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Abstract. The Power of Two Choices (PoTC) is a commonly used tech-
nique to balance the incoming load (balls) into available resources (bins)
– for each coming ball, two bins are selected uniformly at random and the
one with smaller number of balls is chosen as the location of the current
ball. We study a generalization of PoTC to a fault-prone setting – faulty
bin(s) could present malicious information to enforce allocation decision
on any of the two bins. Given m balls and n bins, such that no more
than f of the bins are faulty, we show that the maximum loaded honest
bin receives a surplus of a logarithmic number of balls with respect to f .
Our result generalizes the classic bounds of the Power of Two Choices in
the presence of a strong Byzantine adversary. Our solution and methods
of analysis can help to efficiently implement and analyze resilient online
local decisions made by processes when solving fundamental problems
that depend on load balancing under the presence of Byzantine failures.

Keywords: Scheduling and resource allocation · Power of Two Choices
· Fault tolerance · Strong Byzantine adversary · Probabilistic analysis.

1 Introduction

We study a generalization of the classical Power of Two Choices (PoTC) online
principle (in which the ball chooses the bin with a smaller number of balls)
to a fault-prone setting – a faulty bin could present the ball with malicious
information to enforce the decision on any of the two bins. This generalization
could allow using the PoTC paradigm in the design and analysis of distributed
protocols, for example, population protocols, multiprocessor job scheduling, and
network routing, under the presence of Byzantine failures.

In the traditional balls-in-bins problem, there are m balls and n bins and each
ball is thrown into a bin picked uniformly at random [20,25]. It is well known that
for m = n each bin gets at most log n/ log log n balls with high probability (i.e.,
with probability at least 1−o(1)) [17]. This improves to at most log log n+Θ(1)
balls per bin, if we give two random choices to each ball and the ball goes into
the bin that has the smaller number of balls [5]. The result can be generalized
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for d random choices per ball to at most (1+o(1)) log log n/ log d+Θ(m/n) balls
per bin [5,11].

The balls-in-bins problem has important applications in fundamental decision-
making problems [27]. It can be used to solve task load balancing, hash collision,
and routing problems. In the task load balancing problem, each ball corresponds
to a computing task, where each task has a fixed weight, and the bins are the
servers that will execute the tasks. Using the Power of Two Choices,3 each task
picks two random servers and is allocated to the least loaded server. Hence, with
n tasks and n servers, each server will be imbalanced by at most an additive
O(log log n) term. One of the advantages of PoTC is that it is local, i.e., de-
cisions are made by looking into only 2 bins rather than all of them, which is
important in distributed settings. A similar approach with PoTC can be used
to improve collisions in hash functions [27]. With two perfectly random hash
functions giving two distinct table entries, a key is placed to the entry with the
smallest chain of keys. The load balancing attribute can also be used in network
routing where packets pick two randomly chosen paths and the packet is sent
along the path that currently has the lowest congestion [15]. Other applications
include load-balancing in virtual machines in fog computing [10], queuing theory
analysis [12], and distributed voting [16].

Many of the aforementioned applications for the PoTC problem take place in
a distributed computing environment that is prone to failures [1,24]. The failures
may take different forms, for example, the computing nodes may crash and
communication links may be disrupted. Even worse, nodes and communication
links may be compromised and misbehave due to malicious attacks or other
reasons. Since typical distributed systems need to continuously operate even
under failures, it is important to understand what is the system’s resiliency to
failures and the impact on the performance of the underlying distributed task.

In this work, we model failures as being generated by a Byzantine adversary
that aims to disrupt normal operations and cause the system to misbehave.
Byzantine failures model a large range of system failures which include crash
failures and malicious attacks. Byzantine adversaries have been considered for
classic distributed consensus [9,22]. Here, we examine the impact of Byzantine
faults on PoTC.

The Byzantine adversary controls f < n of the bins which are faulty and they
may report wrong information about the number of balls in them. The remain-
ing n − f bins are honest and not controlled by the adversary. The Byzantine
adversary does not control the scheduler, that is, the scheduler keeps making
random picks of two bins out of n for each of the balls. If the scheduler picks
two honest bins, the ball will fall into the bin with the least load. However, if
the scheduler picks one honest bin together with a faulty bin, then the faulty bin
may report a higher number of balls than it actually has, forcing the ball to fall
into the honest bin. Therefore, a Byzantine adversary can create an imbalance
in the allocation of balls into the bins, by directing more balls to the honest bins.

3 “Power of Two Choices” can denote a principle as well as a greedy algorithm following
said principle.
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, n2

2em
}

1− o(1)

Table 1. Technical contributions. Parameter ϕ can be equal to 4em2

n2 (see Corollary 2)
or cem/n for any c > 2e (see Corollary 5 and Lemma 7).

We show that PoTC has an inherent tolerance to failures. Given f faulty
bins, for the case where f < n2/(2em) and m = O(n log n), we show that
the maximum loaded honest bin receives only a logarithmic number of balls
with respect to f . We also bound the maximum load on an honest bin for the
general case. Our results imply that the system can gracefully tolerate failures for
certain values of f without significantly affecting the maximum load on any bin.
Hence, the affected applications related to load-balancing and collision avoidance
have sustained good properties with only an additive logarithmic term on their
performance impact due to failures.

Our main technical contributions are summarized in Table 1. All the results
occur with high probability. The main results are provided by Theorem 1 and
Theorem 2. All the corollaries are derived from these two theorems. Theorem 1
applies to a wide range of number of balls m. A more precise result is shown
in Theorem 2, however it applies only to m = O(n log n) and depends on a
parameter ϕ that can be used to provide refined results. Depending on the choice
of the problem parameters, and replacing parameter ϕ accordingly, one can derive
from Theorem 2 results that can be compared to the results for non-faulty PoTC,
e.g., m/n+O(log log n) in [11]. A precise description of these results, as well as
some additional results and a discussion of why simpler solutions do not work,
can be found in Section 2.

1.1 Related work

There are several variants of the PoTC problem. The extension to d choices
provides an improvement to the basic log log n maximum load bound [5,11]. It is
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shown that the improvement is inversely proportional to d if there is asymmetry
between the d choices [28]. Typically it is assumed that all balls have the same
weight, but having different ball weights has also been considered [26], since it
represents the load-balancing problem of non-uniform tasks. Variants allowing
ball deletions together with insertions have also been studied [7].

Recently, fault-tolerance of PoTC has been studied as well. For example, [23]
focuses on load balancing applications and allows incorrect results of comparisons
when the compared values differ by less than some parameter.

The classic PoTC problem has been generalized to graphical allocations [6,21],
where the bins are nodes in a graph and for each ball, a uniformly random edge
is selected. The ball is allocated to the less loaded of the two bins associated
with the edge. The classic problem is a special case when the graph is the clique
Kn. It is shown that in a nϵ-regular graph (with n nodes) the maximum load is
log log n+O(1/ϵ)+O(1). Graphical allocations have also been studied from the
perspective of assigning the ball to the lowest loaded bin with probability β and
to the other bin with probability 1 − β, also called (1 + β)-choice process [26].
Notably, (1+β)-choice process can be used to model faults caused by an unreli-
able load reporting mechanism. They show that the gap between the most and
least loaded bins is Θ(log n/β) irrespective of m (w.h.p.). Faults can be modeled
with (1+β)-choice process for the case where an adversary always gives the ball
to the honest node when also a faulty node is picked in the pair. However, a
Byzantine adversary can behave in a way that cannot be mimicked by the ran-
dom (1+β)-choice process, e.g. deterministically choosing balls that will be put
in faulty bins. Additionally, our results are better for some parameters m,n, f
than the results for (1 + β)-choice process (see the note after Corollary 5).

PoTC naturally relates to population protocols [3,8], where there are n nodes
(similar to the bins) such that a random scheduler each time picks two nodes to
participate in an exchange (similar to picking two random bins to throw the ball).
Population protocols solve basic distributed problems such as leader election and
majority consensus using a small set of states per node. A useful primitive in
population protocols is the phase clock [2],which is a local counter at each node
that increments at each exchange modulo a fixed phase duration, such that each
phase implements a step of an algorithm. This is similar to the behavior of
PoTC as well. There is a relation with faulty population protocols, where some
nodes may be malicious or act erratically [4,13,18]. In such settings, a fault-
tolerant adaptation of phase clock needs to be developed. Such a phase clock
requires bounds on the gap between the most loaded and least loaded bin. Our
analysis of the most loaded bin of faulty PoTC is a step towards implementing
a fault-tolerant phase clock for fault-resilient population protocols; however, our
analysis needs to be adapted to bound the gap for phase clocks.

Outline of the paper: We continue with the problem specification, description
of challenges and our extended results in Section 2. The proof of Theorem 2 is
given in Section 3. The case m ≥ en is analyzed in Section 4, while the case
of large m is analyzed in Section 5. Finally, we conclude with a discussion and
open problems in Section 6.
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Algorithm 1: Balls in bins with Power of Two Choices against strong
Byzantine adversary

Input : n bins and a sequence of m balls r1, r2, . . . , rm; Byzantine adversary
controls f bins

Output: Distribution of the m balls to the bins

1 Let vi denote the actual number of balls in bin i;
2 Initially, vi ← 0, for all i ∈ [n];

3 Let F , with |F | = f , be the set of bins controlled by the adversary;
4 For each i ∈ F , the value vi is reported by the adversary;
5 For each i ∈ [n] \ F , the reported value vi is the true number of balls in bin i;

6 for k = 1 to m do
7 Pick uniformly at random a pair (i, j) ∈ [n]2, i ̸= j;

// Adversary knows the true values of vi and vj
// If i ∈ F or j ∈ F then the adversary may report wrong vi or

vj, resp.
8 Let x be the bin such that x ∈ {i, j} and vx = min(vi, vj);
9 Place ball rk into bin x;

10 vx ← vx + 1;

2 Problem Specification and Our Results

2.1 Problem description

Consider n bins and m balls. The balls arrive one-by-one in an arbitrary linear
order. The goal of an online algorithm is to throw each ball to some bin in such a
way that the size of the largest bin (i.e., with the largest number of balls thrown
to it) is minimized. f of the n bins are faulty, while all other bins are called honest.

In this work, we study a fault-tolerant version of an algorithm commonly
known as the Power of Two Choices, called Byzantine-Tolerant Power of Two
Choices or BT_PoTC for short. It proceeds as follows. At each time t, upon
arrival of ball t, two bins are picked uniformly at random. If both bins are honest,
then the ball lands in the bin with fewer balls (ties are solved arbitrarily). If at
least one bin is faulty, then a malicious adversary decides which bin receives the
ball and is capable to enforce it on the algorithm. See also Algorithm 1.

This is formally done as follows: the adversary controlling the faulty bin could
provide the algorithm with an arbitrary number (instead of the actual number
of balls in that bin), which is then compared with the number provided by the
other bin (potentially honest) and the minimum is selected. We assume that the
adversary has the following attributes:

– it is Byzantine, i.e., it can provide an arbitrary answer about the number of
balls in the selected faulty bin(s),

– it is computationally unbounded,
– it knows the algorithm BT_PoTC,
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– it is strongly adaptive, i.e., it knows which bins have been randomly selected
so far and which bins will be selected in the future and can use this knowledge
to provide a potentially malicious answer to the algorithm about the number
of balls in the currently selected faulty bin(s).

We measure the maximum number of balls in honest bins, and the goal is to
have as precise asymptotic upper bound on this number as possible. This esti-
mate is supposed to hold with high probability, which denotes probability 1−o(1).
Part of the analysis is done with high probability that is polynomially close to 1,
i.e., 1− n−c for some constant c > 0. Throughout the paper we use asymptotic
notation of O(·) and o(·) to upper bound formulas and (complementary) prob-
abilities: f(x) = O(g(x)) means that f(x) ≤ c · g(x) for some sufficiently large
constant c, while f(x) = o(g(x)) means that f(x)/g(x) converges to 0 when x
goes to infinity.

Challenges. At first glance it may seem that one can directly apply the results
about PoTC process to this problem. E.g., we split the balls into those that
choose between 2 honest bins and those that choose between an honest and a
faulty bin. The balls that choose between 2 honest bins behave like PoTC process,
while the balls that choose between an honest and a faulty bin behave like the
standard balls-into-bins process. However, those two processes are dependent on
each other – the balls added by the latter (standard balls-into-bins) process affect
decisions made during the power-of-two-choices process. This difficulty is not
easily worked around. For example, a related problem with similar dependencies
required a completely different, non-trivial method of analysis [26].

2.2 Our results

First we present a result for m > 3
2n log n. Note that this result covers any

number of faulty bins f < n. The proof is given in Section 5.
Theorem 1. For any values of parameters m, δ ∈ (0, 1) and c > 1 such that
2mδ2

3n > c log n, there is no honest bin with more than (1 + δ) 2mn balls in it with
probability at least 1− n1−c.

E.g., with m > 9n log n, δ = 1/2 and c = 3
2 , we get the following corollary.

Corollary 1. Let m > 9n log n. Then, there is no honest bin with more than 3m
n

balls in it with probability at least 1− n−1/2.

Now we present a result complimentary with Theorem 1, i.e., a result that
works for m ≤ 3

2n log n. This is the main result of this article, and its proof is
given in Section 3.

Theorem 2. Let m = O(n log n) and 1 ≤ f < n2

2em . Let ϕ be such that the
number of honest bins with at least ϕ balls is at most n2

4em with probability at
least 1− n−2. Then, there is no honest bin with more than

ϕ+ log log
n2

2emf
+ log n2

2emf

2f√
f2 + 8n2

m log n− f
+ 1
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balls in it, with probability at least 1− o(1).

Next we present corollaries with clearer formulas. We have:

O

log n2

2emf

f√
f2 + n2

m log n− f

 ≤ O

log n2

2emf

f ·
(√

f2 + n2

m log n+ f

)
f2 + n2

m log n− f2


≤ O

log n2

2emf

f2 + f
√

n2

m log n

n2

m log n

 ≤ O

(
log n2

2emf

(
f2m

n2 log n
+

√
f2m

n2 log n

))

≤ O

(
max

{
log n2

2emf

(
2emf

n2
· f

2e log n

)
, log n2

2emf

(√
2emf

n2
· f

2e log n

)})

≤ O

(
log n2

2emf

f

2e log n

)
. (1)

We start with a corollary that is not yet fully optimized, and finish with the
one in optimal form.

Corollary 2. Let 1 ≤ f < n2

2em . Then, there is no honest bin with more than

O

((m
n

)2
+ log log

n2

2emf
+ log n2

2emf

f

2e log n

)
balls in it, with probability at least 1− o(1).

Proof. Let ϕ = 4em2

n2 . Note that the number of honest bins with at least ϕ balls
is at most m/ϕ = n2

4em with probability 1. Therefore, we can use Theorem 2 to
obtain the corollary, bounding the last logarithm as in Equation (1).

Corollary 3. Let 1 ≤ f < n2

2em and m = O(n). There is no honest bin with
more than

O

(
log log

n2

mf
+ log n2

2emf

f

2e log n

)
balls in it, with probability at least 1− o(1).

Proof. The result follows directly from Corollary 2 and bound m = O(n).

The following corollary uses the fact that the number of honest bins with at
least ϕ = Θ(m/n) balls in them is at most βϕ = n2

4em , for m > en and f < n2

2em .
This is formally shown in Lemma 7 in Section 4.

Corollary 4. Let 1 ≤ f < n2

2em , where m ≥ en and m = O(n log n). There is
no honest bin with more than

O

(
m

n
+ log log

n2

mf
+ log n2

2emf

f

2e log n

)
balls in it, with probability at least 1− o(1).
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Proof. Let ϕ = cem
n for some c > 2e. According to Lemma 7, the number of

honest bins with at least ϕ balls is at most βϕ = n2

4em (which is denoted by
event Eϕ) with probability 1− n−c. Therefore, we can use Theorem 2 to obtain
the corollary, bounding the last logarithm as in Equation (1). (The detailed
definitions of βϕ and Eϕ are given below in Subsection 3.1.)

Corollary 5. Let 1 ≤ f < n · max{ 1
12e logn ,

n
2em}, where m ≥ n. There is no

honest bin with more than

O

(
m

n
+ log log

n2

mf
+ log n2

2emf

f

2e log n

)
≤ O

(
m

n
+ log log

n

f
+ log f

)
balls in it, with probability at least 1− o(1).

Proof. For m ≥ 6n log n, the formula is just O(m/n), by Theorem 1. Consider
en ≤ m < 6n log n. Observe that n

6f logn < n2

mf ≤ n
ef , therefore we upper bound

the formula in Corollary 4 as follows:

O

(
log log

n2

mf
+ log n2

2emf

f

2e log n

)
≤ O

(
log log

n

f
+

log f
2e logn

log n
f logn

)

≤ O

(
log log

n

f
+ log f

)
.

Note that all the results for (1 + β)-choice process by Peres et al. [26] are
asymptotically at least log n w.h.p. On the other hand, our analysis provides
a tighter bound on the maximum load of a bin for some parameters, e.g., for
m = O(n) and f = o(n) we can get from Corollary 5 that the maximum load is
O(log log(n/f) + log f) w.h.p.

3 Probabilistic Analysis of Power of Two Choices under
Byzantine Faults — Proof of Theorem 2

3.1 Overview of the analysis

Our analysis is inspired by [5]. While the general idea of the proof still applies,
introduction of faulty bins controlled by a strong Byzantine adversary called for
additional more careful analysis to be made. Another challenge lies in finding
appropriate values of parameters that take into account malicious influence of
faulty bins that may interact with honest bins (when selected together by the
random process).

The main effort is in analyzing events Ei, representing that there exist at
most βi honest bins with at least i balls in each, for a range of positive integers i.
Values βi will be defined later.

The starting point of our analysis is for some carefully chosen threshold
parameter i = ϕ such that the event Eϕ is guaranteed to happen with high
probability. (We prove later in Section 4 and Lemma 7 that such ϕ = O(m/n),
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achieving asymptotically perfect allocation threshold, exists and thus could be
substituted in the formula of Theorem 2 to obtain an efficient bound in Corol-
lary 4.) As we move to larger parameters i > ϕ, the events Ei represent situations
where there are fewer and fewer honest bins with more and more balls in them.
Eventually, we reach a final event Ek such that there is less than 1 bin with at
least k balls in it, for some value of k to be derived in the analysis; meaning –
there are no such bins.

We analyze the probability that each of the events Ei occurs. The starting
point Eϕ is guaranteed with high probability. We want to show that all the events
Ei occur with high probability until after the event we need, Ek. However, the
approach we use can only show that Ek−2 occurs with high probability. Still,
having event Ek−2, we can manually show that the number of bins with at least
k balls is less than 1.

The proof of Theorem 2 is divided into four steps. Recall that in this analysis
we assume m = O(n log n), while the complementary case is analyzed in Section 5
and Theorem 1.

In Step 1, we define critical sequences of parameters βi and events Ei, taking
into account the impact of faulty bins. We obtain the initial estimate of the
probability P (¬Ei+1 | Ei). Here ¬Ei+1 denotes the event complementary to Ei+1,
i.e., the event that Ei+1 does not hold.

In Step 2, we find that, with an additional assumption for the threshold
parameter i, event Ei occurs with high probability.

In Step 3, we calculate for which values of i the assumption considered in
Step 2 actually holds. As long as the assumption holds, the good events Ei hold
too. In this step, the impact of faulty bins on the analysis, and their number f
in the formulas, is the most challenging to deal with.

In Step 4, we use the highest event Ei in the sequence that we could prove to
hold with high probability. Instead of continuing to show that further good events
in the sequence hold with high probability, we prove directly that the number
of bins with many balls is less than 1, which concludes the proof of Theorem 2.

3.2 Worst-case adversary

First, we make an observation about the worst case adversary.
Consider a greedy adversary GREEDY that, whenever a ball chooses be-

tween a faulty bin and an honest bin, makes the ball land in the honest bin. We
claim that such a greedy adversary is the worst-case adversary even among the
strongly adaptive adversaries.

Lemma 1. GREEDY is the worst-case adversary for maximizing load.

Proof idea. Consider any adversary ADV . Consider any bin b and any sequence
of exchanges S. Let lAb (S, t) be the load of bin b at time t under adversary ADV
for the sequence of exchanges S. A simple inductive argument over time t shows
that – for every honest bin b, all sequences of exchanges S and at any time t –
we have lADV

b (S, t) ≤ lGREEDY
b (S, t).
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n The number of bins.
m The total number of balls that will be thrown into the bins.
f The number of faulty bins.
e Euler’s number, e = 2.71828 . . .

i
Parameter of the considered sequence of events {Ei}, in which i corresponds to
a threshold on the load of the bins.

t Actually considered time step and ball number.
vti The number of bins that are honest and have at least i balls at time t.

ht The number of balls in the bin in which the t-th ball has landed at time t
(measured after it has landed).

ut
i The number of balls in honest bins that have height at least i at time t.

βi Upper bound on the number of honest bins with at least i balls.
Ei An event such that vmi ≤ βi.

ϕ
The starting point for the considered sequence of events Ei.
βϕ = n2

4em
and event Eϕ occurs with high probability.

Y t
i

Y t
i = 1 if the t-th ball landed in an honest bin and ht ≥ i+ 1 and vt−1

i ≤ βi;
otherwise, Y t

i = 0.

pi
Upper bound on probability that a ball landed in a bin with at least i

balls in it. We have pi =
(

βi
n

)2

+ f
n
· βi

n
.

i1 ϕ+ i1 is the smallest index of βi such that βϕ+i1 < f .
i∗ The smallest value such that mpϕ+i∗ < 2 lnn.

B(m, p) Binomial distribution with m trials and probability p.
Table 2. Table of problem parameters and most important notation in the analysis.

The full proof is deferred to the full version of the paper.
From now on, we analyze the protocol against the GREEDY adversary.

According to Lemma 1, the results will also apply to an arbitrary adversary.

3.3 Step 1: initial estimate of P (¬Ei+1 | Ei)

The goal of the first step of the analysis is to obtain the initial estimate on
P (¬Ei+1 | Ei) for any integer i > 0.

In our analysis we will use the following two standard facts. Let B(m, p)
denote the binomial distribution with m trials and probability of success p.
The following stochastic dominance has been proved and used before in various
probabilistic analyses, c.f. [14, in the analysis of Lemma 2].

Fact 1 Let X1, X2, . . . , Xm be a sequence of random variables with values in an
arbitrary domain, and let Y1, Y2, . . . , Ym be a sequence of binary random vari-
ables, with the property that Yi = Yi(X1, . . . , Xi).

If P (Yi = 1 | X1, . . . , Xi−1) ≤ p then P (
∑m

i=1 Yi ≥ k) ≤ P (B(m, p) ≥ k) .

The proof of the next fact (Chernoff Bounds) can be found, e.g., in [19].

Fact 2 (Chernoff Bounds) For a ≥ mp, P (B(m, p) ≥ a) ≤
(
mp
a

)a
ea−mp . If

a = (1 + δ)mp, for some δ ∈ (0, 1), then P (B(m, p) ≥ a) ≤ e−mpδ2/3.
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We start the technical analysis by defining three crucial notations: vti , Ei, βi.
Here, an integer parameter i denotes the considered threshold on the number
of balls in bins, and t stands for the order number of analyzed ball. The list
of all important notations and their meaning is given in Table 2. Let vti be the
number of bins that are honest and have at least i balls at time t, i.e., after
considering and placing t balls. Let Ei be an event such that vmi ≤ βi, for given
parameters βi that will be determined later. Let index ϕ be such that Eϕ occurs
with probability at least 1− n−2.

Our goal is to find parameters βi such that Ei holds with high probability
and βi < 1 for as small parameter i as possible.

Let the height of ball t, denoted ht, be the number of balls in the bin in which
the t-th ball has landed (measured after it has landed).

Let Y t
i be a random variable such that Y t

i = 1 if the t-th ball landed in an
honest bin and ht ≥ i+ 1 and vt−1

i ≤ βi; otherwise, Y t
i = 0. Intuitively, Y t

i = 1
denotes the event such that a ball landed in a bin with already many balls in
it. The additional constraint vt−1

i ≤ βi helps to carry on the analysis leading to
finding a small value i for which βi < 1 and Ei holds with high probability.

Let ωj be a random variable equal to the bin number where the j-th ball has
landed. We will upper bound the probability P (Y t

i = 1 | ω1, ω2, . . . , ωt−1). Note
that Y t

i = 1 only if one of the two cases occurs:

– the protocol picks two honest bins with at least i balls in them to choose

from, which takes place with probability at most
(

βi

n

)2
, or

– if one chosen bin is faulty and the other is honest, with at least i balls, which
happens with probability at most f

n · βi

n .

Therefore, we get the following inequality

P (Y t
i = 1 | ω1, ω2, . . . , ωt−1) ≤

(
βi

n

)2

+
f

n
· βi

n
. (2)

Let pi =
(

βi

n

)2
+ f

n · βi

n .
For parameters i and t, let ut

i be the number of balls in honest bins that have
height at least i at time t. Now we will relate um

i+1 with random variables Y t
i .

Note that, if Ei holds, then vt−1
i ≤ βi for all t. In that case

∑m
t=1 Y

t
i = um

i+1.
Therefore, P (

∑m
t=1 Y

t
i ≥ k | Ei) = P (um

i+1 ≥ k | Ei) for any parameter k.
Now we will estimate P (vmi+1 ≥ k | Ei) for some values of parameter k. Note

that vti ≤ ut
i for all i and t, and therefore

P (vmi+1 ≥ k | Ei) ≤ P (um
i+1 ≥ k | Ei) = P

(
m∑
t=1

Y t
i ≥ k | Ei

)
≤ P (B(m, pi) ≥ k)

P (Ei)
,

where the last inequality follows from Fact 1.
For k = βi+1 we get

P (vmi+1 ≥ βi+1 | Ei) ≤
P (B(m, pi) ≥ βi+1)

P (Ei)
. (3)
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We can use Fact 2 with a = βi+1, where βi+1 = empi and get

P (vmi+1 ≥ βi+1 | Ei) ≤
(
1

e

)empi

e(e−1)mpi = e−mpi .

Note that the event (vmi+1 > βi+1) is equivalent to ¬Ei+1. Therefore,

P (¬Ei+1 | Ei) ≤ e−mpi . (4)

3.4 Step 2: analysis of event Ei for i corresponding to pi ≥ 2 lnn
m

In Step 2 we use the estimate obtained in the previous step to establish that
events Ei hold with high probability (polynomially close to 1) for some parame-
ters i. We will analyze later in Step 3 which values of i hold this property.

Our goal now is to show that P (¬Ei+1 | Ei) ≤ 1/n2. Assume we have some ϕ

such that Eϕ occurs with high probability for βϕ = n2

4em – existence of such ϕ will
be shown later in Lemma 7. If this is the case, then Ei holds for all ϕ ≤ i ≤ ϕ+ i∗

for some i∗, also with high probability.
Suppose first that mpi ≥ 2 lnn. Then e−mpi ≤ 1/n2 and, by Equation 4, we

have P (¬Ei+1|Ei) ≤ 1/n2. Then, we could follow a simple inductive argument to
prove Lemma 2 below. The proof is deferred to the full version of the paper.

Lemma 2. If mpi ≥ 2 lnn holds for consecutive parameters i starting from ϕ,
then P (¬Eϕ ∨ ¬Eϕ+1 ∨ · · · ∨ ¬Eϕ+i) ≤ (i+ 1)/n2.

3.5 Step 3: finding i∗ – the minimum i satisfying pϕ+i <
2 lnn
m

The previous step proved that events Ei hold with high probability for i such
that mpi ≥ 2 lnn. In this step we answer the question: What are the values of
i such that the sought property mpi ≥ 2 lnn holds? To address it, we will now
find the minimum i∗ such that mpϕ+i∗ < 2 lnn.

Lemma 3. The smallest value i∗ such that mpϕ+i∗ < 2 lnn satisfies

i∗ ≤ log2 log 2emβϕ

n2

2emf

n2
+ log n2

2emf

2f

−f +
√
f2 + 8n2

m log n
. (5)

In order to prove Lemma 3, we introduce Lemmas 4–6. The first of them,
Lemma 4, can be proved by induction on parameter i. The proof of Lemma 4 is
deferred to the full version of the paper.

Lemma 4. βϕ+i is monotonically decreasing when parameter i increases.

Lemma 5. Let i1 be the smallest i such that βϕ+i < f . It holds that i1 ≤
log2 log 2emβϕ

n2

2emf
n2 .
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Proof. Consider values of parameter j such that βj ≥ f .

We get that pi ≤ 2
(

βj

n

)2
and the following recursive equation βj+1 ≤ em ·

2
(

βj

n

)2
. Therefore, βj+i ≤ n2

2em

(
2emβj

n2

)2i
for i such that βj ≥ f , βj+1 ≥ f , . . . ,

βj+i−1 ≥ f . In particular, we get

βϕ+i ≤
n2

2em

(
2emβϕ

n2

)2i

(6)

for i such that βϕ+i−1 ≥ f (it follows that βϕ ≥ f , βϕ+1 ≥ f , . . . , βϕ+i−2 ≥ f
according to Lemma 4).

Now we look at what values of i are such that βϕ+i−1 ≥ f . We can look
for the smallest i1 such that the opposite occurs, i.e., βϕ+i1 < f (recall that
we only consider f ≥ 1 – see the statement of Theorem 2). Recall our choice
βϕ = n2

4em < n2

2em . Note the base of the power in Inequality 6 is 2emβϕ

n2 < 1.
Therefore, we can find that βϕ+i < f for any i ≥ log2 log 2emβϕ

n2

2emf
n2 (note that

log 2emβϕ

n2

2emf
n2 > 0, since 2emβϕ

n2 = 1
2 and 2emf

n2 < 1 due to our assumption that

f < n2

2em in the statement of Theorem 2). It follows that the smallest i1 such
that βϕ+i1 < f satisfies: i1 ≤ log2 log 2emβϕ

n2

2emf
n2 .

Note that βϕ+i1 is the first β such that βϕ+i1 < f .

Lemma 6. For i ≥ 0, βϕ+i1+i ≤
(

2emf
n2

)i
βϕ+i1 .

Proof. According to Lemma 5 and Lemma 4, we have βj < f for all j ≥ ϕ+ i1.

We get βj+1 < em
(

f
n · βj

n + f
n · βj

n

)
= 2emf

n2 βj . Therefore, βj+i ≤
(

2emf
n2

)i
βj

for i, j such that βj < f , βj+1 < f , . . . , βj+i−1 < f . In particular, for any i ≥ 0,

βϕ+i1+i ≤
(
2emf

n2

)i

βϕ+i1 . (7)

Now we are ready to prove Lemma 3.

Proof (Proof of Lemma 3).

First, recall that βi+1 = empi and pi =
(

βi

n

)2
+ f

n · βi

n for all i.
We are interested in i such that mpϕ+i < 2 lnn, that is to say(

βϕ+i

n

)2

+
f

n
· βϕ+i

n
<

2 lnn

m
. (8)

We can treat this inequality as a quadratic inequality with variable βϕ+i to
obtain that mpϕ+i < 2 lnn holds if

βϕ+i ∈

−f −
√
f2 + 8n2

m log n

2
,
−f +

√
f2 + 8n2

m log n

2

 . (9)
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Because of the monotonicity of βϕ+i, as in Lemma 4, we are interested in the
smallest i such that

βϕ+i <
−f +

√
f2 + 8n2

m log n

2
. (10)

Based on Lemma 6 and the facts that βϕ+i1 < f (see Lemma 5) and f < n2

2em (as-

sumption in Theorem 2), we get that βϕ+i1+i <
−f+

√
f2+8n2

m logn

2 holds for any

i ≥ log 2emf

n2

−f+

√
f2+8n2

m logn

2f . It follows that i∗ ≤ i1+log n2

2emf

2f

−f+

√
f2+8n2

m logn
.

3.6 Step 4: finalizing the analysis - beyond threshold parameter ϕ+i∗

Now that we have the value of i∗ and an analysis of events Ei, for i ≤ i∗, we can
find the probability that there exists an honest bin with more than ϕ+ i∗ balls
in it. The result is that there are no honest bins with at least ϕ + i∗ + 2 balls,
with high probability of 1− o(1).

Recall that βi+1 = empi for all i. In particular, since mpϕ+i∗ < 2 lnn we have:

βϕ+i∗+1 = empϕ+i∗ < 2e lnn . (11)

Consider vmϕ+i∗+1. We get

P (vmϕ+i∗+1 ≥ 2e lnn | Eϕ+i∗) ≤ P (B(m, pϕ+i∗) ≥ 2e lnn)

P (Eϕ+i∗)
(12)

<

P

(
B

(
m,

2 lnn

m

)
≥ 2e lnn

)
P (Eϕ+i∗)

≤ 1

n2P (Eϕ+i∗)
, (13)

where the last inequality follows from Fact 2.
Finally, we can bound P (um

ϕ+i∗+2 < 1) in the following derivation.

P (um
ϕ+i∗+2 ≥ 1 | vmϕ+i∗+1 < 2e lnn) ≤

P
(
B
(
m,
(
2e lnn

n

)2
+ f

n
2e lnn

n

)
≥ 1
)

P (vmϕ+i∗+1 < 2e lnn)
(14)

≤
m
((

2e lnn
n

)2
+ f

n
2e lnn

n

)
P (vmϕ+i∗+1 < 2e lnn)

. (15)

Fact 3 For any events A,B, we have: P (A) ≤ P (A|B) · P (B) + P (¬B).

Using Fact 3 twice, we get

P (um
ϕ+i∗+2 ≥ 1) ≤ P (um

ϕ+i∗+2 ≥ 1 | um
ϕ+i∗+1 < 2e lnn) · P (um

ϕ+i∗+1 < 2e lnn) +

+P (um
ϕ+i∗+1 ≥ 2e lnn)

≤ P (um
ϕ+i∗+2 ≥ 1 | um

ϕ+i∗+1 < 2e lnn) · P (um
ϕ+i∗+1 < 2e lnn) +

+P (um
ϕ+i∗+1 ≥ 2e lnn | Eϕ+i∗) · P (Eϕ+i∗) + P (¬Eϕ+i∗) .
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Using Equations 13 and 15, we get

P (um
ϕ+i∗+2 ≥ 1) ≤ m

((
2e lnn

n

)2

+
f

n

2e lnn

n

)
+

1

n2
+ P (¬Eϕ+i∗)

≤ m

((
2e lnn

n

)2

+
f

n

2e lnn

n

)
+

1

n2
+ P (¬Eϕ+1 ∨ · · · ∨ ¬Eϕ+i∗)

≤ O

(
ln3 n

n
+

f ln2 n

n

)
+

1

n2
+

i∗ + 1

n2
,

where the last line follows from Lemma 2 and the assumed bound m = O(n log n).
For f = o

(
n

ln2 n

)
, we get

P (um
ϕ+i∗+2 ≥ 1) = o(1) . (16)

Finally, this means that um
ϕ+i∗+2 < 1 occurs with probability 1−o(1). Therefore,

there are no balls with height at least ϕ + i∗ + 2 with high probability, which
also means that there are no honest bins with at least ϕ + i∗ + 2 balls in them
which completes the proof of Theorem 2.

4 Case m ≥ en – Setting up Initial Value of ϕ

Lemma 7. Assume m ≥ en and f < n2

2em . Let ϕ = c emn and βϕ = n2

4em , for some
constant c > 2e to be defined later in the proof. Then Eϕ holds with probability
at least 1− n−c.

Proof. We first compute an upper bound on the probability of the complemen-
tary event, that is, that there is a subset of βϕ + 1 of honest bins containing at
least ϕ balls each. It is upper bounded by a union of events, parameterized by
any subset B of honest bins, that each bin in B has at least ϕ balls. This can
be further upper bounded by multiplying the number of such sets B,

(
n−f
βϕ+1

)
, by

the product of upper bounds on the probability that an y-th bin in B, where
0 ≤ y ≤ βϕ was randomly selected at least ϕ times when allocating the remain-

ing at least m − yϕ balls,
(
m−yϕ

ϕ

) ( 2− 1
n

n

)ϕ
. This results in the following upper

bound formula and its further transformation:(
n− f

βϕ + 1

) βϕ∏
y=0

((
m− yϕ

ϕ

)(
2− 1

n

n

)ϕ
)

=

(
n− f
n2

4em + 1

) n2

4em∏
y=0

((
m− yc emn

c emn

)(
2− 1

n

n

)c em
n
)

≤ 2n−f

((
me

c emn

)c em
n
(
2

n

)c em
n

) n2

4em+1

= 2n−f

(
2

c

)cn
4 +c em

n

≤ 2n−f

(
2

c

)cn
4

,
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where the first inequality follows from bounds 2 − 1
n ≤ 2,

(m−yc em
n

c em
n

)
≤
(

m
c em

n

)
for 0 ≤ y ≤ βϕ, and

(
n
x

)
≤ (ne/x)x; the second inequality follows from the

assumption c > 2e and from the monotonicity of the exponent function. Next,
observe that

2n−f

(
2

c

) cn
4

= exp
(
(n− f) ln 2− cn

4
ln

c

2

)
< n−c

for any c satisfying cn
4 ln c

2 − c lnn > (n − f) ln 2, for instance, for c ≥ 2e4 and
any n ≥ 3,4 or for any c > 2e and any sufficiently large n.

5 Case m > 3
2
n logn – Proof of Theorem 1

In this section we prove Theorem 1. Consider an honest bin j. For any t ≤ m,
let Xt be a random variable equal to 1 if ball t lands in bin j, and equal to 0
otherwise; let Yt be equal to 1 if bin j is randomly selected at time t, and equal
to 0 otherwise. Observe that:

∀t≤mXt ≤ Yt and ∀t≤mP (Xt = 1) ≤ P (Yt = 1) =
2

n
.

Let µX = E
[∑

t≤m Xt

]
and µY = E

[∑
t≤m Yt

]
= 2m

n . By Fact 2, for any δ ∈
(0, 1):

P

∑
t≤m

Xt > (1 + δ)µY

 ≤ P

∑
t≤m

Yt > (1 + δ)µY

 < e
−µY δ2

3 = e−
2mδ2

3n .

Assuming that 2mδ2

3n > c log n, for some c > 1, which holds for some δ ∈ (0, 1) and

some c > 1 as long as m > 3
2n log n, we get P

(∑
t≤m Xt > (1 + δ) 2mn

)
< n−c.

Consequently, by applying the union bound over all bins, the probability that
there is a bin with more than (1 + δ) 2mn in it is at most n1−c.

6 Discussion and Open Problems

In this work, we provided an analysis of the efficiency of the popular load bal-
ancing rule – the Power of Two Choices – in the system that some bins are
controlled by a malicious adversary. For m = O(n log n), we showed that the
maximum load on any honest bin has a logarithmic dependence on the number
of faulty nodes f .

There are several open questions to be explored. One open question is related
to the tightness of our bounds. It will be interesting to obtain matching lower
4 Observe that the power of two choices makes use of randomness only for n ≥ 3 bins.
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bounds related to the number of faults f , and also m and n. It will also be
interesting to explore the graphical case. In the case without faults, the problem
has been studied for regular graphs and the maximum load depends on the node
degree. It will be interesting to explore the dependence of the load on the number
of faulty graph nodes f and the degree of the regular graph.

Another open problem is the lower bound on the minimum load of a bin as
well as the gap between the maximum and minimum loads. These bounds would
be used to prove the Fault-Tolerant Phase Clock works in population protocols.
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