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ABSTRACT

This paper delves into the subject of designing a tree net-
work, enabling the application of Distributed Dual Coordi-
nate Ascent on a general tree network (DDCA-Tree) intro-
duced in [1-3] for distributed Machine Learning (ML) pro-
cess. We assume that a network is characterized by com-
munication delays proportional to the distance between any
two nodes. To efficiently managing distributed data across
the network, we propose the Minimum Worst-Distance Tree
(MWDT) algorithm for designing a tree network with a spec-
ified target depth yielding a network structure where the com-
munication delay in worst path between a leaf node and its
parent node is minimized, consequently enhancing the con-
vergence speed of DDCA-Tree. In numerical experiments, to
validate the effectiveness of our approach, we compared the
communication delay in worst path on a tree network gener-
ated by our algorithm against a minimum spanning tree which
provides minimum weight (i.e., distance) sum, and showed
our network design has reduced distance in worst path.

Index Terms— Distributed machine learning, Distributed
dual coordinate ascent, Network design, Distributed dataset

1. INTRODUCTION

Owing to limited storage capacity within individual comput-
ers or servers, a huge amount of data, simply called big data,
are typically stored in a distributed manner. Consequently, a
natural inquiry arises regarding how to effectively deal with
these distributed datasets when performing Machine Learn-
ing (ML) and Artificial Intelligence (AI) operations. More-
over, while certain distributed algorithms exist for processing
such data in ML/AI operations, the act of sharing intermedi-
ate results, such as learning parameters, poses a significant
challenges due to communication constraints such as limited
communication bandwidth, communication delays, as well as
restrictions on communication power and energy consump-
tion. This scenario prompts a range of inquiries surrounding
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the process of distributed ML/AI operations on networks. For
instance, how can one design networks to facilitate optimal
distributed ML/AI processing? Alternatively, given a specific
network, what strategies can be devised to create efficient al-
gorithms tailored for distributed ML/AI operations?

Numerous endeavors have been dedicated to the devel-
opment of distributed ML/AI algorithms tailored to specific
network topologies, such as star, tree, or mesh networks.
These efforts have aimed to address the challenges associated
with handling distributed datasets. For instance, researchers
in [4-8] extensively investigated synchronous Stochastic
Gradient Decent (SGD). Moverover, studies like [9-14],
delved into synchronous Stochastic Dual Coordinate Ascent
(SDCA). Furthermore, asynchronous approaches like asyn-
chronous SGD [15-19] and asynchronous SDCA [20-24]
were explored to tackle the intricacies of handling distributed
datasets across networks.

A noteworthy observation is that most of the research has
primarily focused on designing distributed algorithms specif-
ically for star network topology, which is a rather specialized
scenario. It’s imperative to stress that datasets are not inher-
ently confined to a star network structure. In many cases,
nodes within a network might not directly interface with a
central node. To address this, a linear sequence of nodes could
be envisioned as a virtual node, directly linked to the central
node. Yet, this approach may inadvertently introduce severe
communication delays due to the necessity of transmitting
intermediate parameters through the node sequence to reach
the central node. This brings up a pivotal question: how can
one formulate efficient distributed algorithms adaptable to di-
verse network topologies? To elucidate this query, the authors
in [1-3] conducted research to devise a Distributed Dual Co-
ordinate Ascent on a general tree network (DDCA-Tree) for
facilitating distributed ML processes with convergence analy-
sis. It is worth noting that since every interconnected network
inherently possesses a spanning tree, the methodology intro-
duced in [1-3] can be applied to various network topologies
with performance guarantee, as long as there are no isolated
nodes within the network. However, there are still remaining
questions regarding the design of a network for a given dis-
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tributed algorithm. This paper delves into this issue within the
context of optimizing the ML process through DDCA-Tree.

2. PROBLEM STATEMENT

We are engaged in a machine learning operation applied to a
distributed dataset, which we denote as {(x;, y;)}",. Here,
x; € R represents the i-th data point, while y; corresponds
to the associated measurement or label information. Our
dataset is spread across K nodes, as depicted in Fig. 1(a).
Each node, denoted as the k-th node or local worker, con-
tains a subset of the dataset denoted as {(x;, ¥;) }ic[x], Where
I[k]] < mand k = 1,2,..., K. Our goal is finding a global
optimal solution, w*, by solving the following regularized
loss minimization problem with the distributed dataset:

L a A2 I, 1
minimize P(w)—waHQ—i—E;&(w ;). (1)

weR 2
Here, the functions ¢;(-), i = 1,2, ...,m, serve as loss func-
tions, and A > 0 is a tuning parameter. Depending on the
specific form of the loss functions, the optimization problem
(1) can take the shape of either a regression problem or a clas-
sification problem. An additional assumption we make is that
the data points are normalized, ensuring that the /> norm of
each x; remains bounded, i.e., [|x;||2 < 1,fori =1,2,...,m.
By considering the conjugate function of the loss function
?¢;(a), defined as ¢;(a) = sup, ab — £;(b), we can derive the
subsequent dual problem from the primal problem (1):
maximize D(a) £ 7 || Aafl} - dodia) @
where the matrix A € R?*™ is constructed with each column
being ﬁ:{:i, and «; represents the dual variable correspond-
ing to the ¢-th data point ;, ¢ = 1, ..., m. By introducing the
notation w(a) £ Ac, we can establish a duality gap denoted
as P(w(a))—D(av). It can serve as a measurable indicator of
the proximity between an estimated solution and an optimal
one. It is noteworthy that the weak duality theorem [25] guar-
antees that for any w, the condition P(w) > D(«) holds.
Substituting w with w (o) maintains this condition, resulting
in P(w(ex)) > D(). If we can find a specific variable a*
for which P(w(a*)) = D(a*), then, the principle of strong
duality asserts that a* and w(a*) are optimal solutions for
the dual problem (2) and the primal problem (1) respectively.
This paper aims to design a network, as depicted in Fig.
1, in an optimal manner to efficiently solve (2) with DDCA-
Tree. In this problem, we consider a scenario that dataset
is distributed across nodes situated at coordinates (x,y) on a
plane. The task at hand involves establishing network con-
nections among these nodes, with the communication delay
being directly proportional to the Euclidean distance separat-
ing any pair of nodes.

3. PREVIOUS WORKS ON NETWORK DESIGN

The optimization of network structures based on given node
locations has been a subject of study for several decades. One
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Fig. 1. Example of network design. For given locations of nodes
(a), various tree networks (b)-(d) are designed, where narrow blue
line, blue arrow, and red dotted area represent communication con-
nection, intermediate parameter sharing and a cluster in a network.

well-known problem in this domain is the Minimum Span-
ning Tree (MST) problem [26]. This problem involves creat-
ing a communication network with the lowest possible cost,
specifically, by minimizing the sum of edge weights in the
connected network. Various algorithms, such as Kruskal’s al-
gorithm, Prim’s algorithm, and the Reverse-Delete algorithm
[26], have been developed to address this problem. Previous
works have also considered additional constraints on weight
sums when finding a minimum spanning tree [27, 28].

Our current inquiry pertains to whether the minimum
spanning tree is the most suitable choice for employing the
DDCA-Tree in distributed ML operations. The convergence
rate of the DDCA-Tree is influenced not only by the dis-
tance (i.e., communication delay) between any two connected
nodes within the network but also by other factors such as
the tree’s depth and width (e.g., the number of clusters or
child nodes). These factors were not taken into account when
finding the minimum spanning tree. Moreover, to achieve
a faster convergence speed in the DDCA-Tree, which is a
synchronous algorithm, it is essential to minimize the farthest
distances within a cluster rather than between a root node and
its direct child nodes (i,e., cluster’s root node). This is due
to the fact that if communication between a root node and
clusters occurs more frequently than communication within
a cluster, over multiple iterations, no updated information
is shared between the root node and the clusters. Conse-
quently, as illustrated in Fig. 2, we propose a network design
that establishes a minimum farthest distance (i.e., bottle-neck
path) within a cluster, while ensuring that all nodes remain
connected for a given tree depth. This approach allows us
to have faster convergence speed of the DDCA-Tree. In the
subsequent section, we will present our algorithm in detail.

4. TREE NETWORK DESIGN WITH P LAYERS FOR
THE FASTER CONVERGENCE SPEED OF
DISTRIBUTED DUAL COORDINATE ASCENT

As documented in prior research [1-3], if we can devise a tree
network comprising p layers, we can subsequently derive the
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Fig. 2. Illustration of a desired network among central node (i.e.,
root node) R, sub-central node S, and local worker W in the con-
sideration of communication delay which is proportional to distance.
Since communication between a local worker and a sub-central node
occurs more frequently than between a sub-central node and a cen-
tral node, Fig. (a) is a more desired network for faster DDCA-Tree.

convergence outcome of the DDCA-Tree on that tree network
with specific depth. Additionally, as depicted in Fig. 2, it
is desired to minimize the distance between leaf nodes (i.e.,
local workers) and their direct parent nodes (i.e., sub-central
nodes). This naturally raises the question of how to construct
a tree network with p layers while maintaining shorter dis-
tances between leaf nodes and their direct parent nodes to en-
hance the convergence speed of the DDCA-Tree. This section
addresses this inquiry by introducing our contribution. We
first present a procedure by modifying the MST algorithm to
attain a target depth of p for the resultant tree originating from
a start node s, denoted as M ST (s, p). And then, we introduce
our Minimum Worst-Distance Tree (MWDT) algorithm using
M ST (s, p) in the subsequent subsection.

4.1. Minimum spanning tree with a target depth p

Unlike conventional MST algorithms, such as Prim’s and
Krustkal’s algorithms [26], our objective is to create a tree
network with a specific target depth, denoted as p. This net-
work structure enables us to precisely assess the convergence
outcomes of the DDCA-Tree. To achieve this goal, we adapt
the conventional Prim’s algorithm, resulting in a modified
version capable of generating a depth-p MST network start-
ing from a designated node. Procedure M ST (s, p) provides
a detailed description of the steps involved. In essence, when
attaching a new node to the current tree using the modified
Prim’s algorithm, we carefully monitor and evaluate the depth
of the node.

4.2. Minimum worst-distance tree between leaf nodes
and their direct parent nodes

With our modified MST algorithm, designed to achieve a tar-
get depth of p, we introduce an algorithm called as the Mini-
mum Worst-Distance Tree (MWDT). This algorithm aims to
minimize the farthest distance between leaf nodes (represent-
ing local workers) and their parent nodes. By doing so, we
can reduce the bottle-neck path in DDCA-Tree, resulting in
enhancing the efficiency of the distributed ML process using
the DDCA-Tree with performance guarantees.

In the context of DDCA-Tree, a synchronous algorithm,
the communication delay between local workers and their di-
rect parent nodes can become a bottle-neck. Therefore, our
algorithm, detailed in Algorithm 1, focuses on minimizing
the worst-case communication delay, ultimately in faster con-
vergence of the DDCA-Tree. For a target tree depth of p, our

Procedure M ST (s,p): Modified Minimum Spanning
Tree(MST) with a target depth p from a start node s

Input: Target tree depth (i.e., number of layers) p > 1, start
node s, weighted adjacency matrix with distance as
weight, total number of nodes K, a set of total node V'

Initialization: A set of nodes in a tree C' <— C'U {s}, a set of

edgesin atree E < ¢

for k=1to K —1do

for v € Cdo

for v € V'\ Cdo
Find a node v minimizing a weight between two
node v and w, where v ¢ C,u € C
if The depth of the node v from the start node s
< p then
C+ CuU{v}
E + FE Uedge(u,v)
end

end
end

end
Output: Graph G(C, E)

Algorithm 1: Minimum Worst-Distance Tree (MWDT)
on leaf-node-connection with p layers

Input: A set of locations of K nodes, V = {v1,v2, ...
Target tree depth p
Initialization: Calculate all distances between any two nodes
and create weighted adjacency matrix from a fully
connected graph, worst distance dmin <— 00
for s = 1to K do
Graph G < Run Procedure M ST (s, p)
d < Worst distance on leaf-node connections in G
if d;nin > d then
| Best graph Gpest <+ G.
end
end
Output: Minimum worst-distance tree Gpest

JUK b

algorithm iteratively applies the M ST (s, p) procedure while
varying the start node s from 1 to K. This iterative process
allows us to select an MST configuration that minimizes the
farthest distance between leaf nodes and their parent nodes.

5. NUMERICAL EXPERIMENTS

To assess the performance of our proposed network design
strategy for accelerating the convergence of the DDCA-Tree
within a tree network containing p layers, we conducted sim-
ulations and compared it against the conventional MST al-
gorithm. For node locations, we considered a scenario with
K = 7 nodes, and randomly selected their coordinates (x,y)
within the [0, 10] x [0, 10] plane, as stated in Table 1. With
the randomly chosen coordinates for the K nodes, we applied
our proposed algorithm to obtain a tree network with p layers
while minimizing the worst distance between leaf nodes and

6082

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 31,2024 at 16:25:51 UTC from IEEE Xplore. Restrictions apply.



[ Node [ 1 [ 2 [ 345677

|

| Comm. Route [ Worst dist. on MWDT _[Worst dist. on MST |

x-coordinate | 5.14 | 8.84 | 5.88 | 1.55 | 2.00 | 4.07 | 7.49 layer O <+ layer 1 5.5680 4.4640
y-coordinate | 8.26 | 7.90 | 3.19 | 534 | 0.90 | 1.12 | 1.36 layer 1 < layer 2 4.6298 4.6298
. layer 2 <> layer 3 - 3.7157

Table 1. E le of randomly ch locat f K =
b xampie ol randomly chosen localions o T [Sum (in worst path) 10.1978 12.8095

nodes on [0, 10] x [0, 10] plane.

) ® o
o
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»

0 2 10 0 2

x-llcoordingte

(a) MWDT (b) MST
Fig. 3. Example of tree networks from given locations of nodes
in Table 1. (a) Minimum Worst-Distance Tree (MWDT) obtained
from Algorithm 1 with target tree depth p = 2, whose weight sum is
22.30, (b) Minimum Spanning Tree (MST) obtained from the con-
ventional MST algorithm, whose weight sum is 20.07.

4 . 6
x-coordinate

their direct parent nodes. As a point of comparison, we exe-
cuted the conventional MST algorithm. For the best MST, by
varying a start node s from 1 to K, we ran the conventional
MST algorithm, and chose one having minimum weight sum
as the best MST. In the MST, we chose a root node to have a
minimum tree depth. It is worth noting that the depth of the
MST may exceed p, as the conventional MST algorithm does
not consider the desired depth.

Fig. 3 (a) and (b) show the tree networks obtained from
our algorithm providing a tree with the minimum worst-
distance on leaf-node connections and the conventional MST
algorithm, respectively. In these figures, red solid lines and a
red circle represent the network connections among all pos-
sible edges in blue lines and a root node, respectively. We
compare the worst distance (correspondingly worst commu-
nication delay) from one layer to another on the two different
tree networks, which becomes the bottle-neck of DDCA-Tree
in sharing intermediate results between connected nodes in
distributed ML process. Table 2 shows the worst distance of
communication route between nodes in adjacent layers. For
clear comparison, we calculated the sum of distances in the
worst path from a leaf node to a root node in Table 2. As
shown in Table 2, the distance between a leaf node to a root
node in worst path is reduced, which will be shown in the im-
provement of convergence speed of DDCA-Tree, even though
the weight sum is increased in MWDT. This is because MST
provides a tree having the minimum weight sum, while our
algorithm focuses on minimizing the worst communication
links from a leaf node (i.e., local worker) to its parent node.

In order to obtain statistical results for comparison, we

Table 2. Worst distance of communication route between
nodes in adjacent layers on designed tree networks in Fig. 3.
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Fig. 4. Average of the worst distance between a leaf node to a root
node from 100 random trials for each number of nodes.

varied the number of nodes from 5 to 30. For each specific
number of nodes, we conducted 100 trials with randomly cho-
sen node locations and calculated the average of the worst
(i.e., bottle-neck) distance from a leaf node to a root node. In
the case of MWDT, we set p = 2. For MST, we selected a root
node among all nodes to minimize the depth of the MST. Fig.
4 illustrates the average worst distance from a leaf node to a
root node as the number of nodes increases. As depicted in
Fig. 4, MWDT consistently provides a shorter worst-distance
between a leaf node to a root node compared to MST.

6. CONCLUSION

This paper explores the design of a tree network for usage of
Distributed Dual Coordinate Ascent on a general tree network
(DDCA-Tree) for distributed ML processes. We operate un-
der the assumption that the network exhibits communication
delays proportional to the distance between any two nodes.
To efficiently manage distributed data across the network, we
propose Minimum Worst-Distance Tree (MWDT) algorithm
which provides a tree network having minimum distance be-
tween a leaf node and its parent node for a given tree depth.
This results in a network structure that minimizes the com-
munication delay in the worst path, consequently enhancing
the convergence speed of DDCA-Tree. To validate the ef-
fectiveness of our proposed approach in optimized network
design for DDCA-Tree, we conducted numerical experiments
involving comparison in the average communication delay in
the worst path within a tree network generated by our al-
gorithm against that of a Minimum Spanning Tree (MST),
which provides the minimum weight sum, and showed that
MWDT can provide a tree network with a target depth having
reduced communication delay in worst path.
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