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Twisted derived equivalences and isogenies
between K3 surfaces in positive characteristic

Daniel Bragg and Ziquan Yang

We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization
of K3 surfaces isogenous to a given K3 surface X in terms of certain integral sublattices of the second
rational £-adic and crystalline cohomology groups of X. This is a positive characteristic analog of a result
of Huybrechts (Comment. Math. Helv. 94:3 (2019), 445-458), and extends results of Yang (Int. Math.
Res. Not. 2022:6 (2022), 4407-4450). We give applications to the reduction types of K3 surfaces and to
the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai
lattices in positive characteristic, which may be of independent interest. We also prove some results on
lifting twisted Fourier—Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson
(Ann. Sci. Ec. Norm. Supér. (4) 48:5 (2015), 1001-1033).
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1. Introduction

The purpose of this paper is to study twisted Fourier—Mukai partners of K3 surfaces in positive char-
acteristics and to develop an isogeny theory for these surfaces which is analogous to that of abelian
varieties.

Let k be an algebraically closed field and p be a prime number. When char k = p, we simply write W
for the ring of Witt vectors W (k). Let Z? denote the prime-to-p part of Z. Fora variety Y over k, we
set H*(Y) := HX (Y, Z) if chark = 0, and H*(Y) := H%,(Y, ZP) x H%, (Y/ W) if chark = p, and write
H*(Y)g :=H"(Y)®z Q.
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Definition 1.1 (cf. [Yang 2022, Definition 1.1]). Let X and X’ be K3 surfaces over k. An isogeny
f : X ~ X' is a correspondence, i.e., a Q-linear combination of algebraic cycles on X x X', such that
the induced action H?(X") 0— H?(X) o is an isomorphism which preserves the Poincaré pairing. Two
isogenies are deemed equivalent if they induce the same map H?(X") 0 —> H?(X) 0-

Our main results concern the existence and uniqueness of isogenies with prescribed cohomological
action. We begin with the former. A natural source for isogenies between K3 surfaces is provided
by twisted Fourier—Mukai equivalences: For a K3 surface X and Brauer class o € Br(X), we denote
by D’(X, &) the bounded derived category of a-twisted sheaves. Given another K3 surface X’ and
Brauer class «', an equivalence Db (X, o) = DY (X', o ) induces, up to some choices, an isogeny
f X ~» X'. We call isogenies which arise this way primitive derived isogenies, and compositions of
such isogenies derived isogenies. The precise definitions are given in Section 4. There we also give a
motivic reformulation of the above definition, which will be used for the rest of the paper.

To state our theorems, we denote the K3 lattice U®* @ E §92 by A and recall Ogus’s notion of K3 crystals
[1979, Definition 3.1]. Here U denotes the standard hyperbolic plane and Eg denotes the unique unimod-
ular even negative definite lattice of rank 8. Our first theorem is an existence result on derived isogenies:

Theorem 1.2. Assume chark = p > 5. Let X be a K3 surface over k. Endow A @ W with a K3 crystal
structure and denote it by H, and let H? denote A ® Zr.

Leti: HP x Hy, — H?(X) o be an isometric embedding which respects the Frobenius actions on H),
and ngiS(X/ W)[1/p). There exists a derived isogeny f : X ~~ X' to another K3 surface X' such that
F*H?2(X')) =im(0) if and only if « sends the slope < 1 part of H p isomorphically onto that of ngis(X /W).

We refer the reader to Remark 6.10 for the reason to restrict to p > 5. The above result is inspired by a
theorem of Huybrechts [2019, Theorem 0.1], which can be stated as follows in our terminology:

Theorem 1.3 (Huybrechts). Let X and X' be two K3 surfaces over C. Every isomorphism of Hodge
structures H*(X', Q) = H?(X, Q) which preserves the Poincaré pairings is induced by a derived
isogeny f: X ~ X'

This refines an earlier theorem of Buskin [2019, Theorem 1.1], which affirms a conjecture of Shafarevich.
Using the global Torelli theorem and surjectivity of the period map, one checks that Huybrechts’ theorem
is equivalent to an existence theorem for isogenies: for every K3 surface X over C and every isometric
embedding ¢ : A < H?(X, Q), there exists another K3 surface X’ over C and a derived isogeny f : X ~ X’
such that f *(H2(X', Z)) = im() (see Section 6D). Note that this statement does not involve Hodge
structures. Our Theorem 1.2 is a positive characteristic analog for this version of Huybrechts’ theorem.

Huybrechts’ refinement shows in particular that every isogeny between K3 surfaces over C is equivalent
to a derived isogeny. In contrast, the “only if” part of Theorem 1.2 implies that the cohomological actions
of derived isogenies in characteristic p obey a certain nontrivial constraint at p. In particular, not every
isogeny is equivalent to a derived isogeny. Given this, it is of interest to characterize also the possible
cohomological actions of all (not necessarily derived) isogenies. The following result shows that, under
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some technical assumptions, the “if” part of Theorem 1.2 can be removed for k = F, » if one is willing to
consider all isogenies:

Theorem 1.4. Let X, H,, H? and  be as in Theorem 1.2. If k = Fp and
(a) Pic(X) has rank > 12 or contains a standard hyperbolic plane, or
(b) Pic(X) contains an ample line bundle L of degree L> < p — 4,
then there exists another K3 surface X' over k and an isogeny f : X ~» X' such that f*(H*(X')) = im(1).

This is a strengthening of [ Yang 2022, Theorem 1.4]. We mention that a byproduct in the course of
proving the above is a generalization (Theorem 6.18) of Taelman’s characterization [2020, Theorem C]
of the canonical liftings of ordinary K3 surfaces. Nygaard and Ogus [1985] constructed, for every
nonsupersingular K3 surface X, a “section” to the natural morphism Def(X) — Def(ﬁrx) from the
deformation space of X to that of its formal Brauer group, such that a lifting of Bry induces a lifting of X.
We call liftings of X which arise this way “Nygaard—Ogus liftings”. When X is ordinary, a Nygaard—
Ogus lifting is the same as a canonical lifting. Theorem 6.18 gives an integral p-adic Hodge-theoretic
characterization of Nygaard—Ogus liftings. See Section 6E for details.

We now describe our uniqueness results. We recall some terminology from [Yang 2022, §6]: an isogeny
f X ~ X' between K3 surfaces is said to be polarizable if the induced map Pic(X") g = Pic(X) g sends
an ample class to another ample class, and Z-integral if the induced isomorphism H>(X") 0 — H?(X) 0
restricts to an isomorphism H2(X') => H2*(X). We prove the following Torelli theorem for derived
isogenies:

Theorem 1.5. Assume chark > 5. Let X and X' be K3 surfaces over k. A derived isogeny [ : X ~ X' is
equivalent to the graph of an isomorphism X' = X, if and only if f is polarizable and Z-integral.

Finally, we remark that Li and Zou [2021] considered derived isogenies and Torelli type theorems for
abelian surfaces.

1A. Applications to good reductions of K3 surfaces. We apply our results to study the good reduction
conjecture for K3 surfaces:

Conjecture 1.6. Let k be an algebraically closed field of characteristic p > 0 and let F be a finite
extension of W[1/p]. Let X be a K3 surface over F such that Hét(X 7> @Q¢) is unramified for some
prime £ # p. Then, X r has potentially good reduction.

This conjecture is a K3 analog of the Néron—-Ogg—Shafarevich criterion for abelian varieties. It admits
many variants (e.g., ones that concern semistable reductions) and is verified in cases when X r admits a
polarization of low degree (see [Matsumoto 2015] and [Liedtke and Matsumoto 2018]). We prove the
following:

Theorem 1.7. Let X be as in Conjecture 1.6. Assume p > 2 and X admits a line bundle of degree
prime to p. Then the Galp-representation Hegt(X 7> Q) is potentially crystalline. If p > 5 (resp. p > 2)
and Hegt(X 7> @p) has potentially good ordinary or (resp. supersingular) reduction, then so does Xr.
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Roughly speaking, the theorem is saying that if the cohomology of X ¢ predicts that X should have
potential ordinary or supersingular reduction, then it does. We derive this as a consequence of a more
general result (Theorem 8.10), which essentially reduces Conjecture 1.6 to the Hecke orbit conjecture (see
Conjecture 8.2), which is a purely Shimura—theoretic statement. In particular, we prove the following.

Theorem 1.8. Let X be an in Conjecture 1.6. Suppose that p > 2 and that X g admits a line bundle of
degree prime to p. Assume the Hecke orbit conjecture (Conjecture 8.2) holds for all i. Then, X has
potentially good reduction.

Our unconditional Theorem 1.7, in the ordinary case, is then a consequence of recent work of Maulik,
Shankar, and Tang [Maulik et al. 2022, Theorem 1.4] proving the Hecke orbit conjecture in certain
special cases. The supersingular case will be treated by a slightly different argument. Moreover, it seems
very likely that a slight generalization of the conjecture can remove the condition on the existence of
a prime-to-p line bundle as well, and hence completely affirms Conjecture 1.6.

We remark that nowhere in the proofs of the above results do we directly analyze a degeneration of K3
surfaces, unlike in [Matsumoto 2015] and [Liedtke and Matsumoto 2018]. In particular, we avoid the use
of any techniques from the minimal model program. As far as the authors are aware, our method of proving
good reduction results by marrying moduli theory of sheaves with density arguments is new in the literature.

After the paper was accepted for publication, Marco D’ Addezio and Pol van Hoften proved the Hecke
orbit conjecture for Shimura varieties of Hodge type and in particular proved Conjecture 8.2 under a very
minor assumption on p [D’Addezio and van Hoften 2022, Section 7.5].

1B. Ideas of proof. (1) The “only if” part of Theorem 1.2 follows from the general theory of twisted
derived equivalences in positive characteristics. The idea for the “if” part is to construct the desired X’
together with the isogeny f : X ~» X’ by iteratively taking moduli spaces of twisted sheaves on X.
This approach is inspired by that of [Huybrechts 2019, Theorem 1.1]. A key technical tool is the
theory of B-fields in £-adic and crystalline cohomology, described in Section 2. This allows us to relate
classes in H>(X )¢ to the Brauer group, and provides a replacement for the Hodge-theoretic B-fields
in Huybrechts’ proof, although there are some additional complications at p. There are some further
technical difficulties caused by the fact that in positive characteristic the cohomology H?(X) ¢ can only
take on adelic coefficients (i.e., A‘jf- x W[1/p]) instead of Q-coefficients. For instance, the Mukai vector
which one must specify in order to form a moduli of sheaves is not an adelic object. That is, unlike Brauer
classes, one cannot specify a Mukai vector by prescribing its local factors in H>(X) 0. We solve these
problems by using local-global type results on quadratic forms (e.g., the strong approximation theorem),
and the theory of quadratic forms over local rings.

(2) Theorem 1.4 is obtained by the realizing X’ as the reduction of a suitable K3 surface in characteristic
zero. This strategy is a simultaneous simplification and strengthening of that of [Yang 2022], with
the additional input of Theorem 1.2. The characterization of Nygaard—-Ogus liftings (Theorem 6.18)
is obtained by applying recent advances on integral p-adic Hodge theory from [Bhatt et al. 2018] and
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[Cais and Liu 2019] to study deformations of K3 crystals. These techniques for handling crystalline
cohomology were unnecessary in Taelman’s case [2020], as the deformation of the formal Brauer group
of an ordinary K3 is rigid, which is not true for a general finite-height K3. We remark that here the
restriction p > 5 is mainly due to our usage of the deformation theory of K3 crystals.

(3) Theorem 1.5 is a twisted generalization of the derived Torelli theorem of Lieblich and Olsson [2015,
Theorem 6.1]. Just as in loc. cit., we prove this result by using a lifting argument to reduce to the global
Torelli theorem over C. The main difficulty which arises in our generalization is that instead of considering
isogenies which arise directly from a (twisted or untwisted) derived equivalence, we are allowing any
finite compositions of such. The derived equivalences involved may not be simultaneously liftable to
characteristic zero. To overcome this difficulty, we combine the lifting results on derived equivalences
with the Kuga—Satake method. This helps us reduce composing isogenies of K3’s to composing isogenies
of abelian varieties, which is much better understood. There is a technical problem which arises from
the usage of Kuga—Satake. Namely, we need to put the relevant K3 surfaces into the same moduli space.
However, the K3 surfaces themselves may not have a quasipolarization of a common degree. To overcome
this problem, we pass from K3 surfaces to their Hilbert squares, which are treated in [Yang 2023]. The
restriction to p > 5 is imposed because in loc. cit. the second author only treated K3/"!-type varieties
when p > n + 1 for certain technical reasons.

(4) For Theorem 1.7, we first show that the derived prime-to-p isogeny classes of K3’s match up with
the notion of prime-to-p Hecke orbit on the period domains of Kuga—Satake morphisms, which are some
orthogonal Shimura varieties. It follows from some intermediate steps in the proof of Theorem 1.2 that
the property of satisfying Conjecture 1.6 is invariant in a prime-to-p derived isogeny class. On the other
hand, any X ¢ which satisfies the hypothesis of Theorem 1.7 produces a mod p point x (X ) on the period
domain, and the set %4 := {x(XF) : XF violates Conjecture 1.6} is closed.

If we combine the above observations with the Hecke orbit (HO) conjecture (see Conjecture 8.2), we
see that if 4,4 intersects any of the height stratum of the period domains, then it must contain the entirety
of that stratum, which is false by a deformation argument. Hence the HO conjecture forces .%,,q to be
empty. The HO conjecture is now known for the ordinary locus by the recent work of Maulik, Shankar,
and Tang [Maulik et al. 2022] and we will verify it in the superspecial locus for cases relevant to us
(Theorem 8.6). This gives Theorem 1.7.

1C. Plan of paper. In Section 2, we develop the formalism of B-fields and twisted Mukai lattices in
positive characteristic. Section 3 concerns the construction of twisted Chern characters, the twisted
Néron—Severi lattice, and the action of a twisted derived equivalence on cohomology. In Section 4 we
discuss rational Chow motives and isogenies. In Section 5 we prove some lifting results for twisted derived
isogenies. In Section 6, we first prove Theorem 1.2. We then revisit Nygaard—Ogus theory for the point
of view of integral p-adic Hodge theory and prove Theorem 1.4. In Section 7, we review the basics of
Hilbert squares and the Kuga—Satake period morphism, and then prove Theorem 1.5. Finally, in Section 8,
we explain the relationship between our isogeny theory and Hecke orbits, and prove Theorem 1.7.
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1D. Notation.

» Let p denote a prime. The letter k denotes a perfect base field of characteristic either O or p and
¢ denotes a prime not equal to char k. When chark = p, we write W for W (k) and K for W[1/p].

e If Z is a scheme, we write H (Z, wy) for the flat (fppf) cohomology of the sheaf of n-th roots of
unity on Z. If n is coprime to the characteristics of all residue fields of Z, this is equal to the étale
cohomology of w,,.

» We normalize our Chern characters so that the mod m Chern character of a line bundle L is equal
to the image of the class of L under the boundary map HY(zZ, G,,) - H*(Z, u,y) of the Kummer
sequence.

» Suppose k is a perfect field of characteristic p and S is a k-scheme. If f: X — S is a scheme, we
denote by H’ . (X) the sheaf on Cris(S/W) given by R friss Ox,;w when § is understood.

cris
o For any integral domain R, and R-modules M and N, an isomorphism f: Mg —> N is said to be
R-integral if f(M)=N.
« In this paper we only make use of singular, de Rham, étale, flat, and crystalline cohomology. We
may omit the subscripts cris, fl, or dR when the choice of the relevant Grothendieck topology is
clear from the coefficients.

e For a smooth proper variety Y over k, we let H/(Y) denote either Hét(Y , 2) if chark = 0 or
Hét(Y, ZP) x H!. (Y/W) if chark = p.

» Let R be a commutative ring. A quadratic lattice M over R is a free R-module of finite rank equipped
with a bilinear symmetric pairing M x M — R. The pairing is said to be nondegenerate (resp.

unimodular or perfect) if the induced map M — M" is an injection (resp. an isomorphism).

2. B-fields and the twisted Mukai lattice in positive characteristic

Let X be a K3 surface over the complex numbers. Associated to X is the Mukai lattice ﬁ(X , Z), which
is the direct sum of the singular cohomology groups of X equipped with a certain pairing and Hodge
structure. Consider a class « € Br(X). Huybrechts and Stellari [2005, Remark 1.3] generalized Mukai’s
construction to the twisted K3 surface (X, o) by defining the twisted Mukai lattice ﬁ(X ,B,Z). This
construction modifies the Hodge structure on the Mukai lattice in a certain way using an auxiliary choice
of a B-field lift of a, which is a class B € H*(X, @) whose image in Br(X) under the exponential map is
equal to «.

Suppose now that X is a K3 surface defined over an algebraically closed field of characteristic p > 0.
After [Lieblich and Olsson 2015], we may consider the £-adic and crystalline realizations of the Mukai
motive of X. These are respectively a Z;-lattice I~{(X , Z;) and a W-lattice ﬁ(X /W), both of rank 24. In
the crystalline setting, ﬁ(X / W) is equipped with a Frobenius action, which makes ﬁ(X /W) into a K3
crystal in the sense of Ogus [1979, Definition 3.1]. That this construction makes sense integrally is first
observed in [Bragg and Lieblich 2018].
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Consider a Brauer class o € Br(X). We wish to have an analog of Huybrechts and Stellari’s construction
of the twisted Mukai lattice in both the £-adic and crystalline settings. The main task is to find the
appropriate analog of a B-field lift of a Brauer class in £-adic or crystalline cohomology. The £-adic
case is considered in [Lieblich et al. 2014] (we remark that the authors also deal with some additional
complications coming from working over a field that is not algebraically closed, which we ignore here).
The crystalline case is considered in [Bragg 2021, §3] and [Bragg and Lieblich 2018, §3.4], with the
restriction that the Brauer class « is killed by p (rather than a power of p).

In this section we make two contributions. First, we complete the crystalline realization by defining
crystalline B-field lifts of classes killed by an arbitrary power of p. We then treat the mixed case,
considering all primes simultaneously, and define mixed B-field lifts of Brauer classes whose order is
divisible by more than one prime. To assist the reader in connecting these constructions in the Hodge,
£-adic, and crystalline settings, we have included a brief summary of the Hodge and £-adic realizations. We
have tried to present a perspective which emphasizes the unifying features present in the different settings.

2A. Hodge realization. Let X be a K3 surface over the complex numbers. We have the exponential
exact sequence

O—>Z—>ﬁxﬁ>ﬁ’§—>l.

Consider the induced map HZ(X , Ox) N H2(X , ﬁ;), which, because H? (X, Z) =0, is a surjection.
Given a class v € H*(X, 0), we note that exp(v) is contained in the torsion subgroup H2(X, O )tors =
H*(X, G,,) = Br(X) if and only if v is contained in the subgroup H*(X, 0)C H%(X, O). Thus, this
map restricts to a surjection

exp : HX(X, Q) — Br(X), (1)

which we denote by B — ap = exp(B). According to [Huybrechts and Stellari 2005], a B-field lift of a
class o € Br(X) is a class B € H>(X, Q) such that ap = .
The relationship between B-fields and the Brauer group is expressed in the diagram

0 0

v ~

0 —— H>(X,Z) —— H*(X,Z)+Pic(X\)® 0 —— Pic(X)®(Q/Z) —— 0

H ~ N3

0 — H(X,Z) ————— H*X, Q) ————— H*(X,2)®(Q/Z) —— 0 2)

~N

H2(X, Q) N v
3 - > Br(X)
H>(X, Z) +Pic(X)® Q

| |

0 0
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with exact rows and columns. In particular, we see that there are two sources of ambiguity in choosing a
B-field lift of a Brauer class, namely, integral classes in H2(X, Z) and rational classes in H"! (X, 0=
Pic(X) ® @ Cc HX(X, Q).

2B. {-adic realization. Let k be an algebraically closed field of arbitrary characteristic. Fix a prime
number £, not equal to the characteristic of k. We review the £-adic B-fields and the ¢-adic realization of
the twisted Mukai motive introduced in [Lieblich et al. 2014].
Let X be a K3 surface over k. By duality in étale cohomology, we have H3(X, j1¢n) = 0 for all n > 1.
It follows that the natural map
H?(X, Zy(1)) — H (X, pen) 3)

is surjective, and hence we have an identification

H2(X, Ze(1) @ Z/0"Z = H* (X, o).

We consider the composition
H*(X, Ze(1)) — HA(X, pten) — Br(X)[€"], )

where the second map is induced by the inclusion pgp C Gy,.

Definition 2.1. Let o € Br(X) be a Brauer class which is killed by a power of £. An £-adic B-field lift

of « 1s an element
def

B e HX(X, Qu(1)) =H*(X, Zi(1)) ®z, Q¢

such that if we write B = a/¢" for some a € H2(X, Zi(1)), then a maps to « under the composition (4).

We give the following alternative description. Define p~ =, tten C G, The Picard group of X
is torsion-free, which implies the vanishing H' (X, 11¢) = 0. It follows that the inclusions jpn C ftyn+1
induce injections on H?, and we have a natural identification H>(X, ) = U, H?(X, we). Moreover,
for every n we have a commutative diagram

H2(X, Z(1)) —5 H2(X, Zo(1)
L l (5)
H2(X, jeen) — HA(X, pgren)
Taking the direct limit of the maps (3), we get a map
H*(X, Qe(1)) > HA(X, ). (6)

This map may be explicitly described as follows: given B € H*(X, Q(1)), choose n > 0 such that
"B € H*(X, Zy(1)), and map B to the image of ¢"B under the left map of (4). Note that by the
commutativity of (5), this association is well defined, independent of our choice of n. Composing (6)
with the natural map H2(X, Ueo) — Br(X), we get a map

H*(X, Q¢(1)) — Br(X). (7



Twisted derived equivalences and isogenies between K3 surfaces in positive characteristic 1077

This is the £-adic analog of the exponential map (1). The image of this map is exactly the subgroup
Br(X)[£°*°] C Br(X) consisting of classes killed by some power of £. Furthermore, an £-adic B-field
lift of a class a € Br(X)[£°°] (in the sense of Definition 2.1) is exactly a preimage of « under (7). We
denote (7) by B — ap.

The relationship between ¢-adic B-fields and the Brauer group is expressed by the diagram

0 0

~N "

0 —— H*(X, Z,(1)) —— H*(X, Z¢(1)) + Pic(X) ® Q; —— Pic(X)é(Qe/Zg) — 0

H ~N ~

0 — HX(X, Z,(1)) ————— HA(X, Qu(1)) H (X, pe) ——— 0 (g)

~

~

H2 X, 1 N ~
: X, 0:(1) Br(X)[£>]
H2(X, Z¢(1)) + Pic(X) ® Q,

| |

0 0

with exact rows and columns, where the right-hand column is given by taking the direct limit of the exact

~

sequence induced by the Kummer sequence.
In particular, we have an isomorphism

Br(X)[€™1 = (Q¢/Z)®* 7, )

where p is the Picard rank of X.

2C. The twisted {-adic Mukai lattice. The ¢-adic Mukai lattice associated to X [Lieblich et al. 2014,
Definition 3.3.1] is

H(X, Z)) = HO(X, Zo)(—1) @ HX(X, Zy) @ HY(X, Zo)(1),

which we equip with the Mukai pairing. Given a class B € H*(X, Q,), we define the associated twisted
£-adic Mukai lattice to be the submodule

H(X, Z, B) = exp(B) H(X, Zy) C H(X, Q).
Here, exp(B) denotes the isometry ﬁ(X, Q) — ﬁ(X, 0,) given by
(a,b,c)r (a,b+aB,c+b.B+3aB?). (10)

2D. Crystalline realization. Let k be an algebraically closed field of characteristic p > 0 and let X be a
K3 surface over k. We will define crystalline B-fields associated to Brauer classes on X whose order is
a power of p. There are some new phenomena which present themselves in the crystalline setting that
are not present in the Hodge and ¢-adic theories. In particular, there is a nontrivial interaction between
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crystalline B-fields and the Frobenius operator on the crystalline cohomology. A related feature is that not
every class in rational crystalline cohomology is a crystalline B-field. We give a characterization of which
classes are B-fields using only the F—crystal structure on crystalline cohomology in Proposition 2.7. We
then construct the crystalline version of the twisted Mukai lattice, and show that this object has a natural
structure of a K3 crystal in the sense of Ogus [1979, Definition 3.1]. We conclude with some calculations
with the twisted Mukai crystals. In the special case when the Brauer class is killed by p, the results of
this section have appeared in [Bragg 2021; Bragg and Lieblich 2018].

Set W, = W/p"W, so in particular Wi = k. Let o : k — k be the Frobenius A — A”. We denote the
induced map o : W — W (abusively) by the same symbol.

2E. Crystalline B-fields. We begin by relating the flat cohomology of 1, to certain étale cohomology
groups. Consider the Kummer sequence

1> pp = Gp 2225 G,y > 1,

which is exact in the fppf topology. Let € : Xg — X¢ be the natural map from the big fppf site of X to the
small étale site of X. By a theorem of Grothendieck, the cohomology of the complex Re,G,, vanishes in
all positive degrees. Applying ¢, to the Kummer sequence, we obtain an exact sequence

xsx?"

1- Gy " G, — Rlesupm — 1

of sheaves on the small étale site of X (because X is reduced, the restriction of w ,» to the small étale site
of X is trivial). It follows that
R'eupipn = Gp/GR",

where the quotient is taken in the étale topology. We therefore obtain isomorphisms
H (Xp, ppr) = H™ (X, G /G 7). (1D

We next relate the étale cohomology groups on the right to crystalline cohomology. We consider the map
of étale sheaves
dlog: G, —>Wn§2§(

given by x — dx/x, where x = (x, 0,0, ...) is the multiplicative representative of x in W,, Ox. By
[Tllusie 1971, Proposition 1.3.23.2, p. 580] the kernel of d log is equal to the subsheaf G,,” " Gy, SO
there is an induced injection

dlog: G,/GX"" — W, QL. (12)

As the image of d log is contained in the kernel of d, we have a commutative diagram

00— Gu/G" —— 0

L

W, 0x —t = w,el — 5w,
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which we interpret as a map of complexes
dlog: G,/GXP' [—1] = W, Q. (13)

An important fact is that the de Rham—Witt complex computes crystalline cohomology, in the sense
that there is a canonical isomorphism

H*(X, W, Q%) = H*(X/W,) (14)

in each degree [Illusie 1971, Théoréme II.1.4, p. 606]. Taking cohomology of (13) and using the
identifications (11) and (14), we find a map

dlog: H* (X, pupn) — H*(X/ Wy). (15)
Lemma 2.2. For each n > 1, the map (15) is injective.

Proof. We induct on n. By [Illusie 1971, Corollaire 0.2.1.18, p. 517], there is a short exact sequence

1> G,/GP 22 7zl =6 gl 0

m

of étale sheaves, where X’ denotes the Frobenius twist of X over k. In particular, from the vanishing
of H(X, Q%) and the injectivity of H' (X, ZQ}) — H3iz(X/k) = H*(X/W)) (a consequence of the
degeneration of the Hodge—de Rham spectral sequence) we obtain injectivity of (15) for n = 1.

We recall that the crystalline cohomology groups H*(X/ W) of a K3 surface are torsion-free. This
implies in particular that the maps

HX(X/W)®z Z/p"Z — H*(X/ W,)
are isomorphisms. Hence, multiplication by p” on H>(X/ W) induces a short exact sequence
0 — H2(X/k) 25 HA(X/ Wyy1) — H2(X/W,) — O.
We also have a short exact sequence
1> pp = et 2 ppn — 1 (16)
of fppf groups. We claim that the diagram

0 — HX(X, ptp) — HA(X, ppne)) —2= HA(X, ppm)

1 l x

0 — HX(X/k) —2y HA(X/Wpy1) — HA(X/W,) — 0

commutes and has exact rows, where the top horizontal row is given by the second cohomology of (16),
and the vertical arrows are (15). The exactness of the top row follows from the vanishing of H' (X, )
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(we remark that the top right horizontal arrow is surjective if and only if X has finite height). To see the

commutativity, note that applying R'e, to (16) results in the short exact sequence

n+1

1 - G,,/G*" -5 G,,/GXP

m

- Gp/GXP > 1
of étale sheaves. Using diagram (17), the result follows immediately by induction. ([l

We arrive at a diagram
H2(X/ W) —% H*(X/W,)
U (18)
H2(X, upn) — Br(X)[p"]

where 7, denotes reduction modulo p”. This is the crystalline analog of (4).

Definition 2.3. Let o € Br(X) be a Brauer class which is killed by a power of p. A crystalline B-field lift
of « is an element

B e HA(X/K) S HX(X/W)®w K

such that if we write B = a/p" for some a € HZ(X/ W), then 7, (a) is equal to dlog(a’) for some
o e HX (X, W pr) whose image in Br(X) is equal to .

From the surjectivity of the horizontal maps in (18), we see that any p-power torsion Brauer class
admits a crystalline B-field lift. However, in contrast to the Hodge and ¢-adic cases, not every element
of H?(X/K) is a crystalline B-field lift of a Brauer class, because H>(X, i pn) 1s only a subgroup
of H(X/W)® Z/p"Z.

Definition 2.4. A class B € H>(X/K) is a crystalline B-field if it is a B-field lift of some Brauer class. Let
%(X) C H*(X/K) denote the subgroup of crystalline B-fields. Let %, (X) C #(X) denote the subgroup
of crystalline B-fields B such that p” B € H>(X/W).

We take the direct limit of the maps %, (X) — H2(X, W pn) to obtain a map
B(X) - H (X, pp), (19)

which may be explicitly described exactly as in the étale case (6): given a class B € £(X), we choose
n > 0 such that p"B € H?(X/W), and then reduce modulo p". We compose (19) with the map to
the Brauer group to obtain a map

A(X) — Br(X), (20)

which we denote by B — «g. This is the crystalline analog of the exponential map (1). As in the £-adic
case, the image of this map is Br(X)[p®] C Br(X), and a crystalline B-field lift of a class & € Br(X)[p*]
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is exactly a preimage of o under (20). We have a diagram

0 0

e ~

0 —— H*(X/W) —— H*(X/W) +Pic(X)® @, — Pic(X)®(Q,/Z,) — 0

H - ~

0 —— HX(X/W) > B(X) HX (X, ppe) ——— 0 (o)

~

~

#X) e BF(X\)/[ ]
H2(X/ W) +Pic(X) ® Q, ’ P

| |

0 0

with exact rows and columns.

2F. Description of the group of crystalline B-fields. We will now give some results describing the
subgroup Z(X) C H*(X/K) more explicitly.

We recall that the Tate module of a K3 crystal H (in the sense of Ogus [1979, Definition 3.1]) is
the Z,-module H?=! C H consisting of those elements & € H satisfying ¢ (h) = h, where ¢ := p~'®
and @ is the Frobenius endomorphism of H. By a result of Illusie [1971, Théoreme 5.14, p. 631], if X is
a K3 surface then we have an exact sequence

0— H(X, Z,(1)) — HX(X/ W) 2=2 H2(X/ W)

identifying H*(X, Z p(1)) with the Tate module H*(X /W)?=! of the K3 crystal H* (X /W), where the
left inclusion is given by the inverse limit of the inclusions (15). We have inclusions

Pic(X)® Q, C HX(X, Q,(1)) C Z(X),
where as usual H*(X, Q,(1)) = H*(X, Z,(1)) ® Q,.

Remark 2.5. By analogy with the Lefschetz (1,1) theorem, one might imagine that the inclusion
Pic(X)® Q, C H(X, Q »(1)) is an equality. However, this is frequently false, e.g., for a very general
ordinary K3 surface. It is true if X is supersingular, as a consequence of the Tate conjecture for
supersingular K3 surfaces (of course, the Tate conjecture is known for all K3 surfaces, but it is only in the
supersingular case that there is such a consequence for K3 surfaces over general algebraically closed fields).

Proposition 2.6. Let X be a K3 surface.
(1) If X has finite height, then (X) = HZ(X/ W)+ H2(X, Q,()).
(2) If X is supersingular, then B(X) = %,(X) + H%(X, 0,()).
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Proof. In either case, we have H*(X/ W) C %;(X) C #(X) and H*(X, @,(1)) C Z(X). It follows that
in both cases the right-hand side is contained in Z(X). We prove the reverse containments. Consider the
commutative diagram

H*(X, Z,(1)) — H*(X/W)

l l mod p" (22)

H2(X, ) — H2(X/W,)

Suppose that X has finite height. Flat duality implies that H> (X, u pn) =0 for all n > 1. Hence, the maps
H?(X, Z,(1)) — H*(X, ju ) are surjective. It follows that the restriction H*(X, @, (1)) — Br(X)[p™] of
the exponential map (20) is surjective. This proves (1). We next prove (2). Suppose that X is supersingular.
For each n and i we consider the short exact sequence

0 — U(X, ppn) = H (X, pipn) = DI(X, pupn) — 0.

AsH' (X, ) =0, flat duality shows that D* (X, 11,n) = 0. Hence, the maps D*(X, 1t pn+1) = D*(X, i)
induced by the multiplication p : p ,n+1 — w,n are surjective. Furthermore, the formal group associated
to U2(X, ) is isomorphic to Br(X) = G, s0 UX(X, upn) = G (k). In particular, the groups U(X, i)
are p-torsion, and the maps U?(X, u o) = UX(X, pr+1) induced by the inclusion pyn C w1 are
isomorphisms. Write U%(X, W p) for the union of the U%(X, pr) and D?(X, W pe) for the union of
the D?(X, wpn). It follows that the composition

HX (X, @,(1) = HX(X, jtp=) = D*(X, <)
is surjective, and that UX(X, p) = UX(X, p=). Hence, the exponential map (20) restricts to a surjection
%,(X) + H>(X, 0,(1)) — Br(X)[p], which proves (2). O

The following describes the subgroup #(X) C H?>(X/K) in terms of the F-crystal structure on
H?(X /W), without explicit mention of flat cohomology or the Brauer group. The special case of classes
B e p~'H*(X/W) is Lemma 3.4.11 of [Bragg and Lieblich 2018].

Proposition 2.7. A class B € H*(X/K) is a crystalline B-field if and only if
B—¢(B) € HX(X/W) + ¢ (H(X/ W), (23)
where ¢ = p~' .

Proof. Write H=H?(X/W). Suppose that X has finite height. It is immediate from Proposition 2.6(1) that
any B-field satisfies the claimed relation. Conversely, suppose that B =a/p" is an element satisfying (23).
Consider the Newton—-Hodge decomposition

H(X/W)=H.1 & H & H-

of H2(X / W) into subcrystals with the indicated slopes (see Section 21 below). Write a = (a<1, a1, a-1).
We have pH_| C ®(H_) or, equivalently, H.; C ¢ (H-1) (see for instance [Katz 1979, §1.2]). Consider
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the map

l—¢:Ho — ¢(H<y).
All slopes of H.; are less than one, so this map is injective. By [Illusie 1971, Lemme II1.5.3], it is
surjective, and hence an isomorphism. We have (1 —¢)(a<1) € p"¢p(H-1),soinfacta_; € p"H_;. We
have ¢ (H-1) C H~1. Thus, we have a map

1—¢:H.1 — H.q,

which as before is both injective and surjective, and hence an isomorphism. We have (1—¢)(a-1) € p"H-1,
so in fact a~; € p" H-. Finally, note that H; is a unit root crystal. It follows quickly that a; = p"h +¢
for some h € H; and some ¢ which is fixed by ¢. We conclude that B € #(X). This completes the proof
of Proposition 2.7 in the case when X has finite height.

Suppose that X is supersingular. By Lemma 3.4.11 of [Bragg and Lieblich 2018], we have that % (X)
consists exactly of those classes B =a/p with a € H that satisfy (23). By Proposition 2.6(2), any B-field
satisfies the claimed relation. We prove the converse. The inclusion of the Tate module is an isogeny,
meaning that the map 7 ® K — H ® K is an isomorphism. Thus, the natural map H = HY - T QW
is injective, and we may regard H as a subgroup of the dual lattice 7 ® W. Note thatif h € H andr € T,
then ¢ (h).t = ¢ (h).¢(t) = o (h.1). It follows that H +¢(H) C TV @ W. Now, if B € H*(X/K) satisfies
the claimed relation, then B is in the kernel of the map 1 —¢p: TV @ W — TV ® (K /W), which is equal
toTVQW+T ® Q,. We may therefore write B = B’ +1/p" for some B’ € TV ® W and some r € T
As t is killed by 1 — ¢, B’ also satisfies the relation (23). But by [Ogus 1979, Lemma 3.10], we have
TV®W C p~'H,so B'e p~'H. By Lemma 3.4.11 of [Bragg and Lieblich 2018] we have B’ € #(X).
We also have ¢/ p" € #(X), and we conclude that B € #(X), as desired. O

Remark 2.8. One can alternatively prove Proposition 2.7 by generalizing the method of [Bragg and
Lieblich 2018, Lemma 3.4.11], which we sketch. This proof has the advantage of avoiding flat duality
and being uniform in the height of X. The first step is to understand the cokernel of the map (12). This is
described by the short exact sequence [Colliot-Thélene et al. 1983, Lemma 2, p. 779]

0— Gn/GL"" > W, Qk =5 W, QL /d(W, 0x) — 0, (24)

where 1 denotes the projection and F is the map defined in [Illusie 1971, Proposition I1.3.3]. One then
proceeds by analyzing the p-adic filtrations on crystalline and de Rham—Witt cohomology.

2G. p-primary torsion in the Brauer group. We make some observations connecting the group #(X) of
crystalline B-fields to the p-primary torsion in the Brauer group of X. Suppose that X has finite height 4.
By Proposition 2.6, we have

#(X) =H (X, Q,(1)) +H (X/W).
In particular, (21) induces an isomorphism

H* (X, Q,(1))
H*(X, Z,(1)) +Pic(X) ® Q,

— Br(X)[p™]. (25)
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The slope 1 part of HZ(X/ W) has rank 22 — 2h, so we have H>(X, Z,(1)= Z;‘?ZZ_M. Thus, (25) gives
an isomorphism

Br(X)[p®1=(Q,/Z,)®* P~ (26)

where p is the Picard rank of X. This could also be seen from the fact that, in the finite-height case, the
diagram (8) with £ replaced by p (and étale cohomology with flat cohomology) still has exact rows and
columns.

Remark 2.9. The exponent appearing in the formula (26) for the p-primary torsion of the Brauer group
is smaller than that for the /-primary torsion (9) by a factor of 2. These “missing” p-primary torsion
Brauer classes are the cause of the restriction at p in Theorem 1.2.

We now suppose X is supersingular. By Proposition 2.6, we have
B(X) = 21(X) + H(X, @,(1)).

By the Tate conjecture for supersingular K3 surfaces, the first crystalline Chern character induces an
isomorphism Pic(X)® Z, — T Q Z, = H%(X, Z,(1)), and so H2(X, 0 ,(1)) is in the kernel of the
crystalline exponential map (20). Write N = Pic(X). We have p =22, so Br(X) has no prime-to- p torsion
(see (9)). We conclude that (20) restricts to a surjection % (X) — Br(X). We have a short exact sequence

0— p 'N/N — %,(X)/H — Br(X) — 0.

In particular, Br(X) is p-torsion. As shown in the proof of Proposition 2.7, we have that %,(X) C
NY® W+ p~'N c p~'N ® W, where the latter inclusion holds because discriminant group of N is
p-torsion. Let 2 (X)° = % (X) N (NY ® W). We have a short exact sequence

0— NY/N — %,(X)°/H — Br(X) — 0. 27)

The subgroup #,(X)° can be understood using Ogus’s results [1979] on the classification of supersingular
K3 crystals. Write K =H/NQ W and V=N"/N = szao (here, oy is the Artin invariant of X). The
subspace K C V ® k is Ogus’s characteristic subspace, and has dimension oy. Let¢p: V®k — V Rk
be the map ¢(v ® A) = v ® AP. Ogus showed that K is totally isotropic and is in a special position
with respect to ¢. Namely, K + ¢ (K ) has dimension op+ 1, and V®k =), ¢' (K) has dimension 20y.
This implies that there exists a characteristic vector for K, which is an element e; € V ® k such that,
writing e; = ¢'~1(e;), we have that {eg, ..., esy—1} 1s a basis for K and {eg, ..., ex5,—1} is a basis
for V® k. We let f; denote the functional given by pairing with e;, so that {fo, ..., fs—1} is a basis
for KY =V ® k/K. By Proposition 2.7, the subgroup %,(X)°/H C V ® k/K is the kernel of the map
1—-¢p:VQk/K - VRk/(K+¢(K)). It follows that we have

B(X)°/H = (0 i+ A2 fot -+ 27" fo | A k).
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We conclude that %) (X)°/H is isomorphic to the underlying additive group G, (k) of the group field k.
The left term of (27) is discrete, and hence there is an isomorphism

Br(X) = G, (k).

Remark 2.10. Multiplying by p and then reducing modulo p, the characteristic subspace K is identified
with the kernel of the k-linearized first de Rham Chern character c‘ljR Qk :Pic(X)Qk — H(ZiR(X / k), and the
vector space V ® k/K is identified with its image. Furthermore, %, (X)/H is identified with H>(X, u »)
(regarded as a subgroup of HSR(X/ k) via the map d log) and #,(X)°/H is identified with U%(X, Hp).

2H. The twisted Mukai crystal. We recall the Mukai crystal introduced in [Lieblich and Olsson 2015].
We set

H(X/W) =H(X/W)(—1) @ H(X/ W) @ H* (X/ W) (1).
As a result of the Tate twists on the first and third factors on the right-hand side, the Frobenius operator ®
on H(X /W) is given by the formula

®(a, b, ¢) = (pa(a), ®(b), po(c)),

where we have identified H? and H* with W, and where ® is the Frobenius operator on H* (X /W). We
equip H(X / W) with the Mukai pairing. It is immediate from the definitions that H(X /W) is a K3 crystal
of rank 24.

Definition 2.11. Let B be a crystalline B-field. The twisted Mukai crystal associated to (X, B) is
H(X/W, B) = exp(B) H(X/ W) c HX/K).
Here, exp(B) is the isometry of ﬁ(X /K) defined by the formula (10).

The twisted Mukai crystal has a natural structure of a K3 crystal by the following result.

Theorem 2.12. Let B € #(X) be a crystalline B-field. The endomorphism ) of ﬁ(X /K) restricts to
an endomorphism of ﬁ(X /W, B). When equipped with the restriction of the Mukai pairing, the twisted
Mukai crystal H(X /W, B) is a K3 crystal of rank 24.

Proof. When B € %,(X), this is Proposition 3.4.15 of [Bragg and Lieblich 2018]. Using Proposition 2.7,
the proof of loc. cit. applies verbatim to give the result for general B-fields as well. U

Note that if & € H*(X/W) then exp(h) = (1, h, 1h?) € H*(X/W). Thus, as a submodule of H(X/K),
H(X /W, B) depends only on the image of B in H>(X, p). Furthermore, up to isomorphism (of K3
crystals), ﬁ(X /W, B) only depends on the Brauer class «p (see [Bragg 2021, Lemma 3.2.4]).

Remark 2.13. For a K3 surface over the complex numbers, Huybrechts and Stellari [2005] define the
twisted Mukai lattice ﬁ(X , B, Z) to be equal to the untwisted lattice ﬁ(X , Z) with a modified Hodge
structure. This differs from our definition of the twisted Mukai crystal (as well as the twisted £-adic
Mukai lattice), as we have defined ﬁ(X /W, B) by equipping the rational Mukai lattice ﬁ(X /K) with a
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nonstandard integral structure, but the same crystal structure. The convention analogous to that of loc. cit.
would be to define H(X /W, B) to be equal to H(X /W) as a W-module, but equipped with the twisted
Frobenius operator ® 5 = exp(—B) o ® o exp(B) = exp(¢(B) — B).

We record the following observation.

Proposition 2.14. Let X be a K3 surface and B be a crystalline B-field. If X has finite height h, then
H(X /W, B) is a K3 crystal of height h and, in particular, is abstractly isomorphic to H(X /W) If X is
supersingular of Artin invariant oy, then ﬁ(X /W, B) is a supersingular K3 crystal whose Artin invariant

is equal to either oy if ap =0 orog+ 1 ifap # 0.

Proof. Suppose that X has finite height. The defining inclusion H(X /W,B)C H(X /K) is compatible with
the pairing and Frobenius. Thus, ﬁ(X/ W, B) and ﬁ(X/K) are isogenous, and so ﬁ(X/ W, B) has height /.
If & is finite, this implies the crystals are isomorphic integrally. Alternatively, we may reason as follows.
Because X has finite height, by Proposition 2.6 we may assume B satisfies B = ¢(B). The map exp(—B)
then defines an isomorphism H(x /W,B)= ﬁ(X /W) of K3 crystals. If X is supersingular, then the Brauer
group of X is p-torsion. As the twisted Mukai crystal depends up to isomorphism only on the class «p, we
may assume that B € 2(X);. The result then follows from [Bragg and Lieblich 2018, Corollary 3.4.23]. [J

21. The Newton—Hodge decomposition of the twisted Mukai crystal. Let H be a K3 crystal. The
Newton—Hodge decomposition of H is a canonical direct sum decomposition

H=H_ ®H ®H.

with the following properties. If H has finite height 4 and rank r, then H_; has slope 1 —1// and rank £,
Hj has slope 1 and rank r — 2h, and H- | has slope 14 1/h and rank h. Furthermore, H; is orthogonal
to H.1 ® H-1, and under the pairing, H.; and H. are dual. If H is supersingular, then H; = H and
H.y=H.;=0.
Let X be a K3 surface and let B be a crystalline B-field. We will relate the Newton—-Hodge decomposi-

tions of H(X/W, B) and HX(X/W).
Proposition 2.15. As submodules of H(X/K),

H(X/W, B) < =H(X/ W),

HX/W, B) = exp(B)(H'(X/ W) @ H>(X/ W) @ H (X/ W),

HX/W, B)=i = H(X/W)-1.
Proof. If X is supersingular, then I~{(X /W, B) is also supersingular, and the result is trivial. Suppose X
has finite height. Write H' = H (X/ W). By Proposition 2.6, B is congruent modulo H? to a B-field B’
satisfying ¢ (B') = B’. As ﬁ(X/ W, B)= ﬁ(X/ W, B’), we may assume without loss of generality that B is
fixed by ¢ and, in particular, B € (H); ® K. We then have that H(X/ W, B)-; =exp(B) H(X/W)_;, and

similarly for the slope 1 and > 1 parts. It is immediate that the Newton—-Hodge decomposition of H(X /W)
is given by H(X/ W) = (HY) .y, H(X/W), = H° ®(H?); ® H*, and H(X/ W)~ = (H?)- . The result
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follows upon noting that H; ® K is orthogonal to (H>) -, and (H*)-, so exp(B)(Hz) <1 =(H*_.; and
exp(B)(H?)~1 = (H?)-1. O

Note that if B is a general B-field, the direct sum decomposition of ﬁ(X /W, B); described in the
statement of Proposition 2.15 may not be preserved by P.

2). Mixed realization. We define B-fields for Brauer classes whose order is not necessarily a prime
power. For simplicity we give the definitions only when chark = p > 0.

Definition 2.16. Let o € Br(X) be a class of exact order m. Fix a prime g. Let g" be the largest power
of g dividing m, and set t =m/q". If ¢ = £ # p, then an £-adic B-field lift of « is an £-adic B-field lift
(in the sense of Definition 2.1) of t«. Similarly, if ¢ = p, then a crystalline B-field lift of « is a crystalline
B-field lift (in the sense of Definition 2.3) of tc.

Definition 2.17. Let o € Br(X) be a Brauer class. A mixed B-field lift of ais a set B = {By};+, U {B)}
consisting of a choice of an £-adic B-field lift B, of « for each prime £ # p and a crystalline B-field
lift B, of « (in both cases in the sense of Definition 2.16).

Given a mixed B-field B, we write B? for the component in HZ(X , A?), and B, = B, for the
component in Z(X) C H*(X/K).

We say a few words to explain this definition. Let u, = ,, m be the subsheaf of torsion sections
of G,,. Let pp = p and let p1, p2, ... be an enumeration of the remaining primes. We have a canonical
isomorphism

Mpge @ Upee @ ppge - =[x

given by multiplication. As described in the introduction, we have

H (X, A) =[] (X, @, (1)),
i>1
where the restricted product on the right-hand side consists of tuples {B;} such that for all but finitely
many i we have B; € H*(X, Z p:(1)). A mixed B-field lift of a class « is a preimage of « under the
composition
Z(X) x H(X, AD) » P HX (X, upe) => HA(X, 1) — Br(X), (28)
i

which we denote by B — «p. Here, the right horizontal map is induced by the inclusion u, C G,.

3. Twisted Chern characters and action on cohomology

Let X be a smooth projective variety over a field k and let o € Br(X) be a torsion Brauer class. In this
section we will define a certain twisted Chern character for e-twisted sheaves on X. This will be a map
from the Grothendieck group of coherent a-twisted sheaves on X to the rational Chow group A*(X) g of X.
There are multiple inequivalent definitions of twisted Chern characters appearing in the literature, several
of which are reviewed and compared in [Huybrechts and Stellari 2006, §3]. These all seem to be essentially
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equivalent in practice. We will use the notion appearing in [Lieblich et al. 2014; Bragg 2021; Bragg and
Lieblich 2018], which is also used in [Huybrechts 2019, §2]. This formulation seems to us to be the most
flexible, and has a uniform interaction with B-fields in each of the contexts we have considered. We remark
that our definition below is described in terms of cocycles in [Bragg 2021, Appendix A.1] and is compared
to the twisted Chern characters of Huybrechts and Stellari [2005] in [Bragg 2021, Appendix A.2].

Suppose that noe = 0 for some positive integer n. To define our twisted Chern character we will make
an auxiliary choice of a preimage o’ € H*(X, u,,) of & under the surjection

H>(X, ) — Br(X)[n]
induced by the inclusion u, C G,.

We choose a G,,—gerbe 7 : 2~ — X with cohomology class «, and identify the category of «-twisted
sheaves on X with the category of coherent sheaves on .2 of weight 1. We also choose a ., -gerbe 27 — X
with cohomology class ', and an isomorphism 2" A, G,, = 2 (see [Olsson 2016, Chapter 12.3]).
There is then a canonical n-fold twisted invertible sheaf . on 2. Given a locally free «-twisted sheaf &
of finite rank, we note that £%" ® .#" is a O-twisted sheaf on .2". We define

ch® (&) = v/ch(m. (6% @ 2V)),

where the n-th root is chosen so that rk is positive. One can check that ch®”’ depends only on «’, and not
on the choice of gerbes or on .. We note that chy and ch; are given by

ch"‘/(éa) = (1k(&), w4 (det(&) ® L), ...). (29)

Assume that 2" has the resolution property, so that every «-twisted sheaf admits a finite resolution by
locally free a-twisted sheaves. We then obtain by additivity a map

ch®: K (X, @) = A*(X) g,

where K (X, a) denotes the Grothendieck group of the category of «-twisted sheaves. We note that this
definition is purely algebraic, and hence makes sense in any characteristic. Furthermore, we did not
need o to be topologically trivial, only torsion.

Suppose that X is a K3 surface. We explain the relationship between the choice of &’ and the choice
of a B-field lift of . We first observe that, in any of the contexts we have considered, a choice of
B-field lift for o determines in particular a choice of preimage of « in H>(X, u,). More precisely, a
choice of singular B-field lift (if the ground field is the complex numbers) or of a mixed B-field lift
determines a preimage in H>(X, j,). If « is killed by £, then a choice of £-adic B-field lift determines a
preimage in H?(X, ), and if « is killed by p” a choice of crystalline B-field lift determines a preimage
in H(X, pn). In any of these situations, we write

chf (&) = ch®(©),
where «’ is the induced preimage. We also set

vB(&) = ch®(&)./td(X).
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3A. Twisted Chern characters on twisted K3 surfaces.

Definition 3.1. We assume now that & is an algebraically closed field of characteristic p > 0. If X is a
K3 surface over k, we define the extended Néron—Severi group of X by

N(X)=((1,0,0)) ® N(X)® (0,0, 1)) = A*(X) C A*(X)g.

As the Chern characters of a coherent sheaf on a K3 surface are integral, the extended Néron—Severi
group is a natural recipient for the Chern class map, and in fact the Chern class map

ch: K(X) = N(X)

is an isomorphism. Let o € Br(X) be a Brauer class. For two a-twisted sheaves &, %, we have the
Riemann—Roch formula
x(&, F) =—P(&), v (F)).

We will identify a subgroup of NX)® 0 which contains the image of the twisted Chern class map
ch®: K(X,a) > ﬁ(X)@ 0.
Definition 3.2. If B is an £-adic B-field, we define the £-adic twisted Néron—Severi group by
N(X, By = (N(xX) @ Z[e ") NH(X, Zy, Bo).
If chark = p and B is a crystalline B-field, we define the crystalline twisted Néron—Severi group by
N(X, B, =(N(X)®Z[p~' ) NHX/W, B)),
and if B = {B},+, U{B),} is a mixed B-field, we define the mixed twisted Néron—Severi group by
N(X,B)= < (N, Bg)) NN(X, B,),
t#p

where the intersection is taken inside of N (X) ® Q. Note that for all but finitely many primes ¢ the
B-field B, is integral. Hence, the intersection defining N(X, B) is finite.

The restriction of the Mukai pairing on N (X) ® Q to the ¢-adic twisted Néron—Severi group takes
values in Z[£~']1N Z, = Z. Similarly, the Mukai pairing restricts to an integral pairing on the crystalline
twisted Néron—Severi group. The following is the crucial integrality result for twisted Chern characters,
generalizing the fact that the Chern characters of usual sheaves on K3 surfaces are integral.

Proposition 3.3. Let X be a K3 surface and B a mixed (resp. £-adic, resp. crystalline) B-field lift of a
Brauer class a € Br(X). For any twisted sheaf & € Coh(l)(X, «), the twisted Chern character ch® (&)
lies in the mixed (resp. L-adic, resp. crystalline) twisted Néron—Severi group N (X, B).

Proof. This is proved in Appendix A of [Bragg 2021] (the quoted statement is written for a crystalline
B-field of the form B = a/p, but the proof applies essentially unchanged). U
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Remark 3.4. The analog of Proposition 3.3 for the Hodge realization follows immediately from the
existence of an invertible twisted sheaf in the differentiable category (in fact, this existence is used to
define twisted Chern characters in [Huybrechts and Stellari 2005]). The £-adic case is proved in [Lieblich
et al. 2014, Lemma 3.3.7] by lifting to characteristic 0.

Proposition 3.5. For any mixed B-field lift of o, the twisted Chern character
ch? . K(X,a) > N(X, B)
is surjective.

Proof. The analogous result over the complex numbers is [Huybrechts and Stellari 2005, Proposition 1.4].
The proof in our case is identical, up to our differences in convention. (I

3B. Action on cohomology. Let (X, a) and (Y, B) be twisted K3 surfaces over k. Choose mixed B-field
lifts B of & and B’ of 8. As above, we define the twisted Chern character map

ch™BBB" . k(X x Y, —aHpB) > N(X xY)® O,
and set
v P () = ch P ()X x 1),
Let ®p : D’(X, ) — D’(Y, B) be a Fourier-Mukai equivalence. We consider the map
D, paw py 1= 2. (] (L) Vv~ BEE(P)) : H* (X) g — H* (V) g, (30)

where m1 : X XY — X and mp : X X Y — Y are the respective projections. Using the same formula,
we define maps CDﬁ—BgBEB,’Z( py on the rational £-adic cohomologies and q)zcjr—iSBpEBB/p( p) on rational crystalline
cohomology. By definition, these maps are equal to the maps given by restricting (30) to the £-adic and
crystalline components of H*Q

Theorem 3.6. Let ®p : D*(X, ) — D°(Y, B) be a Fourier—-Mukai equivalence. The map (30) restricts
to an isomorphism
Dy sy py  H(X, Zo, B)) — H(Y, Zy, BY) 31)

which is compatible with the Mukai pairings for each £ # p, to an isomorphism
@, "ymm, py : H(X/ W, Bp) — H(Y/W, B)) (32)
of K3 crystals (that is, an isomorphism of W -modules which is compatible with the pairing and Frobenius

operators), and to an isometry
@, sew (p,: N(X, B) => N(¥, B). (33)

Proof. By definition, the map (31) is equal to the correspondence induced by the cycle v BEB; Py and
~ByBB, (P). The compatibility with

the pairing, and in the crystalline case, with the Frobenius, is proved exactly as in [Bragg 2021, §3.4]. It

the map (32) is equal to the correspondence induced by the cycle v
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remains to show that the correspondences preserve the integral structures. Under the assumption that p > 5,
this is shown in [Bragg 2021, Appendix A]. The result in general can be shown by lifting to characteristic 0,
using the techniques of the following section. We omit further details. This proves the claims regarding (31)
and (32). To prove the claimed properties of (33), note that the indicated correspondence preserves the
subgroups of algebraic cycles, and so restricts to an isomorphism NX)® 00— NY)® Q. The result
then follows from the previous claims. U

4. Rational Chow motives and isogenies

Given a smooth proper variety X over and algebraically closed field k, we let h(X) denote its rational
Chow motive.

Definition 4.1 (cf. [Yang 2022, Definition 1.1]). Let X and X’ be K3 surfaces over k. An isogeny
from X to X’ is an isomorphism of motives f : h>(X’) = h%(X) whose cohomological realization
H> (X' )o — H>(X ) o preserves the Poincaré pairing. Two isogenies are said to be equivalent if they
induce the same map H (X’ o — H2(X ) o (see Section 1D).

Recall [Kahn et al. 2007, 14.2.2] that if X is a K3 surface over an algebraically closed field k then
there is a canonical decomposition

b (X) = b3, (X) @ b (X)

of the Chow motive in degree two into an algebraic part and a transcendental part. The algebraic
part hflg (X) is isomorphic to L ® NS(X), where L stands for the Lefschetz motive. Similarly, h(X)
decomposes as g (X) @ h2(X), where hay = L0 @ bilg @ L%

Now suppose (X, «) and (Y, B) are twisted K3 surfaces with mixed B-field lifts B of « and B’ of 8. Let
®p: D’(X, ) = DP(Y, B) be a Fourier-Mukai equivalence. Following Huybrechts [2019, Theorem 2.1],
we have that the correspondence v_BEB/(P) induces an isomorphism h(X) — h(Y), which restricts
to isomorphisms btzr(X) = hfr(Y) and bag(X) — bag(Y). By Witt’s cancellation theorem, we can
always find some isomorphism hilg(X ) — f)ilg(Y ) that preserves the Poincaré pairing. Adding this and
the isomorphism htzr(X) = htzr(Y) induced by v_BBaB/(P), we obtain an isogeny h2(X) => h2(Y).

Definition 4.2. Let X, Y be K3 surfaces. An isogeny f : h2(X) => h2(Y) is a primitive derived isogeny
if its restriction btzr(X ) = htzr(Y ) agrees with the one induced by v B EEB/(P) for some choices of «, B,
B, B’ and ®p as above. A derived isogeny is a composition of finitely many primitive derived isogenies.

In particular, note that if there exists a primitive derived isogeny between X and Y, then X and Y are
twisted derived equivalent. Twisted derived equivalent K3 surfaces clearly have the same rational Chow
motive. In a recent paper, Fu and Vials proved that their motives are moreover isomorphic as Frobenius
algebra objects, and over C they also give a motivic characterization of twisted derived equivalent K3’s
[Fu and Vial 2021, Theorem 1, Corollary 2].
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5. Lifting derived isogenies to characteristic

The goal of this section is to give some lifting results for primitive derived isogenies. This requires
understanding deformations of twisted K3 surfaces and of twisted Fourier—Mukai equivalences in mixed
characteristic. Deformations of a twisted K3 surface (X, «) over the complex numbers can be profitably
understood in terms of deformations of a pair (X, B), where B € H>(X, Q) is a Hodge B-field lift
of o (see for instance [Reinecke 2019]). Considering deformations of (X, B) serves two purposes: first,
the B-field B allows one to algebraize formal deformations of the Brauer class, and second, B gives a
notion of twisted Chern characters in the deformation family. Suppose now that (X, «) is a twisted K3
surface in positive characteristic. To similarly understand deformations of (X, o) over a base of mixed
characteristic, we would need a notion of mixed characteristic B-field lift. The ¢-adic theory works
essentially unchanged in this setting, but the analog of the crystalline theory seems more complicated. We
will avoid this issue by using instead of a B-field a simpler object, namely a preimage o’ € H*(X, u,,) of
under the map H?(X, ut,,) — Br(X). The deformation theory of such pairs (X, «’) has been considered
in [Bragg 2023]: the flat cohomology groups H?(X, j1,,) can be defined relatively in families, and their
tangent spaces can be understood in terms of de Rham cohomology. Moreover, it turns out that formal
projective deformations of such pairs (X, «’) algebraize, and furthermore the class &’ can be used to define
twisted Chern characters in families. Our approach to the deformation theory of twisted Fourier—Mukai
equivalences is based on the techniques of Lieblich and Olsson [2015], which we, in particular, extend to
the twisted setting.

Let (X, @) and (Y, B) be twisted K3 surfaces over an algebraically closed field k of characteristic
p>0. Let ®p : D’(X, ) = D’(Y, B) be a Fourier—Mukai equivalence induced by a complex P €
DV(X x Y, —aBp).

Definition 5.1. The equivalence ®p : D’(X, a) <> D’(Y, B) is filtered if there exist preimages o’ €
H>(X, un) of o and B’ € H2(Y, Wm) of B such that the cohomological transform

D, ey py i N(X)g => N(¥)g
sends (0,0, 1) to (0, 0, 1).

Note that the condition for being filtered does not depend on the choices of &’ and 8, and thus is an
intrinsic property of ®p. We consider the deformation functor Def(x /), whose objects over an Artinian
local W-algebra A are isomorphism classes of pairs (X4, &/,) where X4 is a flat scheme over Spec A

such that X, ® k = X, and o/, € H?(X 4, iy is a conomology class such that oy |x = o (see [Bragg
2023, Definition 1.1]).

Proposition 5.2. Suppose that ® p is filtered. Given a preimage o' € H*(X, 1) of o, there is a canonically
induced preimage B’ € H*(Y, w,) of B and a morphism

513 : Def(y”g/) — Def(x,af)

of deformation functors over W (depending on P and o).
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Proof. Let ' — X and % — Y be G,,-gerbes representing « and 8. The chosen preimage o’ corresponds
to an n-twisted invertible sheaf . on 2. Using Proposition 3.5, we find a complex of twisted sheaves &
on £ with rank n and det& = .¥. Using the assumption that ®p is filtered, we see that ®p (&) is a
complex of twisted sheaves on % of rank n. Thus, its determinant .4 = det(® p(£)) is an invertible
n-twisted sheaf on #%. Note that this implies n = 0. We let 8/ € H>(Y, 1) be the preimage of
corresponding to .#". Note that the class 8’ does not depend on our choice of &.

Let 27/ — X and %’ — Y be u,-gerbes corresponding to &’ and B’. Suppose given an Artinian local
W-algebra A and a deformation of (Y, ') over A. Up to isomorphism, this is the same as giving a
pair (%, ), where %/ is a u,-gerbe equipped with a flat proper map to Spec A and ¢ : #; ® k = & is
an isomorphism of gerbes. We let 75,4 be the stack of relatively perfect universally glueable simple
7% A—twisted complexes over Spec A with twisted Mukai vector (0, 0, 1) (see [Lieblich and Olsson 2015,
Section 5]). We let P’ be the pullback of P along the product of the maps 2" C 2" and %’ C % . Because
®p is filtered, the complex P’ induces a map 27 — Py, ® k. By reasoning identical to [Lieblich and
Olsson 2015, Lemma 5.5], this map is an open immersion. The image of 2" is contained in the smooth
locus of the morphism 7 ®k, so there is a unique open substack 24 C D,,a Which is flat and proper over
Spec A whose restriction to the closed fiber is isomorphic to 2™, Via this isomorphism, the stack .2, has
a canonical structure of j,,-gerbe. Thus, given a deformation of (Y, 8') over A, we have produced (using
the complex P) a deformation of (X, «’) over A. This defines a morphism Def(y g — Def(x o). |

We now assume that ® p is a filtered Fourier—Mukai equivalence. We fix a preimage o’ € H>(X, 1,,)
of a. Let B’ € H>(Y, ), and let

5P . Def(y,ﬁ/) —> Def(X,a/) (34)

be the preimage and morphism produced by Proposition 5.2. We continue the notation introduced above,
sothat 79 : 2" — X and 7y : & — Y are G,,-gerbes corresponding to o and 8, 2" and %" are
n-gerbes corresponding to o’ and B’, % and .4 are the corresponding n-fold twisted invertible sheaves
on 2" and %", and P’ is the restriction of P to 2" x %. Let B, and Bg be mixed B-field lifts of o and
such that n B, and nBjg are integral and such that n B, (mod n) equals «’ and nBg (mod n) equals p’.
Write ® for the cohomological transform

D=, myp NX)g— N(¥)g.

Lemma 5.3. The transform ® satisfies ®(0,0, 1) = (0,0, 1) and ®(1,0,0) = (1, 0, 0), and restricts to
an isometry N(X) —> N (Y) of integral Néron—Severi lattices.

Proof. We are assuming that @ p is filtered, so we have (0, 0, 1) = (0, 0, 1). Consider a complex &
of twisted sheaves on 2" with rank n and det & = .Z. It follows immediately from the definition of the
twisted Chern character that v"‘/(zf) = (n, 0, s) for some integer s. Moreover, we see that the vector

D(n,0,5) = D" (&) = vF (®p(£))
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has trivial second component. As & is an isometry, we conclude that ®(n, 0, s) = (n, 0, 5). It follows
that ®(1, 0, 0) = (1, 0, 0), and that ® restricts to an isometry on the rational Néron—Severi lattices.

We now prove that ® in fact restricts to an isometry between the integral Néron—Severi lattices. Consider
an invertible sheaf L on X. The complex ®p(& ® 7*L) of twisted sheaves on # has rank n. Let .#
be its determinant. Using the formula (29), we see that the pushforward of the (0-twisted) invertible
sheaf .# ® .4 to Y has cohomology class ®(L). In particular, ®(L) is in N(Y). U

The following result is our twisted analog of [Lieblich and Olsson 2015, Proposition 6.3].
Proposition 5.4. The morphism §p (34) is an isomorphism, and furthermore has the following properties:

(1) For any class L € Pic(X), the map & restricts to an isomorphism

Def(y”g/’@(l‘)) = Def(X,a’,L) .

(2) For any augmented Artinian W-algebra A and any lift (X 4, o'y) of (X, &) over A, there exists a
perfect complex Py € DP(X 4 x4 Ya, —as B Ba) lifting P, where (Y4, By = 871 (X4, oy) and
oy and B4 are the Brauer classes associated to o'y and B;.
Proof. To see that w p is an isomorphism, consider the same construction applied to the kernel Q = PV
of the inverse Fourier—-Mukai transform and the preimage 8’ of 8, which yields a map

,bLQ : Def(X,a/) - Def(y,/g/) .

We claim that pp and ¢ are inverses. This may be verified exactly as in [Lieblich and Olsson 2015,
Proposition 6.3]. To see claim (2), note that the restriction along the open immersion

%A XQ/A/ C@oyy/;/A Xg/[;

of the universal complex lifts P’. To see (1), suppose that the deformation (X 4, ;) is contained in the
subfunctor Def(x ', 1y. There is then an invertible sheaf L4 on X4 deforming L. Let &4 be a relatively
perfect complex of a4-twisted sheaves on X 4 with rank 7 and trivial determinant. Let w4 : 24 — X4 be
the coarse space map. The determinant of the complex ®p, (64 @ w3 L 4) is a 0-fold twisted sheaf on %,
so its pushforward to Y4 is an invertible sheaf. Moreover, this sheaf has class lifting ®(L). O

Definition 5.5. We say that a filtered Fourier—Mukai equivalence ® p is polarized if there exists B-field
lifts B and B’ of « and B such that the isometry ® : Pic(X) — Pic(Y) (see Lemma 5.3) sends the ample
cone Cyx of X to the ample cone Cy of Y.

One checks that the condition to be polarized is independent of the choice of B-field lifts, in the sense
that it is verified for one choice of lifts if and only if it is verified for all choices of lifts.

We now prove our main lifting results. By results in [Bragg 2023], the twisted K3 surface (X, o) can be
lifted to characteristic 0. Moreover, we can also compatibly lift the preimage o’ of @. As a consequence,
Proposition 5.4 shows that given such a lift there is an induced formal lift of (Y, B), together with a lift
of B’ and of the complex P inducing the equivalence. Under the assumption that ® p is polarized, we can
even produce a (nonformal) lift. We make this precise in the following result.
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Theorem 5.6. Suppose that ®p is a filtered polarized Fourier—Mukai equivalence. Let L be an ample
line bundle on X. Suppose we are given a complete DVR V with residue field k and a lift (Xv, oy, Ly) of
(X,a', L) over V. There exists an ample line bundle M on Y , a lift (Yy, By,, My) of (Y, B', M) over V,
and a perfect complex Py € DY(Xy xvy Yy, —ay B Bv) (where By is the image of ﬁ{, in the Brauer
group) which induces a Fourier—Mukai equivalence and whose restriction to D?(X x Y, —a B B) is

quasi-isomorphic to P.

Proof. Let M be the line bundle on Y corresponding to ®(L). By Proposition 5.4, we find compatible
deformations (Yy,, ﬁ(,n, My,)) of (Y, B', M) over V,, = V /m"*! for each n > 0, together with compatible
perfect complexes Py, € D’(Xy, xv, Yy,, —ay, B By,) deforming P, where By, is the image of By, in the
Brauer group. As ®p is polarized, M is ample, so by the Grothendieck existence theorem, there exists a
scheme (Yy, My) over V restricting to the (Yy,, ﬂ(,n). By [Bragg 2023, Proposition 1.4] there exists a class
By € H?(Yy, 11, restricting to the ,B{,n. Finally, by the Grothendieck existence theorem for perfect com-
plexes [Lieblich 2006, Proposition 3.6.1], there is a perfect complex Py € D’ (Xy xy Yy, —ayBBy) whose
restriction to V;, is quasi-isomorphic to Py, for each n. Moreover, arguing as in the proof of Theorem 6.1
of [Lieblich and Olsson 2015], we see that the complex Py induces a Fourier—-Mukai equivalence. [J

Definition 5.7. Let X be a K3 surface over a local ring and X be its special fiber. We say that X is a
perfect lifting of X if the restriction map Pic(X) — Pic(X) is an isomorphism.
We remark that if X as above is over a DVR, the ample and the big and nef cones of the generic fiber

are canonically identified with those of the special fiber.

Theorem 5.8. Let (X, o) and (Y, B) be twisted K3 surfaces over k. Let ®p : DP(X,a) => D'(Y, B) be
a Fourier—Mukai equivalence. There exists

(@) an autoequivalence ®' of D*(Y, B) which is a composition of spherical twists about (—2)-curves,

(b) a DVR V whose fraction field has characteristic O and with residue field k,

(c) projective lifts ( Xy, ay) and (Yv, By) of (X, «) and (Y, B) over V, and

(d) a perfect complex Ry € DXy xvy Yy, —ay B Bv) which induces a Fourier—Mukai equivalence

and whose restriction to X x Y is quasi-isomorphic to the kernel R of the equivalence ®' o ®p.
Moreover, if X and Y have finite height, we may choose the above data so that @' is the identity and
Xy and Yy are perfect liftings.
Proof. Choose a preimage o’ € H>(X, 11,,) of a. Given a choice of preimage of 8, we obtain an isometry
D:N(X)g => N(¥)g.

Consider the class v = ($)71(0,0, 1) € I\FIVS(X ) ¢- Note that this class does not depend on the choice of
preimage of 8. By [Bragg 2023, Theorem 7.3], we may find a DVR V of characteristic 0 and residue
field k£ and a polarized lift (Xvy, ocQ/) of (X, a’) over V over which the class v extends. Let ay be the
image of «y, in the Brauer group of Xy. Let .#y = .#x, «,)(v) be the relative moduli space of H -stable
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ay-twisted sheaves on Xy — Spec V with twisted Mukai vector v = v, where H is a v-generic
polarization. Let My be the coarse space of .#y. The morphism My — Spec V is a projective family of
K3 surfaces, and there is a class yy € Br(My) such that the universal complex Qv induces an equivalence

@, : D" (My, yv) = D" (Xv, ay).

Let y € Br(M) be the restriction of yy to M, and let Q be the restriction of Qy. The Fourier-Mukai

equivalence
®pody: D'(M,y) => D"(Y, B)

is filtered. As in [Lieblich and Olsson 2015, Lemma 6.2], we may find an autoequivalence @’ as in the
statement of the theorem so that ' o® po® is both filtered and polarized. Let R denote its kernel. Choose
apreimage y,, € H2(My, pm) of yy, and write y’ for the restriction of Yy to M. Let B’ be the corresponding
lift of B produced by Proposition 5.2. By Theorem 5.6, there is a lift (Yy, 8y,) of (¥, ') and Ry of R
over V, corresponding to the lift (My, y,) of (M, y’). Consider the Fourier-Mukai equivalence

g, 0 g, : DXy, ay) = D (Yv, By).

This equivalence restricts over k to ®" o ®p. By the uniqueness of the kernel, we conclude that Ry
restricts to the kernel of the equivalence @' o ® p, as claimed.

Suppose that X and Y have finite height. We modify the above as follows. Choose o’ so that p does
not divide n/ord(«). By [Bragg 2023, Theorem 7.3], we may choose the lift Xy so that the restriction
map Pic(Xy) — Pic(X) is an isomorphism. It follows that Pic(Yy) — Pic(Y) is also an isomorphism. In
particular, every (—2)-class in Pic(Y) extends to Yy. We now compose @, with an autoequivalence of
D’ (Y, ) lifting the inverse of ®’. The kernel of the resulting equivalence then restricts to P, as desired. [J

6. Existence theorems

The goal of this section is to construct isogenies with prescribed action on cohomology. In particular, we
will prove Theorems 1.2 and 1.4.

6A. Construction of derived isogenies. We begin with Theorem 1.2.
Let R be an integral domain whose field of fractions is of characteristic 0 (we have in mind R = Z, or
R=W). Set Rg := R®z Q. Let M be a quadratic lattice such that 27'm? € R for every m € M.

Given an element b € M such that (b, b) #0, the reflection in b is the isometry s;, : M g — M ¢ defined by
2(x, b)
=Xx— b.
0= (b, b)

Let H be a lattice of the form R® M & R equipped with the Mukai pairing, i.e.,

((rym,s), (r',m', s")) = (m,m') —rs" —r's,
and a multiplicative structure given by

(rym,s)-(r',m',s"y=(rr',rm" +r'm,rs'" +r's + (m,m’)).
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Lemma 6.1. Let b € M be a primitive element such that (b, b) # 0. Set n := %bz and B:=b/ne€ Mg :=
M ®z Q. Let B’ € Mg be another element. If ® : I-IQ = ﬁQ satisfies

(a) ©(1,0,0)=(0,0,1/n) and (0,0, 1) = (n,0,0), and
(b) eBde B is R-integral (i.e., restricts to an isometry H = ﬁ),
then o(M) = s,(M), where s, € Aut(M g) is the reflection in b and ¢ is the restriction of ® to M g.
Proof. We extend rp := —s; to an isometry W : ﬁQ - ﬁQ by requiring that W satisfies (a). It is
straightforward to verify that e8We=5 is R-integral:
ePWe$(0,0,1) =e®W(0,0,1) =e?(n,0,0) = (n, b, 1),
eBwe™8(1,0,0)=eBW(1, —B, 1/n) =e®(1,—B, 1/n)=(1,0,0),
ePWeB(0,m,0) = eV (0, m, —(B,m)) = e® (n(—B, m), ry(m), 0) = ((—b, m), —m, 0).
We now consider the composition (e?We=8)~! o (P de8") = eB (W~ o ®)e~ ', which has to be
R-integral. Direct computation shows
B o d)e B0, m,0) =P (W o ®)0, m, —(B',m))
=¢%(0.r, ' (p(m)), —(B',m))
= (0,7, ' (@(m)), (B, 9(m)) — (B, m)).
As eB(W~1o ®)e# is R-integral, we deduce that r, ' 0 ¢ is R-integral, and so r,(M) = p(M). O
The next result is the key geometric input for the proof of Theorem 1.2. Let k be an algebraically closed
field of characteristic p. Given a K3 surface X over k and a class b € H>(X), we let s, : H(X) 0— H2(X) 0

denote the isometry sp, xsp, X---. Wesay thataclass b e H?(X) is primitive if nb’ = b for an integer n
and b’ € H2(X) implies n = +1.

Proposition 6.2. Let X be a K3 surface over k. Let b € H*(X) be a primitive class such that n = %bz is
an integer' and such that b/n is a mixed B-field. There exists a K3 surface X' together with a primitive

derived isogeny f : h>(X') — b*(X) such that f,(H*(X")) = s»(H*(X)) in H*(X) ¢.

Proof. Set B := b/n and let @« = ap be the Brauer class defined by B. Let X’ be the moduli space
of stable a-twisted sheaves with Mukai vector v8 = (n, 0, 0) (where stability is taken with respect
to a sufficiently generic polarization). As b is primitive, the class (n, 0, 0) is primitive in N (X, B).
Thus, X’ is a K3 surface, and there exists a Brauer class o’ € Br(X’) together with an equivalence
®s: DP(X', o) = DP(X, ). Choose a mixed B-field lift B’ of ’. Then the cohomological action
® :H(X") g = H(X) g of the algebraic cycle v_BEB(é") sends (0, 0, 1) to (n, 0, 0).

Since @ is an isometry, the vector u = (®)71(0, 0, 1/n) satisfies u> = 0 and (u, (0,0, 1)) = —1.
Therefore, u is necessarily of the form ® = (1, 8, 36%) for some 8 € H (X") g. As (0, 0, 1) is an algebraic
class, and @ is induced by an algebraic cycle, we have § € NS(X’)g. After replacing B’ by B’ + 6,

IThat is, n is in the image of the diagonal embedding Z — W x Vi
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we may assume that ® sends (1, 0, 0) to (0, 0, 1/n). Now we may apply Lemma 6.1 to the ¢-adic part
for each ¢ # p and to the crystalline part. We conclude that the degree O part of the correspondence
v B'BB(£) sends H*(X') to s, (H*(X)). O

6B. Cartan—Dieudonné theorems and strong approximation. To apply Proposition 6.2 towards the
proof of Theorem 1.2, we need to show that the reflections s; about classes b € H2(X) satisfying the
conditions of Proposition 6.2 generate a sufficiently large subgroup of isometries of H>(X) o- We need two
lattice-theoretic inputs. The first is the following generalized Cartan—Dieudonné theorem [Klingenberg
1961, Theorem 2].

Theorem 6.3. Let R be a local ring with residue characteristic # 2 and let L be a unimodular quadratic
lattice over R. The group O(L) is generated by the set of reflections s, where b ranges over the elements
of L such that b* € R*.

We also will use the following consequence of the strong approximation theorem. Recall that U
denotes the hyperbolic plane, which is a Z—lattice of rank 2.

Lemma 6.4. Let L be a nondegenerate indefinite quadratic lattice over Z of rank > 3. If q is a prime
such that L ® Z, contains a copy of U @ Z; as an orthogonal direct summand, then the double quotient
O(L® O\O(L® Qy)/O(L®Zy)

is a singleton.

Proof. This is a slight variant of [ Yang 2023, Lemma 2.1.12], whose proof follows from that of [Ogus
1979, Lemma 7.7]. We briefly summarize the argument: Let K C Spin(L ® Q) be the preimage of
SO(L ® Z,) under the natural map ad : Spin — SO. Using the fact that L ® Z, contains U ® Z, as an
orthogonal direct summand, we show that the maps

Spin(L ® @)\Spin(L ® Q4)/K — SO(L ® @)\SO(L ® Q,)/SO(L ® Z,)

— O(L® \O(L® Qy)/O(L®Zy)
are both surjections. Now we conclude using the fact that the first double quotient is a singleton by the
strong approximation theorem. O

We now return to the setting of a K3 surface X over an algebraically closed field k of characteristic p.

Lemma 6.5. Let X be a K3 surface over k, and assume that p > 5. There exists a Z—lattice L of rank 22
and a primitive indefinite sublattice L' C L such that

(a) for each £ # p, there exists an isometry L @ Z; = HZ(X, Zy),
(b) there exists an isometry L' @ Z, =T (X) := H>(X/W)*=!, and
(¢) the double quotients
O(L ® Z())\O(L® A)/O(L®ZP) and O(L'® Q\O(L'® Q,)/ O(L' ® Z,)

are both singletons.
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Proof. Suppose that X has finite height 4. We take L = A to be the K3 lattice. As L contains a
copy of U as an orthogonal direct summand, we may apply [Yang 2023, Lemma 2.1.12] to conclude
that the indicated double quotient is a singleton. We will now produce L’. Suppose that 2 < 9. By
[Ito 2019, Theorem 6.4] (which requires p > 5), there exists a K3 surface Y over F, » such that h(Y) =h
and p(Y) = 22 —2h. Set L’ = Pic(Y). The existence of a perfect lifting of Y to characteristic zero
shows that L" admits a primitive embedding into L = A. Condition (a) is immediate. The embedding
L' — H?(Y/ W) induces an isomorphism L' ® Z,=T(Y)=T(X), giving (b). It remains to check that
the double quotient involving L’ is a singleton. The pairing on H; is perfect, and the inclusion 7'(X) C H;
induces an isomorphism 7 (X) ® z, W = Hj, so the discriminant of the pairingon 7(X) = L' ® Z,, is
a p-adic unit. As L' has rank > 4, the classification of p-adic lattices [Ogus 1979, Lemma 7.5] implies
that L’ ® Z,, contains a copy of U ® Z, as an orthogonal direct summand. By the Hodge index theorem,
L' is indefinite. We conclude using Lemma 6.4. Suppose 7 = 10. We take L’ = U. This is certainly a
primitive sublattice of L = A, and the double quotient involving L’ is a singleton. It remains to check
that U ® Z, = T(X). As explained by Ogus [1983, Remark 1.5], the discriminant of the pairing on H;
is —1. The same is then true for T (X), because T(X) ® z, W = H;. By the classification of quadratic
lattices over Z,, we conclude that U ® Z, = T (X).

Suppose that X is supersingular. Let L' = L = A, be the supersingular K3 lattice of Artin invariant
00 = 09(X). The discriminant of the pairing on A, is equal to — p2°, which is an £-adic unit for all £ # p,
and so (a) holds. Condition (b) is immediate. Finally, by [Ogus 1979, Lemma 7.7], condition (c) holds. [J

The following results could be phrased purely in terms of (semi)linear algebra, but for clarity we will
maintain the geometric notation.

We recall that O(H?(X, A?)) is the subgroup of [ | t£p OH%(X, Zy)) consisting of those tuples ® such
that ©, is ¢—integral for all but finitely many ¢ (here, we say that Oy is £-integral if @,(H>(X, Z;)) =
H%(X, Z;)). We let Og (H>(X /K)) be the group of automorphisms of H> (X /K) which are isometries with
respect to the pairing and which commute with ®. We set O (H>(X)) = O (H*(X/K)) x O(H?*(X, A’})).

Remark 6.6. Giving an isometric embedding ¢ as in the statement of Theorem 1.2 is equivalent to
giving an isometry ¢, : AQ W — H?(X/K) of W-modules and for each prime £ # p an isometry
i A®Zy— H (X, 0.) of Q,-modules such that for all but finitely many £ we have im(t¢) = H%(X, Z)).
A similar description holds for the isometric embedding in the statement of Theorem 6.13.

Lemma 6.7. Suppose that p > 5. If ®F € O(H*(X, A?)) is an isometry, then there exists a sequence
by, ..., b, of primitive elements osz(X) such that

(1) foreachi, n; == %blz is an integer which is not divisible by p, and

(2) the isometry s :=sp, 0 - - - 0Sp, satisfies s(H* (X, 2”)) = @P(H*(X, 2”)).
Proof. Let L be a lattice as in Lemma 6.5, and choose an identification L ® Zr = H>(X, VA4 ). By

Lemma 6.4,
O(L ® Z(p)\ O(L ® A})/ O(L ® Z")
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is a singleton. Hence, there exists an isometry ¥ € O(L ® Zp)) such that ¥ (L) ® Zr = O (L® /Z\p).
We apply Theorem 6.3 with R = Z,,) to produce a sequence by, ..., b, of elements of L ® Z(,) such

that b? € Z(Xp) foreachi and W =53, 0 - - - osp,. For each i, we may write b; = v/m for some primitive
v € L and an integer m which is coprime to p. Note that the integer %vz = %mzbi2 is in ZE;),

is not divisible by p. Moreover, we have s; = s,. So, by replacing each b; with the corresponding v, we

and hence

may arrange that the b; satisfy (1). Condition (2) holds by construction. ]

Lemma 6.8. Suppose that p > 5. Let ©, € Og (H>(X /K)) be an isometry which restricts to the identity
on H? (X/W) 1. There exists a sequence by, . .., b, of primitive elements of H? (X) such that

(1) foreachi, n; := %blz is an integer and ¢ (b;) = b;, and

(2) the isometry s := sp, o - - - o5, satisfies s(H*(X/W)) = ©,(H*(X/W)).
Proof. Write H= H2(X / W), and consider the Newton—Hodge decomposition H=H_; ® H; @ H..| of H.
The first and third factors are dual, and orthogonal to H;. Because ©, restricts to the identity on H_y, it
must also restrict to the identity on H. |, and hence ®, restricts to an element of Og(H;) = O(T' (X)).
We fix lattices L, L’ as in Lemma 6.5 and an identification L' ® Z, = T (X). By Lemma 6.4, we may find
W eO(L'® Q) such that W(L")® Z, = O,|rx)(L' ® Z,). By the classical Cartan-Dieudonné theorem,
we may find a sequence by, ..., b, of elements of L’ ® Q such that ¥ =5, =55, 0--- 05, . By scaling,
we may assume that each b; is in L’ and is primitive. Note that, as H_; and H.; are orthogonal to H,
the reflections s, are the identity on H.; @ H. . If follows that s satisfies condition (2). |

Lemma 6.9. Suppose that p > 5. Let ©® € Ogp(H*(X ) @) be an isometry such that ®, restricts to the
identity on H*(X/ W) 1. There exists a sequence by, . .., by, of primitive elements of H*(X) such that

(1) foreachi, n; := %blz is an integer and b; / n; is a mixed B-field, and
(2) the isometry s :=sp, 0 - - - o5y, satisfies s(H* (X)) = ©(H*(X)).

Proof. We first choose elements by, . . ., b, € H*(X) by applying Lemma 6.8 to ©,. We set s =55, 0---08p,.
We apply Lemma 6.7 to (s~! 0 ©)” to obtain elements &', ..., b, € H*(X). Set s’ = sp 0+ osp. We
claim that the sequence by, ..., b, b}, ..., b, € H?(X) satisfies the desired conditions. We check (1). We
have that n; := %blz and n; = %(b; )2 are integers. We have that ¢((b;),) = (b;) 5, so by Proposition 2.7
each (b;),/n; is a crystalline B-field. It follows that b; /n; is a mixed B-field. As n! is not divisible by p,
(b)) p/n} is in H%(X/W), so (b)) /n is a crystalline B-field, and b} /n; is a mixed B-field. We have
shown that (1) holds. To check (2), note that by construction, we have

(s os)P(HX(X, ZP)) = O (H2(X, ZP)).
Furthermore, as p does not divide %(b; )2, we have s;(Hz(X /W) = H2(X /W), and so
(sos),(HX(X/W)) =5, HX(X/W)) = ©,(H*(X/W)). O

Proof of Theorem 1.2. We prove the “only if” direction first. Suppose that f : h2(X') = h>(X) is a
primitive derived isogeny. We may choose Brauer classes « € Br(X) and «’ € Br(X’), a Fourier—Mukai
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equivalence ®p : D’(X’, o') = D’(X, ), and crystalline B-field lifts B and B’ of « and o’ such
that the cohomological transform ® _gms(P) : ﬁ(X "/K) — ﬁ(X /K) and the cohomological realization
H?>(X'/K) => H%*(X/K) of f restrict to the same map T2(X'/K) => T?*(X/K), where T*(X/K)
denotes the orthogonal complement to NS(X) ® K in H2(X /K) (not to be confused with the Tate module
of H2(X/W)). By Theorem 3.6, ®,_pms (P) restricts to an isomorphism ﬁ(X// W, B') = ﬁ(X/ W, B)
of crystals. Thus, by Proposition 2.15, it induces an isomorphism

H2(X'/W)., =H(X'/W, B').; => H(X/W, B).; = H*(X/W)_,.

The transcendental part 72(X/K) contains H>(X/ W), so the cohomological realization of f also maps
the slope < 1 part to the slope < 1 part. This gives the result.

We now prove the “if”” direction. For each £ # p fix an isometry H>(X, Z;) = A ® Z;. Assume first
that the K3 crystals H,, and H?(X/W) are abstractly isomorphic. This is the case, for instance, if X
has finite height. We fix an isomorphism H>(X/W) = H » of K3 crystals. Composing with the given
embedding ¢ and tensoring with @, we find an isometry ® € Oq;(Hz(X/K)) x O(H?(X, Zp)) which
maps Hét(X, Zy) to y(A® Zy) and H2(X/ W) to1,(A®W). By Lemma 6.9, we may find a sequence
bi, ..., by, € HX(X) of primitive elements such that for every i, n; := %b? is an integer and b; /n; is a
mixed B-field, and furthermore the isometry s := s, 0 - - - o 5p, satisfies s(Hz(X ) = @(HZ(X )). The
result follows by repeatedly applying Proposition 6.2.

We now consider the case when X is supersingular and H,, and H?(X /W) are not isomorphic. This
can certainly occur: any two supersingular K3 crystals over k of the same rank and discriminant are
isogenous, but by results of Ogus [1979], supersingular K3 crystals themselves have nontrivial moduli.
We argue as follows. By the global crystalline Torelli theorem [Ogus 1983], there exists a supersingular
K3 surface X’ such that H>(X’/ W) is isomorphic as a K3 crystal to H ». By Theorem 6.11 below, there
exists a derived isogeny h2(X') => h%(X), which induces an isometry H2(X//K) = H2(X/K). We are
now reduced to the previous case, and we conclude the result. (Il

Remark 6.10. The only place where the assumption p > 5 is used in the above proof is in applying
the result of Ito [2019, Theorem 6.4]. If in Theorem 1.2, H), = HZriS(X/ W), i.e., ®, as above can be
taken to be the identity, then the assumption p > 2 suffices. In this case, in producing X’ we only need to

iteratively take moduli of sheaves twisted by Brauer classes of prime-to-p order.

6C. Existence in the supersingular case. We make a few remarks specific to the supersingular case.
Here, very strong cohomological results are available: there is a global Torelli theorem [Ogus 1979;
1983; Bragg and Lieblich 2018], as well as a derived Torelli theorem [Bragg 2021]. Together, these
give a picture which closely parallels the case of complex K3 surfaces. We will show that any two
supersingular K3 surfaces are derived isogenous. More refined results (along the lines of [Huybrechts
2019, Theorem 0.1]) are possible, but we will omit this discussion here.

Theorem 6.11. Suppose that p > 3. Let X and Y be two supersingular K3 surfaces over k. There exists a
derived isogeny h*(X) = h2(Y).
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Proof. We use [Bragg and Lieblich 2018, Proposition 5.2.5]: if X is a supersingular K3 surface, then there
exists a sequence Xo, X1, ..., X, of supersingular K3 surfaces together with Brauer classes «; € Br(X;)
such that Xo = X, D?(X;, a;) = Db(Xi+1, a;y1) foreach 0 <i <n —1, and X, = Z is the unique
supersingular K3 surface with Artin invariant 1. Applying this to both X and Y, we find derived isogenies

h?(X) => hA(Z) <= H*(Y). O

Remark 6.12. Shioda [1977, Theorem 1.1] showed that supersingular Kummer surfaces are unirational.
By a result of Ogus [1979] and the crystalline Torelli theorem these are exactly the supersingular K3
surfaces with Artin invariant oy < 2. The Chow motive of a unirational surface is of Tate type. Combining
this with Theorem 6.11 we deduce that for any supersingular K3 surface X we have b(X) = b (X) =
L°®L®?> @ L? and btzr(X ) = 0. In particular, we have CHZ(X ) = Z. This result was first proved by
Fakhruddin [2002], using a related method.

’

6D. Existence in characteristic 0. It is possible to formulate a purely algebraic analog of Huybrechts
Theorem 1.3 along the lines of Theorem 1.2, valid over any algebraically closed field of characteristic 0.

Theorem 6.13. Let X be a K3 surface over an algebraically closed field of characteristic 0. Let
H=AQ®Z. Leti: H—> H%(X) o be an isometric embedding. There exists a K3 surface X' and a derived
isogeny f :h*(X') => H2(X) such that f,(H*(X')) = im(0).

Proof. This can be proved purely algebraically along the same lines as our proof of Theorem 1.2 (but
avoiding the extra complications at p). Alternatively, it can be deduced directly from Theorem 1.3. We
omit further details. O

6E. Nygaard-Ogus theory revisited. In preparation for the proof of Theorem 1.4, we briefly recap the
deformation theory of K3 crystals and K3 surfaces established in [Nygaard and Ogus 1985, §5]. For the
rest of Section 6, assume that £ is a perfect field with chark = p > 5. We refer the reader to the paragraph
below the proof of Lemma 4.6 in loc. cit. for this restriction on p. Let R :=k[e]/(&°) for some e. Recall
that a K3 crystal over R is an F-crystal H on Cris(R/W) equipped with a pairing H x H — Og,w and
an isotropic line Fil C Hg which satisfy some properties (see Definition 5.1 in loc. cit. for details).?

Definition 6.14. Suppose V is a finite flat extension of W such that V/(p) = R. A deformation of H
to V is a pair (H, ﬁﬁ) where Fil ¢ H v is an isotropic direct summand which lifts Fil C Hpg.

Theorem 6.15 (Nygaard and Ogus). Let X be a K3 surface over k and R be as above.

(a) The natural map Xg — ngiS(X r) defines a bijection between deformations Xg of X to R to
deformations of the K3 crystal H>. (X /W) to R, i.e., K3 crystals H over R with H |, = H2. (X/W).

cris cris

(b) If Xg is a deformation of X to R, then the map Xy +—> (HZ. (X R), Fil? HﬁR(XV/V)) defines a

cris
bijection between deformations Xy of Xg to V and deformations of the K3 crystal HzriS(X gR)toV,
in the sense of Definition 6.14.

2In fact, [Nygaard and Ogus 1985, Definition 5.1] defined K3 crystals over a more general base which satisfies a technical
assumption [Nygaard and Ogus 1985, (4.4.1)]. For our purposes it suffices to consider bases of the form k[g]/(¢€).
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Proof. This follows from [Nygaard and Ogus 1985, Theorem 5.3] and its proof. ]

For the rest of Section 6E, X denotes a K3 surface of finite height over k. Recall that there is a
canonical slope decomposition (cf. [Nygaard and Ogus 1985, Proposition 5.4])

Sean : Haiy (X/ W) = D(Bry) & D(D*) @ D(Bry)(—1). (35)

cris

We define a map K which sends a deformation of ﬁfx to R to a deformation of the K3 crystal
ngis(X/ W) to R by setting K(G) := D(G%) ®D(D%) @ D(Gr)(—1), where Dg denote the canonical
lift of D to R. The K3 crystal structure on K(G) is given as follows: Let Zg, : D(G}) x D(Gg) —
Or/w(—1) be the canonical pairing and let Zp, : D(D%) x D(D%) — Or;w(—2) be the pairing inherited
from that on D(D*). The pairing on K(Gg) is Z¢,(—1)® Zp,. Finally, the isotropic direct summand Fil
in K(GR)g is given by [Fil! D(Gr)r](—1). We define a decreasing filtration on IK(G g)r by setting

0 =Fil®> C Fil* := Fil C Fil' := (FiI>)* c Fil® = K(Gg)&. (36)

If we further lift G to a p-divisible group Gy for a finite flat extension V of W with V/(p) = R,
then we can attach a deformation of IKK(Gg) to V by setting Fil = [Fil' D(Gy)y](—1), which we denote
by K(Gy). We define a filtration on IK(Gy )y using (36) with IK(G g) g replaced by IK(Gy)y.

Definition 6.16. If Xy is a formal scheme over Spf V which deforms X, we say Xy is a Nygaard—Ogus
lifting if it comes from K(Gy ) for some p-divisible group Gy lifting Brx to V via Theorem 6.15. That
is, setting R :=V/(p), Ggr:=(Gy)® R and X := (Xvy) ® R, we have an isomorphism

(H2;(Xg), FiP Hg (Xv/V)) = K(Gv)

cris

lifting écan in the obvious sense. If Xy is an algebraic space over Spec V which deforms X, then we say
Xy is a Nygaard—Ogus lifting if its formal completion at the special fiber is a Nygaard—Ogus lifting.

Proposition 6.17. If a formal scheme Xy is a Nygaard—Ogus lifting of X , then the natural map Pic(Xy) —
Pic(X) is an isomorphism. In particular, Xy is algebraizable.

Proof. See Proposition 4.5 and Remark 4.6 of [ Yang 2022]. (I
Using integral p-adic Hodge theory, we can characterize Nygaard—Ogus liftings:

Theorem 6.18. Let F be a finite extension of K with V := Op. Let Xy be a formal scheme over Spf V
which lifts X and let X denote its rigid-analytic generic fiber. Then Xy is a Nygaard—Ogus lifting
if and only if there are Galg-stable Z ,-sublattices T, T, T?% in Hét(X 7 Zp) of ranks h, 22 —2h, h
respectively, such that, as crystalline Galg-representations,

(@) T'(1) is unramified,

(b) T° has Hodge—Tate weight 1 with multiplicity h — 1 and O with multiplicity 1,

(c) T?(1) has Hodge—Tate weight 1 with multiplicity 1 and 0 with multiplicity h — 1.
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Proof. We recap in the Appendix the results from the integral p-adic Hodge theory used in this proof.
Let S denote Breuil’s S-ring. Using the data Fil* HfiR(X r/F), we equip ngiS(X /W) Q@w Sk with the
structure of an object in MS"?{’(N. For any Gy which lifts ﬁrx to V, we set

T,(Gy) :=T,Gy & T,Dy & T,G%(—1).

Suppose first that Xy is Nygaard—-Ogus, so that it comes from some Gy lifting G := Bry. Combining
(41) and (45), we obtain isomorphisms

H?;t(XFa Zp) ® Beris = HZ(X/ W) ® Beris = K(G) ® Beris = —H—p(GV)(_l) ® Beris,
z, w w z,

which give rise to a rational isomorphism Hét(XF, Z,)®z, Qp — T,(Gv)(—=1)®z, Qp. We now
show that the this restricts to an integral isomorphism

H2(XF, Z,) =T ,(Gy)(—1). (37)

It is easy to check that the object (K(G)g, FilI' K(Gy)F) in MF? admits a decomposition into
(DBry)k, Fil' D(G}) ) @ (D(D*)k, Fil' D(D}) ) & (DBrx) k., Fil' D(Gy) ) (= 1).
By the construction of Nygaard—Ogus liftings, there is an isomorphism
D(GR)s @ D(DR)s @ D(GR)(—Ds =Hi (Xp)s

of strongly divisible S-modules which is compatible with the isomorphism

H(X/ W) ® Sk ZK(G) ® Sk

w w

induced by dcqan. By applying the functor T, we obtain (37), which readily implies the “only if” part of
the theorem.

Now we show the “if”” part. The proof is essentially a reincarnation of the proof of [Nygaard and
Ogus 1985, Proposition 5.5]. The hypothesis implies that there exists an isomorphism Hgt(X 7 lp) =
T,(Gy)(=1) for some Gy which lifts ]’B\rx to V. By Theorem A.3, there exists a unique isomorphism

D(GR)s @ D(DR)s ®D(Gr)(—1)s = Hey (Xg)s (38)

which gives this isomorphism, Hét(XF, Z,) =T,(Gy)(—1), under Ts.
The only thing we need to check is that this isomorphism of S-modules comes from an isomorphism
of F-crystals on Cris(R/ W)

K(Gr) =D(G) & D(D}) @ D(Gr)(—1) = Hz i (Xr) (39)

which restricts to 8¢ap.

Let e be the ramification degree of V over W and j be any positive number < e. Set R; := R/(g/). We
claim that there exists a sequence of isomorphisms §; : K(Gg;) = H2. (Xg) of F-crystals on Cris(R;/W)
such that §; is the restriction of §;,; for each j < e such that §; = écan, and J, gives the desired
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isomorphism (39). Suppose we have constructed §; for some j < e. Note that (¢) is a square-zero
ideal in R;y; and we can view R;;; as an object of Cris(R;/W) by equipping (¢/) with the trivial
PD structure. By [Nygaard and Ogus 1985, Theorem 5.2], to construct §;; it suffices to show that
[Fil' D(Gg,.,)r,,,](—1) is sent to Fil> Hiz (X g,,, /R j+1) via the composition

K(GRjJrl)RjJrl E |:K(GRJ')R ngiS(XRj)RjJrl E HﬁR(XRjJrl/Rj-‘rl)'

j+1 (BJ)R_/'.H
However, this follows directly from the fact that (38) respects the filtrations. Indeed, viewing R as an
S-algebra via § — O — R — R;1, we get the above isomorphism by tensoring (38) with R; . [

Remark 6.19. When X is ordinary, Xy is Nygaard—Ogus if and only if it is obtained via base change
from the canonical lifting, because in this case deformations of Bry are completely rigid. Therefore, the
above theorem is a generalization of [Taelman 2020, Theorem C] when p > 5. It also follows from (37)
in the above proof that when Xy is a Nygaard—Ogus lifting, for the enlarged formal Brauer group Wy,
of Xy, there is a natural injective map of Galr-modules

T,Wx, — H2(Xf, Z,(1)),

which generalizes [Taelman 2020, Theorem 2.1]. Indeed, we have Wy, = ﬁrxv @ Dy for a Nygaard—Ogus
lifting.

6F. Construction of liftable isogenies. We now prove Theorem 1.4.

Proof of Theorem 1.4. Again write (¥ and ¢, for the prime-to-p and crystalline component of ¢. If a
Frobenius-preserving isometric embedding ¢}, : H, <> H?(X/W) as in the hypothesis exists, then the K3
crystal H), has to be abstractly isomorphic to H?(X/ W) and hence to K(]§}X). We choose an isomorphism
H, K(]?rx) and consider (t,) g :=1t, ® K as an isometric automorphism of the F-isocrystal K(I§}X) K-
Then (:,)g determines, and is conversely determined by, a pair (h, g), where h € End(]’B\rX)[l /p]
and g € End(D)[1/p]. Our goal is to produce an isogeny f : h2(X') — h*(X) for some other K3
surface X’ over k = F,, such that f,(H2 (X', ZP)) = " (A ® ZP) and f,(H}(X'/W)) = (1) x (K(Bry)).
By Theorem 1.2, we first reduce to the case when (¥ (A ® VA4 )= Hét(X , VA4 ) and (1)) g sends the slope 1
part, i.e., D(D*), isomorphically onto itself.

By Lubin-Tate theory, for some finite flat extension V of W, there exists a lift Gy of Bry to V
such that 4 lifts to End(Gy)[1/p] [Yang 2022, Lemma 4.8]. Note that Fil* K(Gy)r equips K(I§}X)K
with the structure of an object in MFﬁ and .# := K(Gy)s defines a strongly divisible S-lattice in the
corresponding object & := K(ﬁ\rx) ® Sk in JV[&"?[’(N. It is clear that tx preserves Fil* K(Gy ) and extends
to an automorphism tg, of 2.

Let Xy be the Nygaard—Ogus lifting of X which corresponds to Gy . We have T¢is(A4) = Hgt(X 7 Zp)
inside Hegt(X 7> Op) by the proof of Theorem 6.18, and Vs((¢)) k) is an automorphism of the Galf-
module Hét(X 7> @p) which preserves the Poincaré pairing. The image of Hét(X 7> Zp) under Vs ((t)) k)
can also be interpreted as Tiis(ts, (#)). Denote this Galg-stable Z ,-lattice by A;). By Theorem 6.13,
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up to replacing F by a finite extension, we can find another K3 surface X’ over F with a derived isogeny
f:H%(X) => h*(XF) such that

f*(H (X, Z)) = A’ X H(A =P(A®Zy) = Hét(Xﬁ, Zy)).
L#p
We argue that f induces an integral isomorphism Pic(X;) — Pic(Xr). Indeed, f induces an
isomorphism
Pic(X}) => Pic(Xp)g N[ ALD).
¢
However, we know that the image of PIC(X ) lies in the unramified part of H2 (X7, Z,(1)), and the
unramified part of A/p(l) coincides with that of Hét(X 7» Zp(1)). This implies that the target of the above
isomorphism is just Pic(Xr).

It follows that Pic(X';) also satisfies hypothesis (a), (b) or (c) if Pic(X r) = Pic(X) does. For (a) and (c)
this is clear; for (b) this follows from [Lieblich et al. 2014, Lemma 2.3.2]. In any case, by [Matsumoto
2015, Theorem 1.1; Ito 2019, §2] and Theorem 8.10 to be proved below, X % admits potentially good
reduction. Up to replacing F by a further extension, we can find a smooth proper algebraic space X/,
over V such that X' is the generic fiber of X{,. The map induced on crystalline cohomology of special
fibers is Deris(f), which sends H2(X'/ W) onto (1,,) k (K(Bry)). O

7. Uniqueness theorems
In this section we prove Theorem 1.5 by lifting to characteristic 0 (as outlined in the introduction).

TA. Shimura varieties. Let p > 2 be a prime and L be any self-dual quadratic lattice over Z,) of rank
m > 5 and signature (2+, (m —2)—). Set G = CSpin(L (), G :=SO(L(p)), K, :=CSpin(L® Z,),
K, =SO(L®Z,)and Q:={wec P(LRC):(w, w)=0, (w, ®) >0}. Let 5739, (L) (resp. K, (L)) denote
the canonical integral model of Shy, (G, €2) (resp. Shk, (G, §2)) over Z given by [Kisin 2010] (see
also [Madapusi Pera 2016, §4]). We choose a compact open subgroup K? of G(A ) and set X = XK, X7,
Similarly, set K? to be the image of X? and K := K,K”. Denote by Shg<(L) Yx(L) Shk (L), and A (L)
the stacky quotients Shg<p (L)/XP, yxp (L)/XP, Shg,(L)/KP, and #« ,(L)/KP respectively.

The model .#% (L) is equipped with a universal abelian scheme <7 up to prime-to-p isogeny whose
cohomology gives rise to sheaves H, (x = B, cris, £, dR) on suitable fibers of #(L). The abelian
scheme & is equipped with a Cl(L)-action and Z/2Z-grading, and the sheaves H, are equipped with
tensors 1, € HY 22 We call the triple of Z/2Z-grading, Cl(L)-action and various realizations of 7 the
CSpin structures on </ or H,. The dual of the images of n, are denoted by L. We refer the reader to
[Madapusi Pera 2016, §4] for details of these constructions or [Yang 2022, (3.1.3)] for a quick summary.

Here is another way to view the sheaves L,: On the double quotient Shx (L)c = G(Q)\Q x G(A¢)/K,
the standard representation SO(L) — GL(L) produces a variation of Z-Hodge structures [Madapusi Pera
2016, §3.3], which is nothing but (Lg, L4r,c := LdrlIsnc(r)c)- The filtered vector bundle Lgr ¢ is
commonly called the automorphic vector bundle associated to this representation, and by the general
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theory of automorphic vector bundles, we know that it admits a canonical descent to the canonical
model Shx (L) over the reflex field Q. This canonical descent is nothing but Lgr (when restricted
to Shk(L)). In fact, the pair (L, Lgr c) is the variation of Z-Hodge structures associated to a family of
Z-motives L over Shk(L)c in the sense of [Madapusi Pera 2015, §1.4]. This family of motives descend
to the canonical model Shi (L), whose £-adic realizations give L¢|sn,(z) and whose de Rham realization
gives Lar|shy(z). Once we extend Shk (L) to k(L) over Z,), these sheaves arising from cohomological
realizations of motives over Shyk (L) also extend. This motivic point of view is discussed in more detail in
[Madapusi Pera 2015, §4.7].

It is explained in [Yang 2022, (3.1.3)] that the sheaves L, are equipped with an orientation tensor
Oy : det (L) — det(Ly) (x = B, £ # p). Here det (L) denotes the constant sheaf whose stalks are
det(L) on . (L) in the appropriate Grothendieck topology. In short, 8,’s come up because the adjoint
representation of G on L ) factors through SO(L,)), i.e., it preserves a choice of orientation § on L ).
It is possible to discuss de Rham or crystalline realizations of §, but for our purposes it suffices to use
the 2-adic realization 8,. The sheaves L, and the tensors x, and §, descend to .7 (L).

We will repeatedly make use of the following key fact about Lyr and Hgr:

Proposition 7.1. Let s be any point on 57% (L). Fil! LR s is one-dimensional, and Fil! Hgr = ker(x)
for any nonzero element x € Fil! LR s.

Proof. If char k(s) = 0, we can simply base change to C and apply Hodge theory (see [ Yang 2022, p. 8]).
If char k(s) = p, we can check this by a lifting argument or read it off from [Madapusi Pera 2016, §4.9]. [

We recall the definition of a CSpin-isogeny [Yang 2022, Definition 3.2]:

Definition 7.2. Let « be a perfect field with algebraic closure i, and let s, s” be x-points on igp(L). We
call a quasi-isogeny <, — 7 a CSpin-isogeny if it commutes with the CSpin structures, i.e., it respects
the Z/2Z-grading, CI(L)-action and sends 7, g t0 ¢ ¢ @ for every £ # char k and in addition ey s
to Teis, ¢ if chark = p.

We remark that CSpin-isogenies are stable under liftings and reductions:

Lemma 7.3. Let k be a perfect field of characteristic p, and let s, s’ be two k-points on 573<(L). Let K
denote W (x)[1/p]l and F C K be a finite extension of K, and let s, s}. be F-valued points on ig{(L)
which specialize to s, s'. Suppose Y : s, — . is a quasi-isogeny which specializes to Y : oy — y.
Then i is a CSpin-isogeny if and only if ¥ g is also a CSpin-isogeny.

Proof. Clearly, y respects the Z/2Z-grading and the Cl(L)-actions if and only if ¥ r also respects these
structures. Let sz and s;? denote the K -valued geometric points over sy and st To check whether /¢
sends 7y s to s for every ¢, it suffices to check this for one ¢, as one can always take a base change
to C and use Betti realizations. Therefore, the only part of the statement which does not follow directly
from the smooth and proper base change theorem is that if ¢ is a CSpin-isogeny, then ¢ sends s g
to Teris, - This follows from [Yang 2022, Remark 3.1]. U
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Lemma 7.4. Let sc, si be two C-points on T (L). For every Hodge isometry
§:Lpy, ®Q > Ly, ®0Q
which sends 8 ;. to &, S there exists a CSpin-isogeny o5, —— Ay, which induces g by conjugation.

Proof. From the construction of the local system Hp (see [Madapusi Pera 2016, §3.3]) it is clear that
there exists an isomorphism of free Z,)-modules H — Hp ;. which respects the CSpin-structures,
i.e., it respects the Z /2Z-grading, C1(L)-action and sends m to mp 5. The same is true for s/C, so there
exists an isomorphism of Z(,)-modules ¥’ : Hg ;. — Hp, s, Which respects the CSpin structures. The
map g’ : Lp,, ® Q — L B.s; ® Q induced by ¥’ by conjugation sends 8 s, to 32,s’c- Therefore, the
composition g 'og lies in SO(Lp . ® Q). Since the natural morphism CSpin(L g) — SO(Lg) is

surjective, we may lift g~

o g’ to an automorphism of Hp ;. which preserves the CSpin structures and use
it to adjust ¥’ to obtain a morphism v which induces g by conjugation. It follows from Proposition 7.1

that f preserves the Hodge structures, so that g comes from a CSpin-isogeny. O

7B. Hilbert squares and period morphisms. We will apply the period morphism construction to Hilbert
squares of K3 surfaces, so we recollect some basic facts and set up some notation here. Let k be any
algebraically closed field of characteristic 0 or p > 2, X be any K3 surface over k and ¥ := X% be the
Hilbert scheme of two points on X. The lemma below implies that Y is a K3[?!-type variety in the sense
of [Yang 2023, Definition 1].

Lemma 7.5. When chark = p > 2 or 0, Y has the same Hodge numbers as those of a complex K3 -type
variety, and the Hodge—de Rham spectral sequence of Y degenerates at the E|-page.

Proof. Let Y := Bla(X x X) be the blowup of X x X along the diagonal A C X x X. Let E C Y’ be
the exceptional divisor, which is isomorphic to the projectivization of the tangent bundle of X. There is
an action of Z/2 on X x X given by permuting the factors, which lifts to an action on Y’ that is trivial
on E, and there is a natural map ¢ : Y’ — Y that identifies Y with the quotient Y'/(Z/2). The map q is a
double cover branched over the divisor D = g(E) C Y, which may be described explicitly as the locus of
nonreduced subschemes. Using our assumption that 2 is invertible in k, we obtain a canonical direct sum
decomposition

q+0y = Oy ® 2,

where .Z is the cokernel of the pullback map 0y — ¢,y . From this and the projection formula we
deduce the equality

H/ (Y, ¢*Q}) =H/ (Y, Q) @H/ (Y, Q) ® .2).

All of these data may be defined in a flat family over a flat finite type Z-scheme. By semicontinuity, the
dimensions of both summands on the right-hand side must be greater than or equal to their corresponding
values over the complex numbers. Thus, it will suffice to verify that the groups H/ (Y, q*Qﬁ,) have the
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same dimensions as over the complex numbers. This can be done via a direct computation. In more detail,
we compute using the identification q*QIY = Q},,(—E ), which yields isomorphisms

g QL = QL (—iE).

The cohomology of these sheaves may be related to the Hodge cohomology of X by pushing forward
along the blowup morphism ¥ — X x X. The result then follows (eventually) from the fact that the
Hodge numbers of X do not depend on the characteristic of the ground field.

The degeneration of the Hodge—de Rham spectral sequence at the E;-page follows from the fact that
Hi (Y, Q}) =0 for i + j odd. O

Let H*(—) be a Weil cohomology with coefficient field K.> We will only make use of Betti, £-adic,
crystalline, de Rham when appropriate. When there is a specified polarization, let P*(—) denote the
corresponding primitive cohomology. We will view NS(Y) as a Z-lattice inside H>(Y) via ¢, and will not
write c1 explicitly. H?(Y) is equipped with natural Beauville—Bogomolov forms (BBF). When char k = 0,
these forms are well known. When char k = p > n+1, the étale and crystalline versions of these forms for
K3!"ltype varieties were defined in [Yang 2023, §2.1]. Since Y is a Hilbert square on a K3 surface X, as
opposed to a general deformation of such a variety, the Beauville-Bogomolov form on Y is easily described
by the Poincaré pairing on X: Let § be the class of the exceptional divisor. Then 82 = —2 under the BBF.
The incidence correspondence between X and Y embeds H?(X) isometrically into HZ(Y) such that H>(Y)
admits a natural orthogonal decomposition H>(X) @ %8. Similarly, NS(Y) decomposes as NS(X) @ Z5.

Lemma 7.6. Let & be a polarization on X and ¢ be a polarization on Y of the form m& — 8. Denote by
projp(y) 8 the projection of § to P2(Y) and by Isom(—, —) the set of isometries between two quadratic
lattices. Now let X' be another K3 surface over k, take Y', &', 8' similarly, and suppose Y’ is polarized by
¢’ :=mé& — §'. There are natural identifications

Isom(P*(X), P2(X")) = {f € Isom(H*(X), H*(X') : f(§) =&}
={f eIsom(H*(Y), H*(Y")) : f(©) =¢, f(8) =&}
= {f € Isom(P*(Y), P*(Y') : f(projp:(y, 8) = projp2(yr 8'}. (40)

Assume now p > 5 to apply the results of [Yang 2023]. Let X be a K3 surface and ¥ := X2, Let ¢
be any primitive polarization on ¥ such that p is prime to the top intersection number ¢*. Let Def(Y; ¢)
denote the deformation functor of the pair (Y, ¢), i.e., the functor which sends an Artin W-algebra A
to the set of isomorphism classes of the flat deformations of (Y, ¢) over A. We have that Def(Y; ¢) is
representable by a formal scheme isomorphic to Spf(R) for R := W[xy, ..., x0l. Let (#, ¢) denote
the universal family over Def(Y; ¢). Note that ¢ algebraizes % into a scheme over Spec(R). Again we
use the symbol P?(—) for the primitive cohomologies of (¥, ¢). There are natural pairings on P>(Y, zr )
and P?(Y/ W) given by restricting the Beauville—-Bogomolov forms (see [Yang 2023, §2.1]).

3Here we are using a different font for H*(—) to distinguish from the H* (—) in Section 1D.
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Let F C K be any finite extension of K and b be any O g-point on Def(X; ¢). Choose an isomorphism
1: K = C. Let L be the quadratic lattice PZ(Z?/[;(C), Z (), equipped with the restriction of the negative
Beauville-Bogomolov form. We remark that since Hz(%(C ), Z) is always isomorphic to the lattice
AP = A @® Z(-2) and pJ[cl(;‘l;C)z, the isomorphism class of L as a quadratic lattice over Z(,) is
completely determined by the number c; (g‘l;c)2 [Milnor and Husemoller 1973, I, Lemma 4.2].

Let b be the closed point of Def(X, ¢). We pack the input we need from the Kuga—Satake period
morphism into the following proposition:

Proposition 7.7. Assume p > 5. There exists a local period morphism p : Spec R — F, (L) which
identifies Spec R with the complete local ring 63 of s := p(b) on S (L)w such that:

(a) There exist an isometry ogr : Pd2R = p*Lgr(—1) of filtered vector bundles and an isometry

. p2
Qeris : P,

i — 0¥ Leris(—1) of F-crystals that are compatible via the crystalline—de Rham comparison

isomorphisms.

(b) There is an isometry o, p : Pgt(%, A;) = La, p such that for any geometric b’ of characteristic zero
on Spec R, the pair of isometries (O‘Af,é” O‘dR,l}/)’ where Ay, i Pét(%/, Ar) — LAf,E’ is induced
by the smooth and proper base change theorem, is absolute Hodge.

Moreover, for any choice of trivialization €; : det(L ® Q») — det(Pét(Y, 0»)), s can always be chosen
such that det(o p) sends €3 to 8, 5.

Proof. See [Yang 2023, §3.3], which is a direct generalization of the results in [Madapusi Pera 2015, §5]. [

Remark 7.8. We remark that in order to construct the local period morphism p, we actually have to
choose an appropriate Z-integral structure for the Z,)-lattice L. However, once it is constructed, we are
allowed to forget about the Z-integral structure, as the integral models of the relevant Shimura varieties
only depend on the Z,)-lattice L.

7C. Twisted derived Torelli theorem.

Definition 7.9. Let X and X’ be K3 surfaces over an algebraically closed field k of characteristic p > 0.
Let f : h2(X’) => h2(X) be an isogeny. We say that f is liftable if for some finite extension F of K
with V := O and projective schemes Xy and X, over V which deform X and X’ to V, f lifts to an
isogeny fr : (X ) = h2(XF). If X and X’ are nonsupersingular, we say that f is perfectly liftable if
Xy and X/, can be chosen to be perfect liftings.

For the rest of Section 7C, let k be an algebraically closed field of p > 5.

Lemma 7.10. Let (Xo, &), ..., (X, &) be finitely many nonsupersingular polarized K3 surfaces over k
and let f; :52(X;) == b2(Xi41) be a perfectly liftable isogeny which sends & to & fori =0, 1, ..., m—1.
If f = fu10--0 fo: (h2(X0), &0) = (h*(X,), &n) induces an integral isomorphism HZ. (Xo/ W) =
ngiS(X m/ W), then f is perfectly liftable to K up to equivalence.

Proof. Set Y; .= X 1[2] and let §; be the exceptional divisor on Y;. For some number N >0, ¢; := pN& —6;
is a polarization on Y; for each i. The number (¢;, ¢;) under the Beauville-Bogomolov form on Y;
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is an integer M which is independent of i. Let L denote a Z,)-lattice which is isomorphic to the
orthogonal complement of an element A € AY1® Z(,,) with (A, 1) = M. We choose trivializations
€ : det(L® Qr) = det(Pét(Yi, »>)) such that f; sends ¢; to €;4;. Let p; denote a local period
morphism obtained by applying Proposition 7.7 to (Y;, ¢;) and ¢;, and let s; denote the image of the
basepoint under p;. Let 5; be a lift of s; to ixp (L).

We claim that there exists a CSpin-isogeny v; : o, — <%, , which induces the same isometries

it
LZ,s,- — L@,s,-H and Lcris,s,- — Lcris,siH

as f; foreachi =0,...,m — 1. Indeed, fix an i and let X; v, X;;+1 v be perfect liftings of X;, X;
over some finite extension V of W such that f lifts to fr : X; r = Xiy1 r, where F = V[1/p]. Let
Yi v, Yiy1,v be the Hilbert squares of X; v, X;41 v. Note that ¥; v and Y; 41 v carry liftings of ¢; and &1,
so via the local Torelli morphisms p; and p;+1, X; v and X; 1 v induce V-points s; v, Si+1,yv on .Zk(L).
Lift these points to V-points §; v, Si+1,v on ix(L), which is étale over .7k (L). Now choose an isomor-
phism F > C. The isogeny f; r(C) induces a Hodge isometry PZ(Xi,F(C), 0) = PZ(X,-H,F(C), 0),
which canonically extends to a Hodge isometry PZ(Y,-,F(C), 0) = P2(YZ-+1,F(C), Q) via Lemma 7.6.
By Proposition 7.7, the latter can be identified with a Hodge isometry Lp 5, .(c) ® @ —> L s, »(c) ® Q.
Note that we have required that f; send ¢; to ¢;41. By Lemma 7.4, we obtain a CSpin-isogeny
VYic : 5 ) —> Y5, ). By Lemma 7.3, ¥; ¢ specializes to a CSpin-isogeny v;, which can
be easily checked to have the desired properties.

By [Lieblich and Maulik 2018, Corollary 4.2], we can find a lifting X¢ w of X which also lifts all line
bundles on Xo. We transport the induced Hodge filtration on ngis(X o/ W) to HZris (Xm/ W) using f, which
induces a lift X, w of X, over W. It is easy to check that X, y also carries liftings of all line bundles
on X, using [Ogus 1979, Proposition 1.12]. Just as in the previous paragraph, after taking Hilbert squares
of the liftings, we obtain via the local period morphisms K -valued points $o. x, Sm.kx» S0.k» Sm.xk Which
lift 59, S, So, Sp. It follows from Proposition 7.1 that the crystalline realization of ¢ := ¥, 0--- 0 Yy
preserves the Hodge filtrations of <, , and <7, , via the Berthelot-Ogus comparison isomorphisms. By
[Berthelot and Ogus 1983, Theorem 3.15], ¢ lifts to a CSpin-isogeny ¥ : <

Sox —> s, - Choose

an isomorphism K = C. By running the arguments in the preceding paragraph backwards, we obtain a
rational Hodge isometry H?(X x (C), @) = H?*(X,,.x (C), @), which by Huybrechts’ theorem [2019,
Theorem 0.2] is induced by an isogeny fc. We get the desired isogeny f by specializing fc. (I

Proof of Theorem 1.5.. The forward direction is immediate (and does not need the restriction on p). For
the converse, suppose that f : h2(X') => h?(X) is polarizable and Z-integral. It is easy to see that if X
is supersingular, then so is X’. In this case, the result follows from the crystalline Torelli theorem of Ogus
[1983, Theorem II] (cf. [Yang 2022, Theorem 6.5]). Therefore, we reduce to the case when X and X’ have
finite height. We first remark that f maps NS(X’) isomorphically onto NS(X), so that by the structure of
ample cones of K3 surfaces [Ogus 1983, Proposition 1.10], f (&) is ample for any ample £. By definition,
there exists a sequence of K3 surfaces X' = X, ..., X,, = X over k and primitive derived isogenies
fi :9*(Xi) => b*(Xi31) such that f = f,_10---0 fo.
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We now show that there exists a sequence §; : h?(X;) = h>(X;) given by compositions of reflections
in (—2)-curves up to a sign and a sequence of ample class & € NS(X;) g such that (§; 410 fi)(§) =& +1
for each i. We do this by slightly refining the argument of [Yang 2022, Lemma 6.2]. Set §, to be the
identity. Choose any ample class ¢o € NS(X() g and €y > 0, such that the open ball B({o, €) centered
at ¢y of radius €y in NS(Xg)g lies inside the ample cone. By [Ogus 1979, Lemma 7.9], there exists
some 41, such that g“l/ ;=681 o fo(Lo) is big and nef. The image of B({p, €¢) in NS(X1)g under §; o fy is
an open neighborhood of ¢; which necessarily intersects the ample cone of X . Therefore, we may now
choose ¢ together with €; > 0 such that (§; o fo)"'B(¢1, €1) € B(¢o, €0). We iterate this process to obtain
a sequence of open balls B(¢;, €;) C NS(X;)g which lie inside the ample cones, and a sequence of §;’s
such that (§;4; o ﬁ)*l(B(g“iJrl, €i+1)) € B(¢;, €;). Now we win by choosing an element &,, € B({, €x),
and iteratively set & := (§;4+1 o f,-)_1 (§i+1). By clearing denominators we may assume that each &; is
integral.

Set & =§&,, & =&, hj :=08;y10 f; foreachi <m, and f' :=h,_j10---0hg= f. For each i,
consider T (X;) :=NS(X;)+ c H2(X;). Clearly f; and h; induce the same maps on transcendental lattices
T(Xi)g9 — T(X;+1) . Therefore, f and f’ induce the same maps T(X") g = T(X) g but their induced
maps NS(X’) => NS(X) may differ by an automorphism of NS(X) which preserves the ample cone. By
Theorem 5.8, each A; is liftable, so that by Lemma 7.10, £’ : h%(X’) == h2(X) admits a perfect lifting
fK h? (X ) = h%(Xg). Therefore, f’, and hence f, lifts to a Hodge isometry HZ(X’ ), 0) =
H?(Xx(C), Q) for a chosen isomorphism K = C. Using the smooth and proper base change theorem
for étale cohomology, we see that this rational Hodge isometry is Z[1/p]-integral. Now we show that
itis Z-integral. Indeed, we first note that f induces isomorphism f), : H H2 (X%, Q) — Hgt(X[g, 9,
and fis : crls(X /WH[1/p] = Crls(X/ W)[1/p]. We have f, ®z, ch = foris ®w Beris under the
p-adic comparison isomorphism (see (41) in the Appendix) as it is compatible with cycle class maps,
Poincaré duality and trace maps [Ito et al. 2018, Corollary 11.6]. Let S be Breuil’s S-ring. Then we
have an identification H>. (X /IW)Qw S = H?

cris (X/S) and a similar one for X’. Now, we are given that
feris ®w Beris sends the S-module H>

~is(X'/S) isomorphically onto Hcm(X/S). By [Cais and Liu 2019,
Theorem 5.2] (see also Theorem A.5 and Remark A.4 below), f), sends the Z,-lattice Hegt(X /1?’ Z,)
isomorphically onto H2 (X%, Zp). Therefore, we have shown that f in fact induces an integral Hodge

cris

isometry H2(X (C), Z) => H*(Xk(C), Z) which preserves the ample cones. We may now conclude
using the global Torelli theorem and [Matsusaka and Mumford 1964, Theorem 2]. ]

8. Isogenies and Hecke orbits

We briefly recall the definition of prime-to-p Hecke orbit on the orthogonal Shimura varieties. Let A be
the K3 lattice US> @ Egez, ) € A be a primitive element with d := A% and p > 2 be a prime such that ptd.
We shall use the same notation for orthogonal and spinor Shimura varieties as in Section 7A with L = L
and fix K, = G(Z,). The only difference is that this time L, has a Z-structure, so that the sheaf L AP
also has a ZP-structure. Let Kp denote the image of CSpin(L; ® VA4 ) in G(A ). More concretely, Kp
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can be described as the maximal subgroup of SO(L; ® 2”) which acts trivially on the discriminant group
disc(Ly ® Zr ) =disc(Ly). A more helpful alternative description for us is that Kp can be viewed as the
stabilizer of the element A ® 1 of SO(A ® Z?), which can naturally be viewed as a subgroup of G(A ).
The limit Shg, (L4) is equipped with a (right) G(A )-action. By the extension property of the canonlcal
integral models, this action extends to #« ,(Lq)- Recall the complex uniformization of Shg, (L4)

Shi, (La)(C) = G(Z(»)\2 x G(AD),

where €2 is the period domain parametrizing Hodge structures of K3 type on L, [Madapusi Pera 2016,
§3.1, 3.2; Yang 2022, Definition 3.1]. Given a point (w, g) € Q2 X G(A ) and an element g’ € G(A ), &

sends the class of (@, g) in Shg ,(L4)(C) to that of (w, gg ). Letk be an algebralcally closed field of charac—
teristic 0 or p. Let Myg k, be the moduli stack over Z () of oriented quasipolarized K3 surfaces of degree 2d
with hyperspecial level structure at p (see [Yang 2022, 3.3.4], where it is denoted by MM,K;IF’ZW). By the
modular interpretation of My, Ky» Mad K, (k) is in natural bijection with the set of tuples (X, &, €, ), where

* (X, &) is a quasipolarized K3 surface of degree 2d over k,

e € is an isometry
det(Ly; ® Q) — P t(X 0»),

which naturally extends to an isometry*
el det(Ld®A ) = Pt(X Af)

e 7 iS an isometry
A®ZP = HL(X,ZP)

which sends A ® 1 to ¢1(§) and is compatible with the isometry €”.

Using these explicit descriptions, it is easy to write down the map Mg k,(C) — Shyk, (L4)(C) explicitly:
Let (X, &, €, n) be the tuple which corresponds to a point s € My » (C). Choose an isomorphism
o (A ® Zp) — (H*(X, Z)), c1(§)) which is compatible with €. Then s is sent to the class of
(w,n 1o (@a® A" )) where w is the Hodge structure on L; endowed by «. This map is clearly well
defined. The mtegral extension My; — .k, (Lg) is constructed and studied in [Madapusi Pera 2015].
The reader can also look at [Yang 2022, §3.3] for a quick summary of the properties.

Theorem 8.1. Assume chark = p > 2. If any point x € S« ,(La)(k) lies in the image of M4 K, (k), then
so does x - g for any g € G(A ).

Proof. Let s € My k, (k) be a point such that x = pk(s). Let (X, &, n, €) be the tuple which corresponds
to s. We view G(A ) as the subgroup of SO(A ® A% ) which fixes A ® 1.

By Theorem 1.2 and Remark 6.10, there exists a K3 surface X’ together with a derived isogeny
f:52(X") = h%(X) such that f, (H*(X'))=H (X/ W)xim(g) C H?(X) ¢- Moreover, f is acomposition

cris

4For details on how to obtain this extension, see [Yang 2022, §3.3.3 or Corollary 3.3.7].
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of primitive derived isogenies which come from twisted derived equivalences involving Brauer classes of
prime-to- p order. Since f,(NS(X')) = fi(H*(X")) NNS(X) 0, £ € fx(NS(X")), so that NS(X’) contains
a primitive vector of degree 2d. By [Ogus 1979, Lemma 7.3], we can find a derived auto-isogeny § on X
which is given by reflections in (—2)-curves up to a sign such that § o f sends & to a quasipolarization &’.
Now we use § o f to transport (e, ) to similar structures (¢, n") on (X’, &’) so that we obtain a point
s" € Myy kr (k). We claim that p(s") = x - g. Although %k, (La) lacks a direct modular interpretation, we
can do this by a lifting argument.

We claim that there exist liftings (Xw, &w) and (X}, &) of (X, &) and (X', £') together with an
isogeny (f)z(X’K), g;{) — (h%(Xk), £x) whose étale realization agrees with § o f via the smooth and
proper base change theorem. If X and X’ are of finite height, by Theorem 5.8, § o f can be lifted to an
isogeny on the nose. In the supersingular case, we first choose a lifting (Xw, &w). Then X induces a
Hodge filtration on H2, (X/W), which can be transported to a filtration on H2. (X'/ W) lifting the one
on HSR(X '/k). By the local Torelli theorem, this defines a lifting X7, of X’. One easily checks by [Ogus
1979, Proposition 1.12] that £’ lifts to X7,. Now we apply [Yang 2023, Lemma 4.3.5] and Theorem 6.13.

Liftings as above induce W-points sy and sy, on My k, which lift s and s". Let xw := p(sw)
and xy, := p(sy,). Using the G(A?)—action, the lifting xw of x induces a lifting xj, of x” :=x - g. Using
the complex uniformization one quickly checks that x};, ® C = x, ® C for any embedding K C C. Since
7k, (Lg) is a limit of separated schemes, we conclude that x" = x” as desired. O

Choose a small enough compact open K?” C Kg such that for K := K,K?, #k(Ly) is a scheme and
denote the period morphism My, k — -k (L4) by pk. For any k-point x € .7k (L), the image of the
G(A?)—orbit of a lift x € K, (Lg4) (k) under the natural projection K, (Lg) — S (Lg) 1s what we call
the prime-to-p Hecke orbit of x.

Let 2" denote the universal family over My4 k. The mod p fiber Moy k. F, (resp. Sk (Lq) Fp) of moduli
space Mag,k admits a stratification Mag,k r, = M' 2 M? D --. D M? (resp. Fk(La)p, ="' 2 72D
.-+ 2 .29 such that for 1 < i < 10, a geometric point s lies in M (resp. ) if and only if 2;
(resp. Leis,s(—1)) has height > i, and for 11 <i <20, a geometric point s lies in M? (resp. .#") if and
only if Z; (resp. Lis,s(—1)) is supersingular and has Artin invariant <21 —i. Set Mi = Mi — Mi~!
and .7 := ' — .7'~! Heights and Artin invariants are rather classical invariants. For a more modern
interpretation in terms of Newton and Ekedahl-Oort (E-O) strata for .7« (L4)F,, see for example [Shen
2020, §8.4]. It follows from [Madapusi Pera 2015, Corollary 5.14] that the period morphism respects
these stratifications in the sense that M’ = .7 x 4 1.,y Mag.k. We remark that the Zariski closure of the
locally closed subscheme .#" is .. By [Shen and Zhang 2022, Corollaries 7.2.2 and 7.3.4], if 1 <i < 10,
then .7’ is a central leaf. The locus .72 is the superspecial locus (the unique closed E-O stratum), and is
also a central leaf (see [Shen and Zhang 2022, Remark 3.2.2, Examples 6.2.4]).

In our case, the Hecke orbit conjecture predicts the following:

Conjecture 8.2. For 1 <i < 10 or i = 20, the prime-to-p Hecke orbit of every s € . (F, p) s Zariski
dense in 7",
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We remark that once the above conjecture is known for F,, it is automatically true for any algebraically
closed field over F, by a specialization argument. Conjecture 8.2 has been proved by Maulik, Shankar,
and Tang [2022, Theorem 1.4] when i =1 and p > 5. We prove another special case below (Theorem 8.6).

We use N, to denote the supersingular lattice of Artin invariant o. We restrict to considering the p > 2
case, when these lattices are characterized by [Huybrechts 2016, §17, Proposition 2.20]. The original
reference [Rudakov and Shafarevich 1978] also treated the p = 2 case.

Lemma 8.3. For each d > 0 and i = 0, 1, there exist a primitive element £ € Ny with £> = 2d and
an a; € O(Ny) such that o; fixes & and interchanges the two isotropic lines in (va/Nl) ® F 2 and
det(a;) = (—1)".

Proof. The supersingular K3 surface with Artin invariant 1, which is unique up to isomorphism, is given
by the desingularization of A/A[2], where A = E x E for a supersingular elliptic curve E [Ogus 1979,
Corollary 7.14]. Since E admits a model over F), so does X. Let ¢ be a topological generator of Galp,.
We fix an isomorphism between N; and NS(X F,,)’ so that N is equipped with a Galf,-action such that
NS(X) is identified with the ¢-invariants N¥.

Let NS(A)(2) denote the lattice NS(A) but with the quadratic form multiplied by a factor of 2. As
a result of the Kummer construction, there exist 16 (—2)-curves &1, ..., 816 on X and an isometric
embedding

16
NS(A)(2) ® (@ za,-) <> NS(X).
i=1
Let ;+ € NS(A)(2) be a primitive element such that u?> > 0. For some coprime numbers a and b,
(ap + b81)> = 2d. The generator ¢ fixes £ := au + b8; and interchanges the isotropic lines in
(N)'/N1) ® F . (cf. the paragraph below [Liedtke 2016, Examples 4.20]).
Let s5, be the reflection in §,. Note that 55, fixes n and §;, and hence £. Moreover, it is not hard to
check that s5, acts trivially on N /N. Therefore, we can simply set g and «; to be ¢ and s5, o @, up to
permutation. (Il

Lemma 8.4. M £@  forall i.

Proof. Each Mi*! € M/ is locally cut out by a single equation. Moy k. , 1s smooth of dimension 19, and
we know that M0 is zero-dimensional (cf. [Artin 1974, §7]). Therefore, it suffices to show that M2° #* O,
i.e., there exists a quasipolarization of degree 2d on the superspecial K3 surface, which is unique up to
isomorphism. This follows from the preceding lemma and [Ogus 1979, Lemma 7.9]. O

Let K C G(Alf’) be the preimage of K. Before proceeding we recall that for any geometric point
t € S%x(Ly), there is a distinguished subspace LEnd(«) of End(«) which consists of the elements whose
cohomological realizations lie in L AT and L, ([Yang 2022, Definition 3.10]; cf. [Madapusi Pera
2016, Definition 5.11]). When t is on the supersingular locus, the natural maps LEnd(<) ® 7’ — L,

and LEnd(+) ® Z, — LE=1 are isomorphisms [Yang 2023, Proposition 3.2.3].

cris, l
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Lemma 8.5. Let k be an algebraically closed field with chark = p. Let x be a k-point on /" for
some i > 11 and t be a k-point on ij}((Ld) which lifts x, and set P := LEnd(«). Then there exists a

primitive element v € Ny with o :=21 —i and v? = 2d such that P = v,

Proof. Let Zv be a quadratic lattice of rank 1 generated by v with v> = 24. By the theory of gluing lattices
(see [McMullen 2011, §2] for a quick summary), primitive extensions of P @& Zv corresponds to the data
(G1, Ga, @), where G, G, are subgroups of disc(P) and disc(Zv) and ¢ is an isometry G; — G».
Therefore, constructing N amounts to choosing appropriate (G, G2, ¢).

In our case, we take G to be the prime-to-p part of disc(P), i.e., disc(P ® 2”), and G, = disc(Zv),
which is isomorphic to Z/(2d)Z as an abelian group. Then we construct ¢ by a lifting argument: Let xy
be a W-point on .¥(L;) which lifts x and let x¢ be xy for some embedding W < C. The period
morphism pk is known to be surjective on C-points, so there exists a quasipolarized K3 surface (X¢, &c)
such that the Z-Hodge structure L ,,. is naturally identified with P 2(X ¢, Z). We have that the natural map
PR 7y — Lz, is an isomorphism [Yang 2023, Proposition 3.2.3] and Lz, =Lp,® VA4 by smooth
and proper base change and the Artin comparison isomorphisms. Therefore, there is an isomorphism
B1: Gy = disc(P2(X¢, Z) ® ZP) = disc(P%(X¢, Z)). On the other hand, let B : G» = disc(Z&c)
be the isomorphism given by sending v to & € H*(X¢, Z).

We may transport the gluing data given by the primitive embedding P2(X¢, Z) ® Z& c H>(X¢, Z)
to a gluing data ¢ for G, G, via 1, B». Let N be the lattice given by (G, G3, ¢). We check that it is
a supersingular K3 lattice. Clearly, by our construction, N ® ZPr = AQZP. As P is negative definite,
N has signature (1+, 21—). Finally, disc(N ® Z,) =disc(P® Z,) = (Z/pZ)ZU as an abelian group.
Therefore, N = N,. U

We now prove another special case of Conjecture 8.2:
Theorem 8.6. Conjecture 8.2 holds for i = 20.

Proof. Take two F, p-points x, x" € 20 Choose lifts 7, ¢’ for x, x’ in Zkx (Ly). We only need to show
that there exists a CSpin-isogeny <, — < which is prime to p. Indeed, this follows from an explicit
description of the isogeny classes in ixp (Ly)(F, ») and their images on .k, (Ly)(F ») [Yang 2022, §3.2.3].
Let P and P’ denote LEnd(«;) and LEnd(«) respectively.

We first show that every isometry Py — P/Q whose induced isomorphism L, @ Q@ — Ly ® O
sends &3 ; to 8, ¢ is induced by a CSpin-isogeny v : o, — < by conjugation. Indeed, by [Yang 2023,
Proposition 3.2.4], there exists some CSpin-isogeny v : o — //, which induces some isomorphism
Pg — PfQ whose induced isomorphism Ly ; ® Q — L » ® Q sends &, to 82 . The group of CSpin-
isogenies from 7 to itself is identified with CSpin(Pg), which surjects to SO(Pg). By composing v’
with some CSpin-isogeny <7, — <7, we get the desired .

We only need to show that there exists a CSpin-isogeny <7 — <+ which is prime to p. By a Cartan
decomposition trick [Yang 2023, Lemma 3.2.6], we only need to show the following claim:

Claim. There exists an isometry P ® Z,y — P’ ® Z(,) which sends &, . to 6>y and extends to an

isomorphism L s x —> Lcris x'-
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By Lemma 8.5, for some primitive vectors &, £’ in N| with &2 = (¢§/)?> = 2d, we have P = £+
and P’ = (¢/)*. Since some reflection of N ® Zp) takes & to &' [Milnor and Husemoller 1973, 1,
Lemma 4.2], P® Zp) = P’ ® Z(p) as quadratic lattice over Z,). Now P® Z, and P’ ® Z, are the
Tate modules of the supersingular K3 crystals L (—1) and L ,/(—1) respectively. By Ogus’s
theory of characteristic subspaces [1979, Theorem 3.20], L ; (resp. Lis, ) determines an isotropic
line of (PY/P) ® Fp (resp. (P)Y/P)® Fp) and the isomorphism P ® Z, — P’ ® Z, extends to an
isomorphism Lss; —> Lis, o if and only these isotropic lines are respected. Now the claim follows
from Lemma 8.3. 0

Remark 8.7. As the reader can readily tell, the heart of the above theorem is the claim. Here we have
proved the claim in a rather ad hoc way. We go through Lemma 8.5 because there does not seem to be a
good classification theory for quadratic lattices over Z(,). Moreover, P and P’ are negative definite, so
one cannot apply, say, Nikulin’s theory to generate automorphisms, which only handles indefinite lattices.
Luckily, in our special case, there is a geometric way of constructing the automorphisms we need.

Lemma 8.8. Let k be an algebraically closed field with chark = p > 2. Let R be a DVR over k with
fraction field k and let X, be a supersingular K3 surface over k such that X has Artin invariant oy.
There exists a DVR S over k with fraction field L, a finite separable map R — S, and an Ny,-marked
supersingular K3 surface X g over S such that (Xs)p = (Xi)L-

Proof. By a result of Rudakov and Shafarevich (see [Rudakov and Shafarevich 1976, Theorem 50],
and [Bragg and Lieblich 2018, Theorem 5.2.1] for p = 3) there exists a DVR S, a finite separable map
R — S, and a supersingular K3 surface Xg over S such that (Xs); = (X, ). The Picard scheme Pic X,
is formally étale over Spec L. As Pic(Xj) is finitely generated, after taking a further finite separable
extension we may ensure that the restriction map Pic(X) = Pic(X) is an isomorphism. Thus, X; admits
an Ny, -marking. As S is a DVR, we have Pic(X;) = Pic(X), so the generic marking extends uniquely to
an Ny, -marking of X. (|

Theorem 8.9. If Conjecture 8.2 holds for i, ori > 11, then .7 C im(pk).

Proof. If Conjecture 8.2 holds for i then the conclusion is a direct consequence of Theorem 8.1 and the
fact that im(pk) is open. Now assume i > 11 and take k = Fp. Note that by Theorem 8.6, .#?° C im(pk).
Since the Zariski closure of .7 is 7, the intersection im(pk) N .7" is open and dense in ' Take a
closed point x € fk’ . Let R be the ring k[[¢]] and F be its fraction field. Choose an R-valued point X
which extends x such that ¥ lies in im(px) N.#. Such an X can always be found: we can always choose
a smooth curve which passes through x and whose generic point lies in im(pk) N.#’. Then we simply
take the completion of this curve at x. Let X5 be a supersingular K3 surface over the generic point of X5.
Note that the geometric fiber of X4 has Artin invariant o := 21 —i. By the preceding lemma, there exists
a DVR R’ over R, whose fraction field F is a finite extension of F, such that there is an N,-marked
supersingular K3 surface X over R'.

We argue that the special fiber X; of X has Artin invariant o. There are two families of supersingular
K3 crystals over R’ (see [Ogus 1979, §5] for the definition): One is obtained by pulling back Lyis z(—1)
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2
cris

fiber. By Proposition 4.6 and Theorem 5.3 of [Ogus 1979], there exists a universal family of supersingular

along R — R'. The other is given by H-. (X’). By construction, these two families agree on the generic
K3 crystals over a smooth projective space M such that these two families are both obtained by pulling
back the universal family along morphisms R — M. Since M is in particular separated, these two
morphisms have to agree. Therefore, ngis(DC’ /R') is precisely the pullback of L :(—1). Now we
conclude by the hypothesis that x € Y,f.

Now we know that Xz := X ® T and X; have the same Artin invariant. This guarantees that the
specialization map Pic(X4) — Pic(X;) must be an isomorphism, and hence must send the ample cone
isomorphically onto the ample cone. Since the big and nef cone is the closure of the ample cone, the

quasipolarization on Xg extends to a quasipolarization on Xj. This shows that x € im(pk). (I

Finally we discuss some implications of the surjectivity of the period morphism to the good reduction
theory of K3 surfaces. As Conjecture 8.2 is known for i = 1 and p > 5 (by [Maulik et al. 2022,
Theorem 1.4]), the following result in particular implies the unconditional Theorem 1.7.

Theorem 8.10. Let k be a perfect field of characteristic p > 2. Let F be a finite extension of K = W[1/ p].
Let X be a K3 surface over F equipped with a quasipolarization & of degree 2d with ptd. Suppose that
the Galg-action on Hézt(XF, Qy) is potentially unramified for some £ # p. Then we have:

(a) Hét(X 7> A?) and Hét(X 7> Qp) are potentially unramified and crystalline respectively.
(b) If Hegt(XF’ Q) is crystalline, then IDCriS(Hét(X,;, 0))) is a K3 crystal.

(c) Suppose that the hypothesis of (b) is satisfied and Dcris(Hegt(X 7> Qp)) is a K3 crystal of height i. If
Conjecture 8.2 holds for i or if i = 0o, then X has potential good reduction.

We recall that X as above is said to have potential good reduction if, up to replacing F by a finite
extension, there exists a smooth proper algebraic space X over O, whose special fiber is a K3 surface
over k and whose generic fiber is X ¢ (cf. [Liedtke and Matsumoto 2018, Definition 2.1]).

Proof. (a) and (b) Up to replacing F by a finite extension, we may equip (X, §) with a K-level structure
and an orientation so that it is given by an F-point s on Myy k, and find a lift 7 € ix(Ld)(F) of pk(s).
Consider the abelian variety «%. One easily adapts the argument of Deligne [1981, §6.6] to see that, up to
replacing F by a further extension, </ admits good reduction. By the extension property of the integral
models, we can extend ¢ to an O g-valued point T on #k(Ly4). This implies both (a) and (b).

(c) We have t ® k € 7', If the hypothesis is satisfied, then . C im(pk). Now we conclude by the
étaleness of pk. Indeed, the global Torelli theorem implies that if two C-points of Myg k are mapped to
the same points under pk, then the K3 surfaces they correspond to are (noncanonically) isomorphic. If
there is a quasipolarized K3 surface over k whose moduli point is sent to T ® k, then the étaleness of pk
tells us that there exists an F-point s” of May k such that pk(s) = pk(s). Up to replacing F by a finite
extension, the K3 surfaces defined by s and s’ are isomorphic. U
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Appendix: Some results from integral p-adic Hodge theory

We review some basic results in p-adic Hodge theory. Let k be a perfect field of characteristic p > 0.
We write W for W (k) and K for W[1/p]. Let K be a totally ramified extension of Ky and let = be a
uniformizer of its ring of integers Ox.> Let G g denote the absolute Galois group Galg. Set R := Ok /(p).

Let f : X — Spec Ok be a smooth and proper scheme (more generally, the following discussion applies
also when X is only a formal scheme and X g denotes the rigid analytic generic fiber). The subject of
p-adic Hodge theory is concerned with how to recover the following tuples of data from one another
under suitable assumptions:

(A) The Z,-module Hét(f)C i Zp) equipped with a G g -action.
(B) The F-crystal R! JR.crissOx, over Cris(R/ W) together with the filtered O x-module HfiR(f)C /O0k).
(B') The F-crystal H . (X;/ W) together with the filtered O x-module HéR(DC /Ok).

cris
Remark A.1. Let ¢ be the ramification degree of Ox over W. Whene < p — 1, R = k[e]/e® has a PD
structure, so that the category of crystals of quasicoherent sheaves over Cris(R/ W) is equivalent to
that over Cris(k/ W) [Berthelot and Ogus 1978, Corollary 6.7]. Therefore, under mild torsion-freeness
assumptions on various cohomology modules of X, (B) and (B’) are equivalent data. Moreover, as Ok is
a PD thickening of W, the crystalline de Rham comparison theorem gives us a canonical isomorphism

Hi e/ W) ® O = Hig (X/O).

If e > p — 1, then (B) contains strictly more information than (B’). The above isomorphism no longer
holds integrally in general. However, there is still a canonical isomorphism after inverting p:

H . (/W) ®K ZHR(X/0k) ® K.
w Ok

This isomorphism is often called the Berthelot—Ogus isomorphism because it was first introduced in
[Berthelot and Ogus 1983]. Below we will often make use of this isomorphism implicitly. Note that in the
above isomorphisms, the left-hand side only depends on the special fiber X, whereas the right-hand side
is equipped with the additional data of a Hodge filtration, which in general depends on the lifting X of Xj.

Here is an overview of the relationship between the above tuples: The classical (rational) p-adic
comparison isomorphisms tell us how to recover (A) and (B’) from one another after inverting p. Integral
p-adic Hodge theory (e.g., the seminal paper of Bhatt, Morrow, and Scholze [Bhatt et al. 2018]) tells
us how to recover (B) from (A). For our purposes, we are mainly concerned with how to recover (A)
from (B). Roughly speaking, the way to do this is to evaluate the F-crystal R’ f ¢is+Ox, on a certain
PD-thickening S of R (S is often called Breuil’s S-ring), so that we obtain an S-module. This S-module is
equipped with a Frobenius action from the F-crystal structure on R’ g cris+ O x5, and is moreover equipped
with a filtration which absorbs the data of the Hodge filtration on HSR(DC /Og). The main result of

SThis notation is chosen to be in line with most references in p-adic Hodge theory. In the main text, the letters K and F take
the roles of Ky and K respectively. We apologize for this inconsistency of notation.
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[Cais and Liu 2019] tells us that by applying a certain functor (denoted by T¢is below) to this S-module,
we recover (A). Of course, [Bhatt et al. 2018] already treats the relationship between (A) and (B), but the
conclusions there are packaged in a more abstract way.

After inverting p. Let MF,‘@’N denote the category of filtered (¢, N)-modules. An object of this category
is a Ky-vector space D which is equipped with

« a Frobenius semilinear injection ¢ : D — D;
e a Ky-linear map N : D — D such that No = pN;
« a descending filtration on Dg such that Fil' Dx = Dk fori < 0 and Fil' Dx = 0 for i > 0.

Let MF}‘; denote the subcategory with N = 0. The motivation to consider this category is that the
data in (A) is naturally an object in MF}‘; after inverting p, because there is a canonical Berthelot—
Ogus isomorphism Hgm(xk /W)Qw K = HQR(I)C /Ok) ®o, K. We will use this isomorphism repeatedly
without explicitly mentioning it. We remark that in most references the operator N is in MF}@’N to
treat varieties with semistable reductions. Since we are assuming good reduction, we may restrict to
considering the category MF,‘p{.

cris

Let Repg,, denote the category of G g -representations over @), and let Rep denote the subcategory
of crystalline representations. Given an object Q € RepCGri;, one may define an object in MF}’; using
the (covariant) Fontaine’s functors D;s and Dgr, which are defined by D.s(Q) = (Q ®g, Beris) ©¥
and Dgr(Q) = (0 ®yg, Bar)%. The pair (Dgis(Q), Dgr(Q)) are equipped with a Frobenius action
and filtrations respectively, and hence define an object in MF?{. We abusively denote the resulting

Cr1s

functor Repg , — MFI(? also by Deris. We define a functor from the essential image of Dcris to Rep,; by
Viris = Fil’(D ®k, Beris)?~". There is an equality of Q ,-submodules

Q = Vcris(Dcris(Q))

of (Q ®@, Beis) ®k, Beriss which specifies a natural transformation V5 0 D¢ris = id on RepCGriIf.6 The
reader may look at [Brinon and Conrad 2009, Part I, Sections 8 and 9] for more details about these objects.
By [Bhatt et al. 2018, Proposition 5.1, Theorem 14.6], there is a p-adic comparison isomorphism

H.,. (Xx/ W) ® Beris = H. Xz, Z,) ® Bory (41)
)4

cris
which respects the Gal p-actions and filtrations. Therefore, we obtain an isomorphism of objects in MF}?

Deris (HL (X7, @) = (HL, (e/ W)[1/p], Hig(Xk /K)). (42)

There are multiple rational p-adic comparison isomorphisms of the form (41) (e.g., those constructed
earlier by Faltings [1999], Tsuji [1999], and others). We choose to use the one from [Bhatt et al. 2018]
because this is the one used in [Cais and Liu 2019], to be cited below. Once we fix this choice of rational
p-adic comparison isomorphism, then the isomorphism (42) is also fixed.

5Note that the natural transformations between two functors between 1-categories (or locally small categories in the usual
sense) do form a set (as opposed to a groupoid), so it makes sense to specify an element in this set.
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Recovering integral lattices. We now explain how to recover the natural integral lattices in the objects
of (42) from one another. Let G := W[u]], and let 8§ : & — Ok be the map sending u to w. Let

criso

Repg,, denote the category of G -stable Z ) -lattices in objects of Repgi;. Let 91(—) be the functor as
in [Kisin 2010, Theorem 1.2.1] which sends an object in RepCGriIf0 to a Breuil-Kisin module in the sense

of [Bhatt et al. 2018, Theorem 4.4], so that there exist canonical isomorphisms

¢ " M(T) ® Ko = Deris(T[1/p]) and @™ DUT) & K — Da(T[1/p]) (43)

which preserve Frobenius actions and filtrations respectively. Then we have the following result [Bhatt
et al. 2018, Theorem 14.6].

Theorem A.2. Assume that Hiris(xk/ W) and H+ (X ) W) are torsion-free. Then for T = Hgt(x,?, Z,)

the isomorphisms (43) map (T) @ W and M(T) ®e,0 Ok isomorphically onto H! Xk /W) and

cris

HSR(DC /O k) respectively, when composed with the isomorphisms in (41).

We refer the reader also to [Ito et al. 2018, Theorem 3.2] for an exposition which is closer to ours
in notation. The above theorem tells us how to recover (B’) from (A). Under the additional assumption
that i < p — 1, [Cais and Liu 2019, Theorem 5.4] tells us how to recover (A) from (B). Before doing so
we need to introduce the intermediate category of Breuil’s S-modules, which packages the data of (B) in
a different way.

Breuil’s S-modules. Let S denote the p-adic completion of the PD envelope of (&, ker9). Let S, denote
the ring W[u — r]l. Then there is an embedding ¢ : S < S, which sends u to u — 7. Let f; : Sy — Ok
(resp. fo: S — W) be the projection which sends u — 7 to 0 (resp. u to 0). Then there is a commutative
diagram of W-algebras
S —— S,
fol lfn

W —— O

In [Breuil 1997], the above ring S is denoted by Sglin. The letter S in loc. cit. denotes a certain extension
of Sr?ﬁn, K, For our purposes, one may simply take § = Sglin’ k, When reading [Breuil 1997]. The letter §
in our notation is in line with [Cais and Liu 2019] and [Liu 2008].

Let MF ?ng denote the category of filtered (¢, N)-modules over Sk,.” There is an equivalence of
categories

n: MF}@’N — M&"?I’(iv (44)

which sends (D, Fil* Dk, ¢, N) to an object (2, Fil* 9, ¢4, Ny) with 2 = D ®w S ([Cais and Liu
2019, p. 1215]; see also [Breuil 1997, Theorem 6.1.1]). The quasi-inverse n‘l is defined by (2 ®@ 1, W,
2 ® .0 Ok ), for which the Frobenius action and filtration are inherited from those on . There is a

TThis is just the category denoted by MJF (¢, N) in [Liu 2008, §2.2], except that we have not restricted to positive objects, so
that we replace the condition Filly =9 by FilV 2 = 2 for j <« 0.
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1

canonical natural transformation n~"' o = id on MF I(p( which underlies the tautological identification of

modules
(D, DK)—(D®S®W DK(‘%)S ® Ok).

frot

A strongly divisible S-lattice (of height r) in an object 2 € MS’?;(N with Fil’ 2 = 2 is an S-lattice such
that #Z[1/pl= 2, No(#) C #, and @5 (Fil" .4) C p"#, where Fil" .4 := .# NFil" 2. Let MCF?’N
denote the category of strongly divisible S-lattices in objects of J\/[H-‘?]‘(iv.

Theorem A.3 (Liu). Suppose that Q € Repcm has Hodge-Tate weights in {0,1,...,p —2}. Let 9
denote n(Q). The covariant functor Tes : M +—> Fil'( 4 @ Acis)?=" defines a bijection between the set
of strongly divisible S-lattices in 9 and that of G g -stable Z ,-lattices in Viis(Deris(Q)) = Q.

Proof. Theorem 2.3.5 of [Liu 2008] tells us that the above theorem holds for Breuil’s functor Ty. The
contravariant version of this functor is reviewed in Section 2.2 of loc. cit. If we use the superscript (resp.
subscript) * to indicate contravariance (resp. covariance), then T (—) = Ty ((—)"). Proposition 3.5.1 of
loc. cit. tells us that T (#) = Teis(#) as Q is crystalline. O

Remark A.4. Let € denote the full subcategory of MJFy 2N whose image in MJ ‘p lies in the essential
image of MFI“; (as a subcategory of MF ) under 7. To sum up, we now have a commutatlve diagram
of categories

Deris n

— N > N

@ b, P,
Repcm MFy —— MFy MF Sk,

) S k/
T Veris -1 T
n

Rep&ise ¢ e« > MFEY

p < 7 S

Teris

in which the vertical arrows are given by inverting p. Moreover, the natural transformations V5o Deis = id

and n~!

on = id are tautological. By the above theorem, 7 is an equivalence of categories. We remark
that since Ays 1s @ W-subalgebra of Bgjs and the inclusion Ais © Bis respects the filtration and Frobenius
structures, Teyis(.#) is a priori a Z,-submodule of Vi4is(Deris(Q)). The reason that we emphasize the
natural transformations used is to decategorify the language, so that T, which is often stated as an

equivalence of categories, is concretely an equality of sets.

Theorem A.5 (Cais and Liu). Assume that H' . (X;/W) and H g, / W) are torsion-free and i < p—2.

cris cris

Set M :=H _ (Xr/S). Letyp: .# — H_ (Xy/W) be the canonical projection induced by fy. Let

cris cris

9 € J\/[S"(p be given by the object (H. . (Xp)k, Fil° HSR(DCK/K)) in MF,“; via n. Then we have:

cris
(a) There is a canonical section s to p[1/p] such that s is p-equivariant and s @w S induces an isomor-
phism #[1/p] — 2.

(b) Under the isomorphism in (a), .# defines a strongly divisible S-lattice in 2 and T.is(MH) =
H, (Xg, Z)).
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Proof. Part (a) is a variant of the Berthelot—Ogus isomorphism [Cais and Liu 2019, Proposition 5.1].
Part (b) follows from [Cais and Liu 2019, Theorem 5.4(2)] and its proof, which proceeds by reducing to
proving the equality of two lattices.

Let T be an object of RepCrlqo and let 991(T) be the Breuil-Kisin module associated to 7. Let M (—)
be the functor defined by ¢*(01(—)). Then .# (M (T)) := M(T) ®g S can be equipped with additional
structures so that it becomes an object in MS’?’N. The base-change-to-S functor .# used here is defined
in (3.6) of loc. cit. There is a natural isomorphism .Z (M (T))[1/p] = n(Duis(T[1/p])) which lifts
the isomorphism M (T) ®s Ko —> Deis(T[1/p]) in (43). Moreover, T.is sends the strongly divisible
S-lattice # (M (T)) to T. The reader may also check out the proof of [Snowden 2014, Lemma A.3] for
entirely similar considerations.

Now let T be Hét(f)C &> Zp). Since Ty establishes a bijection between strongly divisible S-lattices in 2
and G g-stable Z ,-lattices in T'[1/p], one reduces to showing an equality of S-lattices .# = .# (M (T))
under the isomorphisms

M M)/ pl=2 =411/ p].

This is the main step in the proof of [Cais and Liu 2019, Theorem 5.4(2)] (see the second paragraph on
page 1226). [l

Remark A.6. In the above setting, let f : Xz — Spf(R) be the structure morphism and let H;_ ' (Xg) denote
the F-crystal R’ fcm*ox <~ Then H’CHS(DC r/S) (resp. chs(.')C r/Ok)) can be viewed as a the S-module given

(XR) on the object S (resp. Og) of Cris(R/W). The morphism 6 : § — Ok defines a
canonical isomorphism 9*HC’m(3CR)5 = HC’m(DCR)oK The lifting X of Xz to Og endows Hcm(xR)OK

with a Hodge filtration via the crystalline de Rham comparison crls(xR)O « = HﬁiR(f)C /Ok). The S-

by evaluating H_

module HC’m(DC R)s, being an object of MJF ?’N, is also equipped with a natural filtration, which maps
isomorphically onto the Hodge filtration on HéR(DC /Ok). However, note that the filtration on Crls(DC R)S
is defined in a more formal way, with the Hodge filtration on H éR(f)C /Ok) being the key input. Namely,
X/ W), HflR(DC/ Ok)), and then defines a filtration on .# by inter-

secting with Fil* 2 under the isomorphism in part (a) of the above theorem. One naturally wonders

one first constructs 2 out of (H’crls
whether this filtration has a more direct cohomological construction. This question is addressed in
[Cais and Liu 2019, §6.1]. However, we won’t make use of this cohomological interpretation.

Remark A.7. If X is a smooth proper scheme over O g, or more generally a smooth proper algebraic space
over Og whose special and generic fibers are schemes, then the above results hold for Xk interpreted as
the generic fiber in the usual sense. The point is that the analytification of the generic fiber is functorially
isomorphic to the rigid analytic generic fiber of the formal completion of X at the special fiber. The reader
may look at [Ito et al. 2018, §11.2] for details.

Applications to p-divisible groups. Let ¢ be a p-divisible group over Ok and assume p > 3. Let T,,(—)
denote the Tate module functor, D(—) denote the contravariant Dieudonné module functor and ¢* denote
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the Cartier dual of ¢. There is a p-adic comparison isomorphism

D(%k) % Besis —> Tpg*(_l) ? Besis (45)
P

which induces an isomorphism D¢is(T,%*(—1) ®z, 0,) — D(@)[1/p]. Teis(D(ZR)s) recovers the
Z ,-lattice T,%*(—1) inside T,9*(—1) ®z, Qp [Kisin 2006, Lemma 2.2.4]. Note that T,9%(—1) is
canonically isomorphic to (7,%)".
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