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Abstract

In this paper, we establish a novel connection be-
tween total variation (TV) distance estimation and
probabilistic inference. In particular, we present
an efficient, structure-preserving reduction from
relative approximation of TV distance to proba-
bilistic inference over directed graphical models.
This reduction leads to a fully polynomial ran-
domized approximation scheme (FPRAS) for esti-
mating TV distances between same-structure dis-
tributions over any class of Bayes nets for which
there is an efficient probabilistic inference algo-
rithm. In particular, it leads to an FPRAS for es-
timating TV distances between distributions that
are defined over a common Bayes net of small
treewidth. Prior to this work, such approximation
schemes only existed for estimating TV distances
between product distributions. Our approach em-
ploys a new notion of partial couplings of high-
dimensional distributions, which might be of in-
dependent interest.

1. Introduction

Substantial research has been devoted to developing mod-
els that represent high-dimensional probability distributions
succinctly. One prevalent approach is through graphical
models. In a graphical model, a graph describes the con-
ditional dependencies among variables and the probability
distribution is factorized according to the adjacency rela-
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tionships in the graph (Koller & Friedman, 2009). When the
underlying graph is a directed graph, the model is known as
a Bayesian network or Bayes net.

Two fundamental computational tasks on distributions are
distance computation and probabilistic inference. In this
work, we establish a novel connection between these two
seemingly different computational tasks. Using this connec-
tion, we design new relative error approximation algorithms
for estimating the statistical distance between Bayes net
distributions with small treewidth.

Total Variation Distance Computation. The distance
computation problem is the following: Given descriptions
of two probability distributions P and @), compute p(P, Q)
for a distance measure p. A distance measure of central
importance is the rotal variation (TV) distance (also known
as the statistical distance). Let P and () be distributions
over a finite domain D. The total variation distance between
P and @, denoted by drv (P, @), is defined as

drv(P.Q) = max(P(5) - Q(S)).

The total variation distance satisfies many basic properties
which makes it a versatile and fundamental measure for
quantifying the dissimilarity between probability distribu-
tions. First, it has an explicit probabilistic interpretation:
The TV distance between two distributions is the maximum
gap between the probabilities assigned to a single event by
the two distributions. Second, it satisfies many mathemat-
ically desirable properties: It is bounded and lies in [0, 1],
it is a metric, and it is invariant with respect to bijections.
Total variation distance also measures the minimum proba-
bility that X # Y among all couplings (X,Y) between P
and (). Because of these reasons, the total variation distance
is a central distance measure employed in a wide range of
areas including probability and statistics (Mitzenmacher &
Upfal, 2005), machine learning (Shalev-Shwartz & Ben-
David, 2014), information theory (Cover & Thomas, 2006),
cryptography (Stinson, 1995), data privacy (Dwork, 2006),
and pseudorandomness (Vadhan, 2012).

Probabilistic Inference. Probabilistic inference in graph-
ical models is a fundamental computational task with a
wide range of applications that spans disciplines includ-
ing statistics, machine learning, and artificial intelligence
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(e.g., see Wainwright et al. (2008)). Various algorithms
have been proposed for this problem, encompassing both
exact approaches like message passing (Pearl, 1988), vari-
able elimination (Dechter, 1999), and junction-tree propaga-
tion (Lauritzen & Spiegelhalter, 1988), as well as approx-
imate techniques such as loopy belief propagation, varia-
tional inference-based methods (Wainwright et al., 2008),
and particle-based algorithms (refer to Chapter 13 of Koller
& Friedman (2009) and the references therein). In this
work, we rely on the following formulation of probabilis-
tic inference: Given (a representation of) random variables
Xi,...,X, and (a representation of) sets S1,...,.S, such
that for all 4 the set S; is a subset of the range of X;, compute

PI‘[Xl 6517...,Xn € Sn]

1.1. Our Contributions

The problems of total variation distance computation and
probabilistic inference have been studied for nearly four
decades on their own, but there is no known relationship
between these two fundamental yet seemingly different com-
putational tasks. The primary goal of our paper is to initiate
an investigation to determine such a relationship. Surpris-
ingly, we demonstrate that there is a structure-preserving
reduction from the TV distance estimation problem to the
probabilistic inference problem over Bayes nets: In particu-
lar, we exhibit an efficient probabilistic reduction that, given
two Bayes nets P and () defined over a directed acyclic
graph (DAG) G, makes probabilistic inference queries to a
Bayes net £ defined over the same DAG G and returns a
relative approximation of drv (P, Q).

Theorem 1.1 (Informal). There is a polynomial-time ran-
domized algorithm that takes a DAG G, two Bayes nets P
and Q) over G, and parameters €, as inputs and behaves
as follows. The algorithm makes probabilistic inference
oracle queries to a Bayes net over the same DAG G and
outputs a (1 + ¢)-relative approximation of drv (P, Q) with
probability at least 1 — 6.

It is known that probabilistic inference computation over
Bayes nets in general is a #P-hard problem and hence exact
drvy computation reduces to probabilistic inference over
Bayes nets (Cooper, 1990). However, a salient feature of
our reduction is that it preserves the structure of the Bayes
net. Note that exact drv computation is #P-complete even
for product distributions for which inference computation is
straightforward (Bhattacharyya et al., 2023).

A conceptual contribution of our work is the introduction of
a new notion of partial coupling between two probability
distributions, which is a relaxation of the classical notion
of coupling (Definition 3.2). Specifically, we illustrate that
while establishing a computationally efficient coupling for
distributions such as Bayesian networks may not be possible,

it is possible to define a computationally efficient partial
coupling. Remarkably, we show that a partial coupling is
adequate for approximating the total variation distance. The
technique of coupling, introduced by Doeblin in 1938 (Doe-
blin, 1938), has been fundamental in the realms of computer
science and statistics for over four decades, underpinning
some of the most seminal results (Lindvall, 2002; Levin
et al., 2006; Meyn & Tweedie, 2012). In a similar vein, we
believe the notion of partial coupling possesses the potential
to become an essential tool in the toolkit of these domains.

The aforementioned reduction from total variation distance
and probabilistic inference leads to efficient drv estima-
tion algorithms for any class of Bayes nets that admits
efficient probabilistic inference algorithms. In particular,
it leads to the first polynomial-time randomized approxi-
mation scheme for calculating the total variation distance
between two Bayes nets of treewidth O(logn), since the
well-known variable elimination algorithm can be used for
efficient probabilistic inference for such Bayes nets.

Theorem 1.2 (Informal). There is an FPRAS for estimat-
ing the TV distance between two Bayes nets of treewidth
O(logn) that are defined over the same DAG of n nodes.

Prior to our work, such approximation schemes were known
only for product distributions, which are Bayes nets over
a graph with no edges (Feng et al., 2023). In particular,
designing an FPRAS for estimating TV distance between
Bayes nets over trees (which are graphs with treewidth 1)
was an open question. Our result resolves this open question.
In fact, Theorem 1.2 shows that it is indeed possible to
obtain an FPRAS for a large class of Bayes nets, namely
Bayes nets of O(logn) treewidth.

Note that the setting of Theorem 1.2 (whereby the Bayes
net distributions considered are over the same DAG) is prac-
tically relevant where one learns parameters of a Bayes net
for a fixed structure from different batches and a natural
question is whether the two models are close to each other
or not. The TV distance-based approaches have played a sig-
nificant role in the testing and improvement of constrained
samplers (Golia et al., 2021).

Our next set of results focuses on the case when one of
the distributions is the uniform distribution. We first prove
that the exact computation of the TV distance between a
Bayes net distribution and the uniform distribution is #P-
complete.

Theorem 1.3. It is #P-complete to exactly compute the TV
distance between a Bayes net that has bounded in-degree
and the uniform distribution.

To complement this result, we show that there is an FPRAS
that estimates the TV distance between the uniform distri-
bution and any Bayes net distribution.
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Theorem 1.4 (Informal). There is an FPRAS for estimat-
ing the TV distance between a Bayes net and the uniform
distribution.

1.2. Related Work

Koller and Friedman (Koller & Friedman, 2009) provide a
comprehensive overview of probabilistic graphical models
(such as Bayes nets).

TV Distance Computation. Recently, Bhattacharyya et al.
(2023) initiated the study of the computational complexity
aspects of TV distance over graphical models. In that work,
they proved that exactly computing the TV distance between
product distributions is #P-complete, that it is NP-hard to
decide whether the TV distance between two Bayes nets of
in-degree 2 is equal to O or not, and also gave an FPTAS for
approximating the TV distance between an arbitrary product
distribution and any product distribution that has a constant
number of distinct marginals (note that this includes the
uniform distribution). In a subsequent work, Feng et al.
(2023) gave an FPRAS for approximating the TV distance
between two arbitrary product distributions. Later, Feng
et al. (2024) gave a deterministic approximation algorithm
(FPTAS) for the same task.

TV distance estimation was also studied previously from
a more complexity-theoretic and cryptographic viewpoint.
Sahai & Vadhan (2003) established in a seminal work that
additively approximating the TV distance between two dis-
tributions that are samplable by Boolean circuits is hard for
SZK (Statistical Zero Knowledge). Goldreich et al. (1999)
showed that the problem of deciding whether a distribu-
tion samplable by a Boolean circuit is close or far from the
uniform distribution is complete for the complexity class
NISZK (Non-Interactive Statistical Zero Knowledge).

Additive approximation of TV distance is much easier.
Canonne & Rubinfeld (2014) showed how to additively
estimate TV distance between distributions that can be effi-
ciently sampled and whose probability mass functions can
be efficiently evaluated. Clearly, Bayes nets satisfy both
conditions (where “efficient” means as usual polynomial
in the number of parameters). Bhattacharyya et al. (2020)
extended this idea to develop polynomial-time algorithms
for additively approximating the TV distance between two
bounded in-degree Bayes nets using a polynomial number
of samples from each.

Probabilistic Inference. There is a significant body of
work dedicated to exact probabilistic inference. As we men-
tioned earlier, some algorithmic paradigms that have been
developed for the task of probabilistic inference are mes-
sage passing (Pearl, 1988), variable elimination (Dechter,
1999), and junction-tree propagation (Lauritzen & Spiegel-

halter, 1988). Recently, Klinkenberg et al. (2023) presented
an exact Bayesian inference method for inferring posterior
distributions encoded by probabilistic programs. Zaiser
et al. (2023) present an exact Bayesian inference method
for discrete statistical models, by introducing a probabilis-
tic programming language (based on probability generat-
ing functions) that supports discrete and continuous sam-
pling, and conditioning on discrete events (among others).
Holtzen et al. (2020) develop a domain-specific probabilistic
programming language, called Dice, that exploits program
structure in order to factorize inference, enabling them to
perform exact inference on large probabilistic programs.
Saad et al. (2021) present the Sum-Product Probabilistic
Language (SPPL), a new probabilistic programming lan-
guage that automatically delivers exact solutions to a broad
range of probabilistic inference queries enabling them to
give exact algorithms for conditioning on and computing
probabilities of events.

With the advent of big data and the increasing complexity
of models, traditional exact inference methods may become
computationally infeasible. Approximate inference tech-
niques, such as variational inference and sampling methods
like Markov Chain Monte Carlo, provide efficient and scal-
able alternatives to tackle these challenges. Minka (2001)
introduces the expectation propagation algorithm for approx-
imate Bayesian inference. Hoffman et al. (2013) propose
a stochastic variational inference algorithm for large-scale
Bayesian inference. Murphy et al. (2013) investigate the
effectiveness of loopy belief propagation. Ranganath et al.
(2014) introduce black box variational inference, a flexible
and scalable approach for approximate Bayesian inference.
Rezende & Mohamed (2015) propose a variational infer-
ence method using normalizing flows, a class of flexible
and expressive transformations. Blei et al. (2017) provide a
comprehensive review of variational inference, a family of
methods for approximate Bayesian inference.

1.3. Organization

The rest of the paper is organized as follows. We provide
some background material in Section 2 and a technical
overview of our results in Section 3. We prove the main
results as follows: We show Theorem 1.1 in Section 4; The-
orem 1.2 in Section 4.3; Theorem 1.3 in Appendix B.1;
Theorem 1.4 in Appendix B.2. We conclude in Section 5.
Appendix A contains all of the proofs that are not presented
in the main body.

2. Preliminaries

We use [n] to denote the set {1,...,n} and log to denote
log,. Throughout the paper, we shall assume that all proba-
bilities are represented as rational numbers of the form a/b.
We denote the uniform distribution by U.
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The following concentration inequality will be useful in our
proofs.

Lemma 2.1 (Hoeffding’s inequality). Let X;,...,X,, be
independent random variables such that a; < X; < b; for
alll <i<n. ThenPr[|>" X, —E[>" | X;]| >t]is
at most 2exp(—2t2/ 31" | (b; — a;)?).

We shall use the following notion of an approximation algo-
rithm.

Definition 2.2 (FPRAS). A function f : {0,1}" — R
admits a fully polynomial-time randomized approximation
scheme (FPRAS) if there is a randomized algorithm A such
that for all n and all inputs z € {0,1}",& > 0,and § > 0,
A outputs a (1 + €)-relative approximation of f(z), i.e., a
value v that lies in the interval [f(z)/(1 +¢), (1 +¢) f(z)],
with probability 1 — 4. The running time of A is polynomial
inn,1/e,1/4.

2.1. Bayes Nets

For a directed acyclic graph (DAG) G and a node v in G,
let II(v) denote the set of parents of v.

Definition 2.3 (Bayes nets). A Bayes net is specified by
a directed acyclic graph (DAG) over a vertex set [n] and a
collection of probability distributions over symbols in [¢], as
follows. Each vertex ¢ is associated with a random variable
X; whose range is [¢]. Each node i of G has a Conditional
Probability Table (CPT) that describes the following: For
every x € [(] and every y € [(]*, where k is the size of
II(i), the CPT has the value of Pr[X; = z|Xp; = 9]
stored. Given such a Bayes net, its associated probability
distribution P is given by the following: For all z € [¢]™,
P(z) is equal to

n

:L[lf;)r[x

Here X is the joint distribution (X7, ..., X,,) and Tr1(s) 18
the projection of z to the indices in II(%).

i = x| Xy = 2ng) -

Note that P(z) can be computed in linear time by using the
CPTs of P to retrieve each Prp[X; = x| X = o]
We also use Pjry(;) (xl \l'n(i)) to denote this probability.

An important notion is that of the moralization of a Bayes
net.

Definition 2.4 (Moralization of Bayes nets). Let B be a
Bayes net over a DAG G. The moralization of B is the
undirected graph that is obtained from G as follows. For
every node u of G and any pair (v, w) of its parents TT(u)
if v and w are not connected by some edge in GG, then add
the edge (v, w). (Note that after this step the parents of
every node of G form a clique.) Finally, make all edges of
G undirected.

We shall require the following simple observation.

Lemma 2.5. Given a Bayes net over n nodes, its moraliza-
tion can be computed in time O(poly(n)).

2.2. Total Variation Distance

The following notion of distance is central in this work.

Definition 2.6 (Total variation distance). For probability
distributions P, ) over a finite sample space D, the total
variation distance of P and Q) is

drv (P, Q) = max(P(S5) — Q(S)).

SCD

Note that dpv (P, Q) = 33, cp |P(w) — Q(w)|. Equiva-

lently,
drv(P,Q) = Z max(0, P(w) — Q(w))
weD
=Y (P(w) — min(P(w), Q(w))).
weD

2.3. Probabilistic Inference

In this work, probabilistic inference is the following compu-
tational task: Given (a representation of) random variables
Xi,...,X, and (a representation of) sets S1,...,.S, such
that for all 4 the set S; is a subset of the range of X;, compute
PI‘[X1 €5,...,.X, € Sn}l

Let us now define probabilistic inference (oracle) queries.

Definition 2.7 (Probabilistic inference query over Bayes
nets). A probabilistic inference query takes a description
of a Bayes net distribution P over n nodes and alpha-
bet size ¢ and descriptions of sets Sy, ..., S,, where for
all 1 < ¢ < n, S; C [{, and returns the value of
Prp[X; € S4,..., X, € 5,] in one time step.

2.4. Treewidth and Tree Decompositions

We require the definition of treewidth.

Definition 2.8. A tree decomposition of an undirected graph
G = (V,E)isatree T with nodes X7, ..., X,,, where each
X is a subset of V, satisfying the following properties (the
term node is used to refer to a vertex of 7" to avoid confusion
with vertices of G): (a) The union of all sets X; equals V.
That is, each graph vertex is contained in at least one tree

'Note that a notion of probabilistic inference that has pre-
viously been considered (Kwisthout et al., 2010) is the fol-
lowing: Given random variables Xi,...,X,, a set I =
{#1,--+ ,ix} C [n], values z;,, ..., x;, that belong to the ranges
of Xi,,..., Xy, respectively, and an event £/, compute the prob-
ability Pr[(X;,,..., X;,) = (@i, . .., zi, ) | E]. However, algo-
rithms such as variable elimination for inference in this sense also
works for the notion we consider.
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node. (b) If X; and X, both contain a vertex v, then all
nodes X, of T in the (unique) path between X; and X
contain v as well. Equivalently, the tree nodes containing
vertex v form a connected subtree of T'. (c) For every edge
(v1, v2) in the graph, there is a subset X; that contains both
v1 and ve. That is, vertices are adjacent in the graph only
when the corresponding subtrees have a node in common.
The width of a tree decomposition is the size of its largest
set X; minus one. The treewidth tw(G) is the minimum
width among all possible tree decompositions of G.

We shall also extend the notion of treewidth to Bayes nets,
as follows.

Definition 2.9. The treewidth of a Bayes net is defined to
be equal to the treewidth of its moralization.

We require the following two theorems, Theorem 2.10 and
Theorem 2.11, respectively; Theorem 2.10 is about a tree
decomposition algorithm and Theorem 2.11 is about the
variable elimination algorithm.

Theorem 2.10 (Tree decomposition (Robertson & Seymour,
1984)). There is a O (w33wn2)-time algorithm that finds a
tree decomposition of width 4w + 1, if the treewidth of the
input graph is at most w.

We will make use of the variable elimination algorithm
to efficiently implement probabilistic inference queries for
bounded treewidth Bayes nets.

Theorem 2.11 (Variable elimination; following Zhang and
Poole (Zhang & Poole, 1994)). There is an algorithm, called
the variable elimination algorithm, for the following task:
Given a Bayes net B over variables X1, ..., X, € [{], sets
S1,...,Sn C [{], the moralization Mg of B, and a tree
decomposition T of width w of M g, compute the probabil-
ity Prp[X; € S1,..., X, € Sy]. The running time of this
algorithm is O(nd™).

3. Technical Overview

We present in this section some intuition regarding the tech-
nical aspects of our results.

3.1. Proof of Theorem 1.1

For the sake of simplicity of exposition, in this overview
we assume that both the Bayes net distributions P and @
are defined over a directed path of length n (over a finite
alphabet of size £). However, the ideas can be generalized
to arbitrary Bayes nets. Refer to Section 2 for definitions
and notation that we use here.

Our approach relies on the well-known importance sam-
pling technique. The high-level approach is to define an
estimator function f and a distribution 7 so that E[f] =
drv(P,Q)/Z where Z is a normalization constant.

We start with the following characterization of drv:
drv(P,Q) = >, 9" (w) where g*(w) is defined to be
P(w) — min(P(w), Q(w)). We define an auxiliary func-
tion g(w) which is an overestimate of g* (w). Define h(w, i)
as

h(w, i) = min( Py (w;|wi—1), Qsji—1 (wilwi—1))

and let h(w) = [[_, h(w,i). Finally, set g(w) =
P(w) — h(w). Comparing g(w) with ¢*(w), note that
min(P(w), Q(w) is the minimum of the products where
product is of the form [, P;j;_1(w;|w;_1) (similarly for
Q). Whereas h(w) is the product of the minimums. Thus, it
can be seen that g(w) > g*(w).

Recall that our goal is to estimate drv (P, Q) = >, g*(w).
To estimate this we appeal to the classic importance sam-
pling technique (for example, see (Chen & Shao, 1997)). De-
fine function f(w) = g;(%) and distribution 7(w) = %,
where Z = 3" g(w) is the normalizing constant. Observe
that

w9 (w) _dev(PQ)

Ef(w) = 2 1 V)
Now the algorithm to estimate dtv works as follows: Em-
pirically estimate E,[f(w)] by drawing samples from the
distribution 7 and multiply the empirical estimate by Z. We
appeal to the standard Chernoff bounds to obtain the guar-
antee on the quality of the approximation as well as the run
time.

This approach will work if the following conditions are sat-
isfied: (i) It is the case that f(w) = g;(gvlll)) lies between 0
and 1. This follows from the definition of g(w) and the
earlier discussion. (ii) The expectation E,,.[f(w)] is large
enough (inverse polynomial) so that an additive approxima-
tion will lead to a multiplicative approximation. (iii) Sam-
pling from the distribution 7 and computing Z = > g(w)
can be done efficiently.

The key insight that we bring in is that sampling from the
distribution 7 and computing Z reduces to inference queries
to a Bayes net distribution over the same directed graph as
that of P and (). Thus (iii) becomes efficient for all Bayes
net distributions for which inference queries are feasible. We
also show that 5 < By [f(w)] thus satisfying (ii). The
rest of this subsection is devoted to explaining how inference
queries can be used to compute Z. We start with the known
connection between drv and coupling between distributions
where the quantity min(P(w), Q(w)) naturally arises.

Definition 3.1. Let P and @) are two arbitrary distributions
on a common symbol set [¢] (where £ > 0). A coupling of P
and @ is a distribution on pairs (X, Y") such that X ~ P and
Y ~ Q. An optimal coupling of P and () is a distribution
on pairs (X,Y) such that (1) X ~ P, Y ~ @, and (2) for
any w € [{], Pr[X =Y = w] = min(P(w) , Q(w)).
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It is well known that for any coupling (X,Y") between P
and Q, drv(P, Q) < Pr[X # Y. Additionally, for an op-
timal coupling as defined above, Pr[X # Y] exactly equals
drv (P, Q). Note that,

Pr(X #Y] =) PrlX =w,X #Y]
:Z(Pr[sz]—PI‘[X:YZw])-

Thus the term Pr[X = w] — Pr[X = Y = w]| equals
P(w) — Pr[X =Y = w]. By the definition of optimal
coupling, Pr[X =Y = w] is precisely min(P(w), Q(w)).
Thus ¢* (w) := P(w) — min(P(w), Q(w)) equals Pr[X =
w A X # Y]. Thus g*(w) has an interpretation using
optimal coupling.

Since g*(w) can be expressed as the probability of an event
over the optimal coupling, it is natural to ask whether there
is a coupling £ such that Pr.-[X = w A X # Y] = g(w).
In a very recent work, Feng et al. (2023) showed that when
P and @ are product distributions, g(w) admits such a
characterization using couplings. They define £ as local
coupling between X and Y: A joint distribution £ on
(X,Y) = (Xy,...,X,,Y1,...,Y,) where each (X;,Y;)
is independently sampled from an optimal coupling of the
i-th marginals of P and Q).

Generalizing this approach to Bayes nets poses several ob-
stacles. As in the case of product distributions, suppose
we seek a coupling £ of P and () that also forms a Bayes
net over the directed path. In other words, we would like a
coupling £ generating the tuple (Xy,...,X,,Y1,...,Y,)
such that each (X;,Y;) is independent of (X;_o,Y;_2) con-
ditioned on (X;_1, Y;_1). However, there is an immediate
problem: Namely, X; and X;_» may be dependent given
X;_1 through the path X; s — Y;_; — X, and similarly
Y; and Y;_o may be dependent given Y;_; through the path
Y2 — X;_1 — Y. Hence, it may not be possible2 to en-
sure that (X1, ..., X,,) form a copy of P and (Y1,...,Y},)
form a copy of @, as is required for a coupling.

In light of obstacles faced by the coupling-based approach,
we introduce a new notion of partial couplings. The intro-
duction of this notion is a primary conceptual contribution
of our work.

Definition 3.2. A partial coupling of distributions P and )
is a distribution on pairs (X, Y") such that (i) X ~ P and (ii)
it is the case that Pr[X =Y = w] < min(P(w) , Q(w)).

With the above definition in hand, we will show that it is pos-
sible to construct a partial coupling £ of distributions P and
@ such that £ can be expressed as a Bayes net distribution
over a graph that has the same structure as P and (). We

2Note that this issue does not arise for product distributions as
there are no paths to speak of.

illustrate this for the case when P and () are Bayes net dis-
tributions over a directed path. We define a partial coupling
L that is local. The CPTs are defined as follows: For any
b,c1,c0 € [ﬂ, PI‘[XZ* =Y, = leZ',1 =c,Y; 1 = CQ]
is equal to min(P;);_y(ble1), Qiji—1(blc2)). We will ad-
just the rest of the entries of the CPT and ensure that
for all b,c1,co: Pr[X; = 0| X,-1 = 1,Yi—1 = ] =
P;j;—1(blc1). This ensures that X ~ P. It can be shown
that £ is a partial coupling.

With this, we can indeed connect the function g to the local
partial coupling distribution £. We will show that g(w) =
Prpo[X = wAX # Y]and Z = Prg[X # Y]. Note
that Prp[X #Y] =1 —Prg[X =Y. Let E; denote the
event that (X;,Y;) € {(1,1),(2,2),...(¢,¢)}. Note that
Pr.[X = Y]is Prz[E; N Ex N...N E,] which is an
inference query to the Bayes net distribution L.

To summarize: We have shown that the quantity Z can be
computed by making an inference query to the distribution
L which is expressible as a Bayes net over a straight line
graph. We can build on this idea to show that sampling from
the distribution 7 can also be done by making inference
calls to the distribution £. What remains is to show that
E.[f(w)] = drv(P,Q)/Z is large enough. We will estab-
lish that Z < 2n - dpy (P, Q). The proof of this inequality
is somewhat technical and crucially uses properties in the
definition of £ mentioned above.

3.2. Proofs of the Rest of the Results

We outline here the main proof ideas of the rest of our
results.

Proof of Theorem 1.2. The proof of Theorem 1.2 is
an application of Theorem 1.1. To make use of Theo-
rem 1.1, we establish that probabilistic inference (i.e., com-
puting Pr[X; € S1,...,X,, € S,]) can be efficiently im-
plemented for Bayes nets of constant alphabet size and
logarithmic treewidth (Lemma 4.8). It is known that a tree
decomposition of graphs that have logarithmic treewidth
can be computed in polynomial time (Robertson & Sey-
mour, 1984). The variable elimination algorithm of Zhang
& Poole (1994) shows that inference can be done in poly-
nomial time given a tree decomposition, provided that the
treewidth of the Bayes net is logarithmic in the dimension
of the distribution.

Proof of Theorem 1.3. Theorem 1.3 is proved by show-
ing a reduction from #SAT to computing the TV distance
between an appropriately defined Bayes net and the uniform
distribution. This is achieved by creating a Bayes net that
captures the circuit structure of a Boolean formula F' of
which we want to compute its number of satisfying assign-
ments. The CPTs of this Bayes net mimic the function of
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the logical gates (AND, OR, NOT) of F.

Proof of Theorem 1.4. Theorem 1.4 is proved by giving
an algorithm that exploits the following property of TV
distance. Let P be a Bayes net over n variables that has
maximum in-degree d and alphabet size ¢. In this case
drv (P, U) is equal to

% > [P(z) = U(z)| = Y max(0, P(z) — Ulx))

- (55 )
= E [max(0, P(2) " ~ 1)].

oy
This yields a natural estimator for drv (P, U), whereby we
draw samples x1, . .., Z,, ~ U and then compute and output

1 m
— 0,P(z;) 0™ —1).
m;max(, (z4) )

The crux of our analysis is to show that
max(0, P(z)¢® —1) is between 0 and 1 +
O(drv(P,U) £ 1n). This enables us to use a value of m
that is in O (poly(nf?,1/¢,log(1/8))), whereby ¢ is the
accuracy error and ¢ is the confidence error of the FPRAS.
Note that the running time is polynomial in the input length,
as any description of the Bayes net P has size at least
n-+ pa+1

4. From TV Distance to Probabilistic Inference

In this section, we prove Theorem 1.1 and Theorem 1.2.
In the following, let T'(G, £) be the running time of some
implementation of a probabilistic inference oracle for a
Bayes net over a DAG G that has alphabet size £. We will
first state the formal version of Theorem 1.1.

Theorem 1.1 (Formal). There is a polynomial-time random-
ized algorithm that takes a DAG G, two Bayes nets P and ()
over G (as CPTs) with alphabet size £, and parameters €, §
as inputs and behaves as follows. The algorithm constructs
a Bayes net distribution L over the same DAG G with al-
phabet size (2, makes probabilistic inference queries to L,
and outputs an (14 ¢€)-relative approximation of drv (P, Q)
with probability at least 1 — §. The running time of this
algorithm is T(G, EQ) -0 (n3€_2€ log (5—1) and the number
of its probabilistic inference queries is O(n35_2€ log 6‘1).

The rest of the section is devoted to proving Theorem 1.1 and
is organized as follows. We first introduce the ingredients
that are necessary for describing the algorithm (many of
these are defined in Section 3 for path Bayes nets). In

Section 4.1, we show how the algorithm can be implemented
using probabilistic inference queries. Finally, in Section 4.2
we establish its correctness. Due to space limitation, many
of the technical proofs are given in the Appendix.

Let P and ) be two Bayes net distributions defined over
a DAG G with n nodes and alphabet [¢]. Without loss of
generality, assume that the nodes are topologically ordered
as in the sequence 1,2,... n.

Let w be an element of the sample space, i.e., a n-symbol
string over [¢]. Given 1 < i < n, II(7) denotes the set of
parents of ¢ in G and let wyy(;) denote the projection w at
the parents of node ¢ in G. We first define a function A over
[£]™ x [n] as follows:

h(w, i) := min(P;ne) (wilwne)) , Qine) (wilwne))) -

Descriptions of f, Z, and w. The estimator function f is
defined as follows: f(w) := ¢g*(w)/g(w) where

9" (w) = P(w) — min(P(w), Q(w))
and

g(w) == P(w) — [ ] h(w,i)
i=1

for all w. It is straightforward to show that f is computable
in time O(n). We define Z := 3, (. g(w) to be a nor-
malization constant. Finally, the distribution 7 is specified
by the probability function 7(w) := g(w)/Z for all w.

Description of £. We now define a Bayes net distribution
L over the graph G which is used to make inference queries
by the algorithm. The distribution £ is over the alphabet
[(]? and is a joint distribution (X, Y") where X and Y take
value over [¢]™. We specify a CPT for (X, Y). For this, we
need to specify for every ¢ and b, z € [{] the probability
Pr[(X;,Y;) = (b, z)] conditioned on the values II(7) take.
We will first describe the probability where both X; and Y;

take the same value b. For every ¢y, ca € [{] @I

Pr((X;,Y;) = (b,b) | (Xn@s): Yi)) = (c1,¢2))
= min (P e (bler) » Qi) (ble2)) -

Define the remaining probabilities to ensure
that the marginal X is distributed accord-
ing to P. That is, for every z # b assign
Pr [(XZ,Yl) = (b, z) | (XH(Z-),YH@)) = (01702)] SO

that the following holds:

Z Pr[(X;,Y;) = (b,2) | (Xnw), Ynu) = (c1,c2)]
z:27#b

= Pijnigiy(blex) — min( Py (bler) , Qi (blez))

Description of the Algorithm. Now we are ready to de-
scribe the algorithm (see Algorithm 1).
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Algorithm 1 FPRAS for drv estimation using a probabilis-

tic inference oracle.

Require: Bayes nets P, Q) over DAG G with n nodes, pa-

rameters €, 6.

Ensure: The output Est is an (1 + ¢)-approximation of

drv (P, Q), with probability at least 1 — 4.

Construct the Bayes net distribution £ over G

Compute Z by making one inference query to L

if Z = 0 then
return 0

end if

m < Cn?c 2logd!

F<+0

for i < 1 tomdo
Sample w® ~ 7 by making inference queries to L
F + F+ f(w)

end for

: Est«+ Z-F/m

: return Est

(for some large C' > 0)

— =
S AN AP AR AR R e

[ —
w N

4.1. The Power of Probabilistic Inference

This subsection is devoted to showing that the sampling
from the distribution 7 and the computation of the normal-
ization constant Z can be done by making probabilistic infer-
ence queries. Recall that £ is the joint distribution (X, Y").
We start with the following crucial observation which states
that the marginal X (in £) is distributed according to the
distribution P.

Observation 4.1. For every b € [¢] and ¢y, c2 € [{]

= bl (Xt1i), Yisy) = (c1,¢2)]

[TL(3)]|

Pr[X; = Pjniy(ble) -

Therefore, X factorizes like P with its conditional probabil-
ities matching that of P and hence X ~ P. This realizes the
notion of a local partial coupling as was earlier discussed
in Section 3.1 and satisfies all three properties: (i) £ is a
Bayes net distribution over the same DAG G (that is used to
describe distributions P and @), (ii) X ~ P, and (iii) in the
joint distribution (X, Y"), the conditional probabilities are
equal to the minimum of the two conditional probabilities
associated to P and () as it is the case in standard couplings.

In Claim 4.2 we relate the normalization constant Z of the
distribution 7 to the marginals X and Y of the distribution
L. Moreover, we also relate the generalized normalization
constant

Zb1:~~~7bk = Z

for by, ..., by € [£], to the marginals X and Y of the distri-
bution £. We need this generalized normalization constant
to show that sampling from the distribution 7 (Claim 4.4)
can be efficiently done via probabilistic inference queries.

Claim 4.2. It is the case that Z = Pr[X # Y| and

bk_:Pr[X#Y,Xlzbl,...

.ob € [4

The following claim says that Z and Z;, .., can be easily
computed given access to a probabilistic inference oracle
for L.

Claim 4.3. It is the case that Z and Zy, .. p, (for any
bi,...,bx € [{]) can be computed efficiently by making
O(1) probabilistic inference queries to the Bayes net distri-
bution L.

Proof. We will use Claim 4.2. Note that Z = Pr[X # Y]
is equal to 1 — Pr[X = Y. Therefore it suffices to com-
pute Pr[X = Y] by using a probabilistic inference oracle.
This can done by observing that Pr[X = Y] is equal to
PI‘[(Xl,Yl)G;S’l,.. (Xn,Y)ES]fOI' S = - =

Sn ={(1, 1),...,(8,6)}.

Now note that the quantity Zp, .p, 1is equal
to Pr[X#Y,X;=0by,...,Xs=0] which, in
turn, is equal to Pr[X;=by,..., Xy =0b] -
Pr[ X =Y,X; =by,..., X} = bg). What is left

now, is to show how to compute these two probabil-
ities by using a probabilistic inference oracle. We

have that the value of Pr[X; =by,..., X = by
is Pr[(Xl,Yl) €S51,...,(Xn,Yy) €S, for
S; = {(b“ 1),. (bl,ﬁ)} forall 1 < ¢ < k and
Ske1=--=8, [K]

Similarly, we have that Pr[X =Y, X7 = by,..., X} = bg]

equals Pr[(Xy,Y1) € S1,...,(X,,Y,) € Sp] for S; =
{(b;,b;)} forall1 < ¢ < k,and Sjq1 = - = S5, =
{(1,1),...,(£,0)}. O

We can now show that probabilistic inference queries allow
for efficient sampling from 7.

Claim 4.4. Sampling from the distribution ™ can be im-
plemented in time O(nl) by making O(nl) probabilistic
inference queries.

4.2. Analysis of the Algorithm

Next, we establish some useful properties of the function f
and the distribution 7.

Claim 4.5. For any w, it is the case that 0 < f(w) < 1.

We will also relate the expected value of the function f with
respect to the distribution 7 to drv (P, Q).

Claim 4.6. It is the case that E.[f(w)] = drv(P,Q)/Z.

We need the following lemma that ensures the estimand is
large enough to facilitate Monte Carlo sampling.
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Lemma 4.7. It is the case that Z < 2n - drvy (P, Q).

We are now ready to prove the correctness of and provide
a running time bound for Algorithm 1. We have, from
Hoeffding’s inequality (Lemma 2.1), that

Pr[|Est — drv(P, Q)| > edrv (P, Q)]

= Pr Zf f(w)] > edrv (P, Q)
Z E[f(w)]| > %dTv(R Q)
2m252d%v P,Q)
-1)?
2m a2d2 (P,Q)
< 2€Xp< 4n2d2TVT}/) Q) )

=2
exo - M)

which is at most § whenever m = Q(n?c~%log §~!). The
second inequality follows from Lemma 4.7.

Thus the running time of Algorithm 1 is O(mn/), which
equals O (n®c~2¢log §!), since we draw m samples from
7, we can sample from 7 in time O(n¢), and evaluate f in
time O(n). Finally, the number of probabilistic inference
queries is at most O(n35’2€ log 6*1).

4.3. Application: Bayes Nets of Small Treewidth

We are now ready to prove Theorem 1.2.

Theorem 1.2 (Formal). There is an FPRAS for estimating
the TV distance between two Bayes nets of treewidth w =
O(logn) and alphabet size £ = O(1), which are defined
over the same DAG of n nodes. In particular, if € and 6 are
the accuracy and confidence errors of the FPRAS, respec-
tively, the FPRAS runs in time poly(n) - O (e 2logé~').

The proof of Theorem 1.2 will follow from the lemma below,
Lemma 4.8, and Theorem 1.1 for ¢ = O(1) and T(G, £?) =
O(poly(n)).

Lemma 4.8. Probabilistic inference is efficient for all Bayes
nets over n variables which have alphabet size { = O(1)
and treewidth O(logn).

5. Conclusion

We have established a general connection between proba-
bilistic inference and TV distance computation. In particu-
lar, we proved that TV distance estimation can be reduced
to probabilistic inference in a structure preserving manner.
This enables us to prove the existence of a novel FPRAS
for estimating the TV distance between Bayes nets of small
treewidth.

The notion of partial couplings introduced in this work
is of independent interest. It would be fruitful to explore
applications of this notion in other contexts.

We outline the following open problems: Can we prove sim-
ilar results for TV distance estimation between undirected
graphical models? Another problem of interest is to study
other notions of distance, such as Wasserstein metrics.
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A. Deferred Proofs

We present here all of the deferred proofs.

A.1. Proof of Lemma 2.5

Let B be a Bayes net over a DAG G that has n nodes. Let v be a node of G and let II(v) be the set of the parents of v. We
can construct a clique among the nodes of II(v) in time O(n?), since [II(v)| < n. Therefore we can construct all of the
required cliques in time n - O (nz) =0 (n‘3 ) Finally, we can make all directed edges of G undirected in time O (nz) This
yields a total running time of O (n?’)

A.2. Proof of Observation 4.1

‘We have
Pr[X; = b (Xu(), i) = (c1,¢2)] = Y Pr[(Xi,Y3) = (b,2) | (Xuuy, Vi) = (e1,¢2)]
z€[l]
=Pr [(Xia }/7,) = (ba b) | (XH(’L)7YH(2)) = (01702)]
+ ) Pr((X,,Y:) = (b,2) | (Xugs), Yiy)) = (1, ¢2)]
z:27#b
= min (P (bler) , Qi (blez)) + Pinigay (blex)
— min (P (bler) , Qi (blez))
= Py (bler)
as desired.
A.3. Proof of Claim 4.2

Since X ~ P and for that matter P(w) = Pr[X = w], we have

g(w) = P(w) — Hmin(Pi\H(i) (wilwn) , Qine) (wilwney))

i=1

=P(w) —Pr[X =Y =]

=PriX =w|-PriX =Y =]

=Pr[X = w] — Pr[Y = w|X = w] - Pr[X = w]
=Pr[X = w] (1 —PrlY =w|X = w])
=Pr(X = w|Pr[Y # w|X = v

=Pr[X =w,Y # v

Therefore, we have that Z = ) g(w) = Pr[X # Y] and

Ly, b, = Z g(w)
wi(wy,...,wi)=(b1,...,bk)

=Pr[X £V, X, =by,..., Xp = by].

A.4. Proof of Claim 4.4

We describe how to sample from 7 iteratively, symbol by symbol. Assume that we have sampled the first £ — 1 symbols,
that is, assume that we have already sampled w1, . .., wg—_; to be equal to by,...,bx_1 € [¢]. We describe now how to

12
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sample wy. For every possible value b € [¢] of wy, we compute the marginal

Ew;(wl...wk):(bl...bkﬂb) g(w) _ Zbl"'bk—lb
Z N A

pp = m(by,... bg_1,0) =

by two invocations of Claim 4.3. Then, we sample wy, based on the values { ub}ﬁzl.

Let S(n) be the number of steps to sample n symbols from 7. The above procedure gives the recurrence relation
S(n) = O(f) + S(n — 1) which yields S(n) = O(nf). Since we perform at most two probabilistic inference queries for
every coordinate and every symbol, the total number of probabilistic inference queries is at most S(n) = O(nf).

A.S. Proof of Claim 4.5

We separately show 0 < f(w) and f(w) < 1. To establish 0 < f(w), since the numerator is non-negative, it suffices to
show that g(w) = P(w) — [T\, h(w, i) > 0 or equivalently P(w) > []"_; h(w,1).

We have

n

P(w) = HPi|H(i) (wilwny) H n (P (wilwn ) » Qi) (wilwny) ) = Hh(w,i).

=1 i=1

For showing f(w) < 1, it suffices to show that P(w) — Q(w) < g(w) (since 0/g(w) = 0 < 1). Since g(w) =
P(w) =TT, h(w, i), it suffices to show that Q(w) > [, h(w,%). An argument identical to the above, where we showed
that P(w) > [];—, h(w, i), will show this.

A.6. Proof of Claim 4.6

We have that

max (0, P(w) — Q(w))

g(w)

10, Pw) = Q(w))
zw: g(w)

-y g(w) max(0, P(w) — Q(w))
1
Z

Blf(w)] - B|

N
=N
£

_ drv(P,Q)
=

A.7. Proof of Lemma 4.7

By Claim 4.2, it suffices to show that Pr[X # Y] < 2n - dpv (P, Q). We split the event (X # Y') into n disjoint events
{Ei}?zl. Without loss of generality, assume that 1,2, ..., n is the topological ordering of the vertices of G. Event E; is
defined as (/\; <, X; = Y;) A (X; # Y;). Note that the E;’s are disjoint. Thus Pr [X # Y] = }_, Pr[E;]. We have
that

Pr[E;] < Pr[(X; #Y;) A (Xnw) = Ynw)) ZPI‘ (X #Y5) A (Xug), Yi) = (0,0)]

where o is an assignment for I1(7) (note that the length of o is equal to the in-degree of 7). Henceforth, for notational brevity,
we shall omit the dependence on 4. Thus,

r[X #£Y] = ZPI‘
< ZZPr Xi #Yi A (Xngy, Yng)) = (0,0)]

13
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—ZZPI‘ i # Yi| (Xng), Ynw) = (0.0)] - Pr[(Xuw), Yng) = (0,0)] -

We require the following claim.

Claim A.1. For any o, it is the case that
Pr [X,» # Y (Xn(tiH(i)) = (o, )} =drv (P|H (lo), Qi\H(i)('|0)) .
Proof. We have that
PrX; # Y| (Xna), Yam) = (0,0)] =1 = Pr[Xi = Yi| (Xna), Yng) = (0,0)]

=1- Z Pr [(XZ’YZ) = (¢, 0) | (XH(i)7YH(i)> = (o, 0)}

cel]
=1-> min(Pyng(clo) , Qim(clo))
cel]
= Pynw(clo) = Y min(Pyne)(clo) , Qine(clo))
cell] celf]
= > (P (clo) = min(Pyng) (o) . Qg (clo))
cell]
= > max(0, Pyng)(clo) — Qi (clo))
cell]

= drv (Pyng) (o), Qine) (-lo)) -
By Claim A.1 we have that Pr[X # Y] is at most
ZZPF[(XH(@,YH@)) (0,0)] drv (P (1o) Qi) (-lo)
< ZZPI‘[XH@) =0z Z | Py (e]b) = Qipngiy (clo) |
< Z Z pn(i)(g)l Z | Puyragiy (clo) — Qs (clor)| (since X ~ P by Observation 4.1)

= ZZ Z Py (0) Piniy(clo) = Pugiy (o) Qi (clo) |

= Z Z Z | Pragiy (0) Pimc (clo) = Qrgiy (0) Qupmgiy (clor)
+QH z)( ) Qiniy(clo) — Priy(o) Qz’|n(i)(0|‘7)|
< ZZ Z Priy(0) Puyngsy (elor) — Qugiy () Qijriy (clo) |

I Z | Qi) () Qipngi) (elo) — Prgi (0) Qi (clo)|
1 1
- Z Z 9 Z |Pi,1'l(i) (¢,0) = Qi,H(i)(Q U)| + Z Z 5 |QH(i) (o) = PH(i)(U)| Z QiIH(i) (clo)
1
=522 [Pin@leo) - anz>00|+zz |Qui) (0) = Pugiy (0)]

= Z drv (Piney, Qingy) + Z drv (P, Q;)
S 2n - CZT\/(P7 Q)

14



Total Variation Distance Meets Probabilistic Inference

The last inequality follows because the inequalities

drv (P, Qing ) < drv(P,Q), drv(P;, Qi) < dpv(P,Q)

hold.

A.8. Proof of Lemma 4.8

Let B be a Bayes net over variables X1, ..., X,, that has alphabet size { = O(1) and treewidth w = O(logn). Let
S1,...,5, C [f] be sets. The probabilistic inference task that we want to perform is to compute the probability
PI‘B[Xl S Sl, e ,Xn c Sn]

First, we construct the moralization of B (see Definition 2.4), namely Mp, in time O(poly(n)) by invoking Lemma 2.5.
Then, we use Theorem 2.10 to compute a tree decomposition 7 of Mp of width at most 4w + 1 < bw in time
O(w33wn2). Finally, we use the variable elimination algorithm of Theorem 2.11 on B, Sy,...,S,, Mp, and T to
compute Pr[X; € Si,..., X, € S,] in time O (nf>").

The running time of this procedure is O(poly(n)) + O(w3**n?) + O (nf>") = O(poly(n)), whereby we have used the
facts that £ = O(1) and w = O(logn). This concludes the proof.

B. TV Distance Between a Bayes Net and the Uniform Distribution

Here, we prove Theorem 1.3 and Theorem 1.4.

B.1. #P-Completeness

The main result of this subsection is Theorem 1.3. Recall that a function f from {0, 1}* to non-negative integers is in the
class #P if there is a polynomial time non-deterministic Turing machine M so that for any , it is the case that f(z) is
equal to the number of accepting paths of M (z).

We now prove Theorem 1.3.
Proof of Theorem 1.3. In what follows, we separately show membership in #P and #P-hardness.

Membership in #P. Let P be a Bayes net distribution over the Boolean domain {0,1}". The goal is to design a
nondeterministic machine N so that the number of accepting paths of A/ (normalized by an appropriate quantity) equals
drv (P, U). We will assume that the probabilities specified in the CPTs of the Bayes net for P are fractions. Let M be equal
to 2" times the product of the denominators of all the probabilities in the CPTs. The non-deterministic machine A first
guesses an element ¢ € {0,1}" in the sample space of P, computes |P(i) — 1/2| by using the CPTs, then guesses an integer
0 < z < M, and finally accepts if and only if 1 < z < M|P(i) — 1/2|. (Note that M |P(i) — 1/2| = |M - P(i) — M /2| is
an integer.) It follows that

dTV(PaU):% Z

1€{0,1}"

L1 number of accepting paths of A/
P(i) -

2M

since the number of accepting paths of N is equal to 7, .o,y (M[P(i) —1/2]) which is equal to
MZiG{O,l}"’ |P(2) — 1/2|, or 2MdTv(P, Q)

#P-Hardness. For the #P-hardness part, the proof gives a Turing reduction from the problem of counting the satisfying
assignments of a CNF formula (which is #P-hard to compute) to computing the total variation distance between a Bayes
net distribution and the uniform distribution. In what follows, by a graph of a formula we mean the DAG that captures the
circuit structure of F', whereby the nodes are either AND, OR, NOT, or variable gates, and the edges correspond to wires
connecting the gates.

Let F' be a CNF formula viewed as a Boolean circuit. Assume F' has n input variables z1,...,z, and m gates ' =
{y1,..-,Ym}, where T is topologically sorted with y,,, being the output gate. We will define a Bayes net distribution on
some DAG G which, intuitively, is the graph of F.

15
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The vertex set of G is split into two sets A’ and )/, and a node Z. The set X' = {X,;}?:1 contains n nodes with node X;
corresponding to variable z; and the set Y = {Y;}." | contains m nodes with each node Y; corresponding to gate y;. So
totally there are n + m + 1 nodes. There is a directed edge from node V; to node V if the gate/variable corresponding to V;
is an input to Vj.

The distribution P on G is given by a CPT defined as follows. Each X is a uniformly random bit. For each Y;, its CPT is
deterministic: For each of the setting of the parents Y}, Y), namely y;, y, the variable Y; takes the value of the gate y; for
that setting of its inputs ¥, y. Finally, let Z be the value of Y;,, OR-ed with a random bit.

Note that the formula F' computes a Boolean function on the input variables. Let f : {0,1}" — {0, 1} be this function. We
extend f to {0,1}™ (i.e., f: {0,1}" — {0,1}"™) to also include the values of the intermediate gates.

With this notation in mind, for any binary string XY Z of length n 4+ m + 1 it is the case that P has a probability 0 if
Y # f(X).Let A:={z | F(x) =1} and R := {z | F(z) = 0}.

To finish the proof, we will write the number of satisfying assignments of F', namely |A|, as a polynomial-time computable
function of drv (P, U): We have

2. dry(PU)= Y [P-Ul= > |P-U+ > |P-T
XY, Z X,Y,Z XY, Z
Y#f(X) Y=f(X)

&) (2

where we have abused the notation P, U to denote the probabilities P(X,Y, Z) ,U(X,Y, Z). We will calculate (1) and (2)
separately. For (1) we have:

1 gntl(gm _ 1) 1
Z |P-U| = Z 0- ontm+1 |~ ontm+l 1- om”
X.Y.Z X.Y.Z
Y#£(X) Y#f(X)

For (2), we have

op-uU= > [P-U+ Y [P-T

XY, Z X, f(X),Z X, f(X),Z
Y=f(X) XeA XeR

(3) (4)

and now we calculate the terms (3) and (4) separately. For (3), we have:

o op-ul= > |P-Ul+ Y |P-T

X, f(X),Z X,f(X),0 X, f(X),1
XeA XeA XeA
1 1 1
= Z 0-— ontm+1 + Z on  on+m+l
X, f(X),0 X,f(X),1
XeA XeA
_ 14 Al (27 1)
- 2n+m+1 2n+m+1
_ 14
on

and for (4) we have

oop-ul= > [P-U+ > |P-T|

X, f(X),Z X, f(X),0 X, f(X).1
XER XeER XEeR
1 1 1 1
= Z 2n+1 - 2n+m+1 + Z 2n+1 - 2n+m+1
X, f(X),0 X, f(X),1
X€ER XeR
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_R[-(2™-1)-2
- 2n+m+1

Thus

2-dypv(P,0) = (1) +(2)
=1 +B)+)
L 4] IR (27 —1)-2

i e el M )

1 A
= 2 <1 - ﬁ + 2m+n+1)

since [A| + |R| = 2". For that matter, drv (P, U) = gty + (1 — 55) or

1
|A‘ — 2n+m+1 (dTV(P7 [U) _ (1 _ 27n>> )

That concludes the proof. O

B.2. Estimation in Randomized Polynomial Time

We prove Theorem 1.4.

Theorem 1.4 (Formal). There is an FPRAS for estimating the TV distance between a Bayes net P and the uniform
distribution. Let n be the number of nodes of P, let { be the size of its alphabet, and let d be its maximum in-degree. Then
the running time of this FPRAS is O(n?’éz‘”?z—:*z log d ’1) whereby ¢ is the accuracy error and § is the confidence error of
the FPRAS.

Remark B.1. Note that the running time of the FPRAS of Theorem 1.4 is polynomial in the input length, as the description
of the Bayes net P in terms of the CPTs has size at least n + 41

We shall now prove Theorem 1.4. We require the following lemma (which we will prove below).

Lemma B.2. For all z, it is the case that
1 — O(drv(P,U) ™ n) < P(z) ™ < 1+ O(drv(P,U) (7 n)
whenever drvy (P,U) < 1ot

The proof of Theorem 1.4 now resumes as follows. First, let us assume that drv (P, U) < 16@%“ so that Lemma B.2 holds.
We have that dpv (P, U) is equal to

5 S IP@) ~ UG)| = 3 max(0, P(z) ~ UGx)
— N U max [ 0, &)
=2 V@) (o5 1)

B (0555 1))
= E [max(0, P(2) " — 1)].

T~

This yields a natural estimator for drv (P, U), namely Est, as follows:

1. Sample 21, ..., x,, ~ U for some value of m that we will fix later;
2. compute max (0, P(z;) (" — 1) forall 1 <14 < m;

3. output (1/m) >"7" , max(0, P(x;) £™ — 1).

17
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We will now prove the correctness and upper bound the running time of this procedure. We have from Hoeffding’s inequality
(Lemma 2.1) and Lemma B.2 that

PI’HESt — dTv(P, U)| > EdTv(P, U)]

1 m
=Pr — ; max (0, P(z;) " — 1) — x]NE)U[max(O, P(x){™ —1)]| > edry(P,U)
=Pr||> max(0, P(x;) " — 1) —m E_[max(0, P(x) (" — 1)]| > medyy (P, U)
i=1 o
2 2.2 32 P
<2exp| —— e Iyl ,U)d+1 2
> izt (0= O(drv (P, U) t+1n))
2m?e2d%, (P, U)
= 2exp <_m 0(d%,(P,U) €2d+2n2)>
TV

me?
= 2exp T O(RdvR2) )0

which is at most § whenever m = Q(n?¢?4t2=2]og 5 1).

The running time of this procedure is O(mn) = O (n3¢?>¥+2c=2log §—!), since we draw m samples and P can be evaluated
on any sample in time O(n).

If dry (P, U) > 157, then it suffices to additively approximate drv (P, U) up to error £/ (16¢**1). This can be done by
Monte Carlo sampling using m = Q(¢2¢*2¢=2log 6~ ') samples and O(mn) = O (nl?***2c~2log 5 ') time.

‘We now prove Lemma B.2.

Proof of Lemma B.2. Let us denote the maximum in-degree of P by d. Let X be an arbitrary node with its parents as
D. ST, &)

We have that v := dpy (P, U) is at least
dTV((XOa R Xd) ) (Y07 s 7Yd))

_ %Z...Zmr[(xo,...,xd) = (v0, ..., va)] — Pr[(Yo,...,Ya) = (vo, ..., vq)]]

1 1
= 522 Pr[Xo = vo|X1 = v1,...,Xq = vg| Pr[X1 = vy,..., Xq = vgq] — T
Vo Vd
or
1 1
522 Pr[Xo = v| X1 = v1,..., Xqg = vq] Pr[X, :U17~-~;Xdzvd]_m =7
vo Va
or
1
‘PT[XO =vo|X1 =v1,..., Xa = v Pr[Xy = vy,..., Xg = v4] — s < 29, (1)
for any vy, . .., vq. We observe the following.
Claim B.3. We have that 1/¢? — v < Pr[X; = vy,..., Xqg =vg] < 1/0¢ + 7.
Proof. Since dpv(P,U) = v and Pr[Y; = vy,..., Yy = vg] = 1/¢%, the claim is immediate. O

By Equation (1) and Claim B.3 we have the following.
Corollary B4. For~y < 1/ (2¢%) we have that

|Pr[Xo = vo| X1 = v1,..., Xq = va] — 1/¢] < 844
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Proof. By Equation (1) we have

— 2y < Pr[Xog=v9|X1 =v1,...,Xg =v4) Pr[X; =v1,..., Xg =v4] < + 2y

(d+1 pa+1

or 1
7@ — 27
PI'[Xl = Ul,...,Xd = Ud}

or, by making use of Claim B.3,

ed+1 + 2’7

SPr[X0:U0|X1:U17"'3Xd:vd] PI'[Xl =y Xd:Ud]

1 _9 149
MT*WSPI‘[XOZ’U()|X1:Ul,...,Xd:Ud]Szdﬁli’y
@t [z
or 1 d 1 d
1 _opdy 7+ 20%
L <Pr[Xp=uw|Xi=v1,..., Xg=vg] < Et——
1+£d’y = I'[ 0 ’UO‘ 1 U1, s d Ud]_ 1_£d’y
‘We now have
1 d
5+ 20
Pr[X():UO‘Xl:'U17...,Xd:'l]d]Sel_igd’}:y

IN

(2 + 2€d7> (14 2¢%)

1
=5+ 2001y 4 200 4 407042
1
< g 20y + 200y 4 4y
1
Z +8€d’y,
since 1/ (1 - 1’) <14 2xforxz < 1/2 (here x = [d»y < 1/2)’ and
1 _ 2€d,y
= — _ [
Pr[X, = v|X1 = v1,...,Xq = vq] > Senr

> (2 - 25%) (1—tiy)

_ Ed—17_2£d7+2£2d72

—_

v

— {4~y — 20y

vV
| »—*N\»—lm

— 8y1d,
since 1/ (1 +x) > 1 —xforx < 1/2 (here v = ¢4y < 1/2). O
The result now follows from the observation that
(1/¢— 87€d HPr = ;| Xn(x,) = znxy) < (1/0+ 87€d)n
or
(1 =8y )" < P(z) €" < (1+ 8ytt)"

or
1 — 16740 < P(2) " < 1+ 167441,
whereby we used the facts that (1 — a)* > (1 — 2ak) and (1 + a)* < (1 + 2ak) whenever o < 1/2 and k > 0, and the
fact that v < 1/ (16¢471) or 8y¢4+1 < 1/2.
Finally, we have
1 — 16d7y (P, U) ¢4 0 < P(2) 0" < 1+ 16dpy (P, U) £ n,
as desired. O
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