬁ)).

hk ’
By construction, the challenger samples crscom < Com.Setup(lA, 1fe(dn) op _ 1), which matches the specification
in Expt;. This, algorithm B perfectly simulates an execution of Expt; for A. By assumption, with probability ¢,
algorithm A outputs dig and 7 such that the experiment outputs 1. This means the following conditions hold:

Ci1 (], (23](.0), 6](.1), 0;0), O'](.l), ﬁ/j)) =1 and PVa|id|nt(i*: 5](-0), 5;1), sko, Skl,j) =0

By definition of C;+; and using the fact that j € [n], this means
Com.Verify (crscom, com(?() Jj,c 1O),crlii)) =1 and 61(.0) {ct§230, ct(o)}.

~(0) (0)

If j = i*, we additionally have that ¢ 0, = =ct". Next, by correctness of Ilcom,

0 ct®, o)) =

Com.Verlfy(crscom, com, *, j. € Ok

(0)

It suffices to argue that ct(o) # ¢t . We consider two cases:

« Suppose j = i*. Recall that in this case, zij(.o) = & . By Claim 5.24, we have that I(l) = [1,1]. Since
Pva“d[nt(i*, 6;0), 6](.1), sko, skl,j) = 0, this means that HE.Dec(skq, A](.)) ¢ I;'). By definition ofI}i*), this implies

HE.Dec(skq, A(O)) # 1. Next, algorithm B constructs ct(o) to be an encryption of 1 (since j = i* € S). By perfect

correctness of IIyg, this means that ct() = (0) * ct(o)

« Suppose j # i*. By Claim 5.24, we have that I}i*) = [0, 1]. By the same reasoning as in the previous case, this

means that HE.Dec(sko, ﬁ(.o)) ¢ I(i*). In other words, HE.Dec(skq, A(O)) ¢ {0, 1}. By construction, ctier)0 is an

(O) # ct§220 Hence, it must be the case that

(0) A(O)

encryption of 0, so by perfect correctness of Iy, we have that 9;

A(o) (0)
Yj

=ct" . Next, the ciphertext ct() is an encryption of either 0 or 1, so we conclude that ct # ct(o).

(0)

In both cases, we conclude that ct'~ # ctﬁ.o). In this case, algorithm B successfully opens comr(]?() to two distinct

values ctﬁ.o) # &% Thus algorithm B breaks binding with the same advantage ¢. O

Since for all j € [n], it holds that Pr[Expt;(A) = 1] < negl(4), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A) = 1] < negl(A). Zero-fixing security now follows via Eq. (5.12). O

56

5.1.4 Extractor Validity

In this section, we show that Construction 5.2 satisfies extractor validity. In the extractor validity game, the hash key
is sampled to be zero-fixing on the empty set @, and the goal of the adversary is to produce a valid, but non-matching
digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity
property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that the
root ciphertext was derived by summing a collection of ciphertexts that each encryption 0. The latter is ensured by
security of the BARG, and specifically the predicate propagation theorem (Theorem 5.9). We give the formal theorem
statement and proof below:

Theorem 5.26. IfIlyg satisfies perfect correctness and evaluation correctness, Ilcom is computationally binding, and
IgarG satisfies set hiding, set hiding with extraction, and somewhere extractability, then Construction 5.2 satisfies
extractor validity.

Proof. Similar to the proof of Theorem 5.22, we leverage Theorem 5.9. We start by defining a tree-based additive
invariant P as follows. Define the “matching” predicate Pmatching : {0,1}* — {0, 1} as follows:

1 HE.Dec(sko,ct®) =0

Pratching (i%, ct @, ct ™, sk, sky, j) ==
Matching (0, ski, j) 0 HE.Dec(sko,ct®) # 0.

We first show that Pumatching is a tree-based additive invariant.

Claim 5.27. IfII4g satisfies evaluation correctness, then Pmatching is a tree-based additive invariant.

Proof. Take any i* € [n], any (sk, pk,), (ski, pk,) in the support of HE.Gen(1%,1"), any triple of indices j, j, jx €
[2n — 1] where j;, ji are the indices of the children of j, and any set of ciphertexts (ctio), ctEl)), (ct,ﬁ‘”, ct,gl)). Suppose
PMatching(i*s CtEO), Ctil), sko, ski, ji) = PMatching(i*: Ctl(zO), Ctl(zl)a sko, sk1, jr) = 1.

This means HE.Dec(sko, ct'”)) = 0 and HE.Dec(sk, ct'”) = 0. Let ct'Z). = HE.Add (pk,, ct'®), ctlgb)) for b € {0,1}. By

evaluation correctness of ITyg, we have HE.Dec(skg, ct§33n) = 0 and so by definition

. 0 1 .
PMatching (l*: Cts(U|)11= Cts(u%n sko, sk, J) =1

Let A be an efficient adversary for the extractor-validity game. Define the mapping DeriveChal as
DeriveChal(S, i) := (S,i) — (2,2, 1).

Let Expt := Expt[Ppmatching, DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we claim
that we can use A to construct an adversary A’ such that

Pr[ExptEV 4 (1) = 1] < Pr[Expt(A’) = 1]. (5.13)
Algorithm A’ works as follows:

1. On input the security parameter 1%, algorithm A’ runs A on the same security parameter. Algorithm A
outputs an input length 1”. Algorithm A" outputs the input length 17, the set S = @, and the index i* = L.

2. The challenger replies with (hk, vk) which A’ forwards to A.
ct©@ (D

root Croots €OMo, COMY, Tgig). Algorithm A’ outputs the same digest dig

3. Algorithm A outputs a digest dig = (
and 7 = myig.

57

We now show that Eq. (5.13) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed
according to the real setup algorithm. Thus, algorithm A perfectly simulates an execution of ExptEV 4 for adversary A.
Thus, with probability Pr[ExptEV 4 (1) = 1], algorithm A outputs a digest dig where Extract(td, dig) = NotMatching
and ValidateDigest(hk, dig) = 1. This means the following:

« By construction, Extract(td, dig) outputs NotMatching if HE.Dec(skq, ctfgc))t) # 0. By construction of Pmatchings

this means PMatch[ng(ct'® ot sko, ski, 2n — 1) =0.

root’> ~ “root?

« Next, ValidateDigest outputs 1 if Verify’ (vkgara, Ci, 2n — 1, T4ig) = 1. By construction of DeriveChal, we have
that idx = L in the execution of Expt(A), so this means that Verify’ (vkgarc, Cidx, 21 — 1, 7dig) = 1.

Since PMatching(t}ggt, ctfoot, sko, sky, 2n — 1) = 0 and Verify’(vkgarc, Cidx» 2n — 1, 714ig) = 1, the predicate propagation

experiment Expt(f() also outputs 1. Hence, we conclude that Pr[Expt(A’) = 1] > Pr[ExptEV 4(4) = 1]. To complete
the proof, we now show using Theorem 5.9 that Pr[Expt(A’) = 1] < negl(4). To leverage Theorem 5.9, we analyze
the predicate propagation hybrid experiment Expt; := Expt ;[Pmatching, DeriveChal] from Definition 5.8.

Claim 5.28. IfIlyg is perfectly correct and Ilcom satisfies computational binding, then there exists a negligible function
negl(-) such that for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(4).

Proof. Suppose there exists some j € [n] where Pr[Expt;(A’) = 1] > ¢(A) for some non-negligible . We use A’ to
construct an adversary 8B that breaks computational binding of IIcom,.

1. On input the security parameter 14, algorithm B runs algorithm A’ to obtain the input length 17, the set S = @,
and the index i* = L.

2. Algorithm B outputs the block length 1%(4") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (&, @, 1) « DeriveChal(S, i*). It then samples the following components:
- Sample (sko, pk,) < HE.Gen(1%,1") and (sk;, pk,) « HE.Gen(1%,1").
» Sample (crsparc, VkparG, tdparg) < TrapGen’ (1%, 1771, 1%, 1%, {j}).

« For each b € {0, 1}, sample ctZero < HE.Enc(pk,, 0). Then, for each i € [n] and b € {0, 1}, sample
ct(b) < HE.Enc(pk,, 0).

« Foreach b € {0, 1}, let (comﬁi), éﬁ)l,...,a}gﬁ)n) «— Com.Commit(crscom, (ctib),...,ctflb))).

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

b b b b
hk = (crsCOm,crsBARg, {pkb, ctzer)o, @) ct() ék)l,...,aék?n}be{o’l})
vk = (crscom, VkparG, Pkgs Pk, ctigr)o, tiér)o, comlg?(), com}(i))

Algorithm 8B gives (hk, vk) to A’.
(@

root> ~ “root?

5. Algorithm A’ outputs a digest dig = (comy, comy, erig) and a proof 7 = mg;g.
6. Algorithm B extracts

*(0) 1) _(0) (1)
(c ,ct ’O.hk’ahk)‘

((0) A(l) 0) ;M
J

,0;,0; ,wj) « Extract’ (tdparc, 7, j) and parses the auxiliary witness w; =

the index j, and the value-opening pairs (c t(O) ©) and (ft(o), O'éﬁ)).

7. Output the commitment com! Ok j

hk’

58

By construction, the challenger samples crscom < Com.Setup(1%, 1% 2 — 1), which matches the specification
in Expt;. Thus, algorithm B perfectly simulates an execution of Expt; for A’. By assumption, with probability ¢,
algorithm (A" outputs dig and 7 such that the experiment outputs 1. This means the following conditions hold:

CL(i (6,0, 0V ;) =1 and Puatching (i",6}", 51", sko, sky, j) = 0.

By definition of C, and using the fact that j € [n], this means

Com.Verify(crscom,coma?(),j, ét(o),a}(]i)) =1 and 6;0) € {ctﬁgr)o, &(0)}.

Next, by correctness of IIcom,

Com.Verify(crscom,comﬁi),j, ctj.o), aéﬁ?j) =1.

It suffices to argue that ctﬁo) * Et(o). Since PMatching(i*,zﬁ(O), 23](.1), sko, skl,j) =0, we have HE.Dec(skg, ﬁj(.o)) # 0. Since

J
ct§230 is an encryption of 0, we can appeal to perfect correctness of ITjje to conclude that z?j(.o) # cti(e),)o. This means

that 5](.0) =a'?, Moreover, ct;O) is also an encryption of 0, so again by perfect correctness of the encryption scheme,

we can conclude that ctj.o) # z?](.o) = ¢t'”. In this case, algorithm B successfully opens com}(]?() to two distinct values

ct;0> # ¢t'”. Thus algorithm 8 breaks binding with the same advantage . O

Since for all j € [n], it holds that Pr[Expt;(A") = 1] < negl(1), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A’) = 1] < negl(A). Extractor-validity security now follows via Eq. (5.13). O

5.1.5 Index Hiding with Extracted Guess

In this section, we show that Construction 5.2 satisfies the index hiding with extracted guess property. The challenge
in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining
the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the
secret key for the underlying encryption scheme). As described in Section 1.2, we solve this by adopting a Naor-Yung
proof strategy.

Theorem 5.29. IfIlyE satisfies perfect correctness, evaluation correctness, and CPA-security, llcom is computationally
binding and Ilgarg satisfies set hiding with extraction, set hiding, and is somewhere extractable, then Construction 5.2
satisfies index hiding with extracted guess.

Proof. Let A be an efficient adversary for the index hiding with extracted guess security game. We define a sequence
of hybrid experiments:

+ Hyb,: This is ExptIHE (A, 0). Specifically, the game proceeds as follows:
1. On input the security parameter 1%, algorithm A outputs the input length 17, a set S C [n], and an index
iesS.
2. The challenger now samples the following quantities as in Setup:
- Sample (sko, pk,) < HE.Gen(1%,1") and (sky, pk;) « HE.Gen(1%4,17).
— Sample crscom < Com.Setup(lA, 1t dm) op —1).

— Sample (crsparc, vkparg) «— Gen’ (14, 12771 1%, 1%), where s is a bound on the size of the circuit
computing the index relation from Fig. 2.

— For each b € {0, 1}, sample ctifr)o < HE.Enc(pk,, 0). Then, for each i € [n] and b € {0,1}, if
i €S\ {i*}, sample ctgb) « HE.Enc(pk,, 1); otherwise sample ctgb) «— HE.Enc(pk,, 0).

— Foreach b € {0,1}, let (comf}i),aﬁi)l,) ..,aﬁi)n) — Com.Commit(crscoms (ctib),) ..,ctflb)))

59

3. The challenger constructs hk and vk according to Egs. (5.1) and (5.2):

b b b b b
hk = (crsCOm, CISBARG» {pkb, ctier)o, ct{), el ct,(l), O'F(]k’)l, e O-f(Ik,)n}be{O,l})
vk = (crscom, vkara, pkg» Pk, ctigr)o, ctgér)o, comﬁ?(), com}(i))

The challenger gives (hk, vk) to A.
ct'® et

root’> ~ “root?

4. Algorithm A outputs a digest dig = (comg, comy, 7gig) and an opening 7.

5. The output of the experiment is 1 if

Verify’ (vkgarg, Cirp,2n — 1,7) =1 and HE.Dec(skO, ct'?

root

) =o0.
Otherwise, the output is 0.
+ Hyb,: Same as Hyb,, except the challenger samples ct;}) «— HE.Enc(pk,, 1).

+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if

Verify’ (vkgara, Civp,2n — 1,7) =1 and HE.Dec(skl,ct(l)) =o.

root

Notably, the challenger’s behavior in this experiment does not depend on skg.
+ Hyb,: Same as Hyb,, except the output of the challenger samples ctl@ «— HE.Enc(pk,, 1).

+ Hyb,: Same as Hyb,, except the output of the experiment is 1 if

Verify’ (vkgarg, Ci#0,2n — 1,m) =1 and HE.Dec(sk, ct'?) =o.

root
This is experiment ExptIHE 4 (2, 1).

We write Hyb,(A) to denote the output of experiment of Hyb, with adversary A. We now analyze each pair of
hybrid experiments.

Claim 5.30. IfIIy is CPA-secure, then there exists a negligible function negl(-) such that
[Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| = negl().

Proof. Suppose | Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| > ¢(A) for some non-negligible e&. We use A to construct an
algorithm B that breaks CPA security of IIj:

1. On input the security parameter 1%, algorithm 8B runs algorithm A on the same input to obtain the input length
1", the set S C [n], and an index i* € S.

2. Algorithm B sends 1" as the input range. The challenger replies with a public key pk;.
3. Algorithm B now samples the following components:

« Sample (sko, pk,) < HE.Gen(lA, 1m).
- Sample (crspara, Vkara, tdparg) < TrapGen’ (1%, 12771, 15,13, {j}).

« For each b € {0, 1}, sample ctifr)o < HE.Enc(pk,, 0).

« Foreachi e [n]\ {i*} and b € {0,1},if i € S, sample ctl(b) « HE.Enc(pk,, 1); otherwise, if i ¢ S, sample
ctgb) « HE.Enc(pk,, 0).
4. Algorithm 8B makes an encryption query on the pair (0,1). The challenger replies with a ciphertext ctg*l).
Algorithm 8 also computes ctl&O) < HE.Enc(pk,, 0).

60

5. Finally, for each b € {0, 1}, let (comﬁi), (Téi)l, .. G}(]i)n) — Com.Commit(crsCom, (ctgb), e ct,(lb))). Next, algo-

rithm B constructs hk and vk according to Eqgs. (5. 1) and (5.2):

b b b) (b b
hk = (crsCOm,crsBARg, {pkb, tﬁer)o, t<).. t() ng)l,... ék)n}be{m})

vk = (CrSCOms VkBARG» pko, Pkls Ctigr)o, Ctiézos comf}?(), comf}?)

Algorithm 8 gives (hk, vk) to A.
OB

root> ~ “root?

6. Algorithm A outputs a digest dig = (c comyg, comy, 7gig) and a proof .

7. Algorithm 8B outputs 1 if

Verify’ (vkparg, Civ0,2n — 1,m) =1 and HE.Dec(sko, ct 0,

root)

where C;j« ¢ is the circuit computing the relation from Fig. 2 (which is a function of the components from hk
and dig).

Observe that if ctlg) is an encryption of 0 (under pk,), then algorithm 8 perfectly simulates Hyb, for A. Alternatively,

if ctlg) is an encryption of 1 (under pk,), then algorithm B perfectly simulates Hyb, for A. We conclude that the
advantage of B is ¢. O

Claim 5.31. IfIlyg is perfectly correct and satisfies evaluation correctness, Ucom is computationally binding, TIgarc
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(-)
such that | Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl(1).

Proof. By construction, the only difference between the execution of Hyb, and Hyb, is the output condition. Let E be
the following event in an execution of Hyb, and Hyb,:

) # HE. Dec(skl,ct)

Verify’ (vkparg, Cir0,2n —1,7) =1 and HE.Dec(sko, ct © root)

root

(5.14)
Observe that if E does not occur, then the output of Hyb, and Hyb, is identical. This means that
| Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| < Pr[E].

We now leverage Theorem 5.9 to argue that Pr[E] = negl(1). To do so, we start by defining a suitable tree-based
additive invariant. Similar to the proof of Theorem 5.22, we first associate a “validity interval” with each index

j € [2n — 1]. For an index i* € [n], we define the interval I;i*) with each node j as follows:

« For j € [n],if j =i* let I;i*) = [0, 0]. Otherwise, let I;i*) =[0,1].

- For an index j € [n +1,2n — 1], let ji, jz be the indices of the children of j according to Definition 5.1. If
I}Lf) = [ay, by] and IJ(:) = [ag, b], then define 1) = [a, + ag, by + bg] = I(l) +I('), where we define interval
addition to be component-wide addition: [ay, b,] + [ag, br] = [ay + ag, by + b r]-

By the same argument as in the proof of Claim 5.23, for all j € [2n — 1] and all i* € [n], we have that 1) ¢ [0, 2h],
where h is the height of node j. Now, we define the validity predicate Py,jiq: {0,1}* — {0, 1} as follows:

« On input (i*, ct(®, ¢t sko, sky, j), compute x;, < HE.Dec(skp, ct®)) for each b € {0,1}.
o Output 1ifxg =x; € I;i*) and 0 otherwise.

In other words, the tuple (i, ct©® ¢t sko, ski, j) is valid if the ciphertexts encrypt the same value, and moreover,
they are within the valid range.> We now show that Py,iq is a tree-based additive invariant.

8The range check is needed to ensure that all of the ciphertexts decrypt to values within the (bounded) support of the homomorphic encryption
scheme. This is necessary to invoke evaluation correctness of ITg (see the proof of Lemma 5.32).

61

Lemma 5.32. IfIly; satisfies evaluation correctness, then Py,jiq is a tree-based additive invariant.

Proof. Take any i* € [n], any (sko, pk,), (ski, pk,) in the support of HE.Gen(1%,1"), any triple of indices j, j;, jx €
[2n — 1] where j;, ji are the indices of the children of j, and any set of ciphertexts (ctio), ctEl)), (ctlgo) , ctlgl)). Suppose
j has height h < logn. For b € {0,1}, let ct%), = HE.Add (pky, ct®), ct}gb)). Suppose

ok 0 1 . % 0 .
Pyaiia(i*, et ctt?), sko, sky, i) = Pyaiia(i*, ctl”, ct'", sko, sky, ju) = 1.

This means HE.Dec(sko, ctio)) = HE.Dec(skl,ctﬁl)) € IJ(.Li*) and HE.Dec(sko, ctf((o)) = HE.Dec(skl,ct,gl)) € I;“i*). As
argued above, since ji, jz have height h — 1, we conclude that for b € {0, 1},

HE.Dec(skb,ctEb)), HE.Dec(skb,ctlgb)) e [0, 2"1].
Since 21 < n /2, we can appeal to evaluation correctness of ITj; and conclude that

HE.Dec(sko, ct;‘j,)n) = HE.Dec(sko, ctio)) + HE.Dec(sko, ctff))
= HE.Dec(skl,ctEI)) + HE.Dec(skl,ct}(zl)) = HE.Dec(skl,cts(lljzn) el +I;, =1,

We conclude that PVa[id(i*, ctggr)n, ctgzn, sko,sk1,j) =1. m]

To leverage the predicate-propagation theorem (Theorem 5.9) to prove Claim 5.31, we now define a mapping
DeriveChal as
DeriveChal(S, i) := (S,i) — (S\ {i}, S, (i,0)).

Let Expt := Expt[Pvalid, DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we argue that
Pr[E] < Pr[Expt(A) = 1], (5.15)

where E is the event from Eq. (5.14). By construction, the adversary’s view in Hyb, and Expt is identical. Suppose E
occurs in an execution of Hyb,. Then the following hold:

« First Verify’ (vkarg, Ci+ 0, 2n — 1,) = 1. By construction of DeriveChal, we have that idx = (i*,0) in the
execution of Expt(A). Hence, this means that Verify’ (vkgarg, Cidx, 20 — 1, 1) = 1.

) # HE.Dec(skl,ct(l)). This means PVa“d(ct(O) ct™M sk, sky, 2n — 1) =o.

root root’> ~ “root?

« Next, HE.Dec(sko, ct©

root

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] > Pr[E]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt; := Expt;[Pvaiid, DeriveChal].

Lemma 5.33. IfIlyg is perfectly correct and I com satisfies computational binding, then there exists a negligible function
negl(-) such that for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(4).

Proof. Suppose there exists some j € [n] where Pr[Expt;(A) = 1] > ¢(A) for some non-negligible e&. We use A to
construct an adversary B that breaks computational binding of IIcom,.

1. On input the security parameter 1%, algorithm B runs algorithm A to obtain the input length 17, a set S C [n],
and an index i* € S.

2. Algorithm B outputs the block length 1%(4") and the vector length 2n — 1 to the challenger. The challenger
responds with crscom.

3. Algorithm B computes (S \ {i*}, S, (i*,0)) « DeriveChal(S, i*). It then samples the following components:
« Sample (sko, pk,) < HE.Gen(1%,1") and (sk;, pk,) < HE.Gen(1%,1").

« Sample (crspara, Vkpara, tdsarc) < TrapGen’ (14, 1277115, 13, {j}).
« For each b € {0, 1}, sample ctiebr)0 «— HE.Enc(pk,, 0).

62

« Foreachi € [n] \ {i*} and b € {0,1}, if i € S, sample ctgb) < HE.Enc(pk,,1). If i ¢ S, sample
ctgb) « HE.Enc(pk,, 0).
+ Sample ctgo) « HE.Enc(pk,, 0) and ctlg) < HE.Enc(pk;, 1).

« Foreach b € {0,1}, let (com}gi), éﬁ)l,) ..,o}(’i)n) «— Com.Commit(crscom, (ctgb),) ..,ctf,b))).

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

by (b by (b b
hk = (crscOm,crsBARG, {pkb, ctier)o, ct().. t() ék)l,.. " }Ek)n}be{m})
vk = (crscom, VkaRG, Pkg» PKy» Ctoos tiér)o, comlg?(), comﬁ}())

Algorithm 8 gives (hk, vk) to A.
t© W

root> ~ “root’

5. Algorithm A outputs a digest dig = (comg, comy, erig) and a proof 7 = 7yjg.

50 51 S0 (1)

6. Algorithm B extracts (i ,\Z/j) « Extract’ (tdparc, 7, j) and parses the auxiliary witness w; =

i 2% 9
4 (0) 1 _(0) (1)
(c ,ct ’O'hk’ahk)'
7. Algorithm 8B checks if there exists b € {0, 1} where Com.Verify(chCOm, comﬁ?, J,C), O—I’(Ii)) =1and 6t(b) *
t(b) If so, it outputs the commitment comﬁi), the index j, and the value-opening pairs (c t<) (b)) and
(&, af).

By construction, the challenger samples crscom < Com.Setup(l’l, 1ft(dn) op 1), which matches the specification
in Expt;. This, algorithm B perfectly simulates an execution of Expt; for A. By assumption, with probability ¢,
algorithm A outputs dig and & such that the experiment outputs 1. This means the following conditions hold:

Cl 0(]5((0)9 A(l):](0), O';I),\/N\Ij)) =1 and Pva|id(i*,ﬁj(-0),5§1),Sko,Skl,j) =0.

We consider two possibilities:

~(b) (b) (b)

+ Suppose j = i*. By construction of C;- (see Fig. 2), this means 0, ' = ct,er, for b € {0, 1}. By construction, ct,ero

is an encryption of 0 under pk,. In this case, PVahd(](, () , sko, skq,) = 1, which contradicts the premise.

« Suppose j # i*. By construction of Ci+ ¢, there are now two more possibilities:

A(b)

— Suppose for b € {0,1},3; ' = ctg:,)0 As in the first case, this means vj) and v(l) decrypt to 0 under skg

and sk, respectively. In thls case PVa[ld(](), () , sko, sk, j) = 1, which again contradicts the premise.

A(b)

— Suppose for b € {0,1},9.” = =" In this case, we also have

Com.Verify(crscom, comﬁ?() j,C (),O'I:ﬁ)) =1

Com.Verify(CFScOm, Com(}() J: ()’Uéi)) =

Suppose a® = ctjb) for all b € {0, 1}. In this case, since j # i*, the ciphertexts ct() ct() are either both
encryptions of 0 (if j ¢ S) or both encryptions of 1 (if j € S). In this case,

Puaia(i*,8;", 07", sk, sk j) = Praia (1", et} et sko ska,) = 1,

which contradicts the premise. Thus, if Py,jiq is not satisfied, we conclude that there exists some b € {0, 1}
such that 6t(b) * ctj.b).

63

Thus, there exists some b € {0, 1} such that the following holds:

(b)

~ (D)
ct hk °

. A (b) (b)) _
J,ct ,th)—l.

* ctj.b) and Com.Verify(crscom, com
Moreover, by correctness of Ilcom, we have that

(®)
hk >

. . (b)) (b)Y _
Jet;, o) =1.

Com.Verify (crscom, com Ot

In this case, algorithm 8 successfully breaks the binding property of the commitment scheme. O

Since for all j € [n], it holds that Pr[Expt;(A) = 1] = negl(1), we can invoke Theorem 5.9 to conclude that
Pr{Expt(A) = 1] = negl(A). Claim 5.31 now follows via Eqs. (5.14) and (5.15). O

Claim 5.34. IfTye is CPA-secure, then there exists a negligible function negl(-) such that
|Pr[Hyb3(ﬂ) =1] = Pr[Hyb,(A) = 1]| = negl(}).
Proof. Follows by an analogous argument as the proof of Claim 5.30. In particular, the reduction obtains pk, and ctl&0)

from the challenger. It samples (pk;, sk;) itself which it can use to compute the output (according to the specification
in Hyb, and Hyb,).]

Claim 5.35. IfIIyE is perfectly correct and satisfies evaluation correctness, Ilcom is computationally binding, and Ilgarc
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(-)
such that | Pr[Hyb,(A) = 1] = Pr[Hyb;(A) = 1]| = negl(A).

Proof. Follows by an analogous argument as the proof of Claim 5.31. The only difference is that we take the mapping
DeriveChal to be
DeriveChal(S, i) := (S,i) — (S, S, (i,0)).

The rest of the analysis proceeds exactly as before. O

Theorem 5.29 now follows by combining Claims 5.30, 5.31, 5.34 and 5.35. O

6 Zero-Fixing Hash Function from Bilinear Maps

In this section, we give a direct construction of a zero-fixing hash function from composite-order pairing groups. This
construction does not require making non-black-box use of cryptography (in contrast to the construction from Sec-
tion 5) and highlights an algebraic approach for building zero-fixing hash functions. We begin by recalling the concept
of composite-order pairing groups [BGNO05] and the generalized family of subgroup decision assumptions [BWY11].

Definition 6.1 (Composite-Order Bilinear Group). Let k € N be a constant. A symmetric k-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter A and
outputs a description (G, Gr, {pi};c[x 9 €) of a bilinear group where each p; is a distinct prime where p; = 200,
G and Gr are cyclic groups of order N = [[;c(x] pi, g is a generator of G, and e: G X G — Gr is a non-degenerate
bilinear map (called the “pairing”). We require that the group operation in G and Gr as well as the pairing operation
be efficiently computable.

Notation. Let G be a cyclic group with order N = [[;c(x] pi and generator g. We write Zy to denote the ring of
integers modulo N. In the following, for i € [k], we write G; = (gN/?") to denote the subgroup of G of order p;.
Throughout this section, we will write g; to denote a random generator of G;. For a set S C [k], we write G(S) to
denote subgroup of G of order [];cs p;. By the Chinese Remainder Theorem, we can write G as a direct product
G = Gy, X -+ X Gy,. For a group element h € G, we can write h = Hie[k] h; where each h; € G;; we refer to h; as
the component of 4 in the subgroup G;. If two elements hy, h; € G are equal (i.e., h; = hy), then for all i € [k], the
component of h; and h, in G; are also equal. We extend this terminology to Gr.

64

General subgroup decision assumption. We now recall the general subgroup decision assumption formalized in
[BWY11]. The general subgroup decision assumption essentially states that for sets So, S; C [k], no efficient adversary

can distinguish between a random element of G(Sy) from G(S;) even given random elements from G(S) for any
S C [k] where SN Sy and S N Sy are both empty or both non-empty. We give the formal definition below:

Definition 6.2 (General Subgroup Decision [BWY11, adapted]). Let k € N be a constant and let CompGroupGen be
a symmetric k-prime composite-order bilinear group generator. For an adversary A and a bit b € {0, 1}, we define
the general subgroup decision game ExptSubgroup (A, b) for CompGroupGen as follows:

1. At the beginning of the game, algorithm A outputs two non-empty sets Sp, S; C [k] and any number of sets
T,..., T, C [k]. We require that for all i € [n] either SoNT; =@ =S NTiorSoNT; # 2 # S NT;.

2. The challenger samples (G, Gr, {pi};cx). 9. €) < CompGroupGen(1*). It compute N = [lic[x) pi and sets
G = (G,Gr, N, g,¢). For each i € [n], the challenger samples X; < G(T;). It also samples Z « G(S;), and
gives the challenge (G, X1, . . ., Xy, Z) to the adversary.

3. The adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that the general subgroup decision assumption holds with respect to CompGroupGen if for all efficient
adversaries A |Pr[ExptSubgroupﬂ (4,0) = 1] — Pr[ExptSubgroup 4 (A, 1)]\ < negl(}).

Constructing zero-fixing hash functions. We now describe our construction of a zero-fixing hash function from
composite-order bilinear groups. To simplify the main construction, we will describe our construction with a long
verification key. The verification algorithm of our construction only requires local access to the long verification key,
so it is straightforward to compile our construction into one with a short verification key using a collision-resistant
hash function (see Remark 6.5).

Construction 6.3 (Zero-Fixing Hash Function from Composite-Order Bilinear Maps). Let CompGroupGen be a
6-prime composite-order pairing group. We construct a zero-fixing hash function ITy; = (Setup, Hash, ProveOpen,
VerOpen, Extract, ValidateDigest) as follows:

« Setup(1%,1%,5): On input a security parameter A, an input length n, and a set S C [n], the setup algorithm
samples (G, Gr, {pi};c(q)-9: €) < CompGroupGen(1%). Let N = [1ic(6) pi- For each i € [6], let g; & G;bea
random generator of G;. Let G = (G, G, N, ¢, €) be the group description. The setup algorithm now constructs
the hash key components as follows:

- Main components: For each i € [n], sample a;, B; < Zy. Set

A4 = (919 i¢S
" (91929390 % i €S.

For each i € [n], let B; = (g195):.
- Cross-terms: For each i, j € [n] where i # j, sample r;; - Zy and let C;; « 9?iﬁf (92939495)"

- Digest validation components: Sample f* & Zy and let B* = (g195)? . For each i € [n], sample
% R _af r”
r{ < Zy and let D; = g|"" (92939495)": .

Output the hash key hk and verification key vk where
hk = vk = (G, g1. {Ai, Bi, Di}ien], {Cij }ij» BY)
along with the extraction trapdoor td = gags.

« Hash(hk, x): On input a hash key hk = (G, g1, {As, Bi, Di}ie[n), {Cij }i2j, B*) and an input x € {0, 1}", the hash
algorithm computes h = [1;c[, A}" and u = [];¢(,,) D}’ It outputs the digest dig = (h, u).

65

- ValidateDigest(vk, dig): On input the verification key vk = (G, {A;, Bi, Di}ie[n], {Cij }izj» BY) and a digest
dig = (h, u), the digest-validation algorithm outputs 1 if e(h, B*) = e(g;, u) and 0 otherwise.

« ProveOpen(hk, x,i): On input a hash key hk = (g,gl, {Ai, Bi, Di}icln), {Ci’j}#j,B*), a string x € {0,1}", and
an index i € [n], the prove algorithm outputs o = [];,; j’l

« VerOpen(vk, dig, i, b, o): On input a hash key vk = (G, g1, {(A;, Bi) }ie[n], B*), a digest dig = (h, 7), an index
i € [n], abit b € {0,1}, and an opening o, the verification algorithm outputs 1 if e(h, B;) = e(A;, B;)? - (g1, 0)
and 0 otherwise.

« Extract(td, dig): On input a trapdoor td and a digest dig = (h, u), the extraction algorithm outputs Matching if
e(h,td) = 1 and NotMatching otherwise.

Theorem 6.4 (Correctness). Construction 6.3 is correct.

Proof. Take any A,n € N and x € {0,1}". Leti € [n] be an index. Suppose (hk,vk,td) « Setup(14, 1", @),
dig « Hash(hk, x) and ¢ < ProveOpen(hk, x, i). By construction,

hk = vk = (G, g1, {Ai. Bi. Di}icin]. {Cij }izj» BY).
Next, dig = (h,u) where h = [];c[, Al andu = [Lien D;*. We consider the two properties:
+ Opening correctness: By construction, o = [];4; C;C’l By orthogonality, we have e(A;, B;) = e(g1,C;j;). Then,
e(h,B) = | | e(A;, By = e(An By [[e(A;, By = e(A, By [[eg1,Cj)™ = (A, B e(g1, o),
jeln] Jj#i Jj#i
so VerOpen(vk, dig, i, x;, o) = 1, as required.
- Digest correctness: Again by orthogonality, we have e(A;, B*) = e(g1, D;), so
e(h,B) = ﬂ e(A, B = H e(g1, D;) = e(gs, u),
jeln] Jjeln]
and ValidateDigest(vk, dig) = 1. O

Remark 6.5 (Supporting Fast Verification). As described, the size of the verification key in Construction 6.3 scales
linearly with the input length n. This is incompatible with the succinctness requirements needed by our monotone
BARG construction (Construction 4.4). However, it is straightforward to compress the verification key using a
collision-resistant hash function. Observe that the verification algorithm VerOpen in Construction 6.3 only requires
local access to the verification key (i.e., it only needs to read elements A; and B;). The approach then is to only include
a succinct commitment com to (A1, By), ..., (An, By) in the verification key; the associated openings are included as
part of the (long) hash key. Then, the opening for an index i would additionally contain the elements A;, B; as well as
their openings with respect to com. The verifier would check that the correct elements A; and B; were provided and
that they satisfy the verification relation. Security still holds as long as the scheme is computationally binding (since
a computationally-bounded adversary would not be able to open com at i to any value other than (4;, B;)).

Security properties. We now show that each of the security requirements from Definition 3.1 holds under the
(general) subgroup decision assumption.

Theorem 6.6 (Set Hiding). If the general subgroup decision holds with respect to CompGroupGen, then Construction 6.3
satisfies set hiding.

Proof. Let A be an efficient adversary for the set hiding game. We begin by defining a sequence of hybrid experiments:

66

+ Hyb,: This is experiment ExptSH 4 (4, 0). At the beginning of the game, the adversary outputs an input length
nand aset S C [n]. Then the challenger samples (G, G, {pi};c(4): 9. €) — CompGroupGen(1%). It samples

generators g; <~ G; and sets G = (G, Gr, N, g, e) where N = [1ic[6) pi- It constructs the hash key components
as follows:

- Main components: For each i € [n], sample a;, f; < Zy Set A; = (9194)% and B; = (glgg,)ﬂi.

- Cross-terms: For each i, j € [n] where i # j, sample r;; ¢ Zy and let C; ; = gf"ﬁf (92939495)"" .

- Digest validation components: Sample f* & Zy and let B* = (g1g5)? . For each i € [n], sample
rf & Zn andlet D; = g‘lxiﬁ (gzg3g4g5)r§k.

The challenger gives the hash key hk and verification key vk to A where
hk = vk = (G, g1. {As. Bi, Di}ieqn), {Cij }izj» B).
Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

+ Hyb,: Same as Hyb,, except the challenger now sets C;; = Afi‘/ (92939495)" and D; = A;B‘ (g2939495)" . In
particular, in this experiment, the exponents @; only show up in the definition of A;.

+ Hyb,: Same as Hyb,, except for i € S, the challenger now sets A; = (g19293794)%".

+ Hyb,: Same as Hyb,, except the challenger now sets C; ; = g?iﬁ" (92939495)"/ and D; = g{f’vﬁﬂ (9293949s5)"7 . This
is experiment ExptSH 4 (4, 1).

We write Hyb, (A) to denote the output of an execution of Hyb, with adversary A. We now analyze each pair of
adjacent hybrid experiments.
Lemma 6.7. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]

Proof. The outputs of Hyb,(A) and Hyb, (A) are identically distributed. The only difference between these two
distributions is the distribution of the cross-terms C; ; and D;. According to the specification of Hyb,,

rij+aifj

Cij= Aiﬁ’ (92939495)™ = (194) "7 (929394g5)™ = g‘f"ﬁ" (929395)""7 9,

Since r;; ¢ Zy (and independent of all other quantities in hk, vk), the distribution of r; j + ;8; mod p4 is uniform
over Z,,. We conclude that the distribution of C; j in Hyb, is distributed exactly as in Hyb,. A similar analysis applies
to D;, and the claim holds. m|

Lemma 6.8. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
|Pr[Hyb1(?{) =1] = Pr[Hyb,(A) = 1]\ = negl(}).

Proof. Suppose there exists an adversary A where |Pr[Hyb1(.?{) =1] = Pr[Hyb,(A) = l]| > ¢(A) for some non-
negligible e. We use A to construct an adversary 8 that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {1,4} and S; = {1, 2, 3,4} and the sets {1}, {4}, {2, 3, 4},
and {5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, g4, X234, g5, Z), where g; is used to denote the random generator
of Gi and X234 & G({Z, 3, 4})

3. Algorithm 8 starts running algorithm A who outputs the input length 1" and a set S C [n]. The challenger
samples a; & Zn;, i & Zn, rij & Zy for i, j € [n]. It constructs the components of the hash key as follows:

(9194)% i ¢S . ; -
A= {Zg;ig4 ies and B; = (glgs)ﬁ’ and Ci,j = A{JJ (X23495)r1’].

67

Next, it samples f* & Zy and r; ¢ Zy for each i € [n]. It sets
B* =(gig5)’ and D;= Aiﬁ (X23495)" -
It sets hk = vk = (G, 91, {Ai, B, Di}ie[n), {Cij }i2j, BY) and gives (hk, vk) to A.
4. Algorithm A outputs a bit b” € {0, 1}, which algorithm B also outputs.

The subgroup decision challenger samples the generators g; <~ G; exactly as in Hyb, and Hyb,. Moreover, Xy34 =
(929394)Y for y & Zy. Since the only element that depends on r; ; is C;j and r; ; <~ Zy;, the distribution of eréi is

identical to the distribution of (g2g3g4)"/. Similarly, the distribution of eré , is identically distributed to (g3 ga)'i.
We now consider the two possibilities:

- Suppose Z = (g194)" where t € Zy. This corresponds to an execution of Hyb, with «; replaced by a;¢t when
i € S. Aslong as t is non-zero modulo p; and p, (which happens with negligible probability), the distribution
of a;t is uniform over Z,, ,,. In this case, algorithm $ outputs 1 with probability Pr[Hyb, (A) = 1].

« Suppose Z = (91929394)" where t ¢ Zy. This corresponds to an execution of Hyb, with «; replaced by
a;t whenever i € S. As long as t is non-zero modulo p;, ps, p3, and ps (which happens with negligible
probability), the distribution of @;t is uniform over Z,, 5,p,,. In this case, algorithm 8 outputs 1 with probability
Pr[Hyb,(A) =1].

We conclude that algorithm B succeeds with probability that is negligibly close to ¢ and the claim holds. O
Lemma 6.9. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1].

Proof. The outputs of Hyb, (A) and Hyb,(A) are identically distributed by an analogous argument as the proof of
Lemma 6.7. In particular, in Hyb,, for i € S,

J

Cij= Aiﬂj (92939495)" = (91929394) 77 (g2939ags)™ = gfiﬁj (929394)ri’j+aiﬂj9;i" .

Again since r;j ¢~ Zy and independent of all other quantities in hk, vk, the distribution of r; ; + @;8; mod pypspy is
identical to the distribution of r;; ¢ Z,,p,,,. A similar argument applies to C; ; for i ¢ S and the D; terms. O

Set hiding now follows by combining Lemmas 6.7 to 6.9. O

Theorem 6.10 (Index Hiding with Extracted Guess). Assume the general subgroup decision holds with respect to
CompGroupGen, then Construction 6.3 satisfies one-sided index hiding with extracted guess (Definition 3.3).

Proof. Let A be an efficient adversary for the index hiding with extracted guess game. We define a sequence of hybrid
experiments:

+ Hyb,: This is the index hiding with extracted guess experiment ExptIHE 4(A,0). Namely, the adversary
starts by outputting the input length 17, a set S C [n] and an index i* € S. The challenger samples
(G, Gr, {pi}iE[G] ,g,€) — CompGroquen(lA). It samples generators g; & G; and sets G = (G,Gr, N, g, e)
where N = [];¢[6] pi- It constructs the hash key components as follows:

- Main components: For each i € [n], sample a;, fi < Zn Set A; = (g1929394)% if i € S\ {i*} and
A; =(9194)% ifi ¢ S. Set A+ = (9194)%" . Then, set B; = (glg;,)ﬁi.

- Cross-terms: For each i, j € [n] where i # j, sample r; j - Zy and let C; ; = g?’ﬁj (92939495)"" .

- Digest validation components: Sample f* & Zy and let B* = (g1g5)? . For each i € [n], sample
rF & Zyandlet D; = gaiﬁ* (g2939495)"7
i I 1 :

68

The challenger gives the hash key hk and verification key vk to A where

hk = Vk = (g,gl, {Ai, Bi, Di}ie[n]; {Ci,j}i;tj:B*)~
Algorithm A then outputs a digest dig = (h, u) and an opening o. The output of the experiment is 1 if

e(h,Bir) = e(g1,0) and e(h gzg3) = 1.

+ Hyb,: Same as Hyb, except the challenger sets C;- ; = A 7(92939ags)""i forall j # i* and C;;+ = B (g2939ags)"**

for all i # i*. Similarly, the challenger sets D;- = Al. (gzg3g4g5)rz. In particular, the exponents ;- and f;+ only
shows up in A;+ and B;-, respectively.

« Hyb,: Same as Hyb, except the challenger sets B;- = (919575)"

+ Hyb,: Same as Hyb, except the challenger sets A; = (g19496)*".

+ Hyb,: Same as Hyb, except the challenger sets Ay« = (g1929496)%" .

+ Hyb.: Same as Hyb, except the challenger sets A = (g192939496) " .

+ Hyb,: Same as Hyb. except the challenger sets A = (g19g29394) " . Namely, there is no longer a G5 component
in Ai* .

« Hyb,: Same as Hyb, except the challenger sets B;+ = (g19s5)%*. Namely, there is no longer a G, component in
B;-.

» Hybg: Same as Hyb, except the challenger sets Cj-; = 91 ’(gzggg4g4)" J and Cjp = gl’/’ (g2939495) """ .

Similarly, the challenger sets Dy = g p (929394g5)"i . This is experiment ExptIHE 4(A, 1).

We write Hyb, (A) to denote the output of an execution of Hyb, with adversary A. We now analyze each pair of
adjacent hybrid experiments. Our goal is to show that Pr[Hyb,(A) = 1] > Pr[Hyb,(A) = 1] — negl(1).

Lemma 6.11. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]

Proof. The outputs of Hyb,(A) and Hyb (A) are identically distributed. The only difference between these two
distributions is the distribution of C« j, C; »», and D;. According to the specification of Hyb,,

By rix jtagx

Crrj = A (92959195)"" = (9199) P (92939195)™7 = g7 gV (gagsgs)'™™s

Cii = B (92939ags)"™" = = (195) %P7 (92939a95) """ = gl‘ﬁ’ (929394)r' " r” raibi
. . . . o .
Dy = AL (92939495)" = (9190) 7 (92939ags)"s* = ¢*” gr o (gzgsgs)r"*

Since s j, 1+, T & Zx (and independent of all other quantities in hk, vk), the elements Ci+ j, Ci i+, Dy are distributed
exactly as in Hyb,,. O

Lemma 6.12. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
‘Pr[Hybl(Jﬂ) =1] = Pr[Hyb,(A) = 1]’ = negl(}).

Proof. Suppose there exists an adversary A where |Pr[Hyb1(?l) =1] = Pr[Hyb,(A) = 1]| > &(A) for some non-
negligible e. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {1,5} and S; = {1,5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, g2, 93, g4, g5, Z), where g; is used to denote the random generator
of G,’.

69

3. Algorithm 8B starts running algorithm A who outputs the input length 17, a set S C [n] and an index i* € S.
Algorithm B samples a; & Zy, fi & Zn, rij < Zy for i, j € [n]. It sets

aifj Fo e ek
_ . . L 9, ' (92939495)™ i, j # i
g igs\ (i} |z i=i _ e TR
Aj = P . a B; = Bi i and Cj;= ALl (92939495)" i=i
(91929394)% 1€ S\ {i"} (g195)"" i #i a e
B (92939495) " j=1i".

Next, it samples f* & Zy and r; ¢ Zy for each i € [n]. It sets

*

B*=(g1g5)” and D;= {9f;f* (929394953:? i
Al (92939495)"+ i=i"
It sets hk = vk = (G. 91, {As. B, Di}ic[n). {Ci,j}izj. BY) and gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (h, u) and an opening o. Algorithm 5 outputs 1 if
e(h,B) = e(Ai,Bi») - e(g1,0) and e(h,g293) = 1.

The subgroup decision challenger samples the generators g; < G; exactly as in Hyb, and Hyb,. Moreover, all of the
components other than B;: is constructed exactly as described in Hyb, and Hyb,. Thus, it suffices to consider the
distribution of B*. We consider the two possibilities:

« Suppose Z = (g1gs)" where t €~ Zy. This corresponds to an execution of Hyb, with f§; = t. In this case,
algorithm B outputs 1 with probability Pr[Hyb, (A) = 1].

« Suppose Z = (g19sgs)" where t < Zy. This corresponds to an execution of Hyb, with i+ = t. In this case,
algorithm B outputs 1 with probability Pr[Hyb,(A) = 1].

We conclude that algorithm B succeeds with probability ¢ and the claim holds. O

Lemma 6.13. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
[Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| = negl(1).

Proof. Suppose there exists an adversary A where |Pr[Hyb2(ﬂ) =1] = Pr[Hyb;(A) = 1]| > ¢(A) for some non-
negligible e. We use A to construct an adversary 8B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {1,4} and S; = {1,4, 6} and the sets {1}, {2}, {3}, {4},
{5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, 92, g3, 94, g5, X16, Z), Where g; is used to denote the random
generator of G; and X;4 <~ G({1,6}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1”. Algorithm B samples a; <~ Zy,
Bi & Zn,1ij ¢ Zy for i, j € [n]. It sets

Z i=1 Xiegl® iz 577 (92959495) i j # 7
Ai =1 (9190 e85 and b= {(glﬁgs)ﬂf R AL (grg3gu95)7 i =1
@ " 195 @ e
(91929394)% i€ S\ {i"} B/ (92939495) " j=1i".

Next, it samples f* & Zy and r; ¢ Zy for each i € [n]. It sets

-3k

aif’ re . %

. s

B* = (gig5)” and D;= glﬁ* (929394953* P4
A (92939495)' " i=1i"

It sets hk = vk = (G, 91, {Ai, Bi, Di }ien), {Cij }i2j, BY) and gives (hk, vk) to A.

70

4. Algorithm A outputs a digest dig = (h, u) and an opening o. Algorithm 8 outputs 1 if

E(h,Bi*) = E(Ai*,Bi*) : e(gls O.) and e(h>9293) =1

The subgroup decision challenger samples the generators g; <~ G; exactly as in Hyb, and Hyb,. We can write
X1 = (g19s)"' where y16 < Zy. The value y;4 mod p;ps corresponds to the value of S mod pyps in Hyb, and Hyb,.
The remaining components other than A;- are sampled exactly as required in Hyb, and Hyb,, so it suffices to consider
Aj+. We consider the two possibilities:

« Suppose Z = (g194)" where t <~ Zy. This corresponds to an execution of Hyb, with ;- = t. In this case,
algorithm 8 outputs 1 with probability Pr[Hyb,(A) = 1].

- Suppose Z = (g194gs)" where t €~ Zy. This corresponds to an execution of Hyb, with ¢;+ = t. In this case,
algorithm $ outputs 1 with probability Pr[Hyb,(A) = 1].

We conclude that algorithm 8 succeeds with probability ¢ and the claim holds. O

Lemma 6.14. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb,(A) = 1] > Pr[Hyb,(A) = 1] — negl(A).

Proof. Let dig = (h, u) be the digest output by A in an execution of Hyb, and Hyb,. For an index i € {3, 4}, we define
events E;; and E; ,:

« E;;: This is the event e(h, Bi+) = e(g;, 0) and e(h, g3) = 1 occurring in Hyb,.
« E;,: This is the event that e(h, g;) = 1 occurring in Hyb,.

By definition, the output in Hyb, is 1 if and only if both events E;; and E;; occur. To complete the proof, we start by
showing the following two properties: (1) |Pr[E3,1] - Pr[E4,1]| = negl(4); and (2) Pr[Eqs; A —E42] = negl(A).

Claim 6.15. If the subgroup decision assumption holds with respect to CompGroupGen, then |Pr[E3,1] - Pr[E4,1]| =
negl(1).

Proof. Suppose |Pr[E3,1] - Pr[E4,1]| > ¢(A) for some non-negligible . We use A to construct an adversary 8 that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {1,4,6} and S; = {1, 2,4, 6} and the sets {1}, {3}, {4},
{5}, {6}, {2,3,4}.

2. The challenger replies with the challenge (G, g1, g3, 94, g5, g6, X234, Z) Where g; is a random generator of G; and
X534 & G({2,3,4}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples @; < Zy,
Pi & Zn,rij ¢ Zy for i, j € [n]. It sets
VA i=i
Al‘ = (g1g4)ai i ¢ S and Bi = {
(91X230)™ i€ S\ {i"}

. g7 gy i) # i
and Cij = Aff (Xo34g5)" ™7 i=1i"
By (Xozags)v = 10"

(919596)P" 1=
(grgs)ft izt

It samples * < Zy and r} & Zy for each i € [n], and sets

gf’ﬁ (Xo3ags)"t i # 1

B = (9195)ﬁ* and D; = . s
Aﬁ (Xo3ag5)" 7 i=1"

It sets hk = vk = (G, g1, {As, B, Di}ieln)s {Cij}izj, B*) and gives (hk, vk) to A.

71

4. After A outputs the digest dig = (h, u), algorithm B outputs 1 if

e(h,Bi) =e(g1,0) and e(h,gs)=1.

We first argue that 8 correctly simulates the hash key according to the specification of Hyb, and Hyb,. First, we can
write Xy34 = (929394)?* where yg34 < Zy. Since the challenger samples rijand r} & 7 and each of these values
is used exactly once in the construction of hk, the distributions of C; ; and D; are distributed exactly as they are in
Hyb, and Hyb, unless y34 is zero in the p,, p3, or p, components. This happens with negligible probability over the
choice of y34. Similarly, A; for i € S\ {i*} is distributed identically; the distributions of @; mod p,psps and that of

;Y234 mod popspy when o; <~ Zy are identical as long as y»34 is non-zero in the ps, ps, and p, subgroups. It suffices
to consider the distribution of A;:

« Suppose Z = (g1g4gs)* for t & Zy. This corresponds to an execution of Hyb, with a;+ = t mod p;psps. Thus,
algorithm B outputs 1 with probability Pr[Es].

« Suppose Z = (¢91929ags)’ for t € Zy. This corresponds to an execution of Hyb, with a;- = t mod p;paps. In
this case, algorithm 8 outputs 1 with probability Pr[E4;].

We conclude that B succeeds with probability ¢ and the claim holds. O
Claim 6.16. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[E41 A =E42] = negl(1).

Proof. Suppose Pr[E4; A —Eq3] > €(A) for some non-negligible e. We use A to construct an adversary 8 that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {3, 6} and S; = {2, 3, 6} and the sets {1}, {3}, {4}, {5},
{o}. {2.3}, {2.6}.

2. The challenger replies with the challenge (G, g1, 93, 94, g5, g6, X23, X26, Z) Where g; is a random generator of G;,
Xo3 & G({2,3}), and Xy & G({2,6}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples ; ¢ Zy;,

Bi & Zn,rij ¢ Zn for i, j € [n]. It sets

. g?iﬁj (X239ag5)™ i, j # 1"
and Ci,j = Afij (X23g495)ri*~] i=i*
B (Xo3gags) i j =1i".

(9194)" X361 =1"
Ai = (glg4)ai i ¢ S and Bi = {
(9194X23)% i€ S\ {i*}

(919596)P" =i
(ugs)Pi i

It samples f* < Zy and r} & Zy for each i € [n], and sets

aiﬁ* r¥ . -
Y Xo- i
B* = (glgs)ﬁ and D; = glﬁ* (2594953* l * l*
Al (X23gags)' i=1"
It sets hk = vk = (g,gl, {Ai;Bi’ Di}ie[n]a {Ci,j}i¢j>B*) and gives (hk, Vk) to A.

4. After A outputs the digest dig = (h, u), algorithm B outputs 1 if
e(h,Bis) =e(g1,0) and e(hgs)=1 and e(hZ)=1.

We first argue that algorithm 8 correctly simulates an execution of Hyb, for A. First, we can write X3 = (g293)"*
and Xy = (g296)"?¢, where yu3, y26 € Zn. With overwhelming probability, y,3 is non-zero in the p, and ps subgroups.
In the following, we will assume this is the case. Since the challenger samples r; j, 7 <~ Zy and each of these values
is used exactly once in the construction of hk, the distributions of C; ; and D; are distributed exactly as required
in Hyb,. Similarly, the distribution of A;+ coincides with setting a;+ mod paps as yz6 mod pzps and o; mod p,ps as

72

a;y23 mod pops. Since each a; € Zy and yz6 ¢ Zy, this matches the distribution in Hyb,. Thus, with probability at
least ¢ — negl(1), algorithm B outputs dig = (h, u) such that

e(h,Bi) =e(g1,0) and e(h,g3)=1 and e(hg) # 1. (6.1)

Suppose Eq. (6.1) holds. We first claim that with overwhelming probability, e(h,gs) = 1. Suppose otherwise. If
Bi+ # 0 mod pe (Which happens with overwhelming probability), then B;: is non-zero in the order ps subgroup. If
e(h, gs) # 1, then e(h, B;+) is non-zero in the ps subgroup. By construction e(gy, o) is necessarily 0 in the ps subgroup,
so it can no longer be the case that e(h, B;+) = e(g1, 0). Now consider the probability that B outputs 1:

« Suppose Z = (gsgs)* for some t & Zy. As argued previously, with overwhelming probability, if Eq. (6.1) holds,
then e(h,gs) = 1. Since e(h, g3) = 1, this means e(h, Z) = 1 and algorithm B outputs 1 with overwhelming
probability.

« Suppose Z = (g2g3gs)" for some t < Zy. Since e(h, g;) # 1, then e(h, Z) # 1 so long as t # 0 mod p,, which
holds with overwhelming probability. Thus, in this case, algorithm 8B outputs 1 with negligible probability.

We now compute the advantage of 8. We consider three possibilities:
« Suppose A outputs (h, u) such that e(h, Bi+) # e(g1,0) or e(h, g3) # 1. Then, the output of B is always 0.

« Suppose A outputs (h, u) such thate(h, B;-) = e(g;, o) and e(h, g3) = 1and e(h, g2) = 1. By the previous analysis,
if e(h, Bix) = e(g1, 0), then e(h, g¢) = 1 with overwhelming probability. Since Z = (g39¢)" or Z = (g2939s)", this
means that B outputs 1 with overwhelming probability regardless for both possible values of Z.

« Suppose A outputs (h, u) such that e(h, Bi+) = e(g1,0) and e(h, g3) = 1 and (h, g») # 1. By the earlier analysis,
this case occurs with probability at least ¢ — negl(A4), and in this case, algorithm 8B outputs 1 with probability
1 —negl(A) if Z = (g3gs)" and with probability negl(A) if Z = (g293gs)*.

Let p1, pa, p3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupg(24,0) = 1] = p2(1 — negl(1)) + p3 - (1 — negl(4))
Pr[ExptSubgroup (A, 1) = 1] = p2(1 — negl(1)) + ps - negl(1)

The advantage of B is thus p; — negl(1) > ¢ — negl(A), and the claim holds. O

To complete the proof we have that

PI‘[Hyb4(ﬂ) = 1] = PI‘[E4,1 A\ E4’2]
=Pr[Eq;] — Pr[Eq; A —Eqp]
> Pr[E4] — negl(A) by Claim 6.16
> Pr[Es] — negl(A) by Claim 6.15,
and Lemma 6.14 follows.]

Lemma 6.17. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb.(A) = 1] = Pr[Hyb,(A) = 1] — negl(4).

Proof. The proof follows by a similar argument as that of Lemma 6.14. Let dig = (h, u) be the digest output by A in
an execution of Hyb, and Hyb;. For an index i € {4, 5}, we define events E;; and E;; as in the proof of Lemma 6.14
(changes marked in green):

+ E;1: This is the event e(h, Bi+) = e(g1, 0) and e(h, g2) = 1 occurring in Hyb,.

+ E;,: This is the event that e(h, gs) = 1 occurring in Hyb,.

73

By definition, the output in Hyb, is 1 if and only if both events E;; and E;; occur. To complete the proof, we start by
showing the following two properties: (1) |Pr[E4’1] - Pr[E5,1]| = negl(4); and (2) Pr[Es; A =Es5z2] = negl(A).

Claim 6.18. If the subgroup decision assumption holds with respect to CompGroupGen, then |Pr[E4,1] - Pr[E5,1]| =
negl(1).

Proof. Suppose |Pr[E4,1] - Pr[E5,1]| > ¢(A) for some non-negligible ¢. We use A to construct an adversary 8B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sp = {1, 2,4,6} and S; = {1, 2,3, 4, 6} and the sets {1}, {2},
{4}, {5}, {6}, {2,3,4}.

2. The challenger replies with the challenge (G, 91, g2, 94, 5, go, X234, Z) Where g; is a random generator of G; and
Xozq & G({2,3,4)).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples ; ¢ Zy,
Bi & Zn,rij < Zy for i, j € [n]. It sets
V4 i=i
Ai=1(g194)" i¢S and B; = {
(91X230)% 1€ S\{i"}

, G (Kosags)™ ij #0°
and Cj;= Aﬁj (X23495)70 i=1"
B?f (Xozags)"s j=1i"

(91959¢)P" =i

(9195)P P+

It samples f* < Zy and r} & 7 for each i € [n], and sets

a;f* L
« X 4 T
B = (glgs)ﬁ and D, = glﬁ* (234953* l # l*
AL (Xozags)'e i=1"
It sets hk = vk = (g, 91, {Ai, Bi, Di}ic[n), {Ci,j}#j,B*) and gives (hk, vk) to A.
4. After A outputs the digest dig = (h, u), algorithm 8B outputs 1 if

e(h,Bi) =e(g1,0) and e(h,gs)=1.

We first argue that 8B correctly simulates the hash key according to the specification of Hyb, and Hyb,. First, we can
write Xp34 = (g29394)¥?* where ys34 & 7. Since the challenger samples r; j and r} & Zn and each of these values
is used exactly once in the construction of hk, the distributions of C; ; and D; are distributed exactly as they are in
Hyb, and Hyb. unless y,34 is zero in the p,, ps, or ps components. This happens with negligible probability over
the choice of y,34. Similarly, A; for i € S\ {i*} is distributed identically; the reduction algorithm effectively samples
a; mod p2p3ps, Aiya3s mod pap3ps which are identically distributed when o; <~ Zx and y»34 is non-zero in the ps, ps,
and p4 subgroups. It suffices to consider the distribution of A;+:

« Suppose Z = (91929ags)" for t € Zy. This corresponds to an execution of Hyb, with a;» = t mod p1p2paps-
Thus, algorithm 8B outputs 1 with probability Pr[Es;].

« Suppose Z = (g192939gags)’ for t < Zy. This corresponds to an execution of Hyb; with a;+ = £ mod p1pap3paps.
In this case, algorithm 8 outputs 1 with probability Pr[Es;].

We conclude that 8B succeeds with probability ¢ and the claim holds. O
Claim 6.19. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[Es; A =Es ;] = negl(1).

Proof. Suppose Pr[Es; A —Es3] > ¢(A) for some non-negligible e. We use A to construct an adversary $ that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {2,6} and S; = {2,3, 6} and the sets {1}, {2}, {4}, {5},
{6}, {23}, {3,6}.

74

2. The challenger replies with the challenge (G, g1, 92, 94, g5, 96> X23, X36, Z) Where g; is a random generator of G;,
Xo3 & G({2,3}), and X35 & G({3,6}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1”. Algorithm B samples a; < Zy,
Bi & Zn,1ij ¢ Zy for i, j € [n]. It sets

(919294)%7 X356 i =1i" B i g?iﬁj (X2394g5)" i, j # 1"
_ - . _ (g19596)"" i=i _ B P ek
A= (919" Hes and B = (919)hi i # i and C;; = A (Xo3gags)™s Q=i
. . - 195 ; . . o
(9194X53)% ieS\{i"} B? (X2394g5) " J=1.

It samples f* < Zy and r} & Zy for each i € [n], and sets

aif* s g

. X5 i #
B = (9195)ﬁ and D; = 91/3* (2594952* l lx
Al (Xo3gags)'e i=10"

It sets hk = vk = (g,gl, {Ai, B, Di}ie[n), {Ci,j},-;tj,B*) and gives (hk, vk) to A.

4. After A outputs the digest dig = (h, u), algorithm B outputs 1 if

e(h,Bix) =e(g91,0) and e(hg;)=1 and e(hZ)=1.

We first argue that algorithm 8 correctly simulates an execution of Hyb, for A. First, we can write X3 = (g2g3)"*
and X3 = (g39g6)?*, where ya3, y36 & Zn. With overwhelming probability y»3 is non-zero in the p, and ps subgroups.
In the following, we will assume this is the case. Since the challenger samples r; j, r; < Zy and each of these values
is used exactly once in the construction of hk, the distributions of C; ; and D; are distributed exactly as required in
Hyb.. Similarly, the distribution of A;- coincides with setting a;+ mod pap3pe as y236 mod popspe and o; mod p,ps as
a;y23 mod paps. Since each a; ¢ Zy and yz3, y236 < Zn;, this matches the distribution in Hyb,. Thus, with probability
at least € — negl(1), algorithm 8 outputs dig = (h, u) such that

e(h,Bi-) =e(g1,0) and e(hg;) =1 and e(hgs) # 1. (6.2)

Suppose Eq. (6.2) holds. We first claim that with overwhelming probability, e(h, gs) = 1. Suppose otherwise. If
B+ # 0 mod pe (Which happens with overwhelming probability), then B;- is non-zero in the order ps subgroup. If
e(h,gs) # 1, then e(h, B;+) is non-zero in the ps subgroup. By construction e(g;,) is necessarily 0 in the ps subgroup,
so it can no longer be the case that e(h, B;+) = e(g1, 0). Now consider the probability that B outputs 1:

« Suppose Z = (g2gs)" for some t ¢ Zy. As argued previously, with overwhelming probability, if Eq. (6.2)
holds, then e(h, g¢). Since e(h, g2) = 1, this means e(h, Z) = 1 and algorithm 8 outputs 1 with overwhelming
probability.

« Suppose Z = (g2g3g6)" for some t & Zy. Since e(h,g3) # 1, then e(h, Z) # 150 long as t # 0 mod ps, which
holds with overwhelming probability. Thus, in this case, algorithm 8 outputs 1 with negligible probability.

We now compute the advantage of 8. We consider three possibilities:
« Suppose A outputs (h, u) such that e(h, Bj») # e(gy1, 0) or e(h, g2) # 1. Then, the output of B is always 0.

« Suppose A outputs (h, u) such that e(h, Bi+) = e(g1, 0) and e(h, g2) = 1and e(h, g3) = 1. By the previous analysis,
if e(h, Bi+) = e(g1, 0), then e(h, g¢) = 1 with overwhelming probability. Since Z = (gogs)’ or Z = (g293gs)’, this
means that B outputs 1 with overwhelming probability regardless for both possible values of Z.

« Suppose A outputs (h, u) such that e(h, Bi+) = e(g1,0) and e(h, go) = 1 and (h, g3) # 1. By the earlier analysis,
this case occurs with probability at least ¢ — negl(A), and in this case, algorithm 8B outputs 1 with probability
1 —negl(A) if Z = (g29s)" and with probability negl(A) if Z = (g2939s)*.

75

Let p1, pa, p3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupg(A,0) = 1] = p2(1 — negl(A)) + ps - (1 — negl(1))
Pr[ExptSubgroupg(A, 1) = 1] = p2(1 — negl(4)) + p3 - negl(A)

The advantage of B is thus p; — negl(1) > ¢ — negl(A), and the claim holds. O

To complete the proof we have that

PI‘[Hbe(ﬂ) = 1] = PI'[E5’1 AN E532]
=Pr[Es;] — Pr[Es; A —=Es;]
> Pr(Es] — negl(1) by Claim 6.19
> Pr[Eq] — negl(d) by Claim 6.18,
and Lemma 6.17 follows. m]

Lemma 6.20. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
|Pr[Hyb5(.?{) =1] = Pr[Hyb(A) = l]i = negl(4).

Proof. The proof is analogous to the proof of Lemma 6.13, except that the challenge subgroups are Sy = {1, 2, 3,4}
and S; = {1,2,3,4,6}. O

Lemma 6.21. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
[Pr[Hybg(A) = 1] — Pr[Hyb,(A) = 1]| = negl(1).

Proof. The proof is analogous to the proof of Lemma 6.12, except that A;+ is now in G({1, 2, 3, 4}). O
Lemma 6.22. Pr[Hyb,(A) = 1] = Pr[Hybg(A) =1].

Proof. This follows by an analogous argument as the proof of Lemma 6.11. O
Combining Lemmas 6.11 to 6.14, 6.17 and 6.20 to 6.22, the index hiding with extracted guess property holds. O

Theorem 6.23 (Zero Fixing). If the general subgroup decision holds with respect to CompGroupGen, then Construc-
tion 6.3 satisfies selective zero-fixing.

Proof. Let A be an efficient adversary for the zero fixing game. We begin by defining a sequence of hybrid experiments:

+ Hyb,: This is the selective version of the experiment ExptZF 4 (1). Namely, the adversary starts by outputting
an input length 17, a set S C [n], and an index i* € S. The challenger samples (G, Gr, {pi}ie[é] ,g,e) —
CompGroupGen(1%). It samples generators g; < G; and sets G = (G, Gr, N, g, e) where N = [Ticre) pi- It
constructs the hash key components as follows:

~ Main components: For each i € [n], sample a;, f; ¢~ Zy Set A; = (g194)% if i ¢ S and A; = (g1929394)
if i € S. Then, set B; = (g195)”".

- Cross-terms: For each i, j € [n] where i # j, sample r; ; & Zn and let Cij= g‘f”ﬁf (92939495)"" .

- Digest validation components: Sample f* & Zy and let B* = (g195)? . For each i € [n], sample
xR = aip* ri
r{ < Zy and let D; = g|"" (g2939495)": .

The challenger gives the hash key hk and verification key vk to A where
hk = vk = (G, g1. {Ai. Bi, Di}ieqn], {Cij }izj» B).
Algorithm A then outputs a digest dig = (h, u) and an opening o. The output of the experiment is 1 if

e(h,B;) = e(Ap,Bi+) - e(g1,0) and e(h,g293) = 1.

76

+ Hyb,: Same as Hyb, except the challenger now sets C;; = A?"k(gzgggzlgs)’i*'i for all j # i* and Cj;+ =

B (g29394g5)"" for all i # i*. Similarly, the challenger sets D;- = A{j (9293949s5)"7 . In particular, the exponents
a;+ and B+ only shows up in A;+ and B;+, respectively.

« Hyb,: Same as Hyb, except the challenger now sets B; = (g195s)"".
+ Hyb,: Same as Hyb, except the challenger now sets Ay = (g192939496)“"
+ Hyb,: Same as Hyb, except the experiment outputs 0 if e(h, g5) # 1.

We write Hyb, (A) to denote the output of an execution of Hyb; with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.24. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]
Proof. This follows by the same argument as in the proof of Lemma 6.11. O

Lemma 6.25. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
[Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| = negl(1).

Proof. Suppose there exists an adversary A where |Pr[Hyb1(ﬂ) =1] = Pr[Hyb,(A) = 1]| > ¢(A) for some non-
negligible e. We use A to construct an adversary 8 that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {1,5} and S; = {1, 5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, 92, 3, g4, g5, Z), where g; is used to denote the random generator
of GI,'.

3. Algorithm 8 starts running algorithm A who outputs the input length 17, a set S C [n] and an index i* € S.
Algorithm B samples a; < Zn, fi < Zn, 1j < Z for i, j € [n]. It sets

aip; ri: PR o
. . o 9y 7 (92939495)" i # i
i S Z =
A= {(9194) s and B; = { Pet

o o and C;; = A,ﬁj i j=1i
(91929394)% 1€S (9195)P i# i ! i (929:9495)

Bl (g2939ags) j =1
Next, it samples f* <~ Zy and r} & Zy for each i € [n]. It sets

+3k

a;p* r;‘ . -
B = (995" and D, =1L (929394953* A
Aj (92939495)" i=1i".
It sets hk = vk = (G, g1, {Ai, B, Di}ie[n), {Cij }i2j, BY) and gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (h, u) and an opening o. Algorithm $ outputs 1 if

e(h,Bi+) = e(Ay, Bir) - e(g91,0) and e(h,gz293) = 1.

The subgroup decision challenger samples the generators g; < G; exactly as in Hyb, and Hyb,. Moreover, all of the
components other than B;: is constructed exactly as described in Hyb, and Hyb,. Thus, it suffices to consider the
distribution of B*. We consider the two possibilities:

« Suppose Z = (g1gs)" where t €~ Zy. This corresponds to an execution of Hyb, with f; = t. In this case,
algorithm B outputs 1 with probability Pr[Hyb, (A) = 1].

« Suppose Z = (g19sgs)" where t ¢ Zy. This corresponds to an execution of Hyb, with i+ = t. In this case,
algorithm B outputs 1 with probability Pr[Hyb,(A) = 1].

77

We conclude that algorithm B succeeds with probability ¢ and the claim holds. O

Lemma 6.26. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
|Pr[Hyb2(ﬂ) =1] = Pr[Hyb;(A) = 1]\ = negl(4).

Proof. Suppose there exists an adversary A where |Pr[Hyb2(ﬂ) =1] = Pr[Hyb;(A) = 1]| > ¢(A) for some non-
negligible e. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm 8 submits Sy = {1, 2,3,4} and S; = {1, 2,3, 4, 6} and the sets {1}, {2},
{3}, {4}, {5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, 92, g3, g4, g5, X16, Z), Where g; is used to denote the random
generator of G; and Xi5 < G({1,6}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples o; € Zy;,
Bi & Zn, rij & Zn fori, j € [n]. It sets

z =i [V gfiﬁj (92939495)"™7 i,] # i
A=) g0 e and B {(91 6§S)ﬁ‘ | £ and Cij = Aﬁj (92939495)"™7 i=1"
i . Py 195)"™ l l i T . P

(91929394)% i€ S\ {i*} Bli(92939495) " j=1i".

Next, it samples f* & Zy and r; ¢ Zy for each i € [n]. It sets

*

O!iﬁ* r:_‘ . o)
B = (glgs)ﬁ* and D;= glﬂ* (929394953* l ’ l
Al (92939495) " i=1i".
It sets hk = vk = (Q, 91, {Ai, Bi, Di}ie[n), {Ci,j}#j,B*) and gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (h, u) and an opening o. Algorithm 8 outputs 1 if

e(h,Bi) = e(Ai, Bir) - e(g91,0) and e(h,gz293) = 1.

The subgroup decision challenger samples the generators g; <~ G; exactly as in Hyb, and Hyb,. We can write
Xi6 = (9196)"® where y16 < Zn. The value y14 mod p;ps corresponds to the value of f;+ mod p1ps in Hyb, and Hyb,.
The remaining components other than A; are sampled exactly as required in Hyb, and Hyb,, so it suffices to consider
Aj+. We consider the two possibilities:

- Suppose Z = (g1929394)" where t €~ Zy. This corresponds to an execution of Hyb, with ;- = t. In this case,
algorithm 8 outputs 1 with probability Pr[Hyb,(A) = 1].

« Suppose Z = (91929394gs)" where t € Zy. This corresponds to an execution of Hyb, with a;+ = t. In this case,
algorithm B outputs 1 with probability Pr[Hyb,(A) = 1].

We conclude that algorithm B succeeds with probability ¢ and the claim holds. O

Lemma 6.27. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
|Pr[Hyb3(ﬂ) =1] = Pr[Hyb,(A) = l]i = negl(4).

Proof. Suppose there exists an adversary A where |Pr[Hyb3(ﬂ) =1] — Pr[Hyb,(A) = 1]| > £(A) for some non-
negligible e. Since the only difference between Hyb, and Hyb, is the extra condition, it must be the case that with
probability ¢, algorithm A outputs (h, u, o) such that

e(h,B) = e(Ai,Bi+) - e(g91,0) and e(h,gsg3) =1 and e(h,gs) # 1. (6.3)

In all other cases, the output in Hyb, and Hyb, are identical. We use A to construct an adversary 8 for the general
subgroup decision assumption:

78

1. At the beginning of the game, algorithm B submits Sy = {2,3,5} and S; = {2, 3,5, 6} and the sets {1}, {2}, {3},
{4}, {5}, {2,6}, {5, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 91, g2, 93, 94 g5, X26, X56, Z), Where g; is used to denote the random
generator of G;, Xzs < G({2,6}), and Xs6 < G({5,6}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples a; < Zy,
Bi & Zn,rij & Zn fori, j € [n]. It sets

(919394) " Xo5 1 =1i" X i=i 917 (g2939:95)70 1) # i
' i 6 - j . o
Ai =1 (g194)" i¢s and B; = {(;lgs)ﬁi P and C;;= Aﬁ’ (929394gs) ™7 i=i
(91929590)% 1€ S\ BJi(gagsgags) j=1i".

Next, it samples f* & Zy and r; ¢ Zy for each i € [n]. It sets

aiff ri . %

. -

B* = (gig5)’ and D;= glﬁ* (929394953* 1 1*
Ai* (92939495)"+ i=1i".

It sets hk = vk = (G, g1, {Ai, B, Di }ien), {Cij }i2j, BY) and gives (hk, vk) to A.
4. Algorithm A outputs a digest dig = (h, #) and an opening o. Algorithm 8 outputs 1 if

e(h,Bi) = e(Ai,Bir) - e(g1,0) and e(h,g2g93) =1 and e(h Z)=1.

The subgroup decision challenger samples the generators g; <~ G; exactly as in Hyb, and Hyb,. We can write
X6 = (9296)"* and Xss = (gsges)¥*s where ya6, ys6 <~ Zn. The value yzs mod pips corresponds to the value of
a; mod pype while the value ys¢ corresponds to the value of S+ mod psps. Thus, algorithm B perfectly simulates
the hash key for algorithm A. Thus, with probability at least ¢ — negl(A), algorithm A outputs (h, u, o) that satisfies
Eq. (6.3). Then, we have the following:

« It must be the case that e(h, g5s) = 1. Suppose otherwise. This means that & is non-zero in the G5 subgroup.
Consider the first verification condition e(h, B;) = e(A;+, B;+) - (g1, o). If h is non-zero in the G5 component,
then the left-hand side e(h, B;+) is non-zero in the order-ps subgroup unless ys, = 0 mod ps, which happens
with negligible probability. However, the right-hand side is guaranteed to be zero in the order ps subgroup
(since neither A;+ nor g; have non-zero components in Gs).

« Suppose Z = (g2g3gs)* for some t < Zy:. Since e(h, g2g3) = 1 and e(h, gs) = 1, this means that e(g, Z) = 1 and
algorithm 8 always outputs 1.

« Suppose Z = (g293g59s)’ for some t & Zy. From Eq. (6.3), we have that e(h, g¢) # 1, so h has a non-zero
component in the G¢ subgroup. Aslong as t mod pg is non-zero (which happens with overwhelming probability),
then e(h, Z) # 1. In this case, algorithm 8 outputs 1 with negligible probability.

We have established that when Eq. (6.3) holds, algorithm 8 is able to successfully distinguish the subgroup decision
challenge. To complete the proof, we show that when Eq. (6.3) does not hold,” then algorithm 8B’s behavior is
independent of the challenge Z.

1. Suppose A outputs (h, u, o) where either e(h, Bi+) # e(A;, Bi-)-e(g1, o) or e(h, g2g3) # 1. In this case, algorithm
B always outputs 0.

Note that algorithm B cannot check for itself whether Eq. (6.3) occurs or not since it does not know gy (and indeed, knowledge of gs would
trivially break the subgroup decision assumption). Thus, our proof strategy is simply to argue that when Eq. (6.3) does not happen, then the
behavior of algorithm 8 is independent of the challenge Z.

79

2. Suppose A outputs (h,u, o) where e(h, B;») = e(Aj, B;+) - e(g1,0), e(h,g293) = 1, and e(h,gs) = 1. Since
e(h,B;) = e(Aj, Bi+) - e(g1, 0), our earlier analysis implies that with overwhelming probability over the choice
of ys6, e(h,gs) = 1. Thus, in this case, e(h, g2939g59s) = 1, so e(h, Z) = 1 for both possible choice of Z. As such,
algorithm 8B always outputs 1 in this case.

3. Finally, suppose A outputs (h, u, o) that satisfies Eq. (6.3). By our analysis above, algorithm 8 outputs 1 with
probability 1 when Z = (g2g395)" and probability negl(1) when Z = (g2g3959s)*-

If we let p1, p2, p3 be the probabilities of each of these possible cases, then we have
Pr[ExptSubgroupg(4,0) = 1] = p2 + p3
Pr[ExptSubgroupg(A,1) = 1] = py + p3 - negl()

The advantage of 8B is thus p;(1 — negl(1)). By our above analysis, we have that p; > ¢ — negl(4) and so algorithm 8
breaks the general subgroup decision assumption with advantage at least ¢ — negl(A). O

Lemma 6.28. Pr[Hyb,(A) = 1] = negl(1).
Proof. In order for the output of Hyb, to be 1, the adversary ‘A must output (h, u, o) such that
e(h,B;) = e(Ay,Bi-) - e(g91,0) and e(h,gog93) =1 and e(h,gs) = 1.

We claim that this can only happen with negligible probability over the choice of ;+ and f;+. By construction in
Hyb,, as long as a;+, f;+ # 0 mod pe (which holds with overwhelming probability), e(A;:, B;+) will have a non-zero
component in the order ps-subgroup. However, if e(h, gs) = 1, then h is zero in the order p¢-subgroup. Likewise,
e(g1, o) does not have an order ps subgroup. This means the left-hand side of the verification relation is zero in the
order-ps subgroup while the right-hand side is non-zero. As such, the verification relation is unsatisfiable as long as
ai, P+ # 0 mod pg. O

Combining Lemmas 6.24 to 6.28, we have that Pr[Hyb,(A) = 1] = negl(1), and zero fixing security holds. O

Theorem 6.29 (Extractor Validity). If the general subgroup decision holds with respect to CompGroupGen, then
Construction 6.3 satisfies extractor validity.

Proof. Let A be an efficient adversary for the extractor validity game. We begin by defining a sequence of hybrid
experiments:

+ Hyb,: This is experiment ExptEV 4(1). Namely, the adversary starts by outputting an input length 1". The
challenger samples (G, Gr, {pi};c[¢]. 9. €) — CompGroupGen(1%). It samples generators g; & G; and sets
G = (G,Gr, N, g,e), where N = [];¢[6] pi- It constructs the hash key components as follows:

- Main components: For each i € [n], sample a;, f; & Zn Set A; = (g194)% and B; = (glg5)ﬂf.
— Cross-terms: For each i, j € [n] where i # j, sample r;; ¢ Zy and let C; ; = g?iﬁf (92939495)"H .

- Digest validation components: Sample * & Zy and let B* = (g1g5)? . For each i € [n], sample
% R _ Ofiﬂ* r
rj < Zy and let D; = g;"" (92939495)"" .

The challenger gives the hash key hk and verification key vk to A where
hk = vk = (G, g1, {Ai. Bi, Di}ieqn], {Cij }izj» B).
Algorithm A then outputs a digest dig = (h, u) and the output of the experiment is 1 if

e(h,B*) = e(g1,u) and e(h,gzg3) # 1.

« Hyb,: Same as Hyb,, except the challenger now sets D; = (B")% (g,g3gags)"i for all i € [n]. In particular, the
exponent f* only shows up in the definition of B*.

80

« Hyb,: Same as Hyb,, except the challenger now sets B* = (g19295)” .
« Hyb,: Same as Hyb,, except the challenger now sets B* = (¢192939s)” .

We write Hyb,(A) to denote the output of an execution of Hyb, with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.30. Pr[Hyb,(A) = 1] = Pr[Hyb,(A) = 1]

Proof. The outputs of Hyb,(A) and Hyb, (A) are identically distributed. The only difference between these two
distributions is the distribution of D;. According to the specification of Hyb;,

D; = (B*)ai (92939495)r; = (glgs)“"ﬂ* (92939495)r; = gixiﬁ (929394)r;92i+aiﬁ .

Since r; ¢ Zy (and independent of all other quantities in hk, vk), the distribution of r} + ¢;#* mod ps is uniform
over Z,;. We conclude that the distribution of D; in Hyb, is distributed exactly as in Hyb,. O

Lemma 6.31. Ifthe general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb,(A) = 1] < Pr[Hyb,(A) = 1] + negl(A).

Proof. Let dig = (h, u) be the digest output by A in an execution of Hyb, and Hyb,. For an index i € {1, 2}, we define
events E;; and E; ,:

o E;1: This is the event e(h, B*) = e(g;, u) and e(h, g3) # 1 occurring in Hyb,.
o E;: This is the event e(h, B*) = e(g;,u) and e(h, g3) = 1 and e(h, g») # 1 occurring in Hyb,.

If the output of Hyb; is 1, exactly one of E;; or E;» must happen (note that these events are mutually exclusive). Thus,
for i € {1, 2}, we can write
Pr[Hybl(ﬂ) = 1] = Pr[Ei’l] + Pr[El-’z]. (64)

We now analyze the probabilities of these events:

Claim 6.32. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[Eq1] — Pr[Ez1]] = negl(4).

Proof. Suppose |Pr[E;] —Pr[E;1]| > ¢(4) for some non-negligible ¢. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits Sy = {5} and S; = {2,5} and the sets {1}, {3}, {4}, {5},
{2,5}.

2. The challenger replies with the challenge (G, g1, g3, g4, g5, X25, Z) Where g; is a random generator of G;, X5 <
G({2,5}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm B samples o; ¢ Zy;,
Bi & Zn, rij & Zn fori, j € [n]. It sets

A= (gi90)% and By =(gigs)" and Cpj =gy (Xosg59)"™ .
It samples * & Zy and r} & Zy for each i € [n], and sets
B = gf*Z and D; = (B")* (X25g3g4)r;.
It sets hk = vk = (g,gl, {Ai;Bi, Di}iE[n]a {Ci,j}l'¢j, B*) and gives (hk, Vk) to A.
4. After A outputs the digest dig = (h, u), algorithm B outputs 1 if

e(h,B") =e(g,u) and e(h,gs) # 1.

81

We first argue that 8B correctly simulates the hash key according to the specification of Hyb; and Hyb,. First, we can
write Xa5 = (¢295)¥» where yz5 € Zy. Since the challenger samples r; jand r} & 7 and each of these values is
used exactly once in the construction of hk, the distributions of C; ; and D; are distributed exactly as they are in Hyb,
and Hyb, unless y,s is zero in the p, or ps components. This happens with negligible probability over the choice of
Yas. It suffices to consider the distribution of B*:

« Suppose Z = g, for t ¢ Zy. This corresponds to an execution of Hyb, with f* = t mod ps. Thus, algorithm B
outputs 1 with probability Pr[E;;].

« Suppose Z = (gags)" for t & Zy. This corresponds to an execution of Hyb, with * = t mod p,ps. In this case,
algorithm B outputs 1 with probability Pr[E;;].

We conclude that algorithm B succeeds with advantage ¢ — negl(1) and the claim follows. O
Claim 6.33. Ifthe general subgroup decision assumption holds with respect to CompGroupGen, then Pr[E; ;] = negl(1).

Proof. Suppose Pr[E;;] > ¢(A) for some non-negligible ¢. We use A to construct an adversary B that breaks the
general subgroup decision assumption:

1. At the beginning of the game, algorithm 8 submits Sy = {2,3} and S; = {3} and the sets {1}, {3}, {4}, {5},
{2,3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, g3, g4, g5, X23, Z) where g; is a random generator of G; and
Xo3 & G({2,3}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1”. Algorithm B samples a; <~ Zy,
Bi & Zn,1ij ¢ Zy for i, j € [n]. It sets

Ai = (g199) and B;=(gigs)” and C;;= g?iﬂj (X239495)" .

It samples f* ¢ Zy and r} & Zy for each i € [n], and sets

B'=(9195)" and Di= (B)"(X239195)"
It sets hk = vk = (G, g1, {Ai, Bi, Di}Yie[n), {Cij }i2j, BY) and gives (hk, vk) to A.
4. After A outputs the digest dig = (h, u), algorithm 8 output 1 if the following hold:

e(h,B") =e(g,u) and e(h,g3)=1 and e(hZ2)=1.

We first argue that algorithm 8 correctly simulates an execution of Hyb, for A. First, we can write X3 = (g293)"*
where y;3 ¢~ Zy. Since the challenger samples r; j, r} & Zx and each of these values is used exactly once in the
construction of hk, the distributions of C; ; and D; are statistically close to that in Hyb, unless y»3 is zero in the p, or
p3 components. This happens with negligible probability over the choice of y23. In the following analysis, we assume
that y,3 is non-zero in both its p; and p; components. Thus, with probability at least € — negl(1), algorithm 8 outputs
dig = (h, u) such that event E; ; occurs. This means

e(h,B") =e(g,u) and e(h,gs) =1 and e(hgy) # 1. (6.5)
Suppose Eq. (6.5) holds. We consider the probability that 8 outputs 1:

« IfZ = (g293) for some t & Zy and e(h, g;) # 1, then aslong as t # 0 mod po, it will be the case that e(h, Z) # 1,
so algorithm B outputs 0.

« If Z = g}, for some ¢ ¢~ Zy and e(h, g3) = 1, then algorithm B always outputs 1.

We now compute the advantage of B. We consider three possibilities:

82

1. Suppose A outputs (h, u) where either e(h, B*) # e(g1, u) or e(h, g3) # 1. Then, the output of B is always 0.

2. Suppose A outputs (h,u) where e(h, B*) = e(g1,u), e(h,g3) = 1, and e(h, g») = 1. Since Z = (g293)" or Z = g3,
in both cases, e(h, Z) = 1 and algorithm B always outputs 1.

3. Suppose A outputs (h, u) such that Eq. (6.5) holds. By the above analysis, this case happens with probability at
least £ — negl(A). Then algorithm B outputs 1 with negligible probability if Z = (g2g3)* and with probability 1
if Z = g5,

Let p1, pa, p3 be the probabilities of each of these cases. Then,
Pr[ExptSubgroupg(A,0) = 1] = py + p3 - negl()
Pr[ExptSubgroupg(A,1) = 1] = p, + ps3
The advantage of B is thus ps(1 — negl(1)) > ¢ — negl(A), and the claim holds. O

Returning to the proof of Lemma 6.31, we appeal to Eq. (6.4) to write

Pr[Hyb,(A) = 1] = Pr[Ey,;] + Pr[E] by Eq. (6.4)
< Pr(Eq1] + negl(A) by Claim 6.33
< Pr(Ez1] + negl(A) by Claim 6.32
< Pr[E;] +Pr[E;2] + negl(1)
= Pr[Hyb,(A) = 1] + negl(1) by Eq. (6.4),
which proves the lemma. O

Lemma 6.34. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb,(A) = 1] < Pr[Hyb,(A) = 1] + negl(1).

Proof. This follows by a similar argument as the proof of Lemma 6.31. Let dig = (h, u) be the digest output by A in
an execution of Hyb, and Hyb,. For an index i € {2, 3}, we define an analogous set of events E;; and E;; as in the
proof of Lemma 6.31 (changes marked in green):

« E;;: This is the event e(h, B*) = e(g;, u) and e(h, g;) # 1 occurring in Hyb,.
+ Ej: This is the event e(h, B*) = e(gy, u) and e(h, g») = 1 and e(h, g3) # 1 occurring in Hyb,.
Once again, we can write Pr[Hyb,(A) = 1] Pr[E;;] + Pr[E;,]. We analyze the probabilities of each of these events:

Claim 6.35. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[Ez1] — Pr[Es;]| = negl(4).

Proof. Suppose | Pr[Ez1] — Pr[Es]| = €(A) for some non-negligible ¢. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm 8B submits Sy = {5} and S; = {3,5} and the sets {1}, {2}, {4}, {5},
{3,5}.

2. The challenger replies with the challenge (G, g1, g2, ga. g5, X35, Z) Where g; is a random generator of G;, X35 <
G({3,5}).

3. Algorithm 8 starts running algorithm A who outputs the input length 1". Algorithm 8 samples o; ¢~ Zy;,
Bi & Zn,rij ¢ Zn for i, j € [n]. It sets

Ai=(q199)% and B; = (g195)" and Cij= gfiﬂj (X359294)"™ .
It samples f* < Zy and r} & Zy for each i € [n], and sets
B =(g192)? Z and D;= (B")¥(X359294)"" .
It sets hk = vk = (G, g1, {Ai, B, Di}ie[n), {Cij }i2j, B*) and gives (hk, vk) to A.

83

4. After A outputs the digest dig = (h, u), algorithm B outputs 1 if

e(h,B") =e(g,u) and e(hgy) # 1.

We first argue that 8 correctly simulates the hash key according to the specification of Hyb, and Hyb,. First, we can
write X35 = (g3gs)?*> where y35s < Zy. Since the challenger samples rij and r} & 7N and each of these values is
used exactly once in the construction of hk, the distributions of C; j and D; are distributed exactly as they are in Hyb,

and Hyb; unless yss is zero in the ps or ps components. This happens with negligible probability over the choice of
¥3s. It suffices to consider the distribution of B*:

« Suppose Z = gL, for t ¢~ Zy. This corresponds to an execution of Hyb, with f* = t mod ps. Thus, algorithm 8
outputs 1 with probability Pr[E;;].

« Suppose Z = (gags)" for t €~ Zy. This corresponds to an execution of Hyb, with * = t mod p,ps. In this case,
algorithm 8 outputs 1 with probability Pr[Es].

We conclude that algorithm 8 succeeds with advantage ¢ — negl(4) and the claim follows. O
Claim 6.36. Ifthe general subgroup decision assumption holds with respect to CompGroupGen, then Pr[E;,] = negl(1).

Proof. Suppose Pr[E;;] > e(4) for some non-negligible ¢. We use A to construct an adversary 8 that breaks the
general subgroup decision assumption:

1. At the beginning of the game, algorithm 8B submits Sy = {2,3} and S; = {2} and the sets {1}, {2}, {4}, {5},
{2,3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, g1, 92, g4, g5, X23, Z) where g; is a random generator of G; and
Xy3 & G({2,3)).

3. Algorithm 8 starts running algorithm A who outputs the input length 1”. Algorithm B samples a; < Zy,
Bi & Zn,1ij ¢ Zy for i, j € [n]. It sets

Ai=(g1g0)™ and B;=(gigs)” and C;;= g?iﬁj (X239495)" .

It samples f* < Zy and r} & Zy for each i € [n], and sets

B* = (g19295)" and D; = (B)™(Xy39495)""
It sets hk = vk = (G, g1, {As, B, Di}ieln)s {Cij}izj, B*) and gives (hk, vk) to A.
4. After A outputs the digest dig = (h, u), algorithm 8 output 1 if the following hold:

e(h,B") =e(g,u) and e(h,g2)=1 and e(hZ2)=1.

We first argue that algorithm 8 correctly simulates an execution of Hyb, for A. First, we can write X3 = (g2g3)"*
where y,3 € Zy. Since the challenger samples r; ;, 7 < Zy and each of these values is used exactly once in the
construction of hk, the distributions of C; j and D; are statistically close to that in Hyb, unless y»3 is zero in the p,
or p3 component. This happens with negligible probability over the choice of y,3, so in the following analysis, we
assume that this is not the case. Thus, with probability at least ¢ — negl(1), algorithm B outputs dig = (h, u) such that

e(h,B*) =e(g,u) and e(h,g)=1 and e(hgs) # 1. (6.6)
Suppose Eq. (6.6) holds. We consider the probability that 8 outputs 1:

« If Z = (gog3)" for some t <~ Zy and e(h,g3) # 1, then with overwhelming probability over the choice of ¢,
e(h,Z) # 1, and algorithm 8B outputs 0.

84

« If Z = g} for some t ¢ Zy and e(h, g») = 1, so algorithm B outputs 1.
We now compute the advantage of 8. We consider three possibilities:
1. Suppose A outputs (h, u) where either e(h, B*) # e(gy,u) or e(h, g2) # 1. Then, the output of B is always 0.

2. Suppose A outputs (h, u) where e(h, B*) = e(gy,u), e(h,g2) = 1, and e(h, g3) = 1. Since either Z = (g2g3)" or
7= gé, in both cases, e(h, Z) = 1 and algorithm 8 outputs 1.

3. Suppose A outputs (h, u) such that Eq. (6.6) holds. By the above analysis, this case happens with probability at
least £ — negl(A). Then algorithm B outputs 1 with negligible probability if Z = (gg3)" and with probability 1
if Z = g5,

Let p1, pa, p3 be the probabilities of each of these cases. Then,
Pr[ExptSubgroupg(A,0) = 1] = p; + p3 - negl(A)
Pr[ExptSubgroupg(A,1) = 1] = ps + p3
The advantage of B is thus p3(1 — negl(1)) > ¢ — negl(A), and the claim holds. O
Returning to the proof of Lemma 6.34, we can now write
Pr[Hyb,(A) = 1] = Pr[Ez1] + Pr[E;;]
< Pr(Ez1] + negl(A) by Claim 6.36
< Pr[Es;] + negl(1) by Claim 6.35
< Pr[Es;] + Pr[Esz] + negl(A)
=Pr[Hyb,(A) = 1] + negl(1),
and the lemma holds. O
Lemma 6.37. Pr[Hyb,(A) = 1] = negl(1).
Proof. In order for the output in Hyb, to be 1, the adversary ‘A must output (h, u, o) such that
e(h,B*) =e(g,u) and e(h,g293) # 1.

We claim that this can only happen with negligible probability over the choice of 5*. Specifically, if f* is non-zero in
the p, and ps subgroups, and e(h, g2g3) # 1, then e(h, B*) is non-zero in the order p,p; subgroup. However e(gy, u) is
always zero in the order p,ps subgroup, so the verification relation is unsatisfiable. O

By Lemmas 6.30, 6.31 and 6.34, we have that Pr[Hyb,(A) = 1] < Pr[Hyb,(A) = 1] +negl(1) By Lemma 6.37, we have
that Pr[Hyb, (A) = 1] < negl(1). We conclude that Pr[Hyb,(A) = 1] < negl(1) and extractor validity holds. O

7 Monotone-Policy Aggregate Signatures

In this section, we formalize our construction of monotone policy aggregate signatures from a non-adaptively sound
monotone policy BARG for NP together with a “puncturable” signature scheme (called an all-but-one signature
scheme in [GVW19]).

Definition 7.1 (Puncturable Signature [GVW 19, adapted]). An puncturable (or all-but-one) signature scheme with
message space {0, 1} is a tuple of efficient algorithms Ipunctsig = (Gen, GenPunc, Sign, Verify) with the following
syntax:

« Gen(1*) — (vk,sk): On input the security parameter A, the key-generation algorithm outputs a key pair
(vk, sk).

85

« GenPunc(1%, m*) — (vk, sk): On input a security parameter A and a message m* € {0, 1}, the punctured key
generation algorithm outputs a key pair (vk, sk).

. Sign(sk,m) — o: On input a signing key sk and a message m € {0,1}*, the signing algorithm outputs a
signature o.

« Verify(vk, m,) — b: On input a verification key vk, a message m € {0, 1}*, and a signature o, the verification
algorithm outputs a bit b € {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:
« Correctness: For all A € N and all m € {0, 1}’1, it holds that

(vk, sk) « Gen(1%) _

Pr| Verify(vk,m,0) =1 & — Sign(sk, m) =1.

« Punctured correctness: For all A € N, all m* € {0, 1}’1, and all o* € {0, 1}, it holds that

Pr[Verify(vk,m*,6*) =1 : (vk, sk) < GenPunc(1*, m*)] =0.

« Verification key indistinguishability: For any adversary A and any b € {0, 1}, we define the verification
key indistinguishability experiment ExptVKI 4 (4, b) as follows:

1. On input a security parameter A, the adversary A outputs a message m* € {0,1}* and sends it to the
challenger.

2. The challenger samples (vko, sko) < Gen(1*) and (vky, sk;) < GenPunc(1%, m*) and gives vk, to the
adversary.

3. Next, the challenger can make signing queries on messages m € {0,1}* \ {m*}. On each signing query,
the challenger replies with o < Sign(skp, m).

4. The adversary outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that Ilpunctsig satisfies verification key indistinguishability if for any efficient adversary A there exists a
negligible function negl(-) such that

|Pr[ExptVKI 4 (A, 0) = 1] — Pr[ExptVKI 4 (A, 1) = 1]| = negl(2).

Remark 7.2 (Multiple Verification Keys). By a standard hybrid argument, we can show that any puncturable signature
scheme that satisfies verification key indistinguishability also satisfies a stronger multi-key version of the definition
where the adversary can ask for multiple verification keys (punctured at the same message m*) and signatures on
messages m # m” with respect to those keys. We define this formally below:

« Multiple verification keys indistinguishability: For any adversary A and any b € {0, 1}, we define the
multiple verification key indistinguishability experiment ExptMVKI 4 (A, b) as follows:

1. On input a security parameter A, the adversary A outputs the number of challenge keys 1" together with
a message a message m* € {0, 1}*.

2. For each i € [n], the challenger samples the key pairs (vk(()i), sk(()i)) < Gen(1%) and a punctured key pair
(vkii), skﬁi)) «— GenPunc(14, m*). It gives the verification keys vk(l), ce vké") to the adversary.

3. The adversary can now make signature queries. Each signing query consists of an index i € [n] and a
message m € {0,1}* \ {m*}. The challenger responds with ¢ « Sign(skl(f), m).

4. The adversary outputs a bit b € {0, 1}, which is the output of the experiment.

86

We say that Ipynsig satisfies multiple verification key indistinguishability if for all efficient adversaries A,
there exists a negligible function negl(-) such that

[Pr[ExptMVKI 4(4,0) = 1] — Pr[ExptMVKI 4 (4, 1) = 1]| = negl(2).

Fact 7.3 (Puncturable Signatures [GVW19]). Assuming either (1) the plain LWE assumption, or (2) the decision linear
assumption in a pairing group, there exists a puncturable signature scheme.

Monotone policy aggregate signature. We now define the notion of a monotone policy aggregate (multi)-

signature.

Definition 7.4 (Monotone Policy Aggregate Signatures). Let IIsig = (Gen, Sign, Verify) be a digital signature scheme
with message space {0, 1}*. A monotone policy aggregation scheme for IIs;g is a tuple of polynomial time algorithms
agg = (Setup, Aggregate, AggVerify) with the following syntax:

« Setup(1%,1%,1%) — crs: On input a security parameter A, a bound on the number of signers k, and a bound Sp
on the policy size, the setup algorithm outputs a common reference string crs.

. Aggregate(crs, m, P, (vky, 01), . .., (vkg, O'k)) — Oag¢: On input the common reference string crs, a message
m € {0,1}*, a policy circuit P: {0,1}* — {0, 1}, a collection of verification key/signature pairs (vk;, d;), the
aggregation algorithm produces an aggregate signature o,gg.

. AggVerify(crs, m, P, (vky, ..., vkg), O'agg) — b: On input the common reference string crs, a message m, a policy
circuit P: {0,1}* — {0,1}, a tuple of k verification keys and an aggregate signature Oagg, the aggregate
verification algorithm outputs a bit b € {0, 1}.

Moreover, I1pge must satisfy the following properties:

+ Correctness: For all 4, k,s, € N, all messages m € {0, 1}, all monotone circuits P: {0,1}* — {0,1} and all
key and signature tuples {(i, vk;, ;) };c] where P(Verify(vki, m, 01), ..., Verify(vky, m, ox)) = 1, it holds that

Pr| AggVerify(crs,m, P, (vky,...,vkp), Oagg) = 1

crs «— Setup(ll, 1k, 1)

Oagg Aggregate(crs, m, P, (vky, 01), ..., (vkg, O'k)) =L

+ Succinctness: There exists a fixed polynomial poly(-) such that for all A, k, s, € N, all messages m € {0, 1}A,
all monotone circuits P: {0,1}¥ — {0, 1} and all pairs {(vk;, 0i) }ic[k)]» the size of the aggregate signature o,
in the correctness experiment satisfies |o,g¢| = poly(A +log |P]).

« Static security: For any adversary A define the static unforgeability experiment ExptSU 4 (A) as follows:

1.

. The adversary outputs the aggregate signature o;

On input the security parameter A, the adversary A outputs the number of parties 1¥, a number of
verification keys 17, the bound on the policy size 1°7, a challenge message m* € {0, 1}’1, and a monotone
policy P: {0,1}* — {0,1}.

. The challenger samples key-pairs (vk;,sk;) < Gen(1%) for all i € [n] and sends vk;, ..., vk to the

adversary.

. The adversary A can now issue signing queries. Each signing query consists of an index i € [n] and a

message m € {0,1}* \ {m*}. The challenger responds with ¢ « Sign(sk;, m).

. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vkj, ..., vk;).
. The challenger replies with the common reference string crs « Setup(1%, 1%, 1%).

. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before.

88"

87

8. The output of the experiment is 1 if all of the following holds:

- For each i € [k], let b; = 0if vk] = vk; for some j € [n]. Otherwise, let b; = 1. Then, it holds that
P(b],...,bk) =0.

- AggVerify(crs,m*, P, (vki, ..., vk}), o-;‘gg) =1
Otherwise, the output is 0.

We say that [Tag, satisfies static security if for every efficient adversary A, there exists a negligible function
negl(-) such that Pr[ExptSU 4 (1) = 1] = negl(4).

Aggregating puncturable signatures. We now show that we can combine any monotone policy BARG (satisfying
non-adaptive soundness) with a puncturable signature scheme to obtain a statically-secure monotone policy aggregate
signature scheme.

Construction 7.5 (Monotone Policy Aggregate Signature). The construction uses the following ingredients: let
Igarc = (BARG.Gen, BARG.Prove, BARG.Verify) be a monotone policy BARG for NP and let ITpynctsig = (PS.Gen,
PS.GenPunc, PS.Sign, PS.Verify) be a puncturable signature scheme with message space {0, 1}*. Let £ = £ (1) be
a bound on the length of the verification keys of IIpynctsig- For any message m € {0, I}A, define the binary relation
R[m] where

1 PS.Verify(vk,m,0) =1

0 otherwise.

R[m](vk,o) = {

Let C,, be the Boolean circuit that computes the relation R[m], and let s, = s.(1) be a bound on the size of C,,. We
construct a monotone aggregate scheme Ilag, = (Setup, Aggregate, AggVerify) for Ipynctsig as follows:

. Setup(l’l, 1k, 1°7): Sample crs « BARG.Gen(lA, 15k, 1%, 1%) and output crs.

- Aggregate(crs,m, P, (vk, 01), . . ., (vkg, ox)): Output BARG.Prove(crs, Cp, P, (Vky, ..., vki), (01, . - ., 0%)).

« AggVerify(crs,m, P, (vky, ..., vki), 0agg): Output BARG.Verify(crs, Cpy, P, (vk1, . . ., Vki), Gagg).
Theorem 7.6 (Correctness). IfIlgarg is complete, then Construction 7.5 is correct.

Proof. Fix A, k,s, € N, message m € {0, 1}*, a monotone policy P: {0,1}* — {0,1} and k tuples {(i, vk;, 1) bie k]
such that P(Verify(vky, m, o), .., Verify(vkg, m,0,)) = 1. By construction of C,, it holds that Cp,(vk; 0;) =
Verify(vk;, m, 0;) for all i € [k]. Thus, P(Cy,(vky, 01),...,Cm(vkg, 0r)) = 1. The theorem now follows by com-
pleteness of IIgagrG. m]

Theorem 7.7 (Succinctness). IfIlgarc is succinct then Construction 7.5 has succinct aggregate signatures.

Proof. This follows directly from the succinctness of ITgarg and the fact that the aggregate signature is simply a BARG
proof. Fix A, k, s, € N, message m € {0, 1}*, a monotone policy P: {0,1}* — {0, 1} and k tuples {(i, vk;, 0i) }ie[k]- The
aggregate signature 0,4 is a BARG proof for circuit Cy,, policy P, the statements (vkj, ..., vkr) and the signatures
(01, .. .,0%). By succinctness of the BARG, the length of 0,4 is poly(A + s. + log |P|). For every message m € {0, 1M,
the circuit C, simply checks whether the input verification key and signature verify the message m, so s.(1) = poly(2).
Hence, the overall proof size is poly(A + log |P|) and the claim follows. O

Remark 7.8 (Fast Verification via RAM Delegation). Similar to Remark 2.13 it is possible to use a RAM delega-
tion scheme [CJJ21b, WW22, KLVW23, CGJ*23] to delegate the aggregate signature verification to the aggregator.
Currently, the aggregate verification algorithm AggVerify in Construction 7.5 runs in time poly(A + |P|). This is

because the aggregation algorithm needs to read the policy as well as the verification keys vk, ..., vkg. If the
policy P and the verification keys are known in advance, the aggregator can include a proof =z that the function
Fers P, (vky,...vky) (M, Oagg) = AggVerify(crs, m, P, (vky, ..., vk), Oagg) satisfies For p(vky,...vki) (M, Oagg) = 1. In this case,

the common reference string would also contain a CRS for the RAM delegation scheme. The new aggregate verification
algorithm would only check the RAM delegation proof (with respect to the function Fers p (vk,,...vk;)); formally, the

.....

88

RAM delegation scheme would take as input a hash h of the parameters (crs, P, (vky, ..., vkg)), and the verification
algorithm for the RAM program only needs to take the (honestly-precomputed) hash h, the message m, and the
signature o,4g. With this modification, the aggregate verification algortihm (given the precomputed hash k) runs in
time poly(A + log |P|).

Theorem 7.9 (Static Security). If Tlpuncisig satisfies (multiple) verification key indistinguishability and Ilgarc satisfies
non-adaptive soundness, then Construction 7.5 is statically unforgeable.

Proof. Let A be any efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments:

» Hyb,: This is the static unforgeability experiment:

1. On input the security parameter A, the adversary A outputs the number of parties 1%, a number of
verification keys 1%, a bound on the policy size 1°#, a challenge message m* € {0,1}*, and a monotone
policy P: {0,1}* — {0,1}.

2. The challenger samples key-pairs (vk;, sk;) < PS.Gen(1%) for all i € [n] and sends vk, ..., vk to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index i € 7 and a
message m € {0,1}* \ {m*}. The challenger responds with ¢ « PS.Sign(sk;, m).

4. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vkj, ..., vk;).

5. The challenger replies with the common reference string crs « BARG.Gen(14, 16k, 15¢, 1°r).

6. The adversary A can continue to make signing queries. The challenger responds to these exactly as
before. When A finishes making signing queries, the adversary outputs the aggregate signature o;,,.

7. The output of the experiment is 1 if all of the following holds:

- For each i € [k],let b; = 0 if vk} = vk; for some j € [n]. Otherwise, let b; = 1. Then, it holds that
P(by,...,bx) =0.
- BARG.Verify(crs, Cpe, P, (VK . ..,vk;;),ag‘gg) =1.

Otherwise, the output is 0.
+ Hyb,: Same as Hyb,, except the challenger uses the following modified procedure to sample key-pairs (Step 2):
— For all i € [n], sample (vk;, sk;) « PS.GenPunc(1%, m*).

For an adversary A, we write Hyb,;(A) to denote the output of Hyb; with adversary A. We now show that the
output distributions of Hyb, and Hyb, are computationally indistinguishable, and moreover, that for all efficient
adversaries (A, the output of Hyb, (A) is 1 with negligible probability.

Lemma 7.10. IfTlpynctsig Satisfies verification key indistinguishability, then there exists a negligible function negl(-)
such that | Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| = negl(A).

Proof. Suppose |Pr[Hyb0(ﬂ) =1] —Pr[Hyb,(A) = 1]| = ¢ for some non-negligible ¢. We construct an adversary 8
for the multiple verification key indistinguishability game of IIpunctsig as follows:

1. On input the security parameter 1%, algorithm B computes (1%, 17, 1%, m*, P) « A(1%). Algorithm B forwards
m* and 1", to the challenger.

2. The challenger replies with a tuple of verification keys (vkj, ..., vk,). Algorithm 8 forwards (vki, ..., vk,) to
A.

3. Whenever A makes a signing query on an index i € [n] and a message m € {0,1}* \ {m*}, algorithm 8
forwards (i, m) to the challenger to obtain a signature o. Algorithm B replies to A with o.

89

4. When the adversary A outputs a tuple (vkj,...,vky), algorithm 8 computes the common reference string
crs « BARG.Gen (1%, 14, 1%, 1%) and gives crs to A.

5. Whenever algorithm A makes additional signing queries, algorithm 8 responds in the same manner as before.

6. When A outputs a signature algorithm B checks the following:

Oagg:

« For each i € [k], let b; = 0 if vki = vk; for some j € [n]. Otherwise, let b; = 1. Then, check that
P(by,...,bx) = 0.

« AggVerify(crs,m*, P, (vkj, ..., vky), ojgg) =1.
Algorithm 8 outputs 1 if both checks pass and 0 otherwise.

By construction, algorithm B constructs the key-pairs (vk;, sk;) for i € [k] \ I exactly as required in Hyb, and Hyb,.
It suffices to consider the distribution of the verification keys vk; for i € I and the responses to the signing queries.
We consider the two possibilities:

« If the challenger responds according to the specification of ExptMVKIg(4,0), then it samples (vk;, sk;) <
Gen(11). Moreover, the challenger responds to a signing query on (j, m) where j € [n] and m € {0,1}* \ {m*}
with o < Sign(sk;, m). This is precisely the distribution in Hyb,(A). Finally, algorithm 8 computes the output
using the same procedure as in Hyb, and Hyb,. Therefore, Pr[Hyb,(A) = 1] = Pr[ExptMVKIg4(4,0) = 1].

« If the challenger responds according to the specification of ExptMVKIg (4, 1), then it samples (vk;, sk;) «
GenPunc(1%, m*). Moreover, the challenger responds to a signing query on (j,m) where j € [n] and m €
{0,1}* \ {m*} with ¢ « Sign(sk;, m). This is precisely the distribution in Hyb,(A). We conclude that
Pr[Hyb, (A) = 1] = Pr[ExptMVKIg(4, 1) = 1].

We conclude that algorithm $ wins the multiple verification key indistinguishability game with the same non-
negligible advantage ¢, and the claim follows. O

Lemma 7.11. IfTIgarc satisfies non-adaptive soundness, and Ilpyncisig satisfies punctured correctness, then there exists
a negligible function negl(-) such that Pr[Hyb, (A) = 1] = negl(4).

Proof. Suppose Pr[Hyb, (A) = 1] = ¢ for some non-negligible . We construct an adversary 8 for the non-adaptive
soundness game as follows:

1. On input the security parameter 1%, algorithm 8 runs (1%, 17, 1%, m*, P) « A(1%). Algorithm B then samples
(vk;, sk;) « PS.GenPunc(1*, m*) for all i € [n]. It forwards the verification keys (vky, ..., vky,).

2. Whenever algorithm A makes a signing query on an index i € [n] and a message m € {0, 1}*\ {m*}, algorithm
B replies with a signature o « Sign(sk;, m).

3. When the adversary A outputs a tuple (vki, ..., vk}i), algorithm 8B forwards the instance size 14 the circuit size
1%, the monotone policy size bound 1%, the circuit Cy,-, the monotone policy P, and the instance (vkj,..., vk,’i)
to the BARG challenger. The challenger replies with a common reference string crs which 8 forwards to A.

4. Whenever algorithm A makes additional signing queries, algorithm $ responds in the same manner as before.

5. At the end of the game, algorithm A outputs an aggregate signature o,g,. Algorithm B forwards 7 = g,g to
the challenger.

The challenger constructs the common reference string as crs « BARG.Gen(lA, 154 15, 1%). Thus, algorithm B
perfectly simulates an execution of Hyb, for A. Thus, with probability at least ¢, algorithm A outputs an aggregate
signature 0,4, Where

BARG.Verify(crs, Cppe, P, (VK7 . . ., VK}), Oagg) = 1,

and P(by, ..., br) = 0 where b; = 0if vk} = vk; for some j € [n] and b; = 1 otherwise. We argue that algorithm 8
wins the non-adaptive soundness game when this happens:

90

+ By punctured correctness of Ipynctsig, for all o € {0,1}7, it holds that Verify(vk;, m*,0) = 0 for all i € [n].
Correspondingly, this means that for all i € [n], it holds that C,+ (vk;,) = 0 for all inputs o € {0, 1}".

« Thusforalli € [k],if vk} = vk; for some j € [n], then Cp+(vk3, o) = 0forall o € {0,1}". Next P(by,...,bx) =0
where b; = 0 whenever vk; = vk; for some j € [n], and b; = 1 otherwise. This means (Cpy, P, (vkj, ..., vk})) ¢
LMp-CSAT-

« If BARG.Verify(crs, Cpy+, P, (VK3, . . ., ka), Oagg) = 1, and (Cpp, P, (VK7, . . ., ka)) ¢ Lmp-csat, then algorithm 8
wins the non-adaptive soundness game.

Thus, algorithm B breaks the non-adaptive soundness of I[Igarc With the same advantage e. m]

Theorem 7.9 now follows by Lemmas 7.10 and 7.11 and a hybrid argument. O

8 Semi-Somewhere Extractability of Monotone Policy BARGs

In this section, we show that our proof of non-adaptive soundness for our monotone policy BARG in Section 4 easily
extends to achieve a notion of extractability.'® Our notion of extractability is a relaxed version of the somewhere
extractability notion from [BBK*23]. In the notion from [BBK*23], there is a trapdoor setup algorithm that takes
as input a set of indices S and outputs an extraction trapdoor. The guarantee is that whenever the prover produces
a proof for a tuple of statements (xy, ..., xx) with respect to a circuit C and policy P for which S is “critical,” then
the extraction algorithm will output a witness w; where C(x;, w;) = 1 for some index i € S. In this setting, a set S is
critical for a policy P if every input (by, ..., bi) € {0,1}* where P(by,...,b;) = 1 has an index i € S where b; = 1 (i.e.,
every input that satisfies the policy P must set some index in the critical set S to 1). In addition, the trapdoor CRS
should hide the set S.

Semi-somewhere extractability. To extract a witness from the critical set S, the [BBK"23] construction program
S into the CRS and then rely on an FHE-based hash function to homomorphically “propagate” one of the witnesses in
S into the hash digest. This enables an efficient extraction procedure. In our setting, we do not use FHE. Instead, we
observe that our existing proof in Section 4 already achieves a notion of extractability by relying only on somewhere
extractability of the underlying (vanilla) BARG. The caveat of our notion is that there is a 1/k loss in the success
probability of our extractor. Namely, if an adversary produces a proof on (xi, ..., xx) with probability ¢, then the
extractor will output a witness w; for some i € S with probability ¢/k. We refer to our notion as semi-somewhere
extractability. We give the formal definition below:

Definition 8.1 (Semi-Somewhere Extractable Monotone BARG). A semi-somewhere extractable monotone policy
BARG for Boolean circuit satisfiability is a tuple of polynomial time algorithms IIpmp.garc = (Gen, Prove, Verify,
TrapGen, Extract) such that (Gen, Prove, Verify) is monotone policy BARG for Boolean circuit satisfiability and the
two additional algorithms (TrapGen, Extract) have the following syntax:

. TrapGen(lA, 17, 15, 1%, 1k, S) — (crs, td): On input the security parameter A € N, the instance size n € N, the
number of instances k € N, a bound on the size of the Boolean circuit s, € N, a bound on the size of the policy
sp €N, and a subset S C [k], the indexed generator algorithm outputs a common reference string crs and a

trapdoor td.

« Extract(td,C, P, (x1,...,xx), m) — (i, w;): On input a trapdoor td, a Boolean circuit C, a monotone policy P,
instances x, . . ., X, a proof 7, and an index i, the extraction algorithm outputs an index i and an NP witness
Wi.

Moreover, ITmp-garc should satisfy the following properties:

10As we discussed in Section 1.1, it is not clear what the right or most useful notion of extraction is in the context of monotone policy BARGs.
The desired notion of extractability may in fact be application-dependent. For this reason, we focus on non-adaptive soundness for the main
construction and include this section primarily as an illustration that our approach can support some non-trivial form of extractability.

91

+ Set hiding: For an adversary A and a bit b € {0, 1}, define the set hiding experiment ExptSH 4 (4, b) as follows:

1. On input a security parameter A, algorithm A starts by outputting the instance size 1", the bound on the
size of the NP relation 1%, the bound on the size of the policy 1%, the number of instances 1¥, and a set
S C [k].

2. If b = 0, the challenger samples crs « Gen(lA, 17, 1%, 1°0). Otherwise, if b = 1, the challenger samples
(crs, td) « TrapGen(lA, 17, 15 1%, 1k, S). The challenger sends crs to A.

3. Algorithm A outputs a bit b’ € {0, 1} which is the output of the experiment.

We say that IImp-parc satisfies set hiding if for every efficient adversary A there exists a negligible function
negl(-) such that
|Pr[ExptSHﬂ(/1, 0) = 1] = Pr[ExptSH (A, 1) = 1]\ = negl(}).

« Semi-somewhere extractability: For an integer k € N and an adversary A, define the semi-somewhere
extractability experiment ExptSE (A, k) as follows:

1. On input the security parameter 1%, algorithm A starts by outputting the instance size 1*, the bound
on the size of the NP relation 1°, the bound on the size of the policy 1°7, a monotone Boolean circuit
P: {0,1}* — {0, 1} of size at most sp,and a set S C [k].

2. The challenger samples (crs, td) «— Gen(lA, 17, 1%, 1%, 1%, S) and sends crs to A.

3. Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}* — {0,1} of size at most s, statements
X1,..., Xk € {0,1}", and a proof x.

4. The challenger extracts a witness (i, w;) < Extract(td, C, P, (x1, ..., x¢), 7).

5. The output of the experiment is 1 if C(x;, w;) = 1 and i € S. Otherwise, the output is 0.

An adversary A is admissible if it outputs a set S C [k] and a policy P such that P(by,...,br) = 0 where b; = 0
if i € S and b; = 1 otherwise. Let

ea(A k) :== Pr[Verify(crs,C, P, (x1, ..., xx),) = 1] (8.1)

in an execution of ExptSE 4 (A, k). We say that IIgarc is semi-somewhere extractable if for every polynomial
k = k(1) and every efficient and admissible adversary A, there exists a negligible function negl(-) such that

Pr[ExptSE 4 (LK) = 1] = % e (k) = negl(A).

Remark 8.2 (On Semi-Somewhere Extractability). An important caveat of the semi-somewhere extractability notion
in Definition 8.1 is that we allow the extractor to succeed with smaller probability (by an inverse polynomial factor)
than the honest prover. While this is still sufficient for applications to monotone policy aggregate signatures (see
Section 8.1), this may not be the case in all settings where an extraction guarantee might be employed. As an example,
suppose we have an adversary A that samples statements from one of two distributions 9, and D, (with equal
probability) and produces a valid proof on the statement with probability ¢. Normally, we would hope that the
extractor algorithm would be able to extract witnesses for statements sampled from both D; and D,. However, since
we allow for an inverse polynomial loss in the extractor’s success probability, it could be the case that the extractor
only works for instances sampled from ©; and never outputs witnesses for instances sampled from D,. If this were
to happen in a security proof which relies on the ability to extract witnesses from instances drawn from 95, then the
proof would no longer go through. Thus, using the semi-somewhere extractability notion in the context of a security
proof could require some extra care.

92

Adapting Construction 4.4. We now show how to extend Construction 4.4 to support semi-somewhere extractabil-
ity. The construction relies on the fact that the proof of Construction 4.4 (Section 4.2) implicitly achieves a notion of
extractability.

Construction 8.3 (Semi-Somewhere Extractable Monotone BARG). Let (Gen, Prove, Verify) be the monotone policy
BARG of Construction 4.4. Let IT} ,pc = (Gen’, Prove’, Verify’, TrapGen’, Extract’) be the underlying somewhere
extractable BARG for Boolean circuit satisfiability, and ITyy = (H.Setup, H.Hash, H.ProveOpen, H.VerOpen, H.Extract,
H.ValidateDigest) be the underlying zero-fixing hash function. We extend Construction 4.4 with the following

algorithms:

. TrapGenIndex(lA, 17, 1%, 15, 1%, S,Jj) — (crs, td;): On input the security parameter A € N, the instance size
n € N, a bound on the size of the Boolean circuit s € N, a bound on the size of the policy s, € N, the number
of instances k, a set S C [k], and an index j € S, the indexed trapdoor generator algorithm proceeds as follows:

- Let ji,..., jis| € S be the elements of S in ascending order. Let ¢ € [|S|] be the index where j = j;. Define
the set S; = {j1,...,ji—1}if t > 1 and S; = @ otherwise.

— Sample two hash keys (hkg, vko, tdg) « H.Setup(lA, 1°7, @) and (hky, vky, tdy) « H.Setup(ll, 1°2,S;).

- Let s’ be a bound on the size of the circuit that computes the relation R[C,k, s, vk, vky, dig,, dig;]
from Fig. 1 when instantiated with an arbitrary Boolean circuit C of size at most s., an input length
k < s, and digests dig,, dig, associated with the hash and verification keys (hk, vko) and (hky, vk;).
Let n” = 3 - [logs,]| + 1 be the bound on the statement length. Sample (crsgarc, vksarc, tdparc)
TrapGen’(lA, 15,17, 15,,]').

- Outputs the common reference string crs = (crspara, Vksara, hko, hky, vk, vk;) and the trapdoor td; =
tdearc.

Looking ahead, the helper algorithm TrapGenIndex(lA, 1", 1%, 1%, 1k S, Jji) implements the setup algorithm
according to the specification of the hybrid experiments Hyb, , ; and Hyb,, , , in the proof of Theorem 8.7. These
are the analogs of the hybrid experiments Hyb, , ; and Hyb , , from the proof of Theorem 4.7 in Section 4.2.

. TrapGen(lA, 17, 1%, 15, 1%, S) — (crs,td): On input the security parameter A € N, the instance size n € N,
a bound on the size of the Boolean circuit s € N, a bound on the size of the policy s, € N, the number of
instances k, and a set S C [k], the generator algorithm proceeds as follows:

- Sample a random j & S.
- Compute (crs, td;) < TrapGenIndex(l’l, 1™, 15 1%, lk,j).

- Output the common reference string crs, and the trapdoor td = (j, td;).

« Extract(td,C, P, (xy,...,xx), 1) = (j, w;): On input a trapdoor td = (j, td;), a Boolean circuit C, a monotone
policy P, instances xi, . . ., Xk, and a proof r, the algorithm computes w; « Extract(td;, Cayg, (%1, - - -, Xs,), 7, J),
where the circuit C,ug and the instances Xy, . .. ,fcsp are computed from C, P, xy, . . ., xx as in Construction 4.4.

Parse w; = (b, o, oM w) andif b = 1, output (j, w). If b # 1, output L.

Theorem 8.4 (Set Hiding). IfIlgarc satisfies index hiding and Iy satisfies set hiding, then Construction 8.3 satisfies set
hiding.

Proof. Let A be an efficient non-uniform adversary for the set hiding game of IIpmp-garc. We proceed via a hybrid
argument:

+ Hyb,: This is experiment ExptSH 4[4, 0]:

1. On input a security parameter A, algorithm A starts by outputting the instance size 1", the bound on the
size of the NP relation 1%, the bound on the size of the policy 1°», the number of instances 1%, and a set
S c [k].

93

2. The challenger samples crs < Gen(1%4, 17, 1%, 1°7). Namely, it samples
— (hkg, vko, tdg) « H.Setup(1%,1%, @).
- (hky, vky, td;) « H.Setup(14,1%, @).
— (crsgarc, vkearg) «— Gen’(1%,1%,1"15"), where n’, s’ are defined as in Construction 8.3.

The challenger sends crs = (crsgarac, vksarg, hko, hki, vko, vky) to A.

3. Algorithm A outputs a bit b” € {0, 1} which is the output of the experiment.

+ Hyb,: Same as Hyb,, except the challenger samples crsgarc to bind to a random index j; € S. Concretely, the
challenger samples a random index j <- S and samples (crspara, VkparG, tdparc) < TrapGen’(lA, 15,1715, j).

+ Hyb,: Same as Hyb,, except the challenger samples hk, vk; to be zero-fixing on the set S;. This is ExptSH 4[4, 1].
Specifically, in this experiment, the challenger samples the keys for the zero-fixing hash (hky, vky, tdy) «
H.Setup(lk, 1°¢,S;), where S; = {ji,..., ji-1}, the indices jy, ..., jis| are the elements of S in ascending order,
and t € [|S]|] is the index where j = j;.

We write Hyb, (A) to denote the output of Hyb; with adversary ‘A. We now show that each pair of adjacent output
distributions are computationally indistinguishable.

Claim 8.5. IfIIgarc satisfies index hiding, then there exists a negligible function negl(-) such that
|Pr[Hyb0(ﬂ) =1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Suppose |Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| = ¢ for some non-negligible . We use A to construct an
adversary B for the index hiding game of IIgarg as follows:

1. On input the security parameter 1%, algorithm B runs A on input 17 to obtain (1™, 1%, 1%, 1k, S).

2. Algorithm 8B samples j & S and send (1%, 1",1%, Jj) to the BARG challenger. The challenger replies with
(crsBaRG, VKBARG)-

3. Algorithm B computes (hkg, vk, tdg) < H.Setup(1%, 1%, @) and (hky, vky, td;) « H.Setup(1%, 1%, @).
4. Algorithm B sets crs = (crsparc, Vksara, hko, hki, vko, vki) and gives crs to A. It outputs whatever A outputs.

If the challenger samples (crsgara, vkparg) < Gen’ (14, 1%, 1",1%"), then algorithm 8B perfectly simulates Hyb, for A.
Conversely, if it samples (crsparc, VKsarG, tdBarG) «— TrapGen'(l’l, 15,17, 15’,]‘), algorithm B perfectly simulates
Hyb, for A. We conclude that the advantage of algorithm B8 is ¢, and the claim holds. O

Claim 8.6. IfIly satisfies set hiding, then there exists a negligible function negl(-) such that
|Pr[Hyb1(ﬂ) = 1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Suppose |Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| = ¢ for some non-negligible ¢. We construct an attacker 8
for the set hiding game of ITy as follows:

1. On input the security parameter 14, algorithm B runs A on input 17 to obtain (17, 1%, 1%, 1k, S).

2. Let ji,..., jis| € S be the elements of S in ascending order. Algorithm B samples j < S and sets t € [|S]] to
be the index where j = j;. Algorithm B send (1°#, S;) to the challenger, where S; = {j1,..., ji—1} if t > 1 and
S; = @ otherwise. The challenger replies with (hkj, vk;).

3. Algorithm B samples a hash key (hko, vko, tdg) < H.Setup(1%,1%, @) along with the BARG parameters
(crsearc, VkparG, tdparg) < TrapGen’ (1%, 1%, 17,17, j) .

4. Algorithm B sets crs = (crsparc, Vksarac, hko, hki, vko, vk;) and gives crs to (A. It outputs whatever A outputs.

94

If the challenger samples (hk;, vky, td;) « H.Setup(1%, 1%, @), then algorithm B perfectly simulates Hyb, for A.
Conversely, if the challenger samples (hky, vky, td;) « H.Setup(1%,1%,S,), then algorithm B perfectly simulates
Hyb, for A. Correspondingly, the advantage of algorithm B is ¢, and the claim follows. O

Theorem 8.4 now follows from Claims 8.5 and 8.6. O

Theorem 8.7. IfIly satisfies set hiding, index hiding with extracted guess, zero fixing and extractor validity against
non-uniform adversaries, and Ilgarg is somewhere extractable and satisfies set hiding against non-uniform adversaries,
then Construction 8.3 is semi-somewhere extractable against non-uniform adversaries.

Proof. To prove Theorem 8.7, we use a similar strategy as in the proof of Theorem 4.7 (Section 4.2). Here, we give a
high-level overview. Specifically, we start by defining sequence of hybrids Hyb,, ..., Hyb,, where d is the depth of
the monotone circuit P. These are essentially the same experiments from the proof of Theorem 4.7 in Section 4.2. The
initial hybrid corresponds to the semi-somewhere extractability experiment where the output is 1 if the adversary
outputs an accepting proof (i.e., the output in the initial hybrid is 1 with probability ¢4 (A, k) as defined in Eq. (8.1)).
In the final hybrid, we show that the output is 1 probability 0. Finally, we argue that any difference in advantage
between adjacent hybrids can only occur in settings where the extractor is successful. There are a maximum of k such
experiments (one associated with each of the inputs to P). Since the probability of an experiments drops from ¢ to 0,
in at least one of these intermediary experiments, the probability must decrease by &/k (up to negligible differences);
this directly translates into the extractor succeeding with probability at least ¢/k (up to negligible differences). We
give the formal argument below.

Outer hybrids. Take any polynomial k = k(1) and any efficient (non-uniform) and admissible adversary A =
(A, Ay). Let P: {0,1}* — {0,1} and S C [k] be the monotone policy and the challenge set that algorithm A,
outputs (on input the security parameter A). Let d be the depth of P and s be its size. We now define the sequence of
outer hybrids:

. Fmoz This is the analog of Hyb, from the proof of Theorem 4.7 (Section 4.2). We define it here:

- Phase 1: On input the security parameter 1%, algorithm A; outputs 17, 1%, 1°7, a monotone Boolean circuit
P: {0,1}* — {0,1} of size s < sp,asetS C [k] and the state st #. The experiment outputs 0if P(by, .. ., b)) =1
where b; = 0if i € S and b; = 1 otherwise.

- Phase 2: The challenger computes crs < Gen(1%,1",1%,1%). Specifically, the challenger samples the
following components:

« (crsparc, vkearg) < Gen’(14,1%,17,1%).

« (hko, vko, tdg) « H.Setup(lA, 1°2, @).

« (hkq, vk, tdy) « H.Setup(lA, 1°7, @).
The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a Boolean circuit C of size at most s, an instance x = (xy, ..., xy), and a proof string 7 = (dig,, dig;, 7Tgarc).

Let x = (Xq,... ,fcsp) and C,,¢ be as defined in Prove and Verify in Construction 4.4. The output of the
experiment is 1 if all of the following conditions hold (and 0 otherwise):

« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkgarG, Caug> X, 8ARG) = 1.

. Ijl;/Bi for i € [d]: Same as Hyb,, but hke,, binds on J;, where low = i mod 2 and high = 1 — low. This is the
analog of Hyb, from the proof of Theorem 4.7 (Section 4.2). Specifically, the game proceeds as follows:

— Phase 1: On input the security parameter 14, algorithm A; outputs 17, 1%, 1%, a monotone Boolean circuit
P: {0,1}k — {0,1} of size s < sp,asetS C [k] and the state st 5. The experiment outputs 0if P(by, ..., br) = 1
where b; = 0if i € S and b; = 1 otherwise. The challenger then computes the following quantities:

« For each j € [k], let f; =if j € S and f; = 1 otherwise.

95

= For j € [k +1,s] let B; be the value of the wire j in the evaluation of P on input (fi, ..., f).
+ For each layer ¢ € [d], let J, = {j € layer,(P) : fj = 0}.
— Phase 2: The challenger samples the following components:
» (crsparcs vkparg) < Gen’(14,1%,17,1%).
« (hKiow, VKiow, tdiow) < H.Setup(14, 1%, J;).
* (hkhigh, VKhigh, tdhigh) — H.Setup(l’l, 1°7, @).

The challenger sets crs = (crsparc, hko, hky, vk, vkq) and runs A, on input (crs, st 4). Algorithm A, outputs
a proof string = = (dig,, dig;, msarc). Let X = (%1, .. .,ﬁsp) and C,,¢ be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

« H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig,) = 1.
« Verify’ (vkgarc, Caug: X, T8ARG) = 1.
« H.Extract(tdow, dig,,,,) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we define a sequence
of “inner hybrids” exactly as in the proof of Theorem 4.7 in Section 4.2. Specifically, for each i € {0,...,d}, each
t € [|Jil] and each ¢ € {1,...,7}, we define Hyb, , , as follows:

+ Phase 1: Same as Hyb,. Note that algorithm A; does not output the Boolean circuit C or the statements x in
this phase.

+ Phase 2: Same as in Hyb, , , from Section 4.2, except the adversary additionally outputs the Boolean circuit C

and the instances x in this phase (as in Hyb,).

We now analyze each pair of hybrid experiments. With the exception of one of the transitions (from I-Flﬁ)o’t’3 to

ITyibO’t! 1), each transition follows by a similar argument as the corresponding transition in the proof of Theorem 4.7.

Claim 8.8. IfIly satisfies extractor validity against efficient non-uniform adversaries, then there exists a negligible
function negl(-) such that for everyi € {0,...,d — 1}, it holds that

Pr[Hyb,(A) = 1] - Pr[Hyb, , , (A) = 1]| < negl(A).

Proof. Follows by a similar argument as the proof of Claim 4.8. O

Claim 8.9. IfIlgagrc satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {0,...,d — 1} and t € [|Ji41l], it holds that

Pr[Hyb, , ,(A) = 1] - Pr[Hyb;,,(A) = 1]| < negl(}).

Proof. Follows by a similar argument as the proof of Claim 4.9. O

Claim 8.10. IfTlgarc satisfies somewhere extractability in trapdoor mode against efficient non-uniform adversaries,
then there exists a negligible function negl(-) such that for everyi € {0,...,d — 1},t € [|Ji+1]], it holds that

Pr[Hyb,,,(A) = 1] = Pr[Hyb, 5 (A) = 1]| < negl(2).

Proof. Follows by a similar argument as the proof of Claim 4.10. O

96

Extracting valid witnesses. As mentioned above the transition from I—FI;/JbO’t,3 to I—F|7b0,t, 4 diverges from the corre-
sponding analysis (Claim 4.11) in the proof of Theorem 4.7. In Claim 4.11, the relevant statement xj,[,] was false,
and thus, by somewhere extractability of the BARG, we were able to argue that the outputs of Hyb, , ; to Hyb, ,
could only change by a negligible amount. Upon closer inspection, the proof of Claim 4.11 actually shows a stronger
property: the difference between these two hybrids is exactly equal to the probability of extracting a valid witness for
the instance xj,[]. In the case of Claim 4.11, the statement xj,[;] was false, so this probability was identically 0. In the
somewhere extractability game, this probability could be noticeable. But that means our extractor succeeds with
noticeable probability. To formalize this, we start with a full specification of I—F|7b0,t,3:

+ Phase 1: Same as Hyb,.
+ Phase 2: The challenger samples the following components.
— (crspara, tdparg) < TrapGen’ (14, 1%, 17, 1%, J;[¢]).
— (hkiow, Vkiow, tdiow) < H.Setup(1%, 1%, @).
- (hkhigh, thigha tdhigh) — H.Setup(lA, 2, J1[1,...,t = 1]).
The challenger sets crs = (crsparc, hko, hki, vko, vki) and runs A, on input (crs, st). Algorithm A, outputs
a proof string & = (dig,, dig;, 7sarc). Let X = (%1, .. .,)?sp) and C,yg be as defined in Prove and Verify in

Construction 4.4. The challenger then computes w = (b, 0(*), 0", w) « Extract’ (tdgarc. Caug: X, mBARG, J1[£]).
The output is 1 if the following conditions hold (and 0 otherwise):

H.ValidateDigest(vko, dig,) = H.ValidateDigest(vk;, dig;) = 1.
Verify’ (vkgarG Caug> X, 78ARG) = 1.

H.Extract (tdpigh, dighigh) = Matching.

- Caug(Xj,,w) = 1.

Since S = J; by construction, the challenger in Irlslybo’t’3 is sampling the common reference string crs according to
the specification of TrapGenIndex(lA, 1, 1%, 1%, 1% S, t). Similarly, the witness w = (b, a©® s, w) in I—Al;lgbo,t,3 is
computed using the same procedure as Extract(td, C, P, (xy, ..., xx), 7) where td = (J;[t], tdgarc)- For t € [|J1]], let

pr=Pr [%0,:,3 (A) =1 A b =11in the execution of |f|;,'b0,t’3 .

By definition of Cayg, if I-FIVbOJ’3 (A) outputs 1 and the extracted bit b satisfies b = 1, this means that C(xj,[;], w) = 1.
In this case, Extract(td,C, P, (xi, . . ., x¢), r) outputs w such that C(x}, (] w) = 1. In particular, this means that

(17,1%,1%, P, S, st 7) « A (1})
(crs, td) « TrapGenIndex(l’l, 17, 1%, 1%, 1% S, S[t])
(C, (x1, .-, xx), m) «— Az(crs,stg)
(t',w) « Extract(td,C, P, (x1, ..., xx), 7).

pr = Pr|C(xss,w) =1: , (8.2)

where we write S[t] to denote the t value in S in ascending order. We now show that the difference between the
outputs of Hyb, , ; and Hyb , 5 is exactly p;:

Claim 8.11. It holds that Pr[Hyb, , ;(A) = 1] = Pr[Hyb,, ,(A) = 1] + p;.

Proof. By construction, the only difference between I-’I;/Too’t’3 and I-’I;/TDOJ’4 is the additional check in Hyb, , , that the

extracted bit b satisfies b = 0. Let Eq be the event that b = 0 in the execution of IT;/T)(M3 and E; be the event that b = 1.
Then,

Pr[Hyb,, ,(A) = 1] = Pr[Hyb,, ;(A) = 1 A E;]
= Pr[Hyb,, ;(A) = 1] - Pr[Hyby 5 (A) = 1 A Ey]
= Pr[Hyby,5(A) = 1] - p;.

The claim follows.]

97

Claim 8.12. IfIly satisfies zero-fixing against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {1,...,d — 1},t € [|Ji+1]], it holds that

Pr[Hyb, ,;(A) = 1] - Pr[Hyb;, ,(A) = 1]| < negl(}).

Proof. Follows by a similar argument as the proof of Claim 4.11 (for the case where i > 0). O

Claim 8.13. IfIly satisfies one-sided index hiding with extracted guess security against efficient non-uniform adversaries,
then there exists a negligible function negl(-) such that for everyi € {0,...,d — 1},t € [|Ji+1]], it holds that

Pr[Hyb,, ,(A) = 1] < Pr[Hyb,, s(A) = 1] + negl(1).
Proof. Follows by a similar argument as the proof of Claim 4.12. O

Claim 8.14. Foreveryi € {0,...,d — 1},t € [|Jis1]], it holds that
Pr[%i,tﬁ(ﬂ) =1] > Pr[%i,t,fi(ﬂ) =1].
Proof. Follows by a similar argument as the proof of Claim 4.13. O

Claim 8.15. IfIIgargG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(-) such that for everyi € {0,...,d — 1} and t € [|Ji41l], it holds that

Pr[Hyb, ,;(A) = 1] - Pr[Hyb;,,(A) = 1]| < negl(}).

Proof. Follows by a similar argument as the proof of Claim 4.14. O

Claim 8.16. Foreveryi € {0,...,d — 1}, it holds that
Pr[H~ybi,|]m|,7(5‘1) =1] < Pr["mi,ﬁnm(ﬂ) =1].
Proof. Follows by a similar argument as the proof of Claim 4.15. O

Claim 8.17. IfIly satisfies set hiding property against efficient non-uniform adversaries then there exists a negligible
function negl(-) such that for everyi € {0,...,d — 1}, it holds that

Pr[Hyb, o (A) = 1] = Pr[Hyb,,, (A) = 1]| < negl(A).

Proof. Follows by a similar argument as the proof of Claim 4.16. O
Claim 8.18. If A is admissible, then Pr[Hyb,_, | ,(A) = 1] = 0.

Proof. The proof is almost identical to that of Claim 4.17, but relies on the fact that A is an admissible adversary.
Namely, if A is admissible for the semi-somewhere extractability game, then it outputs a set S and a policy P such
that P(by,...,bx) = 0 where b; = 0if i € S and b; = 1 otherwise. By construction, the challenger in l:l;/it)d_LlA(ﬂ) =1
sets f; = b; for all i € [k], and Sy41, - . ., Bs to be the wire values for P(bs, . .., by). In particular, this means that s = 0,
and therefore J;[1] = {f;}. In this case, I:I‘yibd_l)lj4 cannot always output 1 since the following two conditions must
simultaneously hold:

« On the one hand, there must exist a witness w = (b, o 1) w) for instance x; (of the relation in Fig. 1) where
b=0.

«+ On the other hand, by definition of instance X, since s is the output wire, it must be that b = 1.

Therefore the output in I:l‘yibd_m4 is always 0. O

98

Combining Claims 8.8 to 8.18, we conclude that

Pr[Hyby(A) =1 <) p; +negl(d). (8.3)
te[|S]]

To complete the proof, we relate the probability £4(4, k) from Eq. (8.1) that A outputs a valid proof in the semi-
somewhere extractability game to the probability that Hyb (A) outputs 1. The only difference between Hyb and the

semi-somewhere extractability game is the fact that in Hybo, the common reference string is norm (output by Gen)
whereas in the semi-somewhere extractability game, it is output by TrapGen. We give the formal reduction below:

Claim 8.19. If Construction 8.3 satisfies set hiding, then there exists a negligible function negl(-) such that
| Pr[Hyb, (A) = 1] - ea (A, k)| < negl(4)
where €7 is the probability that A outputs a verifying proof in the ExptSE experiment from Definition 8.1.

Proof. Suppose | Pr[l—ﬂl;;b0 (A) =1] — ea(A k)| = ¢ for some non-negligible . We use A to construct an adversary 8
for the set hiding game:

1. On input the security parameter 14, algorithm B runs (1%, 1%,1%,P, S, stg) «— 7(1(11). Algorithm B then
forwards 17, 1%, 15, 1¥®) _and S to the challenger.

2. The challenger replies with crs. Algorithm B runs (C, (x1,...,xx), 1) « Az(crs,stg). Algorithm B then
outputs Verify(crs,C, P, (x1, . .., X¢),).

If the challenger samples crs « Gen(1%,17%, 1%, 1%), then B perfectly simulates the distribution I-mo and outputs 1
with probability Pr[%o(ﬂ)] = 1]. If the challenger samples crs < TrapGen(1%,17, 1%, 1%, 1%, 5), then B perfectly
simulates the distribution ExptSE 4 (A, k) and outputs 1 with probability e4 (A, k). We conclude that algorithm 8
succeeds with the same advantage e. O

Combining Eq. (8.3) with Claim 8.19, we have that

ea(dk) < > pi+negl(d).
te[lS]]
Next, since TrapGen invokes TrapGenlIndex on a random ¢t € S and appealing to Eq. (8.2), we conclude that
1
PrExptSE 4 (1) = 1] = > > B Pry £ - ea(2.k) = negl(1). o
te[ls]] | | te[|S]]
8.1 Monotone Policy Aggregate Signature via Semi-Somewhere Extractability

In Section 7, we showed how to combine a non-adaptively-sound monotone BARG with a puncturable signature
scheme to obtain a monotone policy aggregate signature scheme. In this section, we show that the same construction
is also secure for any signature scheme (not necessarily puncturable) if we rely on semi-somewhere extractability
instead. We first recall the notion of a standard (non-puncturable) signature scheme:

Definition 8.20 (Digital Signature). An digital signature scheme with message space {0, 1} is a tuple of efficient
algorithms Ils;; = (Gen, Sign, Verify) with the following syntax:

« Gen(1*) — (vk,sk): On input the security parameter A, the key-generation algorithm outputs a key pair
(vk, sk).

. Sign(sk,m) — o: On input a signing key sk and a message m € {0,1}*, the signing algorithm outputs a
signature o.

99

« Verify(vk,m, o) — b: On input a verification key vk, a message m € {0, 1}’1, and a signature o, the verification
algorithm outputs a bit b € {0, 1}.

Moreover, the signature scheme should satisfy the following properties:

« Correctness: For all 1 € N and all m € {0, 1}%, it holds that

A
Pr[Verify(vk,m,0) =1 : (vk, sk) « Gen(1%)] =1.

o « Sign(sk, m)

« Unforgeability: For all efficient and admissible adversaries A, there exists a negligible function negl(-) such

that

(vk, sk) « Gen(1%)

Pr [Verify(vk, m*, ") =1: (m*, o) — ASEGK) (12, yk)] = negl(1),

where we say A is admissible if it does not query the signing oracle Sign(sk, -) on the message m* in the above
security game.

Theorem 8.21 (Static Unforgeability). Consider an instantiation of Construction 4.4 where the puncturable signature
schemelpuncisig is replaced by a standard digital signature schemeIlsig = (Sig.Gen, Sig.Sign, Sig.Verify) (Definition 8.20).
IfTImp-BARG is semi-somewhere extractable and satisfies set hiding, and Ils;y is unforgeable, then Construction 7.5 is
statically unforgeable.

Proof. Let A be any efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments:

+ Hyby,: This is the static unforgeability experiment:

1.

On input the security parameter A, the adversary A outputs the number of parties 1¥, a number of
verification keys 1%, a bound on the policy size 1°#, a challenge message m* € {0,1}*, and a monotone
policy P: {0,1}* — {0,1}.

. The challenger samples key-pairs (vk;, sk;) < Sig.Gen(1%) for all i € [n] and sends vk, . .., vk, to the

adversary.

. The adversary A can now issue signing queries. Each signing query consists of an index i € [n] and a

message m € {0,1}* \ {m*}. The challenger responds with ¢ « Sig.Sign(sk;, m).

. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vkj, ..., vky).
. The challenger replies with the common reference string crs « BARG.Gen(IA, 164 15, 159).

. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before. When A finishes making signing queries, the adversary outputs the aggregate signature o;,,.

. The output of the experiment is 1 if all of the following holds:

— Foreach i € [k], let b; = 0if vk = vk; for some j € [n]. Otherwise, let b; = 1. Then, it holds that
P(b],...,bk) =0.
- BARG.Verify(crs, C, P, (K3, ..., vkp), O';gg) =1

Otherwise, the output is 0.

+ Hyb,: Same as Hyb,, except the challenger uses the following modified procedure to sample the BARG common
reference string:

— Sample the common reference string (crs,td) « BARG.TrapGen(l/l, 10k 15¢ 1%, 1k,5), where S =

{i € [k]]3j € [n]: vkl = vk;}.

+ Hyb,: Same as Hyb,, except the experiment outputs 1 if all of the following holds:

100

- For each i € [k], let b; = 0 if vk} = vk; for some j € [n]. Otherwise, let b; = 1. Then, it holds that
P(by,...,bx) =0.

- Extract the instance and witness (i, 0;) « BARG.Extract(tdgarg, Cin*, P, (VK], .. .,vk,’;), U:gg) and check
that C,» (vki, 0;) = 1and i € S.

If either check fails, then the challenger outputs 0. Notably, the experiment no longer checks the condition
BARG.Verify(crs, Co, P, (VKT,vk;;), (r*gg) =1.

a

« Hyb,: Same as Hyb,, except the challenger samples a random index i* <~ [n] at the beginning of the security
game. After computing (i, 0;) <= BARG.Extract(tdparc, Crm+, P, (VK3 ..., vky), o;‘gg), the challenger additionally
checks that vk; = vk;-. If the check fails, the challenger outputs 0.

Lemma 8.22. IfTIpmp-parG Satisfies set hiding, then there exists a negligible function negl(-) such that
|Pr[Hyb0(?{) =1] = Pr[Hyb,(A) = 1]| = negl(}).

Proof. Suppose |Pr[Hyb,(A) = 1] — Pr[Hyb, (A) = 1]| > ¢ for some non-negligible &. We use A to construct an
adversary B for the set hiding game as follows:

1. On input a security parameter 1%, compute (1k, 1", 157, m*, P) « .?I(l’l).
2. Algorithm B samples key-pairs (vk;, sk;) « Sig.Gen(1%) for all i € [n] and send vk, ..., vk, to A.

3. Whenever algorithm A makes a signing query on an index i € [n] and a message m € {0, 1}* \ {m*}, algorithm
B responds with o « Sig.Sign(sk;, m).

4. After A is finished making signing queries, it outputs a tuple of verification keys (vkj,..., vky).

5. Let S = {i € [k] | 3j e [n]:vki = vkj}. Algorithm B sends the tuple (1%, 1%, 1%, 1¥,5) to the IIyup.garG
challenger. The challenger replies with a common reference string crs, which algorithm 8 forwards to
algorithm ‘A.

6. Algorithm B responds to additional signing queries exactly as before.
7. Upon receiving an aggregate signature o,,, from A, algorithm B outputs 1 if all of the following holds:

(@) P(by,...,br) =0 where b; =0if i € S and b; = 1 otherwise.
(b) BARG.Verify(crs, Coe, P, (VK], ..., VKL), 0hg) = 1.

Otherwise, algorithm 8 outputs 0.

If the set hiding challenger samples crs « BARG.Gen(lA, 154 1% 1%), then B perfectly simulates Hyb, for A and
outputs 1 with probability Pr[Hyb,(A) = 1]. On the other hand, if the set hiding challenger samples (crs, td) «
BARG.TrapGen(1%, 1%, 1%, 1%, 1K, S), then B perfectly simulates an execution of Hyb, for A and outputs 1 with
probability Pr[Hyb, (A) = 1]. We conclude that algorithm 8B breaks set hiding with the same advantage ¢. O

Lemma 8.23. IfTImp-arG is semi-somewhere extractable, then there exists a negligible function such that

Pr[Hyb,(A) = 1] = — - Pr[Hyb,(A) = 1] — negl(4).

=

Proof. Let k = k(1) be the number of parties that algorithm A outputs.!’ We use A to construct an adversary 8B for
the semi-somewhere extractability game (with parameter k = k(1) as follows:

1. On input a security parameter 14, algorithm B computes (1k, 1", 157, m*, P) « ﬂ(ll).

We can assume that for each value of A € N, algorithm A always picks a fixed value of k. This can be the value that maximizes its success
probability for each value of A (formally, we can take this “maximizing” value of k to be non-uniform advice provided to A).

101

2. Algorithm B samples key-pairs (vk;, sk;) « Sig.Gen(1%) for all i € [n] and send vk, .. ., vk, to A.

3. Whenever algorithm A makes a signing query on an index i € [n] and a message m € {0, 1}* \ {m*}, algorithm
B responds with o « Sig.Sign(sk;, m).

4. After A is finished making signing queries, it outputs a tuple of verification keys (vkj,.. ., vkp).

5. Let S = {i e [k] | 3je[n]:vki= vkj}. Let b; = 0if i € S and b; = 1 otherwise. If P(by,...,bx) = 0, then
algorithm B aborts with output L. Otherwise, algorithm B sends the tuple (1%, 1%, 1%, P, S) to the challenger
and receives a common reference string crs. Algorithm 8B forwards crs to A.

6. Algorithm 8 responds to additional signing queries exactly as before.

7. Upon receiving an aggregate signature
(vki,...,vky) and the proof J;‘gg.

Oag¢ from A, algorithm B outputs the circuit Cpy+, the instances

Algorithm 8 is admissible by construction (since P(by, ..., br) = 0 where b; = 0if i € S and b; = 1 otherwise). Next,
algorithm 8B perfectly simulates the view of A in the hybrids Hyb; and Hyb,. By assumption, with probability
Pr[Hyb, (A) = 1], algorithm A outputs o,g; Where

BARG.Verify(crs, Cm, P, (VKT ..., vk, O':gg) =1.
This means that
e5(2, k) = Pr[BARG.Verify (crs, Cppe, P, (VK], .. ., VK), 0ge) = 1] = Pr[Hyb, (A) = 1], (8.4)

where eg(A, k) is the quantity from Eq. (8.1). By somewhere extractability of IImp-garc, there exists a negligible
function negl(+) such that

Pr[ExptSEg(A, k) = 1] > — - eg(A, k) — negl(A), (8.5)

=

Next, the output of ExptSE z(A, k) is 1 if Cpp+ (vk}, 0;) = 1 and i € S where
(i,03) < BARG.Extract(tdgarg, Cm+, P, (VKj, ..., vk}), a:gg).
This is the same set of conditions checked in Hyb, and we conclude that

Pr[ExptSE (4, k) = 1] = Pr[Hyb,(A) = 1]. (8.6)

Combining Eqs. (8.4) to (8.6), we have that

Pr[Hyb,(A) = 1] = — - Pr[Hyb,(A) = 1] — negl(4). O

=

Lemma 8.24. Pr[Hyb,(A) =1] = % - Pr[Hyb,(A) = 1].

Proof. By construction, the adversary’s view in Hyb, and Hyb, is identical. The only difference is how the output of
the experiment is computed. Suppose Pr[Hyb,(A) = 1] = ¢. Then, with probability ¢, the extracted value (i, o;) in
Hyb, and Hyb, satisfies i € S. By definition of S, there exists some j € [n] such that vk} = vk;. Since i* < [n] (and
is entirely independent of the view of the adversary), Pr[j = i*] = 1/n. When j = i*, the output in Hyb, is also 1 (and
otherwise, it is 0). As such, Pr[Hyb,(A) =1] = % Pr[Hyb,(A) = 1] and the claim follows. O

Lemma 8.25. IfIls;, is unforgeable, then there exists a negligible function negl(-) such that Pr[Hyb;(A) = 1] = negl(1).

Proof. Suppose Pr[Hyb,(A) = 1] > ¢ for some non-negligible ¢. We use A to construct an efficient adversary 8 that
breaks unforgeability of ITs;g:

1. At the beginning of the game, algorithm B receives a verification key vk from the challenger.

102

2. On input a security parameter 14, algorithm B computes (1k, 1", 1%, m*, P) « ‘7{(1’1).

3. Algorithm B samples a random index i* & [n]. Fori € [n]\{i*}, algorithm B samples (vk;, sk;) < Sig.Gen(1%).
It sets vk;« := vk and send vky, ..., vk, to A.

4. Whenever A makes a signing query on an index i € [n] and a message m € {0,1}* \ {m*}, if i = i*, then
algorithm B forwards the query to the challenger and receives a signature o. Algorithm 8 replies to A with o.
If i # i*, then algorithm B replies with o « Sign(sk;, m).

*

5. At some point, algorithm A outputs a collection of verification keys (vkj, ..., vk;).

6. LetS = {i e [k] | 3j e [n]:vki= vkj}. For each i € S, set b; = 0 and set b; = 1 otherwise. If P(by,...,bg) =
1, then algorithm B aborts. Otherwise, algorithm B samples the common reference string (crs, td) «
BARG.TrapGen(lA, 16k 15 150, 1k, S) and send crs to A.

7. Algorithm 8B responds to additional signing queries exactly as before.

8. Upon receiving an aggregate signature o,,, from A, algorithm 8 computes

(i,03) < BARG.Extract(tdgarg, Cm*, P, (VKi, ..., vkp), O';gg).

If vk} # vk;» = vk then algorithm 8B aborts. Otherwise, algorithm output ¢* = ¢; and m*.

Algorithm B is admissible since it never needs to query its challenger for a signature on m*. Next, algorithm 8B
perfectly simulates an execution of Hyb, for A. Thus, with probability e, algorithm A outputs a tuple of verification
keys (vkj,...,vk;) and a signature o, such that the extracted index-signature pair (i, 0;) satisfies vk; = vk; = vk
and Cpy+ (vk}, 0;) = 1. By definition of Cp,+, this means that

1 = Verify (vk}, m", ;) = Verify(vk, m", o;),

in which case 8 wins the unforgeability game. O
Theorem 8.21 now follows immediately from Lemmas 8.22 to 8.25. O
Acknowledgments

We thank Yuval Ishai for helpful pointers on batch arguments. Brent Waters is supported by NSF CNS-1908611,
CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2151131, CNS-2140975,
CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References

[BBK*23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth. SNARGs
for monotone policy batch NP. In CRYPTO, pages 252-283, 2023.

[BCJP24] Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth. Monotone-policy aggregate
signatures. In EUROCRYPT, 2024.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, pages
325-341, 2005.

[BKP22] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. Verifiable private information retrieval. In TCC,
pages 3-32, 2022.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective opening
attack. In TCC, pages 235-252, 2011.

103

[CF13]
[CGJ*23]

[CJ]21a]

[CJJ21b]

[DGKV22]

[FWW23]

[Gam84]

[GYW19]

[GZ21]

[HJKS22]

[HW15]

[KLVW23]

[KPY19]

[KVZ21]

[Mer87]

[NY90]

[Pai99]

[PP22]

[PR17]

[Reg05]

Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, pages 55-72, 2013.

Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation
intractability and snargs from sub-exponential DDH. In CRYPTO, pages 635-668, 2023.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In CRYPTO, pages 394-423, 2021.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages
68-79, 2021.

Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments
for batch-NP and applications. In FOCS, pages 1057-1068, 2022.

Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered abe,
flexible broadcast, and more. In CRYPTO, pages 498531, 2023.

Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO, pages 10-18, 1984.

Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and trace from
positional witness encryption. In PKC, pages 3-33, 2019.

Alonso Gonzalez and Alexandros Zacharakis. Succinct publicly verifiable computation. IACR Cryptol.
ePrint Arch., page 353, 2021.

James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P from sub-
exponential DDH and QR. In EUROCRYPT, pages 520-549, 2022.

Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS, pages 163-172, 2015.

Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and
RAM delegation. In STOC, pages 1545-1552, 2023.

Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC, pages
1115-1124, 2019.

Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,
post-quantum security, and SNARGs. In TCC, pages 330-368, 2021.

Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, pages
369-378, 1987.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC, pages 427-437, 1990.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223-238, 1999.

Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments. In FOCS,
pages 1045-1056, 2022.

Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and publicly verifiable
non-interactive arguments. In TCC, pages 283-315, 2017.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84-93, 2005.

104

[Vado6] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM J. Comput., 36(4):1160-
1214, 2006.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group assump-
tions. In CRYPTO, pages 433-463, 2022.

A Set Hiding with Extraction for BARGs

We now show to construct a BARG satisfying Definition 2.8 from any somewhere extractable BARG that supports
extraction on a single instance (e.g., [CJJ21b, WW22, HJKS22, DGKV22, KLVW23]). Our construction is a direct
parallel of the analogous constructions from [GZ21, CJ]J21b] in the setting of somewhere extractable commitments.

Construction A.1 (BARGs Satisfying Set Hiding with Extraction). Let Hg ARG = (Gen’, Prove’, Verify’, TrapGen’,
Extract”) be a somewhere-extractable BARG for Boolean circuit satisfiability that supports extraction on a single
instance. We use HéARG to construct a new BARG Ilgarc = (Gen, Prove, Verify, TrapGen, Extract) that supports
extraction on multiple instances and which satisfies Definition 2.8:

« Gen(1%4,1%,17,1%,1%): On input the security parameter A, the number of instances k, the instance length n, the
bound on the size of the Boolean circuit s, and the bound on the size of the extraction set ¢, the generator
algorithm samples (crs’, vk}) « Gen’(l/l, 1% 17, 15, 1!) for each i € [£]. Then, it samples a random permutation

r: [£] — [¢] and outputs crs = (crs’T(l), e crs;([)) and vk = (vk’f(l), . .,vk’T([)).

« Prove(crs,C, (x1,...,Xk), (Wi, ..., wr)): On input the common reference string crs = (crs], ..., crs;), a Boolean
circuit C: {0,1}" x {0, l}h — {0, 1}, statements xi,...,xx € {0,1}", and witnesses wy,...,wr € {0, l}h,
the prove algorithm computes 7] « Prove’(crs},C, (x1,...,xk), (Wy,...,wy)) for all i € [k] and outputs
m=(r],...,m,).

« Verify(vk,C, (x1,...,xx), 7): On input the verification key vk = (vkj,...,vk}), a Boolean circuit C: {0, 1} X
{0,1}" — {0, 1}, statements x4, . .., xx € {0,1}", and a proof 7 = (71, ..., m;), the verification algorithm outputs
1if for all i € [£], it holds that Verify’ (vk], C, (x1,...,x¢), 7}) = 1. Otherwise, it outputs 0.

. TrapGen(lA, 1k, 17,15, 1¢, S): On input the security parameter A, the number of instances k, the instance size n,
the bound on the size of the Boolean circuit s, the bound on the size of the extraction set ¢, and a set of indices
S C [k] of size at most ¢, the trapdoor-generator algorithm proceeds as follows:

- LetS={ji,..., ja} where j; < j, < --- < jg are in sorted order.
— For each i € [d], sample (crs], vk}, td}) TrapGen’(lA, 15,17, 15,1, {j;}). For eachi € {d+1,...,¢},
sample crs; Gen’(l’l, 1k 17, 15, 1.
- Sample a random permutation 7: [¢] — [¢], and define the dictionary D where D[j;] — (r7!(i), td}) for
all i € S. Output crs = (crs;(l), . ..,crs;([)), vk = (vk’r(l), . ..,vk’r([)), and td = D.
« Extract(td,C, (x1, ..., xk), 7, i): On input the trapdoor td = D, a Boolean circuit C: {0, 1}"* x {0, l}h — {0,1},
statements x,...,xx € {0,1}", a proof 7 = (7{,...,7;), and an index i, the extraction algorithm outputs L if
i ¢ D. Otherwise, let (,td") « D[i] and output Extract’ (td", C, (x1, ..., x), 7, i).

Theorem A.2 (Completeness). IfTl}, . satisfies completeness, then Ilgarg in Construction A.1 is also complete.

Proof. This follows by construction. Specifically, take any A, k, n, s, £ € N, any Boolean circuit C: {0,1}" x {0,1}" —
{0, 1} of size at most s, any sequence of statements x, ..., xx € {0, 1}" along with witnesses wy, ..., wr € {0, l}h
where C(x;, w;) = 1 for all i € [k]. Then, the following properties hold:

« Suppose (crs,vk) « Gen(l’l, 1k 1m, 15, 19). By construction, this means crs = (crs,...,crs;) and vk =
(vki,...,vkp). Moreover, for all i € [£], we have that (crs], vk}) « Gen’ (14, 15,17, 15, 11).

105

o Let m « Prove(crs, C, (x1,. .., xx), (wW1,...,wx)). By construction, 7 = (x7,...,7,) where for all i € [£], we
have that] < Prove’(crs},C, (x1,...,xk), (Wi, ..., Wg)).

« By completeness of IIj, , o ;, Verify’ (vk}, C, (x1, ..., x¢), 7{) = 1 for all i € [£]. Thus Verify(vk,C, (x1, ..., xx), 1)

outputs 1 and completeness holds. O
Theorem A.3 (Set Hiding). IfII}, satisfies set hiding, then Ilgarg in Construction A.1 also satisfies set hiding.
Proof. We start by defining a sequence of hybrid experiments.

+ Hyb,: This is experiment ExptSH 4 (A, 0). Namely, after the adversary chooses the parameters k,n,s,£ € N

and the set S C [k], the challenger replies with crs = (crs’r(l), e crs'Tm) and vk = (Vk;(l), e, Vk;(t’)) where

(crs},vk}) « Gen’(14,1%,17,15,11) for all i € [£] and 7 is a random permutation. At the end of the experiment,
the adversary outputs a bit ¥” € {0, 1} which is the output of the experiment.

« Hyb, for i € [d]: Same as Hyb,, except for indices ¢t < i, the challenger computes (crs, vk}, td)) «
TrapGen’ (14, 15,17, 1%, 1", {j;}), where S = {j1, ..., jy} and j; < --- < ja.

For an adversary A, we write Hyb,(A) to denote the output of an execution of hybrid Hyb; with adversary A. By
construction, Hyby(A) = ExptSH 4 (4, 0) and Hyb,;(A) = ExptSH 4 (4, 1). We now show that if ITj, , . ; satisfies set
hiding, then for all i € [d], and for all efficient adversaries A, the output distributions Hyb,_, (A) and Hyb,(A) are

computationally indistinguishable. To see this, suppose there exists an efficient adversary A such that
[Pr[Hyb, ,(A) = 1] = Pr[Hyb,(A) = 1] = £(2),
for some non-negligible ¢. We use A to construct an efficient algorithm B that breaks set hiding of IT}, ,

1. On input the security parameter 1%, algorithm B starts by running adversary A on the same security parameter.
Algorithm A outputs 1%, 1" 15,1f, and a set S = {ji>...,ja}, where j; < --- < jg.

2. Algorithm B sends 1%, 17, 1°, 1, and {j;} to the set hiding challenger for IT§, s rg and receives a pair (crs*, vk®).
It sets crs! = crs* and vk = vk™.

3. For t < i, algorithm B samples (crs}, vkj, td}) « TrapGen’(lA, 1%, 17, 15,11, {j:})- For t € [i + 1,£], it samples
(crs}, vk;-) — Gen’(1%,1%, 17, 15, 11).

4. Finally, algorithm 8B samples a random permutation 7: [f] — [¢£] and gives crs = (crs’T(l), ey crs’T({,)) and
vk = (vk;(l), .. .,vk;([)) to A. It outputs whatever A outputs.

By design, if (crs*, vk*) « Gen’(l’l, 1% 17 15, 11), then algorithm B perfectly simulates Hyb,_; for A and outputs 1
with probability Pr[Hyb, ,(A) = 1]. If (crs*, vk*, td*) « TrapGen’ (1%, 1,17, 1%, 1%, {j;}), then algorithm B perfectly
simulates Hyb, for A and outputs 1 with probability Pr[Hyb,(A) = 1]. We conclude that algorithm 5 breaks set

hiding of ITj, , o ; With the same non-negligible advantage ¢. The claim now follows by a hybrid argument. O

Theorem A.4 (Set Hiding with Extraction). IfTI} . satisfies set hiding, then Ilgarc in Construction A.1 satisfies set
hiding with extraction.

Proof. We begin by defining a sequence of hybrid experiments:
+ Hyb,: This is experiment ExptSHWE (4, 0):
— At the beginning of the game, the adversary chooses the parameters k, n, s, £ € N, the set S C [k], and the
index i* € S. Let S = {ji,..., ja} where j; < --- < j;. Let t* € [d] be the index where i* = j;«.

— Then, for each i € [d], the challenger samples (crs/, vk}, td}) « TrapGen'(l’l, 1%,1m,15,1%, {ji}). For each
i€ {d+1,...,0}, sample (crs},vk}) « Gen’(14, 1,17, 1%,11). Then, it samples a random permutation
T: [£] — [£]. It gives crs = (crs’r(l), .. .,crs’r([)) and vk = (vk’r(l), e vk’r([)) to A. The challenger also
sets td’ = td}. and z = 71 (¢*).

106

— Algorithm A outputs a Boolean circuit C: {0, 1} x {0, 1}h — {0, 1}, statements x3, ..., xx € {0,1}", and
aproof & = (7{,...,m;).

— The challenger checks that for all i € [¢], it holds that Verify’(ka(,-), C, (x1,...,xx),) = 1. If not, the
challenger halts with output 0. Otherwise, the challenger replies with Extract’ (td’, C, (xy, .. ., xx), 7L, i*).

— Algorithm A outputs a bit b’ € {0, 1}, which is the output of the experiment.

+ Hyb,: Same as Hyb,, except the challenger swaps (crs], vk]) with (c rsy., vki.). In more detail, the challenger sam-

ples (crs, vki, td]) « TrapGen’ (14, 15,17, 1°, 1%, {j,-}) and (crs)., vki., tdy.) < TrapGen’ (14, 1%, 17,15, 1%, {1 }).
In addition, it sets td” = td} and z = 77! (1). The remainder of the experiment proceeds as in Hyb,,.

« Hyb, for i € {2,...,d}: Same as Hyb, except for indices t € {2,...,i}, the challenger now computes
(crs}, vk}) « Gen’(14, 15,17, 15, 1%).
For an adversary A, we write Hyb,(A) to denote the output distribution of an execution of hybrid Hyb; with

adversary A. By construction Hyb,(A) = ExptSHWE 4 (A, 0) while Hyb;(A) = ExptSHWE 4 (4, 1). To complete the
proof, we now show that the output of each adjacent pair of hybrid experiments are indistinguishable.

Lemma A.5. For all adversaries A, we have that Hyb (A) = Hyb, (A).

Proof. The view of the adversary in the two experiments is identical since 7 is a random permutation. More precisely,
the distribution in Hyb, corresponds to the distribution in Hyb, where the permutation 7 is replaced by 7 o o where
o: [£] — [£] is the elementary permutation that transposes j; with j;+ (and fixes all other inputs). Since 7 is uniform,
the distributions of 7 and 7 o ¢ are identical. O

Lemma A.6. IfTl}, satisfies set hiding, then for alli € {2,...,d} and all efficient adversaries A, it holds that
|Pr[Hybi_1(ﬂ) =1] = Pr[Hyb,;(A) = 1]\ = negl(4).

Proof. Suppose there exists an efficient adversary A where |Pr[Hybi_1(?{) =1] = Pr[Hyb,(A) = l]| > ¢(A) for some
non-negligible . We use A to construct an efficient adversary B that breaks set hiding of ITj, ,p:

1. On input the security parameter 1%, algorithm 8 starts running adversary A on the same security parameter.
Algorithm A outputs 1%, 17, 1°, 1°, a set S = {jy, ..., ja} where j; < --- < j, and an index i* € S. Let t* € [d]
be the index where i* = j«. Let p; = ji, pp+ = j1, and p; = j; forall i ¢ {1,t}.

2. Algorithm 8 sends 1%, 17, 15, 11, and {pi} to the set hiding challenger for HEARG and receives a common
reference string crs* and verification key vk*.

3. Algorithm B samples (crs'l,vk',td'l) — TrapGen’(l’l, 1k, 17 11, {p1}). For 2 < t < i, algorithm B samples
(crs},vk)) « Gen’(1%,1%,17,1°,1'). Finally, for all indices t € {i+1,...,d}, it samples (crs, vki, td}) «
TrapGen’ (1%, 1,17, 15,1, {p;}). For each t € {d +1,..., ¢}, it samples (crs),vk}) « Gen’ (14,15, 17,15, 1) It
sets crs} = crs* and vk = vk™.

4. Algorithm B samples a random permutation 7: [¢] — [¢] and gives crs = (crs’,,\,...,crs) and vk =

(1)’ 7(¢)
(vk;(l), . .,vk;({)) to A. It also sets td’ = td} and z = 77 1(1).

5. Algorithm A outputs a Boolean circuit C: {0,1}" x {0,1}* — {0, 1}, statements xy,...,x; € {0,1}", and a
proof & = (n,...,m}).

6. Algorithm B first checks that for all i € [¢], it holds that Verify’(vkr(i), C, (x1,...,x),) = 1. If not, it halts
with output 0. Otherwise, algorithm B replies with Extract’(td’, C, (x1,. .., xx), 71, i*).

7. Algorithm A outputs a bit b* € {0, 1}, which 8B also outputs.

By design, if (crs*, vk*, td*) « TrapGen’(l’l, 1k, 17, 15,11, {pi}), then algorithm B perfectly simulates Hyb,_, for A,
so algorithm B outputs 1 with probability Pr[Hyb,_; (A) = 1]. Conversely, if (crs*, vk*) « Gen’(1%4, 1,17, 15,11,
then algorithm 8B perfectly simulates Hyb, for ‘A and algorithm $ outputs 1 with probability Pr[Hyb,(A) = 1]. Thus,
the distinguishing advantage of algorithm B is at least ¢, which is non-negligible by assumption. O

107

Security now follows by combining Lemmas A.5 and A.6 and appealing to the fact that d < £ = poly(Q). O

Theorem A.7 (Somewhere Extraction). If Hé ARG 1S somewhere extractable in trapdoor mode, then Ilgarg in Construc-
tion A.1 is also somewhere extractable in trapdoor mode.

Proof. Suppose there exists an efficient adversary A that breaks the somewhere extractability of Construction A.1
with non-negligible probability ¢(1). We use A to construct an efficient adversary 8 that breaks the somewhere
extractability of ITgarc:

1. On input the security parameter 14, algorithm B starts by running algorithm A on the same parameter.
Algorithm A outputs 1k 17 15,1/, and a set S = {j1s -+, Ja}, where j; < --- < jg. Algorithm B samples a
random index t* & [d] and sends 1%, 1%, 1°, 1!, and {j~} to its challenger. It receives a common reference
string crs* and a verification key vk*.

2. For t € [d] \ {t*}, algorithm B samples (crs}, vk;, td;) « TrapGen’(1%,1%,17,1%,1', {j,}). For each i €
{d+1,...,¢£}, it samples (crs;,vkg) — Gen'(l’l, 1k 1m 13, 11). Finally, it sets crs). = crs®.

3. Finally, algorithm B samples a random permutation 7: [¢] — [¢] and gives crs = (crs’ .\, ...,crs’) and

(1)’ 7(f)
vk = (vk;(l), .. .,vk’r([)) to A.
4. Algorithm A outputs a Boolean circuit C: {0,1}" x {0, 1} — {0, 1}, statements xy, ..., xx € {0, 1}" and a proof
= (my,...,m;). Algorithm B outputs the circuit C, the statement Xjzs and the proof 71;_1 y

First, algorithm B perfectly simulates the common reference string crs for A, so with probability at least ¢, algorithm
A outputs (C, x1, . . ., Xk,) such that there exists some ¢ € [d] such that the following two conditions hold:
« Verify’ (vk/

el (x1,...,xk), ;) = 1 where z = t71(¢) € [¢]; and

« C(xj,,wj,) # 1 where wj, « Extract’(td},C, (x1,...,xk), 7, ji)-

Moreover, the special index t* is perfectly hidden from the view of A, so with probability 1/|S| > 1/¢, it will be
the case that t* = t. In this case, 7(z) = 7(77'(¢)) = t, so we have that x, verifies with respect to Vk',[(z) = vkj., but
the extracted witness wj,. is such that C(x;,.,w;,.) # 1. This breaks somewhere extractability of IIgarc. Thus, if
A succeeds with advantage ¢, then algorithm 8 succeeds with advantage at least ¢/¢, which is non-negligible as

¢ = poly(1). O
Theorem A.8 (Succinctness). IfII} . is succinct, then Ilgarg in Construction A.1 is also succinct.

Proof. Take any A, k,n,s,¢ € N and any (crs, vk) in the support of Gen(lA, 1k 17 15, 1%). Then, crs = (crsi,...,crsy)
and vk = (vki,...,vk;), where (crs},vk;) is in the support of Gen’(1%,1%,1",1°,1'). Take any Boolean circuit
C: {0,1}" x {0,1}" — {0,1}. We consider each condition separately:

« Succinct proof: By succinctness of IIgarc, the proofs 7z’ output by Prove’(crs’, C, -, -) satisfy |7rl'| < poly(A +
log k + s). Then, the proofs output by Prove(crs,C, -, -) satisfy || < ¢ - |7rl’| < poly(A+logk +s+ 7).

’

+ Succinct CRS: By succinctness of ITj, , o, each crs; satisfies |crs;| < poly(A+k +n) + poly(A +logm +s). The
total size of the CRS is a factor of ¢ larger which satisfies the succinctness requirement.

+ Succinct verification key: By succinctness of IIf ... each vk} satisfies \vk;| < poly(A +logk +s). The
verification key vk output by Setup is a factor ¢ larger, which satisfies the succinctness requirement. O

Remark A.9 (Index BARGs). While we described Construction A.1 for the case of standard BARGs, the same
construction directly extends to the case of index BARGs, and moreover, the construction preserves the efficiency
requirements of an index BARG (since it is simply a concatenation of ¢ copies of the underlying BARG).

108

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Cryptographic Building Blocks
	Batch Arguments for NP

	Zero-Fixing Hash Functions
	Constructing Monotone Policy BARGs
	Monotone Policy BARG Construction
	Proof of thm:non-adaptive-sound (Non-Adaptive Soundness)
	Hybrid Experiment Specification
	Analysis of Hybrid Experiments

	Generic Construction of Zero-Fixing Hash Functions
	Security Analysis of cons:he-zfh
	Additive Invariants on Ciphertexts and Predicate Propagation
	Set Hiding
	Zero Fixing
	Extractor Validity
	Index Hiding with Extracted Guess

	Zero-Fixing Hash Function from Bilinear Maps
	Monotone-Policy Aggregate Signatures
	Semi-Somewhere Extractability of Monotone Policy BARGs
	Monotone Policy Aggregate Signature via Semi-Somewhere Extractability

	Set Hiding with Extraction for BARGs

