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Abstract—Distributed deep learning framework tools should
aim at high efficiency of training and inference of distributed ex-
ascale deep learning algorithms. There are three major challenges
in this endeavor: scalability, adaptivity and efficiency. Any future
framework will need to be adaptively utilized for a variety of
heterogeneous hardware and network environments and will thus
be required to be capable of scaling from single compute node
up to large clusters. Further, it should be efficiently integrated
into popular frameworks such as TensorFlow, PyTorch, etc. This
paper proposes a dynamically hybrid (hierarchy) distribution
structure for distributed deep learning, taking advantage of
flexible synchronization on both centralized and decentralized
architectures, implementing multi-level fine-grain parallelism on
distributed platforms. It is scalable as the number of compute
nodes increases, and can also adapt to various compute abilities,
memory structures and communication costs.

Index Terms—Distributed, Allreduce, Framework, Deep
Learning, Hierarchical, Heterogeneous, Cluster

I. INTRODUCTION

Distributed deep learning frameworks have been developed
to accelerate training speed by assigning computing jobs to
distributed nodes in clusters [1]. The frameworks have been
using a parameter-server model for centralized architectures
and an all-reduce model for decentralized architectures. These
two distinct models utilize either strict or flexible synchroniza-
tion mechanisms [2]. It has been shown that these two models
and architectures together with synchronization mechanisms
have good performance when used in homogeneous cluster
systems [3].

Many projects have focused on heterogeneous cluster sys-
tems [4], [5]. These works have tended to search for the
homogeneous sections within the heterogeneous system to
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separate the whole system into different sections and use
different schemes and synchronization approaches for the local
section. This means that, first, these methods all assume that
homogeneous sections exist in a heterogeneous system and are
sufficiently large compared to the number of sections. Second,
the network connections and communication cost in the cluster
are ignored or ideally considered to be identical for every two
or group of nodes, which significantly simplifies the problem
with heterogeneous systems. In many scenarios, certain nodes
or group within the clusters need to join or cooperate to
complete tasks. Alternatively, disparate local clusters or data
centers across large network may need to integrate. In most
instances, there is a desire to optimize the utilization of diverse
resources to achieve efficient neural network training. Thus,
these conditions inevitably lead to a heterogeneous cluster
environment that requires thorough research.

We are proposing to consider all these varieties of software,
hardware, and network conditions in heterogeneous clusters.
First, we introduce a dynamically hybrid and hierarchical
logical architecture for cluster nodes, which can transform a
classical centralized and decentralized architecture to make
use of strict and flexible synchronization based on the target
application and architecture. Second, we propose using multi-
level fine grain parallelism to optimize the whole system so as
to emphasize scalability, adaptivity and performance. We have
developed an associated runtime system prototype to optimize
the efficiency of deep neural network training and utilization
of various hardware configurations in both GPU and CPU
heterogeneous environments. We observe a close to optimal
solution using our runtime system.

II. RELATED WORK

Asynchronous distributed training has been proposed a
decade ago to reduce the overhead of fully synchronizing
when updating the gradient and parameter in neural network
models during the neural network training process [2], [3].979-8-3503-7128-4/24/$31.00 ©2024 IEEE



The topic is still of great interest because of the increasing size
of training data and models requires increased computational
power. The demand for computing power drives the evolution
of more powerful GPUs and increasing large size of the
cluster. Research has been extended to the optimization of
computation, storage and network communication within the
cluster during the distributed neural network training [6], [7].

Recent research on neural network training in heterogeneous
clusters focuses on finding and grouping the homogeneous
part in the cluster system, segmented by varying computation
power. Jiang et al. [4] proposed Grouping-SGD which identify
different groups by compute ability, and within each group
using different synchronization strategies. The grouping strat-
egy achieved better performance to accelerate the updates of
the model parameters. However, a few factors are simplified
and neglected. The grouping algorithm is simplified due to
the compute nodes within each group are identical, leading
to a simplified approach where heterogeneous factors such as
computational power, memory capacity, network bandwidth,
availability, reliability and etc, within each group are not fully
considered. Moreover, scalability issues are not considered in
the research which limits the use in large cluster environments.
Kim et al. [5] explored the concept of grouping GPUs based
on their compute power. They proposed a strategy that involves
synchronization within each GPU group and coordination
between mini-batch sets, contributing to a well-balanced and
efficient training workflow. The parameter server method is
used instead of the theoretically more efficient ring-allreduce,
which may yield more performance improvement. Further, the
efficiency of using heterogeneous GPUs is not addressed. The
network factor of the two projects is not considered as a
parameter into the system. The approach appears to be static,
lacking consideration for dynamic changes during neural net-
work training. This encompasses variations in computation
power, accessibility of each node, and fluctuations in network
conditions. The absence of these dynamic considerations may
limit the adaptability and overall performance of the system.
All the above methods improve the performance of neural
network training by identifying and leveraging homogeneous
parts within the cluster. However, they may not sufficiently
address highly heterogeneous conditions present in the cluster.
As a result, the applicability of these methods is limited in
scope, particularly in scenarios where a significant level of
heterogeneity exists among cluster components.

III. PROPOSED FRAMEWORK

The overall structure of the framework we are proposing
utilizes flexible synchronization [8] and a hybrid architecture
which capable of adaptive and dynamic adjustments to the
logical structure. These modifications are based on real-time
assessments of heterogeneous hardware performance and the
use of different algorithms. The targeted platform includes
heterogeneous cores, heterogeneous nodes with different com-
putation capability, and distributed nodes with diverse range
of network environment. The overall hierarchical structure
includes: First, a number of nodes form a unit group. The

grouping criteria and how many nodes are in one group can be
heuristic for the static structure. For example, we could decide
for the identical nodes to be in one group and for the jobs to
be evenly split among the nodes in the group. [9] However
sometimes we could want to have less powerful nodes to work
together with powerful nodes on some jobs which requires less
computing power in a way to fully utilize the resources. [10]

Consider the nodes communication within each group,
either a centralized or a decentralized way can be applied
based on the characteristics of the nodes within the group.
Each lower level group can also be considered a member of
the high level group. The main issue we have discovered in
the recent research paper [4], [5] is that the scalability issue is
not well considered. Many of the algorithms and strategies are
sensitive to the number of nodes in the group. So in order to
organize a large amount of resources, a hierarchical structure
has to be applied into the system.

The algorithms are linked to specific hardware components
in designing both the initial and dynamic structures, aiming
to use different algorithms based on the job profiles. Strate-
gies are designed for compute-bound, memory-bound, and
communication-bound applications, each with the correspond-
ing design considerations described in the next section.

Fig. 1. Proposed Framework Layers

First our framework seeks to group the heterogeneous nodes
and form homogeneous groups so as to be able to utilize
ring allreduce and synchronization. The second level employs
hierarchical grouping, implementing scalable features. It is
crucial to limit the number of nodes within a group, preventing
the group size from becoming excessively large. On the next
level, the framework takes into account the computation and
transfer rates to dynamically adjust the grouping.The goal is
to prevent the grouping of nodes with significantly disparate
transfer rates, avoiding potential inefficiencies. Finally, the
framework employs fine-grain parallelism on each compute
node to thoroughly explore compute efficiency and its cor-
relation with the local memory structure. Each level of the
framework will be discussed in the following subsections.

A. Homogeneous Groups Separation and Creation Involving
Heterogeneous Nodes

In contrast to recent hybrid cluster systems discussed in
the related work section, which primarily focus on utilizing



the ring allreduce with synchronization and discovering the
homogeneous part of a cluster. [?], [4], [5] Instead, we are
proposing the creation of homogeneous groups that consist
of heterogeneous nodes. When we have more heterogeneous
nodes and fewer homogeneous nodes in the system, our
framework is able to group the heterogeneous nodes into a
homogeneous group by considering their computer power and
the transfer rate between them. In this way, the allreduce and
fully synchronization can still be maintained in the system,
and also all the compute nodes in the system can be utilized.

Fig. 2. Homogeneous group separation

As shown in Fig. 2, we use the bigO notation to represent
the unit cost (cost per byte) on a certain operation based on
the workload and compute power. The node with O(n) in the
circle means it will take n units of time to complete a given
operation with a given data set of size n. All the nodes in the
system can be separated into p number of groups(vertically)
from M1 to Mp. We assigned heterogeneous nodes with the
same order of magnitude into the a homogeneous group.
Grouping algorithms can be used to separate the nodes first
by considering transfer cost among the nodes and compute
power. The algorithms are shown below:

Algorithm 1: Homogeneous Group Separation

1 Wi represent worker;
2 List of Group[ ] distinguished by communication cost;
3 List of group[ ] distinguished by compute power;
4 for i = 0 to n do
5 for j = i− 1 downto 1 do
6 if O(Ci,i−1) = O(Cj,j−1) then
7 Wi.groupId = Wj .groupId;
8 Group[Wi.groupId].add(Wi);
9 end

10 end
11 end
12 return output Group[], group[]

1) Mathematical analysis of compute and transfer ratio in
system decisions: Once we have the grouping and charac-
teristics are done, mathematical analysis can be applied on
the static structure to give an early decision on how many
nodes in the system should be used, and how they should
synchronize with each other when a computation job is given.
Using the setup in Fig. 2, we consider the transfer cost to
be identical among each of the nodes suppose we have done
the separation by transfer cost beforehand, using O(Tr). We

also define O(rbN) where rb = opb/opa, which means the
ratio of the cost for different operation opa and opb on the
same compute node with same data size. Even opa and opb are
within the same order of magnitude, but they are still different
by a ratio of rb.

Assume we have m jobs (a1, a2, ..., am), each characterized
by the same workload for simplicity. This scenario is analo-
gous to the data parallelism strategy used in distributed neural
network training where parallel compute nodes are used to
process the partitioned training dataset using a replica of the
deep learning model. If m < M1 we have two options: either
a serial computation on one of the nodes in M1, or a parallel
one within the group M1. The cost for the serial option will
be mN , and the parallel on M1 will be nTr for the transfer
data and N for the compute. This means that the total cost is
nTr+N when jobs are evenly assigned onto M1 group. If the
number of jobs is larger than the number of nodes in M1, i.e.,
m > M1, we have the option to either send batch (m/M1)
jobs onto M1, or utilize both M1 and M2 groups with M1

jobs sent to M1 and (m−M1) jobs are sent to M2, we can
have the following two equations:

parallelM1 = (nTr +N)(m/M1 + 1) (1)

parallelM1M2
= (nTr +N)(m/(NM1 +M2)) (2)

Apply the same logic on M3 when all the M1, M2 and M3

are used, so there are (m−M1 − nM2/N) jobs on M3, and
total cost on this situation will be:

parallelM1M2M3 = (nTr +N)(m/(N2M1 +NM2 +M3))
(3)

by deduction we can conclude that:

parallelM1M2M3...Mp = (nTr +N)(m/(Np−1M1 (4)

+Np−2M2 +Np−3M3 + ...+Mp)) (5)

Overall, we have p equations to evaluate so we can compare
and select the least costly option. This will be a static strategy
before entering the runtime layer.

B. Hierarchical Logical Structure

It is generally accepted that the ring-allreduce used in
decentralized structures is theoretically faster compared with
the parameter server approach which is used in centralized
architectures, provided all the compute nodes on the ring finish
the same workload and communication cost is same between
nodes on the ring. [11]

Scalability remains a significant challenge in cluster sys-
tems, and even with the implementation of ring allreduce
and fully synchronized architectures, concerns regarding scal-
ability persist. [?] As more nodes are included into the
ring, the probability of incorporating a node with a slow
transfer rate into the entire ring structure increased, thereby
diminishing the overall performance. There is also a higher
likelihood of having a faulty node in the whole structure. So
we should improve scalability by using the hierarchical way
of grouping to limit the size of the ring. This consequently



drives us to explore the hierarchical solutions if the nodes
are heterogeneous and the number of nodes are increasing.
Assume we have n number of compute nodes, where n is a
large number. The intuitively straight way to form a hierarchy
will be to take the square root of n, so the total number
of the groups will be

√
n and the size of each group is

also
√
n. Subsequently, within each group, the hierarchical

formation can continue with
√
n subgroups. Fig. 3 shows two

examples of hierarchical structures with logical connections
to form different structures, which include the ring-allreduce
configuration and the parameter server configuration.

Fig. 3. Example of hierarchical logical structures

When selecting which nodes should be in one subgroup,
random formation is one strategy if no particular feature can
be discovered among the nodes. The central limit theorem [12]
states that, as we take more samples, especially large ones,
the graph of the sample means will look more like a normal
distribution. This means that we can make sure that the overall
compute power will be a normal distribution.

C. Runtime management module with compute and transfer
variance(dynamic structure)

The logical organization of hierarchical nodes within our
system provides several significant advantages. First, regard-
less of a node’s computational capacity relative to others
in the system, it can be effectively used. This means that
even fewer powerful nodes make meaningful contributions to
the overall system performance. Furthermore, our hierarchical
node structure allows for the dynamic inclusion or removal
of nodes from specific groups based on network availability
and instantaneous data transfer rates. This adaptability at
a local level enables fine-grained configuration adjustments
in response to varying computational resources and network
conditions. Given the inherent volatility of computational
power and network conditions, we’ve developed a runtime
management module. This module serves as a proactive super-
visor during neural network training, capitalizing on flexible
synchronization techniques. By adapting to real-time system
characteristics, the module optimizes resource allocation, en-
suring that the neural network operates efficiently, even in
the face of fluctuating computational resources and network
conditions.

Fig. 4 shows node 4 is excluded from the ring when the
runtime management module detects an abnormal situation
from node 4 either because of slowdown in the computation or
the congestion happened in the the network connection from
node 4 to runtime management module. Nodes 1, 2 and 3

can form a new logical ring and continue the ring allreduce
process when updating the model parameters.

Fig. 4. Dynamic synchronization based on transfer and compute cost

We can use the abnormal detection which identifies issues
like loss of dynamic compute power in nodes or network
transfer congestion, as an API access. This enables integration
of additional intelligence on the design of the algorithm
into the whole system. For example, algorithms like running
average or limited width sliding window algorithm are used
as we develop the runtime system.

Algorithm 2: Runtime Distributed Ring-AllReduce
nodei represents worker i;
nodei.ring[] contains nodes active in ring-AllReduce;
while not converged do

for i = 0 to n do
if abnormal detection(nodei) then

ring[].remove(nodei);
end if

end for
for i = 0 to n do

update(nodei.ring[]);
end for

end while

Algorithm 3: Runtime Abnormal Detection
nodei represents worker i;
threthold represents limit value to define abnormal;
while not converged do

for i = 0 to n do
if abs(nodei.cycle time−
nodei.running average) > threthold then
nodei.abnormal = true;

end if
update(nodei.running average)

end for
end while

D. integrate fine grain parallelism into the framework (local
optimization)

When it comes to distributing computational tasks across in-
dividual nodes, it is crucial to locally optimizing at the level of



each computation node. Initial research findings, as illustrated
in Fig. 5, highlight a direct correlation between memory and
cache size and the performance of the ring-allreduce algorithm.
In the specific context of distributed neural network training,
especially when applying model parallelism across the entire
system, it becomes imperative to carefully allocate the size
of each segmented model part to align with the cache and
memory capacities of the local compute node. The preliminary
test shown on Fig. 5 shows a AMD Ryzen 5 1600 6-Core
CPU with 512K L2 cache, has 5-10% of performance increase
when the data size fell within the bounds of the L2 cache.
Further, the comparison between the allreduce algorithm and
the parameter server model shows as much as twice the
performance improvement. These findings underscore the im-
portance of considering both hardware-specific optimizations,
such as cache utilization, and algorithmic choices in the pursuit
of efficient distributed computing for neural network training.

Fig. 5. Cache and Memory Effect on Ring Allreduce and Parameter Server

Zeng et al. [13] use the Codelet Model, which is a fine
grain dataflow-based execution model, to group 10-15 neurons
as a codelet which has achieved 60% higher speed up than a
pervasively used coats-grain multithreaded parallel computing
model, in the test of Lenet-5, a 7-layer convolutional neural
network, on single-node computing system. Geng et al. [14]
proposed to demonstrate the need for fine-grain synchro-
nization in the presence of rather coarse-grained workload
partitioning. They compared the coarse-grain parallelization
of a 5-point stencil application implemented with OpenMP
to several variants using a fine-grain event-driven execution
model, and demonstrated that even with a uniform amount of
work per thread, fine-grain synchronization still matters in a
regular general-purpose systems.

Thus, by integrating the fine grain model with the distributed
system, we expect a cumulative up speedup that comes both
from the fine grain model and the distributed system.

IV. EXPERIMENT AND DISCUSSION

We applied our runtime system in three different environ-
ment: heterogeneous CPU and heterogeneous GPU environ-
ments. We compared ring allreduce with fully synchronization,
no synchronization, fixed percentage synchronization, and
flexible synchronization which our runtime module monitor
the runtime behavior of each node, and the network condition.
We also test the robustness of our runtime system by inserting
the delays and variances into the network connections, and we

observed the abnormal node such as loss of compute power
or loss of connection, will be dropped of the synchronization
process if it is detected, to make sure the overall performance
of the whole system. All the tests are implemented and
integrated with Pytorch framework.

A. Heterogeneous CPU environment

The CPU cluster we formed for evaluation comprises 13
nodes. Nodes with fast connections are placed into one group.
Only one node in the group serves as communication node
with the outside group. The nodes in group 1 and group 2
are within the same magnitude as we use big O notation
to describe the compute power. Group 3 and 4 is one more
magnitude slower comparing with group 1 and 2.

TABLE I
HARDWARE CONFIGURATIONS OF HETEROGENEOUS CPUS

Group Nodes CPU Network Adapter
group1 node 0-3 Intel i5 1Gbps
group2 node 4-7 AMD Ryzen 5 1600 1Gbps
group3 node 8-10 ArmV8 1Gbps
group4 node 11-13 ArmV7 1Gbps

We select the LeNet networks and MNIST dataset in this
experiment. We record the training time till the test accuracy
reaches 95%. In the case of connection all group 1 to 4, the
nodes of group 3 and 4 are dropped off during the runtime
because the compute power is magnitudes lower and also with
a slow connection to group 1 and 2.

Comparing the Fully Synchronization, Percentage Synchro-
nization, and Flexible Synchronization. Percentage Synchro-
nization has close to optimal performance, and flexible syn-
chronization has the advantages on the runtime when network
variance is introduced into the computation environment. The
plots presented in Figure 6 illustrates a significant decrease
in the performance of full synchronization when confronted
with network or computation variances. While the percentage
synchronization also experiences a slowdown, it maintains a
relatively high performance by constraining the synchroniza-
tion rate with slower connections or computation nodes. The
runtime flexible synchronization demonstrates an improvement
in performance compared to full synchronization, although it
falls short of the performance achieved by percentage synchro-
nization. Despite not matching the efficiency of percentage

Fig. 6. Heterogeneous CPU Experiment Result

synchronization, the runtime management module remains
effective in addressing the variances or turbulence within the
distributed system. This suggests that the runtime flexible



synchronization can serve as a valuable tool for mitigating the
impact of disruptions in a distributed computing environment.

B. Heterogeneous GPU environment

We have conducted tests on four distinct sets under varied
group conditions. Across the board, the performance of full
synchronization shows a notable decline when confronted with
huge differences in computer power or substantial variances
in the network. This decline was particularly evident in
scenarios such as G1 and G2 with network variance or G1
and G3. In contrast, percentage synchronization showcased
greater resilience by adeptly regulating the synchronization
rate, especially in the presence of slower connections, whether
in computation or transfer. Flexible synchronization, operating
as a runtime method to govern the synchronization rate,
proved to be a viable alternative. It demonstrated an ability
to sustain performance levels when compared to the more
resource-intensive full synchronization. This underscores the
effectiveness of adopting a flexible strategy, particularly in
environments characterized by computational disparities or
network variations, where it can effectively mitigate unnec-
essary costs and optimize overall system performance.

TABLE II
HARDWARE CONFIGURATIONS OF HETEROGENEOUS GPUS

Group Nodes GPU Network Adapter
group1 node 0-1 Nvidia P6000 1Gbps
group2 node 2 Nvidia P6000 1Gbps
group3 node 3 Nvidia 3060Ti 1Gbps

Fig. 7. Heterogeneous GPU Experiment Result

V. CONCLUSION AND FUTURE WORK

A dynamically hybrid and hierarchical logical architecture
for cluster nodes has been introduced to address adaptivity and
scalability issues in distributed neural network training. All the
software, hardware, and network variables in the whole system
were design with consideration to using the different layers of
classification and dynamic runtime system. We have been able
to utilize the hierarchical hardware resources more efficiently
in an uncertain network environment.

Work is still needed in the future. First, the algorithm which
is used in the runtime system to control the objects and
frequency of the synchronization can still be improved. Even
though we have improved the running time to convergence,
there is still some room for improvement to reach the optimal

value. More effort should be put to bear on exploring more
efficient algorithms. Machine learning strategy can also be
brought into consideration.

Second, the experiments conducted so far may not fully
represent exascale scenarios, despite considering scale factors.
Future research could benefit from the inclusion of additional
hardware resources, such as multiple clusters or multiple data
centers, to achieve a more comprehensive understanding of
system behavior. Additionally, the current simplification of
network conditions might not capture all the intricacies of
the model. Therefore, future efforts should consider a more
detailed examination of various network variables to enhance
the accuracy and reliability of the entire system.
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