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Abstract. We study computer systems with transactions executed on
a set of shared objects. Transactions arrive continually subject to con-
straints that are framed as an adversarial model and impose limits on the
average rate of transaction generation and the number of objects that
transactions use. We show that no deterministic distributed scheduler in
the queue-free model of transaction autonomy can provide stability for
any positive rate of transaction generation. Let a system consist of m
shared objects and an adversary be constrained such that each transac-
tion may access at most k shared objects. We prove that no scheduler
can be stable if a generation rate is greater than max

{
2

k+1
, 2

⌊
√
2m⌋

}
. We

develop a centralized scheduler that is stable if a transaction generation
rate is at most max

{
1
4k
, 1
4⌈

√
m⌉

}
. We design a distributed scheduler in

the queue-based model of transaction autonomy, in which a transaction
is assigned to an individual processor, that guarantees stability if the
rate of transaction generation is less than max

{
1
6k
, 1
6⌈

√
m⌉

}
. For each

of the schedulers we give upper bounds on the queue size and transac-
tion latency in the range of rates of transaction generation for which the
scheduler is stable.

Keywords: Transactional memory, shared object, dynamic transaction
generation, adversarial model, stability, latency.

1 Introduction

Threads that execute concurrently need to synchronize access to shared objects
to avoid conflicts. Traditional low-level thread synchronization mechanisms such
as locks and barriers are prone to deadlock and priority inversion, among mul-
tiple vulnerabilities. The concept of transactional memory has emerged as a
high-level abstraction of the functionality of multiprocessor systems, see Her-
lihy and Moss [17] and Shavit and Touitou [21]. The idea is to designate blocks
of program code as ‘transactions’ to be executed atomically. Transactions are
executed speculatively, in the sense that if a transaction aborts due to synchro-
nization conflicts or failures, then the transaction’s execution is rolled back to be
restarted later. A transaction commits if there are no conflicts or failures, and
its effects become visible to all processes. If multiple transactions concurrently
attempt to access the same object, then this creates a conflict for access and
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could trigger aborting some of the involved transactions. The synchronization
conflict between the transactions is handled by contention managers, also known
as schedulers, see Hendler and Suissa-Peleg [16] and Spear et al. [22]. Schedulers
determine an execution schedule for transactions striving to avoid conflicts for
access to shared objects.

The adversarial models of generating transactions that we use are inspired
by the adversarial queueing theory, which has been applied to study stability of
routing algorithms with packets injected continually. Routing of packets in com-
munication networks is constrained by properties of networks, like their topology
and capacities of links or channels. In the case of transactional memory, execut-
ing multiple transactions concurrently is constrained by the requirement that a
transaction needs to have an exclusive access to each object it wants to interact
with in order to be executed succesfully.

A computer system includes a fixed set of shared objects. Transactions are
spawned continually. The system is synchronous in that an execution of an al-
gorithm scheduling transactions is structured into rounds. It takes one round to
execute a transaction successfully. Multiple transactions can be invoked concur-
rently, but a transaction requires exclusive access to each object that it needs
to interact with in order to be executed successfully. If multiple transactions ac-
cessing the same object are invoked at a round then all of them are aborted. The
arrival of threads with transactions is governed by an adversarial model with pa-
rameters bounding the average generation rate and the number of transactions
that can be generated at one round. Processed transactions may be additionally
constrained by imposing an upper bound on the number of objects a transaction
needs to access.

The task for such a computer system is to eventually execute each generated
transaction, while striving to minimize the number of pending transactions at
any round and the time a pending transaction spends waiting for execution. Once
a transaction is generated, it may need to wait to be invoked. It is a scheduling
algorithm that manages the timings of invocations of pending transactions. We
consider both centralized and distributed schedulers.

There are two models of generating transactions which specify the autonomy
of individual transactions. In the queue-free case, for each transaction there is a
corresponding autonomous processor responsible for its execution. A distributed
scheduler in the queue-free model is executed by the processors that attempt to
invoke transactions on shared objects. In the queue-based model, there is a fixed
set of processors, and each thread with a transaction is assigned to a processor.
A distributed scheduler in the queue-based model is executed by the processors
that communicate through the shared objects by performing transactions on
them. A centralized scheduler is not affected by constraints on autonomy of each
transaction, since all pending transactions are managed en masse. The schedulers
we consider are deterministic, in that they do not resort to randomization.

The contributions. We show first that no deterministic distributed scheduler
in the queue-free model of transaction autonomy can provide stability for any
positive rate of transaction generation. Let a computer system consist of m
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Scheduler Lower bound Upper bound

distributed queue-free stability impossible

centralized ρ > max
{

2
k+1

, 2

⌊
√
2m⌋

}
ρ ≤ max

{
1
4k
, 1
4⌈

√
m⌉

}
distributed queue-based ρ < max

{
1
6k
, 1
6⌈

√
m⌉

}
Table 1. A summary of the ranges of rates of transaction generation for which deter-
ministic schedulers are stable. The used notations are as follows: m is the number of
shared objects, k is the maximum number of shared objects accessed by a transaction,
and ρ is the rate of transaction generation. Upper bounds limit transaction generation
rates for which stability is achievable. Lower bounds limit transaction generation rates
for which stability is not possible. A lower bound for centralized schedulers holds a
priori for distributed queue-based schedulers.

shared objects and the adversary be constrained such that each transaction
needs to access at most k of the shared objects. We show that no scheduler can
be stable if a generation rate is greater than max

{
2

k+1 ,
2

⌊
√
2m⌋

}
. We develop a

centralized scheduler that is stable if the transaction generate rate is at most
max

{
1
4k ,

1
4⌈

√
m⌉

}
. We design a distributed scheduler, in the queue-based model

of transaction autonomy in which a transaction is assigned to an individual
processor, that guarantees stability if the rate of transaction generation is less
than max

{
1
6k ,

1
6⌈

√
m⌉

}
. For each of the two schedulers we develop, we give upper

bounds on the queue size and transaction latency in the range of rates of trans-
action generation for which the scheduler is stable. Table 1 gives a summary of
the ranges of rates of transaction generation for which deterministic schedulers
are stable.

Related work. Scheduling transactions has been studied for both shared mem-
ory multi-core and distributed systems. Most of the previous work on schedul-
ing transactions considered an offline case where all transactions are known at
the outset. Some previous work considered online scheduling where a batch of
transactions arrives one by one and the performance of an online scheduler is
compared to a scheduler processing the batch offline. No previous work known to
the authors of this paper addressed dynamic transaction arrivals with potentially
infinitely many transactions to be scheduled in a never-ending execution.

Attiya et al. [4] and Sharma and Busch [19],[20] considered transaction schedul-
ing in distributed systems with provable performance bounds on communication
cost. Transaction scheduling in a distributed system with the goal of minimiz-
ing execution time was first considered by Zhang et al. [25]. Busch et al. [8]
considered minimizing both the execution time and communication cost simul-
taneously. They showed that it is impossible to simultaneously minimize execu-
tion time and communication cost for all the scheduling problem instances in
arbitrary graphs even in the offline setting. Specifically, Busch et al. [8] demon-
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strated a tradeoff between minimizing execution time and communication cost
and provided offline algorithms that separately optimizw execution time and
communication cost. Busch et al. [9] considered transaction scheduling tailored
to specific popular topologies and provided offline algorithms that minimize
simultaneously execution time and communication cost. Distributed directory
protocols have been designed by Herlihy and Sun [18], Sharma and Busch [19],
and Zhang et al. [25], with the goal to optimize communication cost in schedul-
ing transactions. Zhang and Ravindran [23] provided a distributed dependency-
aware model for scheduling transactions in a distributed system that manages
dependencies between conflicting and uncommitted transactions such that they
can commit safely. This model has the inherent tradeoff between concurrency
and communication cost. Zhang and Ravindran [24] provided cache-coherence
protocols for distributed transactional memory based on a distributed queuing
protocol. Attiya et al. [3] and Attiya and Milani [5] studied competitive perfor-
mance of schedulers compared to the clairvoyant one. Busch et al. [10] studied
online algorithms to schedule transactions for distributed transactional memory
systems where transactions residing at nodes of a communication graph operate
on shared, mobile objects.

Adversarial queuing is a methodology to capture stability of processing in-
coming tasks without any statistical assumptions about task generation. It pro-
vides a framework to develop worst-case bounds on performance of deterministic
distributed algorithms in a dynamic setting. This approach to study routing al-
gorithms in store-and-forward networks was proposed by Borodin et al. [7], and
continued by Andrews et al. [2]. Adversarial queuing has been applied to other
dynamic tasks in communication networks. Bender et al. [6] considered broad-
casting in multiple-access channels with queue-free stations in the framework of
adversarial queuing. Chlebus et al. [13] proposed to investigate deterministic dis-
tributed broadcast in multiple access channels performed by stations with queues
in the adversarial setting. This direction was continued by Chlebus et al. [12]
who studied the maximum throughput in such a setting. Anantharamu et al. [1]
considered packet latency of deterministic broadcast algorithms with injection
rates less than 1. Chlebus et al. [11] studied adversarial routing in multiple-
access channels subject to energy constraints. Garncarek et al. [14] investigated
adversarial stability of memoryless packet scheduling policies in multiple access
channels. Garncarek et al. [15] studied adversarial communication through chan-
nels with collisions between communicating agents represented as graphs.

2 Technical Preliminaries

A distributed system consists of processors and a fixed set of m shared objects.
The system executes an algorithm. An execution of the algorithm is synchronous
in that it is partitioned into time steps, which we call rounds. Intuitively, the exe-
cuted algorithm spawns threads and each thread generates and executes transac-
tions. To simplify the model of transaction generation and scheduling, we assign
transactions directly to processors and disregard threads entirely.



Stable Scheduling in Transactional Memory 5

We consider two frameworks of generating transactions. In the queue-based
model, we assume a fixed number of processors in the system, each with a unique
name. Each new transaction is generated at a specific round and assigned to
one such a processor. All the transactions at a processor pending at a round
make its queue at the round. In a queue-free model of transaction autonomy,
each new transaction generated at a round is associated with an anonymous
virtual processor that exists only for the purpose to execute this transaction and
disappears after the transaction’s successful execution.

The type of a transaction is the set of objects it may need to access during
execution. To determine the type of a transaction, it suffices to read it to list
all the mentioned objects. The number of objects in a transaction’s type is the
weight of this transaction and also of the type. If the types of two transactions
share an object, then we say that this creates a conflict for access to this object,
and that the transactions involved in a conflict for access to an object collide
at this object. A set of transactions with the property that no two different
transactions in the set collide at some shared object is called conflict free.

Scheduling transactions. Transactions are managed by a scheduler. This is an al-
gorithm that determines for each round which pending transactions are invoked
at this round. A transaction invoked at a round that gets executed successfully
is no longer pending, while an aborted transaction stays pending at the next
round. Scheduling transactions is constrained by whether this is a queue-free or
queue-based model. In the queue-free model, transactions are managed en-masse
and only conflicts for access to objects determine feasibility of concurrently per-
forming a set of transactions. This means that if a pending transaction invoked
at a round is not involved in conflict with any object it needs to access, for any
of the transactions invoked at this round concurrently, then this transaction is
executed successfully. In particular, if a set of transactions is conflict-free then
all the transactions in this set can be executed together at one round. We as-
sume conservatively that if a pending transaction invoked at a round is involved
in conflict with some other transaction invoked concurrently, for an object they
need to access, then all such transactions get aborted at this round and stay
pending at the next round. The queue-based model is more restricted, in that
the queue-free model’s constraints on concurrent execution of transactions do
apply, but additionally, for each processor, at most one transaction in this pro-
cessor’s queue can be performed at a round.

A centralized scheduler is an sequential algorithm that knows all the transac-
tions pending at a round and receives instantaneous feedback from each object
about committing to an invoked transaction or aborting it. Such a scheduler can
invoke concurrently any set of pending transactions at a round in the queue-free
model, but at most one transaction in the queue of a processor in the queue-based
model.

A distributed scheduler is a distributed algorithm executed by all the involved
processors. The processors communicate among themselves through shared ob-
jects. These are the processors that determine the distributed system in the
queue-based case, and anonymous processors in queue-free case, one dedicated
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processor per each transaction. If a processor invokes a transaction at a round,
it receives an instantaneous feedback from each object of the type of the trans-
action about committing to an invoked transaction or aborting it.

Adversaries generate transactions. We consider a setting in which new transac-
tions arrive continually to the system. The process of generating transactions is
represented quantitatively by adversarial models. We study two types of adver-
saries corresponding to the queue-free and queue-based models. In the queue-free
model, a transaction generated at a round contributes a unit to the congestion at
the round at each object the transaction includes in its type. This is the queue-
free adversary. In the queue-based model, a transaction generated at a round
at a processor contributes a unit to the congestion at the round at each object
the transaction includes in its type and also to the processor the transaction is
generated at. This is the queue-based adversary.

Quantitative restrictions imposed on adversaries are expressed in terms of
bounds on congestion. A queue-free adversary generates transactions with gen-
eration rate ρ and burstiness component b if, in each contiguous time interval τ
of length t and for each shared object, the amount of congestion created for the
object at all the rounds in τ together is at most ρt+ b. A queue-based adversary
generates transactions with generation rate ρ and burstiness component b if, in
each contiguous time interval τ of length t and for each shared object and for
each processor, the amount of congestion created for the object at all the rounds
in τ together is at most ρt + b and the amount of congestion created for the
processor at all the rounds in τ together is at most ρt+ b. For these adversarial
models, we assume that ρ > 0 is a real number and b > 0 is an integer. Given
the parameters ρ and b, such an adversary is said to be of type (ρ, b). The bursti-
ness of an adversary is the maximum number of transactions the adversary can
generate in one round.

Performance of scheduling. A scheduler is stable, against a given type of adver-
sary, if the number of pending transactions stays bounded in the course of any
execution in which transactions are generated by the adversary of this type. For
an object and a round number r, at most r transactions that contributed to
congestion at this object can get executed in the first r rounds. It follows that
no scheduler can be stable if its injection rate is greater than 1. In view of this,
we consider only adversaries of types (ρ, b) in which 0 < ρ ≤ 1. A transaction’s
delay is the number of rounds between its generation and successful execution.
The latency of a scheduler in an execution is the maximum delay of a transaction
generated in the execution.

Proposition 1. No deterministic distributed scheduler for a system with one
shared object can be stable against a queue-free adversary of type (ρ, 2), for any
constant ρ > 0.

In view of Proposition 1, we will consider a centralized deterministic scheduler
for the queue-free model.
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3 A Lower Bound

We show that no scheduler can handle dynamic transactions if a generation rate
is sufficiently high with respect to the number of shared objects m and an upper
bound k on the weight of a transaction. If a and b are integers where a ≤ b then
let [a, b] denote the set of integers {a, a+ 1, . . . , b}.

Lemma 1. For an integer n > 0, there is a family of sets A1, A2, . . . , An+1,

each a subset of [1, n(n+1)
2 ], such that every set Ai has n elements, any two sets

Ai and Aj, for i ̸= j, share an element, and each element of [1, n(n+1)
2 ] belongs

to exactly two sets Ai and Aj, for i ̸= j.

We give a lower bound on generation rate to keep scheduling stable.

Theorem 1. A queue-free adversary of type (ρ, b) generating transactions for a
system of m objects such that each transaction is of weight at most k can make a
scheduling algorithm unstable if injection rate ρ satisfies ρ > max

{
2

k+1 ,
2

⌊
√
2m⌋

}
.

Proof. Let them objects be denoted as o1, o2, . . . , om. Suppose first that k(k+1)
2 ≤

m. The transactions to be generated will use only the objects o1, o2, . . . , os, where

s = k(k+1)
2 . Let us take the family of sets A1, A2, . . . , Ak+1 as in Lemma 1, in

which n is set to k. We will use a fixed set of transactions T1, T2, . . . , Tk+1 defined
such that transaction Ti uses object oj if and only if j ∈ Ai. In particular, each
transaction uses k objects. The adversary generates these transactions listed
in order L0, L1, L2, . . ., where Li−1 is the ith transaction generated and Li is
a transaction identical to T1+i mod (k+1). Consider a round r + 1. Let i be the
highest index of a transaction Li generated by round r. Then in round r+1 the
adversary generates transactions that make a maximal prefix of the sequence
Li+1, Li+2, . . . such that the total number of transactions generated by round
r+1 satisfies the constraints on objects’ congestion of type (ρ, b). The adversary
may generate no transaction at a round and it may generate multiple transac-
tion at a round. For example, the adversary generates exactly the transactions
L0, . . . , Lb−1 simultaneously in the first round.

By Lemma 1, at most one transaction can be executed at a round. The k+1
transactions T1, T2, . . . , Tk+1 require k + 1 rounds to have each one executed,
one transaction per round. Discounting for the burstiness of generation, which is
possible due to the burstiness component b in the type (ρ, b), these transactions
can be generated with a frequency of at most one new transaction generated per
round if the execution is to stay stable.

The group of transactions T1, . . . , Tk+1 together contribute 2 to the conges-
tion of each used object, by Lemma 1. If an execution is stable then the inequality
ρ(k + 1) ≤ 2 holds. This gives a bound ρ ≤ 2

k+1 on the generation rate of an

adversary if the execution is stable. In case ρ > 2
k+1 , the adversary can generate

at least one transaction at every round, and for each round r it can generate
two transactions at some round after r. Such an execution is unstable, because
at most one transaction among T1, . . . , Tk+1 can be executed in one round.
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Next, consider the case k(k+1)
2 > m. Let n be the greatest positive integer

such that n(n+1)
2 ≤ m. We use a similar reasoning as in the case k(k+1)

2 ≤ m, with
the family of sets A1, A2, . . . , An+1 as in Lemma 1. In particular, we use a set of
transactions T1, T2, . . . , Tn+1 defined such that transaction Ti uses an object oj if
and only if j ∈ Ai. The rules of generating new transactions by the adversary are
similar. We obtain the inequality ρ ≤ 2

n+1 by the same argument. The inequality
n(n+1)

2 ≤ m implies n+1 = ⌊ 1
2 (1+

√
1 + 8m)⌋, by algebra. We have the estimates

2
n+1 = 2

⌊ 1
2 (1+

√
1+8m)⌋ ≤ 2

⌊
√
2m⌋ . If ρ > 2

⌊
√
2m⌋ then also ρ > 2

n+1 . It follows that

if the adversary is of a type (ρ, b) such that ρ > 2
⌊
√
2m⌋ , then this adversary

generating transactions at full power can generate at least one transaction at
every round, and for each round r it can generate two transactions at some
round after r. This makes the queue of transactions grow unbounded.

4 A Centralized Scheduler

We present a scheduling algorithm that processes all transactions pending at
a round. The algorithm is centralized in that it is aware of all the pending
transactions while selecting the ones to be executed at a round. Throughout this
Section we assume the queue-free model of autonomy of individual transactions,
and the corresponding queue-free adversarial model of transaction generation.

The centralized scheduler identifies a conflict-free set of transactions pending
execution that is maximal with respect to inclusion among all pending transac-
tions. This is accomplished by first ordering all pending transaction on the time
of generation and then processing them greedily one by one in this order. The
word ‘greedily’ in this context means passing over a transaction only when its
type includes an object that belongs to the type of a transaction already selected
for execution at the current round.

The algorithm is calledCentralized-Scheduler, its pseudocode is given in
Figure 1. The variable Pending denotes a list of all pending transactions. At the
beginning of a round, all newly generated transactions are appended to the tail
of this list. The list is processed in the order from head to tail, which prioritizes
transactions on their arrival time, such that those generated earlier get processed
before these generated later. The transactions already selected for execution are
stored in the set Execute. If a transaction in Pending is processed, it is checked
for conflicts with transactions already placed in the set Execute. If a processed
transaction does not collide with any transaction already in Execute then it is
removed from Pending and added to Execute, and otherwise it is passed over.
After the whole list Pending have been scanned, all the transactions in Execute

get executed concurrently. No invoked transaction is aborted in the resulting
execution, because conflicts of transactions are avoided by the process to add
transactions to the set Execute.

To assess the efficiency of executing transactions, let us partition an execution
of the algorithm Centralized-Scheduler into contiguous milestone intervals



Stable Scheduling in Transactional Memory 9

Algorithm Centralized-Scheduler

initialize Pending ← an empty list
for each round do

append all transactions generated in the previous round at the tail of list Pending
initialize Execute← an empty set
if Pending is nonempty then

repeat

(a) entry ← first unprocessed list item on Pending, starting from head to-
wards tail

(b) if entry is conflict-free with all the transactions in Execute then

remove entry from Pending and add it to set Execute
until entry points at the tail of list Pending

execute all the transactions in Execute

Fig. 1. A pseudocode of the algorithm scheduling all pending transactions en masse.
Transactions pending execution are stored in a list Pending in the order of generation,
with the oldest at the head. The set Execute includes transactions to execute at a
round. It is selected in a greedy manner, prioritizing older transactions over newer and
avoiding conflicts for access to shared objects.

of rounds, denoted I1, I2, I3, . . . , such that the length of each interval equals
4b ·min{k, ⌈

√
m⌉} rounds.

The following invariant holds for all milestone intervals of an execution.

Lemma 2. If a generation rate satisfies ρ ≤ max
{

1
4k ,

1
4⌈

√
m⌉

}
, then there are

at most 2bm pending transactions at the first round of a milestone interval, and
all these transactions get executed by the end of the interval.

Algorithm Centralized-Scheduler is stable and has bounded transaction
latency for suitably low transaction generation rates.

Theorem 2. If algorithm Centralized-Scheduler is executed against an
adversary of type (ρ, b), such that each generated transaction accesses at most k
objects out of m shared objects available and transaction-generation rate ρ sat-
isfies ρ ≤ max

{
1
4k ,

1
4⌈

√
m⌉

}
, then the number of pending transactions at a round

is at most 4bm and transaction latency is at most 8b ·min{k, ⌈
√
m⌉}.

Proof. To estimate the number of transactions pending at a round, let this round
belong to a milestone interval Ik. The number of old transactions at any round
of milestone interval Ik is at most 2mb, by the centralized milestone invariant
formulated as Lemma 2. During the interval Ik, at most 2mb new transactions
can be generated. So 2mb + 2mb = 4mb is an upper bound on the number of
pending transactions at the round.

To estimate transaction latency, we use the property that a transaction gen-
erated in a milestone interval gets executed by the end of the next interval, again
by the centralized milestone invariant formulated as Lemma 2. This means that
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transaction latency is at most twice the length of a milestone interval, which is
2 · 4b ·min{k, ⌈

√
m⌉} = 8b ·min{k, ⌈

√
m⌉}.

5 A Distributed Scheduler

We now consider distributed scheduling. Let a distributed system consist of
n processors. The processors communicate among themselves through some m
shared objects by invoking transactions and receiving instantaneous feedback
from each involved object. Every transaction type includes at most k objects.

Each generated transaction is assigned to a specific processor and resides in
its local queue while pending execution. This means we consider the queue-based
model of autonomy of individual transactions, and the corresponding queue-
based adversarial model of transaction generation.

We employ a specific communication mechanism between a pair of proces-
sors. One of the processors, say s, is a sender and the other processor, say r,
is a receiver. The two processors s and r communicate through a designated
object o. Communication occurs at a given round. All the processors are aware
that this particular round is a round of communication from s to r. Each of the
participants s and r may invoke a transaction involving object o at the round,
while at the same time all the remaining processors pause and do not invoke any
transactions at this round.

Assume first that both s and r have pending transactions that access object o.
At a round of communication, the recipient processor r invokes a transaction tr
that uses object o. If the sender processor s wants to convey bit 1 then s also
invokes a transaction ts that uses object o. In this case, both transactions tr
and ts get aborted, so that the processor r receives the respective feedback from
the system and interprets it as receiving 1. If the sender processor s wants to
convey bit 0 then s does not invoke any transactions using object o at this
round. In this case, transaction tr gets executed successfully, so that r receives
the respective feedback from the system and interprets it as receiving 0. This is
how one bit can be transmitted successfully from a sender s to a recipient r.

That was an example of a perfect cooperation between a sender and receiver,
but alternative scenarios are possible as well. Suppose that the sender s has
a pending transaction using object o and wants to communicate with r but
the recipient r either does not want to communicate or does not have a pending
transaction using object o. What occurs is that s invokes a suitable transaction ts
which gets executed but r does not receive any information. Alternatively, sup-
pose that the receiver r has a pending transaction using object o and wants to
communicate while the sender s either does not want to communicate or does
not have a pending transaction using object o. What occurs is that the receiver r
invokes a suitable transaction tr which gets executed, which the receiver r inter-
prets as receiving the bit 0.

That communication mechanism can be extended to transmit the whole type
of any transaction in the following way. The type identifies a subset of all m
objects. Having a fixed ordering of the objects, the type can be represented as a
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sequence of m bits, in which 1 at position i represents that the ith object belongs
to the type, and 0 represents that the ith object does not belong. A processor s
can transmit a transaction type to recipient r by transmittingm bits representing
the type in m successive rounds while using some designated object o. We say
that by this operation processor s sends the transaction type to processor r via
object o. This operation works as desired assuming each of the processors has at
least m transactions involving object o. If at least one of these processors either
does not have m transactions involving object o or does not want to participate,
then either no bits are transmitted, or the receiver r possibly receives a sequence
of 0s only, which it interprets as no type of transaction successfully transmitted.

Pending transactions at a processor are grouped by their types. All pending
transactions of the same type at a processor make a block of transactions of this
type. The weight of a block is defined to be the weight of its type. If there are
sufficiently many transactions in a block then the block and the type are said
to be large. A boundary number defining sizes to be large is denoted by L and
equals L = (n− 1)2n2m2. If the number of transactions of some type in a queue
at a processor is at least kL but less than (k+1)L, for a positive integer k, then
we treat these transactions as contributing k large blocks.

An execution of the scheduling algorithm is partitioned into epochs, and
each consecutive epoch consists of three phases, labeled Phase 1, Phase 2, and
Phase 3. Each phase is executed the same number of L = (n− 1)2n2m2 rounds.
The algorithm is called Distributed-Scheduler and its pseudocode is given
in Figure 2.

In the beginning of Phase 1, each processor v that has a large block of trans-
actions of some type, selects one such a block, and this type then is active at
the processor in the epoch. A processor that starts Phase 1 with an active type
is called active in this phase. Processors store large blocks in the order of gen-
eration of their last-added transaction. Each processor chooses as active a large
block that comes first in this order. The purpose of Phase 1 is to spread the
information of active types of all the active processors as widely as possible.
Each active processor uses transactions of its active type for communication.
Such communication involves executing transactions, so a block of transactions
of a given type may gradually get smaller. Once a type of a large block becomes
active in the beginning of Phase 1, it stays considered as active for the durations
of an epoch, even if the number of transactions in the block becomes less than L.
Phase 1 assigns segments of (n − 1)n2m2 rounds for each pair of processors s
and r and each object o to spend with s acting as sender to r acting as receiver
with communication performed via object o.

Phase 2 is spent on executing transactions in some active blocks selected such
that they do not create conflicts for access to shared objects. In the beginning of
Phase 2, each processor computes a selection of active large blocks of transactions
to execute in Phase 2 among those learned in Phase 1. This common selection is
computed greedily as follows. The active types learned in Phase 1 are ordered by
the owners’ names. There is a working set of active types selected for execution,
which is initialized empty. The active types are considered one by one. If a
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Algorithm Distributed-Scheduler

Phase 1 : sharing information about large active blocks during L rounds
repeat n− 1 times

for each sender processor s and recipient processor r and object o do

in a segment of rounds assigned for this selection of s, r, and o:
if v is active and this is a round when s = v then

act as sender to transmit all relevant information to r via object o
elseif v is active and this is a round when r = v then

act as recipient to receive information from s via object o
Phase 2 : executing large blocks of transactions during L rounds

if v is active then

select active blocks for execution among those learned in Phase 1
if v is active and its active block got selected then

for each among L consecutive rounds do
if there is a transaction of the active type in the queue then

invoke such a transaction
Phase 3 : executing remaining transactions by solo processors in L rounds

for L consecutive rounds
if this is a round among L/n ones assigned to v then

if the queue is nonempty then invoke a transaction

Fig. 2. A pseudocode of an epoch for a processor v. Pending transactions are dispersed
among the processors. Number L = (n − 1)2n2m2 is the duration of each phase. In
Phase 1, processors s and r use transactions from their active large blocks to implement
communication. A sender processor s transmits the active type for each processor it
knows about. In Phase 2, large active blocks are selected for execution in a greedy
manner, with blocks ordered by the processors’ names. In Phase 3, each processor gets
assigned a unique exclusive contiguous segment of L/n rounds, in which to execute up
to L/n transactions from its queue in a first-in first-out manner.

processed active type can be added to the working set without creating a conflict
for access to an object, then the type is added to the set, and otherwise it is
passed over. This computation is performed locally by each active processor at
the beginning of the first round of Phase 2 and each active processor obtains the
same output. The rounds of Phase 2 are spent on executing the transactions of
the active blocks selected for execution. An active processor whose active large
block has been selected executes pending transactions in its selected active block
as long as some transactions from the block are still available in the queue or
Phase 2 is over, whichever happens earlier.

Phase 3 is spent by each processor executing solo its pending transactions,
those that have never been included in large blocks. Each processor is assigned
a unique exclusive contiguous segment of L/n = (n− 1)2nm2 rounds to execute
such transactions. Transactions are performed in the order of their adding to the
queue, with those waiting longest executed before those generated later.

Let P =
∑k

i=1

(
m
i

)
be the number of possible different transaction types in

a system of m shared objects such that a type includes at most k objects.
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We will use the estimate P ≤ 2H( k
m )m, for k ≤ m

2 , where H(x) is the binary
entropy function H(x) = x lg x+ (1− x) lg(1− x) for 0 < x < 1.

An execution of algorithm Distributed-Scheduler is partitioned into con-
tiguous milestone intervals denoted I1, I2, . . .. Each milestone interval consists
of 2bnP · min{k, ⌈

√
m⌉} epochs. Alternatively, a milestone interval consists of

6bnLP ·min{k, ⌈
√
m⌉} rounds, after translating the lengths of epochs into rounds.

The following Lemma 3 gives and invariant that holds for all milestone in-
tervals of an execution of algorithm Distributed-Scheduler.

Lemma 3. For a generation rate ρ < max
{

1
6k ,

1
6⌈

√
m⌉

}
, and assuming the bulk

of the system is sufficiently large with respect to ρ, there are at most bn5m3P
pending transactions at a first round of every milestone interval, and all these
transactions get executed by the end of the interval.

Algorithm Distributed-Scheduler is stable and has bounded transaction
latency for suitably low transaction generation rates.

Theorem 3. If algorithm Distributed-Scheduler is executed against an ad-
versary of type (ρ, b), such that each generated transaction accesses at most
k ≤ m

2 objects out of m shared objects available, and the generation rate ρ
satisfies ρ < max

{
1
6k ,

1
6⌈

√
m⌉

}
, and the bulk of the system is sufficiently large

with respect to ρ, then the number of pending transactions at a round is at most
2bn5m3 2H( k

m )m and latency is at most 12bn5m2 2H( k
m )m min{k, ⌈

√
m⌉}.

Proof. To estimate the number of transactions pending at a round, let this round
belong to a milestone interval Ik. The number of old transactions at any round
of the interval Ik is at most bn5m3P , by the distributed milestone invariant for-
mulated as Lemma 3. During the interval Ik, at most bn5m3P new transactions
can be generated, again by Lemma 3, because they will become old when the
next interval begins. So 2bn5m3P ≤ 2bn5m3 2H( k

m )m is an upper bound on the
number of pending transactions at any round, since P =

∑k
i=1

(
m
i

)
≤ 2H( k

m )m,
for k ≤ m

2 .
To estimate the transaction latency, we use the property that a transaction

generated in an interval gets executed by the end of the next interval, again
by the distributed milestone invariant formulated as Lemma 3. This means
that transaction latency is at most twice the length of an interval, which is
2 · 6bnLP min{k, ⌈

√
m⌉}, where L = (n− 1)2n2m2. We obtain that the latency

is at most 12bn5m2 2H( k
m )m min{k, ⌈

√
m⌉}.

6 Conclusion

We propose to study transactional memory systems with continual generation
of transactions. The critical measure of quality of such systems is stability un-
derstood as having the number of pending transactions bounded from above at
all times, for a given generation rate. Transactions are modeled as sets of ac-
cesses to shared objects, and it is assumed that conflicting transactions cannot
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be executed concurrently. We identify a lower bound on generation rate that
makes stability impossible and also develop centralized and distributed optimal
scheduling algorithms that handle generation rates asymptotically equal to the
lower bound.

The quality of schedulers, on a range of generation rates that guarantee sta-
bility, is further assessed by the queue size and latency. The centralized scheduler
has these bounds polynomial in the parameters of the system and the adversary’s
type, but the distributed scheduler has the bounds exponential. It is an open
question if it is possible to develop distributed scheduling with polynomial queues
and latency for the region of generation rates for which stability is feasible.
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