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ARTICLE INFO ABSTRACT

MSC: We construct direct serendipity finite elements on general cuboidal hexahedra, which are H'-
65N30 conforming and optimally approximate to any order. The new finite elements are direct in that
65N12 the shape functions are directly defined on the physical element. Moreover, they are serendipity
Zggég by possessing a minimal number of degrees of freedom satisfying the conformity requirement.
Keywords Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental

functions, where the polynomials are included for the approximation property and supplements
are added to achieve H'-conformity. The finite elements are fully constructive. The shape
function spaces of higher order r > 3 are developed first, and then the lower order spaces

Hexahedral mesh
Serendipity finite elements
Direct finite elements

Conforming finite elements are constructed as subspaces of the third order space. Under a shape regularity assumption,
Optimal approximation and a mild restriction on the choice of supplemental functions, we develop the convergence
Convergence properties of the new direct serendipity finite elements. Numerical results with different choices

of supplements are compared on two mesh sequences, one regularly distorted and the other one
randomly distorted. They all possess a convergence rate that aligns with the theory, while a
slight difference lies in their performance.

1. Introduction

The seminal book of Wachspress in 1975 [1] has focused interest in defining H'-conforming finite elements on polytopal
elements, in particular, on polygons and polyhedra. Polytopal meshes have been used in many areas of application with the
advantage of its flexibility. For just two examples, in applications to topology optimization [2,3] and fracture propagation [4,5],
randomly generated polytopal elements were seen to reduce the bias that is associated to standard meshes.

There are many approaches for numerically solving partial differential equations on polyhedral meshes. Of course, the
nonconforming discontinuous Galerkin (DG) methods can be posed on polyhedral meshes [6,7], and this is also the case for the
related weak Galerkin methods [8]. An interesting approach to construct finite elements on polytopes is introduced in [9-11] by
considering broken ultraweak variational formulations and applying the discontinuous Petrov-Galerkin (DPG) methodology [12].
The discretization applies classical broken test and trial spaces; however, it uses more than the minimal number of degrees of freedom
(DoFs) required for H'-conformity (see Section 3 below). Although the framework is not H!-conforming for a general polyhedral
element, a conforming approximation is provided of any optimal order of accuracy r as long as the elements have triangular or
quadrilateral faces.

The mimetic methods, a type of finite volume method, have been defined on polyhedra in [13]. They mimic the properties of
the differential operators such as the discrete divergence theorem. However, they represent the solution only at DoFs (i.e., they do
not provide a basis for interpolation). The virtual element methods [14] seem to have grown out of the mimetic methods. They do
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not provide a basis for interpolation but possess a virtual (i.e., not computable) and conforming underlying finite element basis.
However, they usually require the addition of a problem dependent stabilization term in the equations to control the unknown
virtual components of the solution.

One may desire a conforming approximation with an explicit finite element basis in many instances. The latter is particularly
helpful when dealing with nonlinear partial differential equations and coupled systems of equations. They are more fundamental
for application since they provide a general framework for interpolation and approximation of functions, independent of how they
are used. For example, they could be applied to data interpolation and visualization. However, there are currently not many good
H'-conforming polyhedral finite elements.

Serendipity finite elements defined on cubes by Arnold and Awanou [15], denoted as S,(E), r > 1, are well known to be H!-
conforming and approximate to order r+1 with a minimal number of DoFs. However, they lose optimal order accuracy when mapped
to a cuboidal hexahedron, which is defined as a three dimensional non-degenerate hexahedron with flat faces that can be obtained
by a trilinear map from a reference cube. Tensor product spaces on a cube, on the other hand, maintain optimal approximation
properties while mapped to a cuboidal hexahedron. However, they suffer from using an excessive number of DoFs.

In this work, we construct direct serendipity finite elements on a cuboidal hexahedron E, which are of the form

DS, (E)=P.(E)®SPS(E), rx1, €Y

where P,(E) is the space of polynomials on E up to degree r, and SPS(E) consists of supplemental functions. These supplemental
functions cannot in general be polynomials. We give several ways to define them, and one choice results in the supplements being
piecewise polynomial on a submesh of the element. The construction is based on the previous work of the authors on developing
direct serendipity finite elements for two dimensional convex polygons [16,17]. The complicated geometry of a three dimensional
hexahedron makes the construction more subtle and intricate. We develop the approximation properties of the new finite elements,
and evaluate their performance through numerical tests. Our work may also provide a methodology for future development of
conforming finite elements on more general polyhedra, and possibly H (curl)-conforming finite elements on cuboidal hexahedra in
the de Rham sequence [18].

One interesting use of our new direct serendipity finite elements is in application to enriched Galerkin (EG) methods [19,20],
in which continuous finite elements are enriched with piecewise discontinuous constants to maintain local mass conservation. They
have fewer degrees of freedom than DG methods, so they are easier to solve [20]. Implementation using direct serendipity spaces
can make the method even more efficient [21].

The rest of the paper is organized as follows. We introduce some notation and preliminaries in Section 2. We count the minimum
number of degrees of freedom needed for H'!-conformity in Section 3. The actual construction proceeds by constructing the finite
element, independently of conformity considerations, in Sections 4-5. To illustrate the key idea, we first construct the direct
serendipity space for r = 3 in Section 4. We extend the construction to general higher order r > 3 cases in Section 5. The lower
order r = 1,2 direct serendipity elements are then constructed in Section 6 as subsets of the r = 3 case. Section 7 is included to
describe how to construct certain special functions needed in Sections 4-5. Returning to the question of conformity, some additional
restrictions are introduced in Section 8 to make the finite elements H'!-conforming on the entire domain. We prove the approximation
properties in Section 9 and discuss the numerical results in Section 10. Finally, in Section 11 we summarize our results and propose
some suggestions for future work.

2. Notation and preliminaries

Let P,(w) denote the space of polynomials of degree up to r on @ C R?, where d = 0 (a point), 1, 2, or 3. Recall that

. g [(r+d\ _ +d)!

dimP,(R?) = < d ) = 2)
Let P,(w) denote the space of homogeneous polynomials of degree r on . Then

=g (r+d=1\ _ (r+d-1)!

dlmIPr(R)—< d—1 >_—r!(d—1)!’ d>1. 3)

Let the element E C R? be a closed, nondegenerate, convex cuboidal hexahedron (i.e., a quadrilaterally-faced hexahedron), with
6 faces, 12 edges, and 8 vertices. The hexahedron E is nondegenerate in that it does not degenerate to any polyhedron with fewer
faces, edges, or vertices, neither to a polygon, line segment, nor a point. We choose to identify the faces of E based on the mapping
from a reference element £ as depicted in Fig. 1. Note that this is only for the convenience of indexing.

Let the faces of E be denoted as f,,, n = +1,+2, +3. Let the reference element E be [-1, 13, with faces denoted as f,,, n=+1,+2,+3.
Define the trilinear and bijective map F : £ — E that maps the faces of £ to those of E, such that

~ Fg N F
o=En{i=-1l—f, fi=En{)=1}—f,, 4

For i = +1, j = +2, and k = +3, denote the edges of E as

=S i0fr. ex=finfr. e;=finf; ®
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(-1,-1,1) (-1,1,1)

V_1,2,3

Fig. 1. A reference element £ = [-1,1]> and a cuboidal hexahedron E, with faces f, and f;, as well as vertices (—1,—1,—1) and V_j_»_3, etc., respectively. The
notation of each vertex, edge, and face of E is shown correspondingly in the top right picture, the bottom left picture, and the bottom right picture.

and the vertices as v; ; , = f; N f; N fy, as shown in Fig. 1. Also let v, denote the unit outer normal to face f, for n = +1,+2,+3.
Denote FE0 as the pullback map induced from FEI' To be more precise, FE0 takes a function ¢ defined on £ to a function ¢ defined
on E by the rule

$(x) = FA)X) = ¢(X), (6)

where x = Fg(%). We require special functions R,, R, and R, satisfying

T

1, on fq, , on f,, 1, on f;.

Such functions exist, however, they cannot be polynomials, unless opposite faces are parallel. For instance, these functions could
be defined as pullback maps

R(x)=% R,(X) =9, R (x)=2 whereX= FEI(X) =(x,9,2). ®)

Alternative constructions will be given later in Section 7.

Define linear functions 4,, 4,, and A, such that the zero plane P, of A, intersects the four edges e,,,;, and that of 4,
denoted as P,, intersects e, ,;. Similarly, the zero plane of 1., denoted as P,, intersects e, .,. Notice that for some special
geometry, such a definition has a possibility of forming linearly dependent A,,4,, and 4,. Taking the cube as an example, note
that v_; , 3, Vj_5_3, Vi3, and v_; ,; form a plane, and this plane could be taken both as P, and P,. Therefore, we also ask P,,
P,, and P, not to coincide. These linear functions form bases for spaces of polynomials.

Lemma 2.1. Let the polynomial degree be r > 0.

1. Fori==+l1, j =42, and k = 43, ch'@-.k’ s=0,1,...,r}, {’mci,k’ s=0,1,...,r}, and {,1;|ei'/, 5=0,1,....r} form bases for P,(e; ),
P,(e; 1), and P,(e; ik respectively.

2 Fori==xl, j==2 and k = £3, {4}/ 47];,0 < s +5, <7}, {/1§1/1§2|fj,0 < sy 45y <r), and (Y 45,0 < 51 + 55 < 1) form
bases for P,(f;), P.(f;), and P,(f}), respectively.

3. The polynomials Ay 4,24} with 0 < s; + s, + 53 < r form a basis for P,(E).

Proof. Part 1. By construction, e; , # P, for j = +2 and k = 3, so Axlgl‘k is linear with nonzero slope. Therefore, its powers 1} with

s=0,1,...,r form a basis for P,(e; ;). The proof for the other edges follows by symmetry.

Part 2. We need to show that if p= 37 ) 3" "¢, , 4,/ 2> =0 on f; for i =—1 or 1, then ¢,
=0 25,20 5. A

/lylpy = A;|lp, =0, and both P, and P, intersects f; along some line. Therefore,

=0, Y0 < s; + 5, <r. Recall that

1-52

r

plyop, = D, o5, A7 =0, 9

5o=0
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Plyap, = z ¢, 04y =0. (10
51=0
We conclude ¢y, = ¢, =0, Vs;,s, =0,1,...,r using part 1 of the lemma. Now we have
r=1 r—sy r=1r—sy
1 r
p= 0 Y e oM AZ = A p b= Y D e AT AR (11)
sHr=1s51=1 sp=1s51=1

By 4,4, # 0 in the interior of f;, p| ;=0 is equivalent to p | 5 =0 Therefore,

r—1

1
pilgem, = D, el As =0, (12)

sp=1

r=1

1

pilgop, = z s, 1/131 =0, 13)

s1=1
and again in analogy to part 1 of the lemma (for r —2) shows ¢ ;, = ¢, ; =0, V5,5, =1,2,...,r — 1. We can continue the argument

and finally obtain c,, ,, =0 for all 0 < 5, + 5, < r. The proof for the bases on the other faces follows by symmetry.
Part 3. The idea of proof for part 3 is the same as in part 2, where we restrict the polynomial to a lower dimensional object. If
on E we have

S1 952 953
Cspspy Ax Ay A2 =0, a4
0<s)+sy+53<r

then we must have on P, where i, =0, only terms with s; =0, i.e.,
Y oy AT =0, (15)
0<s,+s3<r

By a similar proof as in part 2 for faces, we can also show that {/1;2 i Ip,,0 < s, + 53 < r} forms a basis for P,(P,). Therefore, in
(14), cgs,,5, = 0, and similarly, Cs,.50,0 = 0. Then
r=2 r=l-s3r—sy—s3

p= Z Z Z cslqsz.sslfcl )‘;2’1? = Ay A A, prs (16)

s3=1 sp=1 s;=1

csl,O,S3 =

r=2 r—=1=s3 r—sy—s3

P = Z Z Z cs1¢32,s3lil_l)*;z_ll?il.

s3=1 sp=1  s;=1
We repeat the previous step of restricting the function to P,, P,, and P, obtaining that ¢, ,, ;, = ¢;, 15, = ¢, 5,1 = 0. Continuing
this procedure, we finally conclude that all the coefficients are zero. []
Finally, define A, as the distance of a point to the face f,,
X)) =—(x=x7)-v,, n=xl+2,43, a7)

where x, is any point on the face f,. Note that A, does not depend on the choice of x, . Later, in Section 4 we will need to
understand the restriction of 4, for n € {£1,+2,+3} to the edges.

Lemma 2.2. Fori==+l, j=+2, k=+3 and n € {+1,+2,+3}, let A% A" and A” satisfy

n,xs ny:
— pJk j.k

)”"lej,k = A+ B Axlej,k’ (18)
',k ik

Aole, = AL+ BEK L, (19)

Anle,, = AL+ By 4| (20)

n,z zle;j*
Then A’ k , AT Ak ARk A and AM are strictly positive
—kx? =iy’ k,y’ —i,z’ —j.z Yy p :

Proof. By Lemma 2.1, it is possible to define the restriction of 4, on each edge in the form (18)—(20). The strict positivity of A{’fx,
A J.k AI k Ai, J
—k,x?

AL o and A'_’/Z is due to the geometry of a convex hexahedron. []

In Section 5, we will also need to understand the restriction of 4, to the faces.

Lemma 2.3. For n € {+1,+2,+3}, the following expressions hold for appropriate coefficients:

)”"lfil = Ai;z B:;z}”ylf 1 +Cniyz)”z|f+1; 21)

)”nlfiz = Aiiz nxz’1 |/ 12 +Crlxz z|f 2’ (22)

Al = Ay Byl + Coty Ayl (23)
Moreover, A', , A7, A2, o A A_3 and A;i are strictly positive.
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Table 1
Geometric decomposition and number of degrees of freedom (DoFs) associated to each geometric object of a
cuboidal hexahedron E for a serendipity element of index r > 1.

Dim. Object Object DoFs per Total
name count object DoFs
0 Vertex 8 1 8
1 Edge 12 dimP,_,(R) 12(r = 1)
2 Face 6 dimP,_,(R?) 3(r—=2)(r-3),if r>2
3 Interior 1 dimP,_¢(R?) é(r =3)(r=Hr-5),ifr>3

Fig. 2. Degrees of freedom (DoFs) for a serendipity element of index r =2, 3, and 4. The DoFs are expressed as dots, as if they were nodal DoFs. They appear
at the vertices, in the interior of the edges, and in the interior of the faces (DoFs in the element interior do not appear until r = 6).

The proof is similar to that for the previous lemma.

To conclude this section, we recall from Ciarlet’s definition [22] of a finite element (E, P, N') that we need P, a finite-dimensional
space of functions on E, and N' = {N|,N,,..., Ny, p}, a basis for P/, for which the members are referred to as degrees of
freedom (DoFs). That N is a basis for P’ is equivalent to saying that the DoFs are unisolvent, i.e., if y € P satisfies N W) =0,
Vj=1,2,...,dimP, then y = 0. According to Ciarlet, the issue of global conformity over the domain should be addressed after the
finite elements are defined, which we do in Section 8.

3. Geometric decomposition and degrees of freedom

For approximation purposes, we ask that P,(E) c DS,(E). The total number of DoFs required for H'-conformity can be
determined by a geometric decomposition of E as given in Table 1. These required DoFs are illustrated in Fig. 2. The total number
of DoFs for r=1and r =2 is

8 =dimP,(E) + 4, ifr=1,
20 = dimP,(E) + 10, if r=2,

24

r

which means we need 4 linearly independent supplements for DS, (E) and 10 for DS,(E). When r > 3, the total number of DoFs is
D, =8+ 12(r—1)+3(r—=2)(r-3)+ é(r =3)r—4)(r-95) (25)
=dimP.(E)+3(r + 1).

We view DS, (E) and DS,(E) as special cases, and start with the construction for r > 3, where we need to define exactly 3(r+ 1)
linearly independent supplemental functions. We have many choices, and each choice give a unique serendipity space. In this paper,
we give particular constructions, and show their conformity and unisolvence.

The DoFs for ¢ € DS, (E) are given by

d(v), for all the vertices v, (26)
¢q. VqeP,_5(e), forall the edges e, @27

e
bq, VqeP,_4(f), for all the faces f, (28)

f
bq. VqEP._((E). (29)

E

The unisolvence of the DoFs will be clear after we construct the basis functions. Note that we can also take DoFs to be nodal
evaluation, and construct the corresponding nodal basis functions. These will assist the development of the approximation theory
later in Section 9.
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4. Finite element space and basis functions for r = 3

We illustrate our finite elements with an explicit construction for the simplest case r = 3, which has 32 DoFs, including 8 vertex
DoFs and 24 edge DoFs. For vertex DoFs, the corresponding basis functions qﬁzj o where i = +1, j = +2, and k = +3, will be defined
later such that

9,400 = {1 o Vi (30)

0 at all the other vertices.

Edges and their DoFs are divided into three sets of 4 edges between opposite faces. For i = +1,j = +2,k = +3, and s = 0, 1, denote
the corresponding basis functions for each set of DoFs as & oo ¢;’. o and ¢¢,  respectively. These will be defined later so that

¢ )= /l_lll/li, Vx € € ks 31
ks 0, VXxef, n#jk
¢ (x)= /1_212/1;, VX € ey, (32)
bk 0, Vxef, n#ik.
AsMA5, Vx€Ee;
RO ER S (33)
I 0, VXEf, n#ij.

The set of these functions are linearly independent according to Lemma 2.1.
The finite element requires a supplemental function space S?S (E) such that

DS;(E) = P;(E) ® S7°(E) (34)
=span{¢], .. &7, by By | i=xl j=22, k=43, 5=0,1}.

4.1. The serendipity space on a cube

We first review the construction of DS 3(E") for £ =[~1,1]® a cube [15]. The vertex basis function d);’j i with the property (30)

is
¢Zj,k(fc’ y.2)= % (14 sign(i)x) (1 + sign(j)p) (1 + sign(k)z) € Ps, (35)
with the sign function defined as sign(i) = i/|i|. For edge basis functions, we present those for the DoFs on é,, ,, as an example. If

i ==1 and j = +2, the two edge basis functions qbf/._x for s =0, 1 are defined as

¢ij;x()%, »,2)= % 2°(1 — £2) (1 +sign(i)z) (1 + sign(j)p) € Ps. (36)

All the vertex basis functions are in IPg(E") and require no supplemental functions. However, in the construction of D1 there

are 3 supplemental functions which are linearly independent polynomials with degree greater than r = 3, namely

2(1 - 2)(%, 9. %9). 37)
The construction of ‘7511,12;0’ has one polynomial with the highest degree greater than r = 3, which is

(1= 29)3). (38)
Similarly, there are 4 different supplemental functions needed for constructing ®;, lazg S=01, and also 4 more for ®;, 2azy =0, 1.

All of these 32 basis functions belong to the space IP3(E)€BS3D5 (E), and they form a linearly independent set, since each corresponds
to a different degree of freedom.

4.2. Vertex basis functions

The next step is to generalize the construction to a cuboidal hexahedron E. It is straightforward to generalize the eight vertex
basis functions as
A_i(X)A_;(X)A_, (%)

AV ) A (Vi Ai (Vi)

B ) = eP, (39)

fori==+1,j = +2, and k = +3.
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4.3. Supplemental functions

In accordance with the serendipity element for a reference cube, the 24 edge basis functions are divided into 3 groups ¢ s
¢+1 3 and ¢+2 s . The construction of each group will involve four supplements, of which three functions are for s = 1, and one
function is for s = 0.

On a cube, the serendipity element restricted to any lower-dimensional geometry object coincides with a serendipity element
defined directly on that object [15]. We aim to construct e Vs and ¢, ona cuboidal hexahedron in such a way that they
restrict to a 2D direct serendipity space on each face. The 2D direct serendlplty spaces are defined in [16], and these are, for any
r>2,

DSP(f) = P,(f) @ span{i_o 4 R, A3 A4 Ry g, i = £, (40)
DSP(f)) = P.(f) ®span{A_ 4 ARz, A3as 2 Re}l s, J = %2, “n
DSP(f) = P(f) @ spanli_ A7 Ry, A d 272 R g k = £3. (42)

From the cube, we extend the construction naturally in (36) for s =1 to

. 1 L .

it = 7 ~AA_1A1(1 +sign(j)R))(1 + sign(k)R,), (43)
1 . .

el = 1A (1 +sign(R,)(1 + sign(k)R,), 44)

= i AzA_3A5(1 + sign() R, )(1 + sign(j)R,), (45)

which are zero on all the faces except for f;Ufy, f;Uf, and f;Uf;, respectively, and have the required property that their restrictions
on each face f, lie in DS(;)( f,) for all n € {£1,+2,43}. We have used three supplements for each group in the construction of
(43)—(45), which are identified as

AcA_1 A4 {Ry, R,, RyRZ}, (46)
/‘ly}'—2/12{Rx’ Rz’ Rsz}9 (47)
/‘l'zl—3/‘|'3{Rx’ Ry’ Rny}‘ (48)

Unfortunately, (38) does not naturally generalize so that the restrictions ¢e & olf ®1olss and ¢fj»0|fn belong to DS?( f,) for
all n € {£1,+2,+3}. We require functions v, y,, and v, with special propertles For w, we require that
Welyur s =0, Aoihwly, € DSP(fy),
Ay, €DSPS). wil,,, = 1.
Because the face direct serendipity spaces are well defined, knowing y, on the edges determines it on the faces f,, and f,; of the

element. Similar properties need to hold for y, and y,, especially that Wyleys =Wzle,, = 1. TO be precise, in terms of the coefficients
introduced in Lemma 2.2, these functions satisfy on the faces

1
Vo = AT(M ~ 1B A1+ R)), on f,
—-3x
= 1
Ve T v = =5 (a_z—%Bf;xAx(HRy)), on f;, (49
A—Zx
0, on f,U f_3,
=L (A,-1B2 4 1+R
v =i A mabs, A,(1+R;)), onfy,
_3,)/
= 1 1 pl3 50
vy <l,,y’3:Am (/1_1—53_19y,1y(1+Rx)), on fi, (50)
_]’y
0, on f_;Uf_3,
_— B2 A _(1+R
Vel = ia /1-2—- 5. A:(1+R) ), on fi,
-2,z
= 1
VeS vy = = (4o - 2B 2.0+ RY), on £, (51)
-1,z
0, on f_;Uf_,.

We have the interior left to be filled in. This will be discussed later in Section 7.
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Continuing, we represent ‘7523;0’ ¢§,3;0’ and ¢e1‘,2;0 as
¢;,3;O = A1 MWy, ¢T,3;O = }'—ZA’QW)H ¢i2;0 = A3y, (52)

which equal 1_;4, on e;3, 4,4, on e;3, and A_34; on e|,, respectively. Moreover, their restrictions on faces belong to the
corresponding 2D serendipity spaces described in (40)-(42), and they are zero on all the faces other than f, U f3, f; U f3, and
f1V f,, respectively. Since only one additional supplemental function for each group is allowed to construct all the ¢;,k;0’ qbi 0 and
¢f,j;0’ we take (52) as the additional supplements. We get the supplemental space of dimension 12

SPS(E)=4_ A A span{R,, R, R,R.} ® A_,},A,span{R,, R, R R_} (53)
®4_3A434;span{R,, Ry, R, R} @ span{¢ ., b] 3. 5 3,0 }-

4.4. Edge basis functions

We now describe how to construct edge basis functions for DS;(E) satisfying (31)-(33). For simplicity, we consider first the
group of 8 basis functions & for i = +1, j = +2, s =0, 1. The four functions ¢e] are given in (45). We also have the supplemental
function ¢¢ T 20 described in (52) For each group of 4 edges (that lie between a pair of opposite faces), we need 3 more basis functions,
which will each be formed as a linear combination of #] 2:0° qSH w21 and some polynomials in P5(E).

In fact, we need to take

1 12 12 -1,2
d’il,z;o = 412 [’1—3)“3/1—2 - A_z,z 7,2 0 B_z z 7,2;1 - B—2,z¢il,2;l] G
-2,z
/173’13 1,2 1 pl,2
= =3 [ Ao —A2 y — 1B L1+ R)I+R)
-2,z

1 p—12
~ 1B, - R)1+R,) ]

using (52) and (45). It is not difficult to verify that ¢¢ € DS;(E) has the properties required in (33). It clearly vanishes on the

1,2:0
faces f,3. Using (20), it also vanishes on edges e, , and e, ,, and it has the value 1_34; on edge e_; ,. But by construction, ¢*, , .
restricted to a face f,, lies in DS?)( f»), which has only edge and vertex DoFs. Thus we conclude that ¢°, 20 vanishes on all the faces
not containing edge e_; , i.e., on all the faces but f_; and f,.

By a similar procedure, we also get the basis function of order s =0 for ¢; _,

- 12 12 1,-2
T,—z;o =) (434341 - A—l,z i,zo B_1 z 7,21 B—l z e —-2; 1) (55)
-1z
We can obtain ¢¢, _,  using a similar procedure, but it is simpler to realize that
DLy 00 = A3ds = Dl — 9L 100 — P 20 (56)

For the 16 remaining edge basis functions, we have ¢jf 1 and ¢°, , from (43)-(44), as well as qbg 30 and 4)‘; 30 from (52), and we

ikl
can construct

1 23 2.3 pB23
b0 = 23 O e ¢230 BZ $531 — B3 9050 (57)
-3,x
__1 23 23 2.-3
4’;,73;0 - 23 (A1 A1A, _A—Z,x¢;,3;0 _B—Z,x¢§.31 B 4’2 -3; 1) (58)
-2.x
¢ LENTR B3 ge. —B713 ) (59)
¢—1,30 _1,3( -2/24-3 7 "5120 -35%13:1 —3y¢ 1.3:1
73.}}
13 13 1-3
T30 = 13 Aahdoy = AT, 130~ B, a1~ B e—s 1 (60)
—l,y

Finally, we get 5 30 and ¢° 1-30 by
Py 30 = A1k — D30~ P50 ~ P a0 (61
D) 30 = A2ty = 50~ 2150 ~ P 0 (62)
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4.5. Remarks on the construction

The formulation of vertex and edge basis functions naturally gives the unisolvence of the DoFs. Moreover, all the basis functions
belong to the space P;(E) & S?S (E), and they are linearly independent. We conclude that (34) holds by a dimension counting
argument with S?S (E) defined in (53).

Note that our construction starts from asking ¢ 5 tO be A_34; on e;,, and 0 on f_; and f_,, which loses symmetry. However,
there is actually no difference on each face, even if we start the construction from a different edge e; ;, i = =1, j = 2. This is
because all the ¢ij;0 must satisfy the property that

€ AP (/)@ {AR)}), onf,

e JEALH@ ()@ (AR, on f;
w0 =1, on finf;=ey.
=0, on f, n#i,j.

W2

(63)

Such a function is uniquely defined up to its values in the interior.
5. Finite element space and basis functions for r > 3

We can now present the finite element space analogous to (53) when r > 3. Among all the supplements, 3(r —3) of them are zero
on all the edges, and we define them as

Bl = Aaho Ay RN, (64)
B = A1 A3 AR AT, (65)
bl = A A RS, (66)
with s =0,1,...,r — 4. The remaining 12 supplements are defined as
B = AGMATR, B = AT R, @S, = Asa AR, (67)
By = AMAT R, B, = A AR, B, = A3AA R, (68)
B3 =AM AT R R, 853 = Ay X7 RAR,, 855 = A3 232 RR,, (69)
By = A MAT W B = Ak Ay, B, = A AA (70)

wherein the requirements of y,, Wy and y, are given in (49)—(51). The finite element space is given by DS,(E) = P.(E) ® SrDS (E),
where

SPS(E) = span{¢/ , ¢/, ¢/

e e e
X,8° Ty,s? 2,87 Tx,(° »l’? 2,0

[s=0,1,....,r—4, £=1,2,3,4}.

71)

Similar to the r = 3 case, ¢, ¢, and ¢, with m = 1,2,3 are used for the construction of the highest degree edge basis

y.m? :
functions, and ¢¢ ,, qb; 4, and ¢¢ , are used for the construction of the second highest degree edge basis functions. The restriction of

B s and ¢° , on each face f, belongs to DSP(f,) (see (40)-(42)). Moreover,
B 4ley, = A A AT, B yle, = A A7, D yley, = A_zhzAn? (72)

are zero on the faces that do not contain e, 3, e; 3, and e; , as an edge, respectively.
In the rest of this section, we construct basis functions with respect to DoFs on each geometry object (i.e., vertex, edge, face,
interior element) and conclude unisolvence of the DoFs.

5.1. Vertex and interior basis functions requiring no supplements

We take vertex basis functions ¢;’j o where i = +1, j = +2, and k = +3, the same as given in (39), since these are 1 at v, ; ;, and

0 at all the other vertices. For r > 6, define interior element basis functions as ¢sE| 52,53 with 0 < s, + s, + 53 <r—6by

3
O o= (TT 4n) a0 2222 73)
n=-3
Such functions are zero on JE.

Lemma 5.1. For any linear combination
- E E
¢ - Z CS],SZ,S3 ¢S1,s2,53’ (74)
0<s+sp+53<r—6

if the interior DoFs defined in (29) vanish, then ¢ = 0.
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Proof. In (29), let
q= D AT P (75)

YI 52,53
0<s)+s3+53<r—6
Then
E S1 952 453
/¢ e AT ) (76)

0<v]+Y2+s;<r—6
— Y] 52 953
I3 )
E =23 0<s|+5y+53<r—6

implies that all the coefficients cY vanish by the non-negativity of the integrand and Lemma 2.1. []

152,83

5.2. Face basis functions

We next construct basis functions associated to the face DoFs (28). As an example, we want qb{lsl 5 for face f, when r > 4, where
5| + s, <r—4, and, on the faces,
Ay 3dzAy) A7, on fy,
0, on f,, n#l

¢ = (77)

1551.8
We start the construction from the highest order. For s; + s, = r — 4, we directly have from the supplement ¢£,s, in (64) that

¢1 sy = —(¢f + Ay dyd_zhg Ay A32) (78)

5y X,81

= %,1_2/12,1_3/13(1 + R4 A7 € DS,(E).

We obtain the basis functions for lower order by induction. For any 0 < s, < r — 5, if we already have ¢ for s} + s} > s, then

1 / !
we construct ¢{ 515 with s, + 5, = 59, from
@l = ActAadad yisdy A € PL(E). 79)

It is zero on all the faces except f|, where, using Lemma 2.3,

J — S 452 1 1
P11 = Aadad Al A (A_1 +BL, A+ c_lyz,az) . (80)
By canceling the higher order terms in (p{ sy W obtain the basis function
1 /
¢1 S1.8) AI ((pl;sl,sz - —1 yz¢1 sp+1sy - —1 yz¢1 S 52+1) (81

—lyz

S

Note that although higher order terms are canceled here, it is not a necessary procedure, which means P1,

as basis functions.

5, are also able to serve
A similar construction gives ¢£,s],52 for n=-1,+2,+3 and 0 < 5, + 5, < r — 4. We obtain 3(r — 2)(r — 3) = 6dimP,_,(f) functions.

Lemma 5.2. On any face f,, suppose ¢|; can be represented as

— f S
¢|fr1 - Z cn;shszq&n;s],sz' (82)

0<s|+sp<r—4

If the face DoFs for f, defined in (28) vanish for ¢, then ¢|; = 0.

Proof. If the face DoFs (28) vanish for f;, for example, in (28), let
=Y o naz. (83)

Lisy,sp Y
0<s)+sp<r—4

Then (77) implies that the integrand is always non negative on f| and the second part of Lemma 2.1 implies that all the coefficients

e/ vanish. By symmetry, we conclude that cf =0forall -3<n<3and0<s,+s,<r—-4. O

1551.8 nisy,8y

10
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5.3. Edge basis functions

For illustration purpose, we construct d)f“ fori==+1, j=+2,and s =0,1,2,...,r — 2, such that on edges and faces,

A_xA3AS, ome; ;.
=g T (84)
/3 0, on f,, n#i,j.

We start from the highest order s = r — 2, where

€= % A_3A32572(1 + sign(i) R,)(1 + sign(j) R,) € DS (E), (85)

using the supplements q.')‘; Iy qbi 9 and ¢§ ; in (67)-(69).
For s = r—3, the construction follows the idea of constructing qﬁfm for DS;(E) in Section 4.4, except for that they are multiplied

through by 4773. First of all, we directly have #$,.._; = ¢¢ , from (70). By the same procedure of finding proper linear combinations,
using Lemma 2.2, we derive the basis functions

__1 -3 12
P10ps= 412 (AshsAi A, - AT L4 (86)
-2,z
_pl2 e 12 )
—2,z71,2;r-2 —2,z7-12;r-2 />
e _ r=3 1,2 3
1,-2:r-3 — F ( A3 A3 AT A — A—Lz 2.4 (87)
-1,z
12 1,-2
- B—l,z T.z;r—2 - B—l,z 7,72;r72 ) :

Finally, we directly obtain the basis function of order s =r -3 fore_; _, by
- -3
¢e—l,—2;r—3 =434 - T,Z:r—3 - ¢e—l,2;r—3 - ¢T,—2;r—3' (88)

These functions are uniquely defined up to their values in the interior, no matter from which edge we start the construction.
We continue to construct basis functions for smaller s by induction. If we already have b for s > sy, where 0 < 5y < r —4,
then we first construct

O gy = A3 haA_id 40 € PL(E). 89
Note that
o = {/13/13 AD(AY + BY a(AY 4+ BY ), one, N (90)
0, on f, n#i,j.
Then we subtract higher order terms from it and get
f,j;so = m [q’ij;xo ©1
= (AL BY L AL B O~ BULBY 0 0 |

If we want to simplify the construction, we can directly use (pfj‘ao as the basis function of order s on ¢; ; for s, < r — 4. The basis
construction for e, ,, can be easily generalized to e ,; and e, ; by symmetry. We have constructed 12(r — 1) = 12dimP,_,(e)
functions.

Lemma 5.3. On any edge e, ,, suppose ¢| emn could be represented as

r=2

¢|em.n = Z C;,n:.v¢frt,n:S' (92)

5s=0
If the edge DoOFs for e,, , defined in (27) vanish for ¢, then ¢|, = 0.

Proof. We prove the argument for m = +1 and n = +2 as an example. If the edge DoFs (27) vanish, let
r=2
9= z c;,n;sii' (93)
s=0

Since the integral is zero and the integrand is always non-negative on e,,, by (84), we conclude ¢, . =0 forall s=0,1,...,r -2
by the first part of Lemma 2.1. []

5.4. Unisolvence of the degrees of freedom

Lemma 2.1 gives certain polynomial bases for each geometry object (i.e., vertices, edges, faces, and interior element). We state
and prove the unisolvence of DoFs in the following theorem.

11
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Theorem 5.1. The finite element DS,(E) = P.(E) & SPS(E) with the basis functions of SPS(E) defined by (64)-(70) is well-defined
(i.e., unisolvent) with DoFs (26)—(29).

Proof. Write ¢ € DS, (E) as

— v v
¢= 2z kP ©4)
i=+1,j=42,k=+3
r=2
c© e e e e e
+ Z( Z / kst j ks + CikisPikss + Ci,j;s¢i,j;s)
s=0 j=+2,k=%3 i=x1,k=+3 i=x1,j=+2
3
; ) i
+ Z Z Co; 381 szd)n;sl,sz + Sl 52, 53¢s1 52,83 "
0<s)+sp<r—4 n= 0<s)+5y+53<r—6

Restricted to any vertex v, ; ;, only qbV is nonzero among all the basis functions. Therefore, if vertex DoFs (26) vanish for ¢, we

must have c k= =0foralli==%+l1,j= +2 k = £3. Since c = 0, and all the face and interior element basis functions are zero on
edges, we have
r=2 r=2 r=2
pa— e e p— e (4 — e (4
¢|ej.k - Z CjA,k;s(‘bj,k;s’ d)lei,k - Z Ci,k;sd)i,k;s’ d)lgi,j - Z ci,j;: ijis? (95)
s=0 s=0 s=0

for any edge e, e;;, and ¢, ;. By Lemma 5.3, ¢¢ ks s = Chjis =0 for all the edges and s =0, 1, ...,r — 2. Similarly, since all the
vertex and edge coefficients are zero, and 1nter10r element basis functions vanish on faces, we have

b= D P (96)

0<s)+sp<r—4

for all the faces f,. By Lemma 5.2, e 5.5, = 0 for all the faces f, and 0 < 5, + 5, < r — 4. Since all the other coefficients vanish, we
have ¢ consisting only of interior element basis functions. By Lemma 5.1, we finally conclude that all the coefficients vanish. []

6. Direct serendipity finite elements for r < 2

We construct direct serendipity finite elements DS, (E) for r = 1,2 as a subspace of DS;(E), which has been constructed explicitly
in Section 4. The DoFs can be chosen either as defined in (26)—(27) or nodal DoFs.

Fori = +1,j = +2, and k = +3, define qSV low DS;(E) for each vertex v, ; ;, such that it is linear on each edge, and is one at v, ;
while zero on all other vertices. These functlons are uniquely defined in DS5(E), since there are no face or interior DoFs for r = 3.
Furthermore, denote the edge basis functions ¢5,k;0’ b 00 and qb" defined for DS5(E) as d)" IOW, qﬁf”}:’w, and qﬁf”}ow, respectively.
Define

DS/ (E) =span{¢)1%" | i = £1, j = +2, k =3}, ©7)
DS, (E) = DS, (E) @ span{¢°}™", 73", 41" 98)

| i==1, j=42, k=4+3}.

Theorem 6.1. For r = 1,2, the lower order spaces DS,(E) defined as (97)-(98) satisfy that P.(E) C DS, (E).

Proof. For any p € P,(E), there is a unique function ¢ € DS,(E) having the same evaluation of DoFs as p. Moreover, restricted to
any edge e, ,, ¢/,  has to be a polynomial of order r by construction (97)-(98). Any function in DS;(E) is uniquely defined by its
shape on edges and vertices. Since we both have p € DS5(E) and ¢ € DS;(E) with the same values restricted to edges and vertices,
we must have p=¢. [J

More details on the construction of DS, (E) are now given. The special functions R,, R, R, y,, ¥, and y, must be constructed
beforehand (see Section 7). These are used to define the space DS;(FE). Specifically, one needs the edge functions ® 0 defined in
(43)—-(45), and the edge functions ‘73,?/40’ defined in (52) and Section 4.4. For i = +1, j = +2, and k = +3, the vertex basis function
¢;";3€W is the linear combination

¢v,low —

ij.k Ijk+ao¢ +a1¢1/1

+ 108 40 T 119D 11>

i.j:0 + ﬂ0¢?,k;0 + ﬂl ¢I?,k;l (99)

for some coefficients ay, a;, By, B, 79> and y;, where d)v is defined in (39). Note that ¢V low i¢ zero on faces f_is f—j, and f_;, and
V low .

zero at each vertex save v, ; ,, where it is one. However, ¢’ " is in general cubic on each edge emanating from v, ; . The coefficients

i.jk>

12
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Vi1,-2,3 V1,23

V_1,2,3

V_1,2,-3

Fig. 3. The partition of marching tetrahedra 7,™, where T  is painted in gray.

are chosen to ensure that q&iv‘;‘;(w is linear on these edges. For example, consider ¢T12°;” and the edge e, 5 from v, ;3 to v_; 5. Divide

the edge into thirds at the points x; , (nearer to v, ,3) and x; ;. Then one must solve the linear system

e e 2 v
( 2,3;0(";,3) 2,3;1(";,3)) <70> |3~ 1,2,3(X2+,3) (100)

e - e - 1 — :
#5300 #5555/ \1n 3~ Y 05(55)

7. Construction of the special functions R, and y,

We present two ways of filling in the interior of the needed special functions. Recall that the boundary values required of R,,
R, and R, are specified in (7), and those of y,, y,, and y, are found in (49)-(51). The first way results in smooth supplemental
functions, while the second way constructs supplements that are piecewise polynomials in H'(E).

7.1. Smooth supplemental functions

The first construction makes use of the mapping x = F(X) from a reference element E introduced in Section 2. With & = FEI(X) =
(%, 9,2), we define v, y,, and y, on the element E by

W) = P, (8) = W (8, 5, 2) =y, (Fp (R, 1, 2) w3 (F(5, 9, 1), (101)
(%) = Py R) = ¥y (8, 5, 2) = vy (Fe(1, 9. 2) w3 (F(5, 9. 1), (102)
(%) = P, (R) = 0%, 5, 8) = v, (F(1, 9, 2) v, (Fi(, 1, 2), (103)

where v, 5, ..., y,, are defined in (49)-(51). It is not difficult to verify that these functions have the required properties. Moreover,
they are smooth if Rilgys Relpys Rylys Rylyys Rely, and R.|y, are smooth. For example, R,, R,, and R, could be taken as in (8).

7.2. H! supplemental functions

The second construction makes use of partitions of the hexahedron into tetrahedra, of which two partitions are discussed.

We first consider a partition based on marching tetrahedra, as discussed in [23], where the element E is divided into six
tetrahedra as shown in Fig. 3. An interior diagonal mesh line joining vertex v_; _, _; to v|,3 is added, as well as six mesh lines on
the faces joining v,; , 3 t0 V.53, V_1.42-3 10 V| 1p3, and v_; _, 43 to v|, 3. Denote this sub-partition as 7, EM and the tetrahedron
which has two faces lying in f,, and f, as TmMm . We remark that this partition naturally matches adjacent hexahedra in a logically
rectangular mesh.

Let the piecewise continuous polynomial spaces corresponding to the partition be denoted

PTMy={fechE) : flpy € Py(TM ) ¥m,n}. (104)

n

Define R,, R, and R, in P(7, bf” ) according to (7) by fixing each vertex value to be either —1 or 1.

Since the functions R, are piecewise linear, the functions y,, v, and v, satisfying (49)-(51) must be piecewise continuous
quadratic functions. They can be defined in P, (T, EM ) by interpolation at the vertices and mesh line midpoints of the sub-partition.
However, each of these functions is fixed only on four of the faces of E, and so no values are given at the midpoints of three
sub-partition mesh lines (two lying on faces, one being the interior diagonal line). We need to fix these values to define y,, v, and
v, and any value will suffice (such as taking the average of the ends at the midpoint). By such a construction, all the supplemental
functions will be piecewise polynomials that are continuous on E, so they will lie in H!(E).

The second partition is based on the diamond lattice cells, which divides the hexahedron E into five tetrahedra with exactly one
having all its faces in the interior of E. The partition uses six additional mesh lines that all lie in dE. As shown in Fig. 4, there are
two patterns for this partition. First, one can take the “even” set of vertices v;,3, V_1_53, V_15_3, and v; , 3, and the six mesh
lines joining each pair. Denote this pattern as 7,°. Second, one can take the “odd” set of vertices v_; _, 3, V_; 23, V1 23, and v, 3,

13
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Vi,-2.3 V1,2,3 Vi,-2,3 V1,23

Vi,-2,-3 Vi,2,-3

Fig. 4. The diamond cubic based partition 7,” (left) and 7, ED' (right). Displayed in gray for both partitions is the tetrahedron with all four faces internal to E.

and the six mesh lines joining each pair, to obtain the pattern denoted as 7, EDI. We remark that these patterns appear alternately for
adjacent hexahedra in a logically rectangular mesh.

Similar to the case for the marching tetrahedra, the special functions R,, R,, and R, can be interpolated into 7, (7, ED) or P (T, ED').
Moreover, y,, y,, and y,, can be interpolated into P,(7, ED) or Py(T, ED'). We will need to fix arbitrarily the midpoint values of the
two mesh lines of the sub-partition not fixed by the required function values.

8. Defining an H'-conforming space on the domain

Direct serendipity elements in 2D are not uniquely defined, as discussed in [16]. The traces of our 3D elements on the faces are
affected by our choice of the functions R,, R, and R, and the functions 4,, ,, and 4,. When merging two elements together, these
choices must be respected by the adjoining elements.

Consider two adjacent elements E; and E_; joined on the face f = E; n E_,. For simplicity of the discussion, we assume that
in the notation of this paper, E, considers f as being its f|, and E_, considers f as being its f_,. Moreover, we denote the special
functions on f restricted to E,, as being R, ., R A and 4

We must ask two things. First, we require that,

z,x1 Myl z,+l*

Ruily = +Ry_il;, a=y.z (105)

We are dealing with vector spaces, so technically the two expressions need only be multiples of each other, but they are +1 on
opposite edges. The constructions in Section 7 have this property. For the smooth case, the functions R, are defined in (8) by the
trilinear mapping of the reference cube to E,,. The trilinear map restricts to a bilinear map on each face, determined only by
its four vertices. Therefore the value of R, .|, must agree with the value of &, @ = y,z, up to its sign. For the H ! supplemental
function case, we merely ask that the partition of neighboring elements coincide when restricted to the common face. In the case of
a logically rectangular mesh, this is satisfied naturally by marching tetrahedra. However, if we use the partition based on diamond
lattice cells, two neighboring elements that share a common face must use different patterns 7,° and 7, ED’ to match.

Second, we must ask that the special linear functions agree up to a multiple. That is, the zero line of 4, .| is denoted P, ., n f,
and we require that

PanNf=P,_1nf, a=y,z (106)

This requirement is more delicate to enforce on a general mesh. To illustrate a very special case, suppose that our mesh is composed
only of elements that have consistent mid planes, meaning that the midpoints of the four edges e, ,, form a plane, and similarly
for e, .3 and e,, ;. We could then simply take these three planes as the zero planes of our three special linear functions. But the
consistent mid plane condition is a severe restriction on the mesh.

We can resolve the issue if we restrict to the most natural situation of a logically rectangular mesh. In that case, a simple choice
is to take

A=Ay, Ay =iy, A= Ag (107)

The zero lines on the faces then agree between pairs of elements, so the condition (106) is satisfied.

9. Approximation results

We give a summary of the necessary constructions and the main approximation results without complete proofs, since the
development closely follows that for direct serendipity finite elements on quadrilaterals discussed in [16]. A minor issue is that [16]
assumes extra smoothness of the special functions analogous to those in (7), but this extra smoothness requirement was removed in
[24,25], allowing only piecewise continuous, differentiable functions. The uniform shape regularity of the mesh 7, on the domain
Q is assumed for the purpose of proving global approximation properties, with its definition generalized from [26, pp. 104-105].

14
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Definition 9.1. For any E € T, denote by T} ;, i = +1, j = 2, k = +3, the sub-tetrahedron of E with vertices v; ; v, V_; ; x> Vi_j >
and v; ; _, of E. Define the parameters

hp = diameter of E, (108)

PE= Er;ig{diameter of the largest sphere inscribed in T ; ; }. (109)

A collection of meshes {7},}, is uniformly shape regular if there exists a shape regularity parameter o, > 0, independent of 7, and
h > 0, such that the ratio
Z_EZG*>O forall E € T, (110
E

We construct an interpolation operator that maps onto DS, inspired by Scott and Zhang [27]. For the purpose of the proof,
denote the global nodal points as {a,,...,ay } with N, = dimDS,. For each nodal point a;, denote its corresponding global nodal
basis function as ¢;. We require that the nodal points on an element depend continuously on its vertices. If g; lies in the interior
cell of an element E € 7, we set K; to be (the closed set) E. These are referred to as interior nodes. If g; lies in the interior of face
f of T, (i.e., not on the edges or at the vertices), we set K; = f (a closed set), and g; is referred to as a face node. If q; belongs to
the interior of an edge or is a vertex of 7}, K; is chosen to be any fixed face f containing g;, with the additional requirement that
if a; € 092, then f C 02Q2. Those nodes are said to be edge and vertex nodes, respectively. Note that for such nodes, we are free to
chose f from among multiple faces.

An L?-dual nodal basis, denoted as {y;,... RN is defined as follows. Firstly, let n; be the total number of nodes in K;.
Secondly, denote the nodes in K; as {a;; : j = 1,...,n;} with a;; = q;, corresponding to the global nodal basis functions
S; ={@;; : j=1,....n;}. Thirdly, define an L*(K;)-dual nodal basis {w;; :j=1..,n} Cspans; satisfying

/ Wi () @ (X)dx =8y, jok=12,....n, (111)

i

where we use a slight abuse of notation in that dx should be do(x) when K; is a face. Finally, for the node g, its corresponding
L2-dual nodal basis function is taken to be y; = y; ;. For each node q; giving rise to K; and y;, we can prove that

/w,-(x)rp,-(x)dx=5,-,-, i,j=12..N, 112)
Kl

We define an interpolation operator I : Wp’(.Q) — DS, by
NI‘
100 = 3 0,00 [ wwowayeDs,. 113)
i=1 K;

where | <p <o and /> 1/p (but/ > 1 if p = 1). Note that for any v € Wp’ (€), the nodal values |, k. Wi(y) v(y) dy are well defined
according to the trace theorem. With a proof analogous to [16,24,25], we can derive the following lemma by a continuity and
compactness argument.

Lemma 9.1. Letv e WpI(Q), where 1 <p<ocoand ¢ > 1/p (or ¢ > 1 if p=1). Let T;, be uniformly shape regular (Definition 9.1) with
shape regularity parameter o,. For every E € T, suppose that DS, (E) are constructed with A, A,, and A, such that the intersection of their
zero set depends on the vertices of E continuously. Moreover, assume that R,, R, R, v,, w,, and v are piecewise uniformly differentiable
H'(E) functions of the vertices of E up to order m. Then for r > 1, E € T;, 1 < q < oo, and any nonnegative integer m,

3_3

‘ k—m+=—=
1T, ollwgney < CEm@) 3 by 7 [0l ey (114)
k=0

where E* = Urer, prpss F and |- |y« is the seminorm of kth order derivatives.
’ P

Combining Lemma 9.1 and the Bramble-Hilbert lemma [28] in the form developed by Dupont and Scott in [29] leads to the
following error estimation results.

Theorem 9.1. With the assumptions of Lemma 9.1, there exists a constant C = C(r, c,)) > 0 such that for all functions v € Wpf (E*), with
l<p<owand?¢>1/p(or¢>1ifp=1),

llo = I} vllwm) < Chi_mwlwpf(E*), 0<m<min(Z,r+1). (115)
Moreover, there exists a constant C = C(r, ,) > 0, independent of h = maxgey, hg, such that for all functions v € Wf(Q),

(X ||u—1,’,v||”pm(E))l/p (116)

EeT),

<Cch™ [Vl ey 0<m<min(,r+1).
4
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Fig. 5. Plots of the T;,l mesh for n =4 with a general view, a top view, and a front view.

10. Some numerical tests

We test the new finite elements using Poisson’s equation
-V-(Vp=f inQ, 117)
p=0 onodL, (118)
where f € L?(Q). The problem can be written in the weak form: Find p € Hé (£) such that
(Vp.Vg)=(f.q). Vq€ H(L), (119)
where (-,-) is the L2(Q2) inner product. In view of Theorem 9.1, it is well known that the following theorem holds [30].
Theorem 10.1. Let 7, be uniformly shape regular with shape regularity parameter o, and let the assumption in Theorem 9.1 hold. There
exists a constant C > 0, depending on r and o, but otherwise independent of T, and h > 0, such that
lp = Pallgmay < C A" Iplysrieyr $=0.1,..,r, m=0,1, (120)
where p, € DS ,.(£2)N Hé (£2) approximates the solution p of (119) for r > 1.
We consider the test problem (117)—-(118) on the cubical domain £ = [0, 1]3. The analytical solution of the test problem is
p(X1, Xy, x3) = sin(zx,) sin(zx,) sin(zxz),

with the source term f(x;, X, X3) = 372 sin(zx,) sin(zx,) sin(zx;).
The numerical solutions are computed on two sequences of n X n X n meshes for n = 4,8,12,16. Let the global vertices be
gl°bal = (x fl:)bil, gl:);’il, glfbil) for 0 < i,j,k < n. The first set of meshes, 7!, is generated by deviating the interior vertices of a
cublcal mesh regularly such that there are two pairs of non-parallel faces in each element, with the vertices defined by

%(i+0.1), if i%2=j%2 and 0<i<n,
gl =31 —00), if i%2#j%2 and 0<i<n, 21)
é, if i=0,n,
S = (122)
L(k+0.1), if k%2=j%2 and 0<k<n,
9 = Lk—00), if k%2#j%2 and 0<k<n, (123)
%, if k=0,n.

We show the Th1 mesh for n = 4 as an example in Fig. 5.
The second set of meshes, Thz, are generated randomly by first deviating the vertices on the lower boundaries {x; = 0} U {x, =
0} U {x3 = 0}. For the distortion factor d and random numbers ry; ; ., r5,; ; x> 3 ; x generated from uniform distribution [-1, 1], define

gobal | 2G+drig 0. if j=00rk=0, and 0<i<n,
Xlijk = i e . 124
L if j=0ork=0, and i=0,n,

n

gobal | 30U +dra ). if i=0ork=0, and 0<j<n (125)
oval ST 5
Hik f; if i=0ork=0, and j=0,n,

16



T. Arbogast and C. Wang Computer Methods in Applied Mechanics and Engineering 433 (2025) 117500

Fig. 6. A plot of the 7,> mesh for n =4 with a general view.

Table 2
Errors and convergence rates for DSf on T;.l~
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate

L? errors and convergence rates

4 7.688e—02 - 5.453e-03 - 1.445e-03 - 1.882e—04 -

8 1.878e—-02 2.03 6.935e—-04 2.98 9.020e-05 4.00 5.843e-06 5.01
12 8.333e-03 2.00 2.065e-04 2.98 1.773e-05 4.01 7.698e-07 4.99
16 4.688e—03 2.00 8.730e—-05 3.00 5.590e—-06 4.02 1.830e—07 5.00

H'-seminorm errors and convergence rates

4 2.438e-01 - 2.778e-02 - 9.693e-03 - 1.362e-03 -

8 1.204e—01 1.02 6.739e—-03 2.04 1.187e-03 3.03 8.555e—-05 3.99
12 8.022e—-02 1.00 2.985e-03 2.01 3.500e—-04 3.01 1.693e-05 3.99
16 6.019e—-02 1.00 1.678e-03 2.00 1.473e-04 3.01 5.372e-06 4.00

gobal | s(k+dry;p), if i=0orj=0, and 0<k<n,

xglobal _ (126)
Bk £, if i=0orj=0, and k=0,n.

For each hexahedral element, since all the faces are required to be flat, seven vertices are enough to decide the location of the eighth.
Therefore, all the other vertices such that i, j, k > 0 are consequently decided by the order of ascending indices. However, by this
definition, the irregularity of the element will increase for larger indices. For the same distortion factor d, the o, in Definition 9.1 can
decrease for larger n. Therefore, we pick d = 0.075,0.063,0.055,0.056 for n = 4,8,12, 16, respectively, such that ¢, is approximately
0.1 to three decimal precision. A plot of 7, h2 mesh with n =4 is shown in Fig. 6 as an example.

We present the convergence results for DS, with r = 1,2,3,4 on the meshes with n = 4,8,12,16. The results are compared
for three different definitions of supplemental functions. Denote the direct serendipity space with the smooth supplements, the
piecewise polynomial supplements based on marching tetrahedra, and those based on diamond lattice cells as DSf, DSB’[ and DS?,
respectively.

10.1. Shape regular meshes T,!

The errors and the corresponding convergence rates of DS? on Th1 are presented in Table 2. The convergence rates are
approximately r+1 for L?>-norm error, and r for H'-seminorm error, which agree with Theorem 10.1. The errors and the convergence
rates for DSrM and DSP are shown in Tables 3 and 4. We note that the errors for DS]rVI and DSP are slightly worse than those of
DSf for higher r. We suppose that this is because smooth supplements behave better in approximating smooth functions.

10.2. Randomly generated meshes T

We show the errors and convergence rates for DSf, DSrM, and DS? on Th2 in Tables 5-7. The results are similar to those of 7, h].
For all the direct serendipity spaces, we observe optimal convergence rates, with the errors for DSf being smaller than DSrM and
DSP for larger r.

11. Conclusions

We constructed direct serendipity finite elements on a general non-degenerate cuboidal hexahedron E, which is a three-
dimensional polytope with all the faces being flat, and that can be obtained by some trilinear map of a cube. For approximation
purposes, DS, (E) takes the form

DS.(E)=P.(E)®SPS(E), r>1, 127)

17



T. Arbogast and C. Wang

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117500

Table 3
Errors and convergence rates for DS'r“ on 7,!.
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate
L? errors and convergence rates
4 7.682e—02 - 7.032e-03 - 5.219e-03 - 5.912e-04 -
8 1.879e—-02 2.03 7.089e—-04 3.31 2.410e—-04 4.44 1.603e—-05 5.20
12 8.339e-03 2.00 2.069e—-04 3.03 4.433e—-05 4.17 1.999e-06 5.13
16 4.691e—-03 2.00 8.702e—-05 3.01 1.362e—05 4.11 4.628e—-07 5.09
H'-seminorm errors and convergence rates
4 2.437e-01 - 3.922e-02 - 3.070e—-02 - 4.121e-03 -
8 1.204e-01 1.02 7.322e-03 2.42 3.436e—03 3.16 2.478e—04 4.06
12 8.023e—-02 1.00 3.082e-03 213 9.825e—-04 3.08 4.747e—-05 4.07
16 6.020e—-02 1.00 1.703e-03 2.06 4.080e—-04 3.06 1.480e-05 4.06
Table 4
Errors and convergence rates for DS? on 7,
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate
L? errors and convergence rates
4 7.691e—02 - 6.158e—03 - 3.747e-03 - 4.831e-04 -
8 1.873e-02 2.04 7.081e—04 3.12 2.281e—-04 4.04 1.612e-05 4.91
12 8.302e—-03 2.00 1.988e—-04 3.13 4.498e—-05 4.00 2.128e-06 4.99
16 4.669e—-03 2.00 8.210e-05 3.08 1.421e-05 4.01 5.036e-07 5.02
H'-seminorm errors and convergence rates
4 2.440e-01 - 3.407e-02 - 2.589e-02 - 3.598e-03 -
8 1.202e-01 1.02 7.111e-03 2.26 3.197e-03 3.02 2.417e-04 3.90
12 8.010e—02 1.00 2.955e-03 2.16 9.419e—-04 3.01 4.794e—05 3.99
16 6.009e—-02 1.00 1.621e-03 2.09 3.963e—-04 3.01 1.517e-05 4.01
Table 5
Errors and convergence rates for DSf on 7,2
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate
L? errors and convergence rates
4 7.508e—02 - 5.109e-03 - 1.317e-03 - 1.770e—04 -
8 1.797e-02 2.21 6.252e—04 3.24 7.446e—05 4.43 5.327e-06 5.40
12 7.626e—03 2.12 1.885e—-04 2.96 1.342e-05 4.24 6.956e—07 5.03
16 4.349e-03 2.30 8.192e-05 3.41 4.406e—-06 4.56 1.720e-07 5.73
H'-seminorm errors and convergence rates
4 2.410e-01 - 2.571e-02 - 9.244e-03 - 1.263e-03 -
8 1.181e-01 1.10 6.006e—03 2.24 1.092e-03 3.29 7.755e—05 4.30
12 7.697e—02 1.06 2.677e-03 2.00 3.031e—-04 3.17 1.533e-05 4.01
16 5.788e—-02 117 1.527e-03 2.30 1.307e-04 3.45 5.002e-06 4.59
Table 6
Errors and convergence rates for DSB’[ on Thz.
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate
L? errors and convergence rates
4 7.510e—-02 - 6.793e-03 - 5.130e-03 - 5.733e-04 -
8 1.797e-02 2.21 6.439e—-04 3.63 2.240e—-04 4.83 1.490e-05 5.63
12 7.627e—03 2.12 1.903e-04 3.01 4.116e—-05 4.19 1.877e—-06 5.12
16 4.349e-03 2.30 8.225e-05 3.44 1.283e-05 4.78 4.434e-07 5.91
H'-seminorm errors and convergence rates
4 2.410e-01 - 3.767e-02 - 3.036e—-02 - 4.027e-03 -
8 1.181e-01 1.10 6.627e—03 2.68 3.296e—-03 3.42 2.350e—-04 4.38
12 7.697e—02 1.06 2.792e-03 2.14 9.435e—04 3.09 4.534e—-05 4.07
16 5.788e—-02 117 1.562e-03 2.38 3.948e—-04 3.57 1.434e-05 4.72
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Table 7
Errors and convergence rates for DS? on Thz.
n r=1 r=2 r=3 r=4
Error Rate Error Rate Error Rate Error Rate

L? errors and convergence rates

4 7.509e—-02 - 6.434e-03 - 3.634e-03 - 4.786e—-04 -

8 1.797e-02 2.21 6.427e—-04 3.55 2.242e—-04 4.30 1.565e—05 5.28
12 7.626e—03 2.12 1.813e-04 3.13 4.441e-05 4.00 2.076e-06 4.99
16 4.349e-03 2.30 7.660e—-05 3.53 1.433e-05 4.63 5.008e-07 5.83

H'-seminorm errors and convergence rates

4 2.410e-01 - 3.517e-02 - 2.527e-02 - 3.516e-03 -

8 1.181e-01 1.10 6.436e—-03 2.62 3.127e-03 3.22 2.330e—-04 4.19
12 7.697e—-02 1.06 2.662e-03 218 9.180e—-04 3.03 4.608e—-05 4.01
16 5.788e-02 1.17 1.475e-03 2.42 3.913e-04 3.49 1.473e-05 4.67

where the supplemental space SP$(E) was constructed for the sake of H!-conformity. We developed the direct serendipity spaces
for r > 3, where there are 3(r + 1) linearly independent supplements, of which 12 are for separating edge DoFs, and the others are
for the separation of face DoFs. We noted that not all of the supplemental functions on a cube are naturally generalized, since we
required that the space restricted to each face coincides with a two dimensional direct serendipity space. The direct serendipity
spaces on element E for r = 1,2 were constructed as subspaces of DS;(E).

The spaces DS, (E) depend on our choice of nine special functions. Additional restrictions were required for the first six, A,,
Ays Az Ry, Ry, and R, in order to satisfy global H I_conformity. For the other three, v,, vy, and y, their traces on JE were fully
determined by 4,, 4,, 4., R,, R,, and R,, and their definition in the interior could be decided in different ways, of which a few
were presented in Section 7. The unisolvence of DoFs naturally follows from our development of basis functions.

The restriction of the finite elements to the faces gives a set of functions that are not merely polynomials. Rather, they are two-
dimensional direct serendipity spaces. As such, two adjacent finite elements do not necessarily merge to form an H'-conforming
space. However, we noted that this can always be done in a straightforward manner if one uses a logically rectangular mesh.

The establishment of approximation properties closely followed [16,24,25] with a continuous dependence argument over a
compact set of perturbations. An assumption on the regularity of the mesh was made. Moreover, the special functions used in
the construction of the finite elements were required to be piecewise continuous and uniformly differentiable H! functions of the
vertices of E. Under these assumptions, the optimal convergence rates were obtained for DS,.

We conducted numerical tests for the finite element approximation of a Dirichlet problem on regularly and randomly distorted
mesh sequences. For different choices of the special functions R, Ry, R, vy, vy, and y, in Section 7 (smooth, marching tetrahedra,
and diamond lattice cells), the performance of DSf s DSf"’ , and DS? were compared. They all converge at the expected rates on
both mesh sequences, but DS5 with smooth supplements gives the best performance for higher r.

We close by noting that an open problem is to develop H(div) and H(curl) conforming mixed finite elements related by a de
Rham complex to the direct serendipity finite elements constructed in this paper. We emphasize that they are not trivially found
from the serendipity spaces. The finite element exterior calculus (FEEC) [18,31] suggests that the relevant de Rham sequence is

| grad curl .o diveo
Re— H' — H(curl) — H(div) — L* — 0, (128)

wherein the new direct serendipity elements approximates the space H'.
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