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We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization

of K3 surfaces isogenous to a given K3 surface X in terms of certain integral sublattices of the second

rational ℓ-adic and crystalline cohomology groups of X . This is a positive characteristic analog of a result

of Huybrechts (Comment. Math. Helv. 94:3 (2019), 445–458), and extends results of Yang (Int. Math.
Res. Not. 2022:6 (2022), 4407–4450). We give applications to the reduction types of K3 surfaces and to

the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai

lattices in positive characteristic, which may be of independent interest. We also prove some results on

lifting twisted Fourier–Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson

(Ann. Sci. Éc. Norm. Supér. (4) 48:5 (2015), 1001–1033).
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1. Introduction

The purpose of this paper is to study twisted Fourier–Mukai partners of K3 surfaces in positive char-

acteristics and to develop an isogeny theory for these surfaces which is analogous to that of abelian

varieties.

Let k be an algebraically closed field and p be a prime number. When char k = p, we simply write W

for the ring of Witt vectors W (k). Let Ẑ p denote the prime-to-p part of Ẑ. For a variety Y over k, we

set H∗(Y ) := H∗
ét
(Y, Ẑ) if char k = 0, and H∗(Y ) := H∗

ét
(Y, Ẑ p)×H∗cris(Y/W ) if char k = p, and write

H∗(Y )Q := H∗(Y )¹Z Q.
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Definition 1.1 (cf. [Yang 2022, Definition 1.1]). Let X and X ′ be K3 surfaces over k. An isogeny

f : X ⇝ X ′ is a correspondence, i.e., a Q-linear combination of algebraic cycles on X × X ′, such that

the induced action H2(X ′)Q→ H2(X)Q is an isomorphism which preserves the Poincaré pairing. Two

isogenies are deemed equivalent if they induce the same map H2(X ′)Q
∼−→ H2(X)Q .

Our main results concern the existence and uniqueness of isogenies with prescribed cohomological

action. We begin with the former. A natural source for isogenies between K3 surfaces is provided

by twisted Fourier–Mukai equivalences: For a K3 surface X and Brauer class ³ ∈ Br(X), we denote

by Db(X, ³) the bounded derived category of ³-twisted sheaves. Given another K3 surface X ′ and

Brauer class ³′, an equivalence Db(X, ³) ∼−→ Db(X ′, ³′) induces, up to some choices, an isogeny

f : X ⇝ X ′. We call isogenies which arise this way primitive derived isogenies, and compositions of

such isogenies derived isogenies. The precise definitions are given in Section 4. There we also give a

motivic reformulation of the above definition, which will be used for the rest of the paper.

To state our theorems, we denote the K3 lattice U·3·E·2
8 by3 and recall Ogus’s notion of K3 crystals

[1979, Definition 3.1]. Here U denotes the standard hyperbolic plane and E8 denotes the unique unimod-

ular even negative definite lattice of rank 8. Our first theorem is an existence result on derived isogenies:

Theorem 1.2. Assume char k = p g 5. Let X be a K3 surface over k. Endow 3¹W with a K3 crystal

structure and denote it by Hp and let H p denote 3¹ Ẑ p.

Let º : H p × Hp ↪→ H2(X)Q be an isometric embedding which respects the Frobenius actions on Hp

and H2
cris(X/W )[1/p]. There exists a derived isogeny f : X ⇝ X ′ to another K3 surface X ′ such that

f ∗(H2(X ′))= im(º) if and only if º sends the slope< 1 part of Hp isomorphically onto that of H2
cris(X/W ).

We refer the reader to Remark 6.10 for the reason to restrict to p g 5. The above result is inspired by a

theorem of Huybrechts [2019, Theorem 0.1], which can be stated as follows in our terminology:

Theorem 1.3 (Huybrechts). Let X and X ′ be two K3 surfaces over C. Every isomorphism of Hodge

structures H2(X ′, Q) ∼−→ H2(X, Q) which preserves the Poincaré pairings is induced by a derived

isogeny f : X ⇝ X ′.

This refines an earlier theorem of Buskin [2019, Theorem 1.1], which affirms a conjecture of Shafarevich.

Using the global Torelli theorem and surjectivity of the period map, one checks that Huybrechts’ theorem

is equivalent to an existence theorem for isogenies: for every K3 surface X over C and every isometric

embedding º :3↪→H2(X, Q), there exists another K3 surface X ′ over C and a derived isogeny f : X⇝ X ′

such that f ∗(H2(X ′, Z)) = im(º) (see Section 6D). Note that this statement does not involve Hodge

structures. Our Theorem 1.2 is a positive characteristic analog for this version of Huybrechts’ theorem.

Huybrechts’ refinement shows in particular that every isogeny between K3 surfaces over C is equivalent

to a derived isogeny. In contrast, the “only if” part of Theorem 1.2 implies that the cohomological actions

of derived isogenies in characteristic p obey a certain nontrivial constraint at p. In particular, not every

isogeny is equivalent to a derived isogeny. Given this, it is of interest to characterize also the possible

cohomological actions of all (not necessarily derived) isogenies. The following result shows that, under
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some technical assumptions, the “if” part of Theorem 1.2 can be removed for k = Fp if one is willing to

consider all isogenies:

Theorem 1.4. Let X , Hp, H p and º be as in Theorem 1.2. If k = Fp and

(a) Pic(X) has rank g 12 or contains a standard hyperbolic plane, or

(b) Pic(X) contains an ample line bundle L of degree L2 < p− 4,

then there exists another K3 surface X ′ over k and an isogeny f : X ⇝ X ′ such that f ∗(H2(X ′))= im(º).

This is a strengthening of [Yang 2022, Theorem 1.4]. We mention that a byproduct in the course of

proving the above is a generalization (Theorem 6.18) of Taelman’s characterization [2020, Theorem C]

of the canonical liftings of ordinary K3 surfaces. Nygaard and Ogus [1985] constructed, for every

nonsupersingular K3 surface X , a “section” to the natural morphism Def(X)→ Def(B̂rX ) from the

deformation space of X to that of its formal Brauer group, such that a lifting of B̂rX induces a lifting of X .

We call liftings of X which arise this way “Nygaard–Ogus liftings”. When X is ordinary, a Nygaard–

Ogus lifting is the same as a canonical lifting. Theorem 6.18 gives an integral p-adic Hodge-theoretic

characterization of Nygaard–Ogus liftings. See Section 6E for details.

We now describe our uniqueness results. We recall some terminology from [Yang 2022, §6]: an isogeny

f : X⇝ X ′ between K3 surfaces is said to be polarizable if the induced map Pic(X ′)Q
∼−→ Pic(X)Q sends

an ample class to another ample class, and Z-integral if the induced isomorphism H2(X ′)Q
∼−→ H2(X)Q

restricts to an isomorphism H2(X ′) ∼−→ H2(X). We prove the following Torelli theorem for derived

isogenies:

Theorem 1.5. Assume char k g 5. Let X and X ′ be K3 surfaces over k. A derived isogeny f : X ⇝ X ′ is

equivalent to the graph of an isomorphism X ′ ∼−→ X , if and only if f is polarizable and Z-integral.

Finally, we remark that Li and Zou [2021] considered derived isogenies and Torelli type theorems for

abelian surfaces.

1A. Applications to good reductions of K3 surfaces. We apply our results to study the good reduction

conjecture for K3 surfaces:

Conjecture 1.6. Let k be an algebraically closed field of characteristic p > 0 and let F be a finite

extension of W [1/p]. Let X F be a K3 surface over F such that H2
ét
(X F , Qℓ) is unramified for some

prime ℓ ̸= p. Then, X F has potentially good reduction.

This conjecture is a K3 analog of the Néron–Ogg–Shafarevich criterion for abelian varieties. It admits

many variants (e.g., ones that concern semistable reductions) and is verified in cases when X F admits a

polarization of low degree (see [Matsumoto 2015] and [Liedtke and Matsumoto 2018]). We prove the

following:

Theorem 1.7. Let X F be as in Conjecture 1.6. Assume p > 2 and X F admits a line bundle of degree

prime to p. Then the GalF -representation H2
ét
(X F , Q p) is potentially crystalline. If p g 5 (resp. p > 2)

and H2
ét
(X F , Q p) has potentially good ordinary or (resp. supersingular) reduction, then so does X F .
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Roughly speaking, the theorem is saying that if the cohomology of X F predicts that X F should have

potential ordinary or supersingular reduction, then it does. We derive this as a consequence of a more

general result (Theorem 8.10), which essentially reduces Conjecture 1.6 to the Hecke orbit conjecture (see

Conjecture 8.2), which is a purely Shimura–theoretic statement. In particular, we prove the following.

Theorem 1.8. Let X F be an in Conjecture 1.6. Suppose that p > 2 and that X F admits a line bundle of

degree prime to p. Assume the Hecke orbit conjecture (Conjecture 8.2) holds for all i . Then, X F has

potentially good reduction.

Our unconditional Theorem 1.7, in the ordinary case, is then a consequence of recent work of Maulik,

Shankar, and Tang [Maulik et al. 2022, Theorem 1.4] proving the Hecke orbit conjecture in certain

special cases. The supersingular case will be treated by a slightly different argument. Moreover, it seems

very likely that a slight generalization of the conjecture can remove the condition on the existence of

a prime-to-p line bundle as well, and hence completely affirms Conjecture 1.6.

We remark that nowhere in the proofs of the above results do we directly analyze a degeneration of K3

surfaces, unlike in [Matsumoto 2015] and [Liedtke and Matsumoto 2018]. In particular, we avoid the use

of any techniques from the minimal model program. As far as the authors are aware, our method of proving

good reduction results by marrying moduli theory of sheaves with density arguments is new in the literature.

After the paper was accepted for publication, Marco D’Addezio and Pol van Hoften proved the Hecke

orbit conjecture for Shimura varieties of Hodge type and in particular proved Conjecture 8.2 under a very

minor assumption on p [D’Addezio and van Hoften 2022, Section 7.5].

1B. Ideas of proof. (1) The “only if” part of Theorem 1.2 follows from the general theory of twisted

derived equivalences in positive characteristics. The idea for the “if” part is to construct the desired X ′

together with the isogeny f : X ⇝ X ′ by iteratively taking moduli spaces of twisted sheaves on X .

This approach is inspired by that of [Huybrechts 2019, Theorem 1.1]. A key technical tool is the

theory of B-fields in ℓ-adic and crystalline cohomology, described in Section 2. This allows us to relate

classes in H2(X)Q to the Brauer group, and provides a replacement for the Hodge-theoretic B-fields

in Huybrechts’ proof, although there are some additional complications at p. There are some further

technical difficulties caused by the fact that in positive characteristic the cohomology H2(X)Q can only

take on adelic coefficients (i.e., A
p
f ×W [1/p]) instead of Q-coefficients. For instance, the Mukai vector

which one must specify in order to form a moduli of sheaves is not an adelic object. That is, unlike Brauer

classes, one cannot specify a Mukai vector by prescribing its local factors in H2(X)Q . We solve these

problems by using local–global type results on quadratic forms (e.g., the strong approximation theorem),

and the theory of quadratic forms over local rings.

(2) Theorem 1.4 is obtained by the realizing X ′ as the reduction of a suitable K3 surface in characteristic

zero. This strategy is a simultaneous simplification and strengthening of that of [Yang 2022], with

the additional input of Theorem 1.2. The characterization of Nygaard–Ogus liftings (Theorem 6.18)

is obtained by applying recent advances on integral p-adic Hodge theory from [Bhatt et al. 2018] and
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[Cais and Liu 2019] to study deformations of K3 crystals. These techniques for handling crystalline

cohomology were unnecessary in Taelman’s case [2020], as the deformation of the formal Brauer group

of an ordinary K3 is rigid, which is not true for a general finite-height K3. We remark that here the

restriction p g 5 is mainly due to our usage of the deformation theory of K3 crystals.

(3) Theorem 1.5 is a twisted generalization of the derived Torelli theorem of Lieblich and Olsson [2015,

Theorem 6.1]. Just as in loc. cit., we prove this result by using a lifting argument to reduce to the global

Torelli theorem over C . The main difficulty which arises in our generalization is that instead of considering

isogenies which arise directly from a (twisted or untwisted) derived equivalence, we are allowing any

finite compositions of such. The derived equivalences involved may not be simultaneously liftable to

characteristic zero. To overcome this difficulty, we combine the lifting results on derived equivalences

with the Kuga–Satake method. This helps us reduce composing isogenies of K3’s to composing isogenies

of abelian varieties, which is much better understood. There is a technical problem which arises from

the usage of Kuga–Satake. Namely, we need to put the relevant K3 surfaces into the same moduli space.

However, the K3 surfaces themselves may not have a quasipolarization of a common degree. To overcome

this problem, we pass from K3 surfaces to their Hilbert squares, which are treated in [Yang 2023]. The

restriction to p g 5 is imposed because in loc. cit. the second author only treated K3[n]-type varieties

when p > n+ 1 for certain technical reasons.

(4) For Theorem 1.7, we first show that the derived prime-to-p isogeny classes of K3’s match up with

the notion of prime-to-p Hecke orbit on the period domains of Kuga–Satake morphisms, which are some

orthogonal Shimura varieties. It follows from some intermediate steps in the proof of Theorem 1.2 that

the property of satisfying Conjecture 1.6 is invariant in a prime-to-p derived isogeny class. On the other

hand, any X F which satisfies the hypothesis of Theorem 1.7 produces a mod p point x(X F ) on the period

domain, and the set Lbad := {x(X F ) : X F violates Conjecture 1.6} is closed.

If we combine the above observations with the Hecke orbit (HO) conjecture (see Conjecture 8.2), we

see that if Lbad intersects any of the height stratum of the period domains, then it must contain the entirety

of that stratum, which is false by a deformation argument. Hence the HO conjecture forces Lbad to be

empty. The HO conjecture is now known for the ordinary locus by the recent work of Maulik, Shankar,

and Tang [Maulik et al. 2022] and we will verify it in the superspecial locus for cases relevant to us

(Theorem 8.6). This gives Theorem 1.7.

1C. Plan of paper. In Section 2, we develop the formalism of B-fields and twisted Mukai lattices in

positive characteristic. Section 3 concerns the construction of twisted Chern characters, the twisted

Néron–Severi lattice, and the action of a twisted derived equivalence on cohomology. In Section 4 we

discuss rational Chow motives and isogenies. In Section 5 we prove some lifting results for twisted derived

isogenies. In Section 6, we first prove Theorem 1.2. We then revisit Nygaard–Ogus theory for the point

of view of integral p-adic Hodge theory and prove Theorem 1.4. In Section 7, we review the basics of

Hilbert squares and the Kuga–Satake period morphism, and then prove Theorem 1.5. Finally, in Section 8,

we explain the relationship between our isogeny theory and Hecke orbits, and prove Theorem 1.7.
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1D. Notation.

• Let p denote a prime. The letter k denotes a perfect base field of characteristic either 0 or p and

ℓ denotes a prime not equal to char k. When char k = p, we write W for W (k) and K for W [1/p].

• If Z is a scheme, we write Hi (Z , µn) for the flat (fppf) cohomology of the sheaf of n-th roots of

unity on Z . If n is coprime to the characteristics of all residue fields of Z , this is equal to the étale

cohomology of µn .

• We normalize our Chern characters so that the mod m Chern character of a line bundle L is equal

to the image of the class of L under the boundary map H1(Z ,Gm)→ H2(Z , µm) of the Kummer

sequence.

• Suppose k is a perfect field of characteristic p and S is a k-scheme. If f : X→ S is a scheme, we

denote by H
j
cris(X) the sheaf on Cris(S/W ) given by R j fcris∗OX/W when S is understood.

• For any integral domain R, and R-modules M and N , an isomorphism f : M Q
∼−→ N Q is said to be

R-integral if f (M)= N .

• In this paper we only make use of singular, de Rham, étale, flat, and crystalline cohomology. We

may omit the subscripts cris, fl, or dR when the choice of the relevant Grothendieck topology is

clear from the coefficients.

• For a smooth proper variety Y over k, we let H j (Y ) denote either H
j
ét
(Y, Ẑ) if char k = 0 or

H
j
ét
(Y, Ẑ p)×H

j
cris(Y/W ) if char k = p.

• Let R be a commutative ring. A quadratic lattice M over R is a free R-module of finite rank equipped

with a bilinear symmetric pairing M × M → R. The pairing is said to be nondegenerate (resp.

unimodular or perfect) if the induced map M→ M( is an injection (resp. an isomorphism).

2. B-fields and the twisted Mukai lattice in positive characteristic

Let X be a K3 surface over the complex numbers. Associated to X is the Mukai lattice H̃(X, Z), which

is the direct sum of the singular cohomology groups of X equipped with a certain pairing and Hodge

structure. Consider a class ³ ∈ Br(X). Huybrechts and Stellari [2005, Remark 1.3] generalized Mukai’s

construction to the twisted K3 surface (X, ³) by defining the twisted Mukai lattice H̃(X, B, Z). This

construction modifies the Hodge structure on the Mukai lattice in a certain way using an auxiliary choice

of a B-field lift of ³, which is a class B ∈ H2(X, Q) whose image in Br(X) under the exponential map is

equal to ³.

Suppose now that X is a K3 surface defined over an algebraically closed field of characteristic p > 0.

After [Lieblich and Olsson 2015], we may consider the ℓ-adic and crystalline realizations of the Mukai

motive of X . These are respectively a Zl-lattice H̃(X, Zl) and a W -lattice H̃(X/W ), both of rank 24. In

the crystalline setting, H̃(X/W ) is equipped with a Frobenius action, which makes H̃(X/W ) into a K3

crystal in the sense of Ogus [1979, Definition 3.1]. That this construction makes sense integrally is first

observed in [Bragg and Lieblich 2018].
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Consider a Brauer class ³ ∈Br(X). We wish to have an analog of Huybrechts and Stellari’s construction

of the twisted Mukai lattice in both the ℓ-adic and crystalline settings. The main task is to find the

appropriate analog of a B-field lift of a Brauer class in ℓ-adic or crystalline cohomology. The ℓ-adic

case is considered in [Lieblich et al. 2014] (we remark that the authors also deal with some additional

complications coming from working over a field that is not algebraically closed, which we ignore here).

The crystalline case is considered in [Bragg 2021, §3] and [Bragg and Lieblich 2018, §3.4], with the

restriction that the Brauer class ³ is killed by p (rather than a power of p).

In this section we make two contributions. First, we complete the crystalline realization by defining

crystalline B-field lifts of classes killed by an arbitrary power of p. We then treat the mixed case,

considering all primes simultaneously, and define mixed B-field lifts of Brauer classes whose order is

divisible by more than one prime. To assist the reader in connecting these constructions in the Hodge,

ℓ-adic, and crystalline settings, we have included a brief summary of the Hodge and ℓ-adic realizations. We

have tried to present a perspective which emphasizes the unifying features present in the different settings.

2A. Hodge realization. Let X be a K3 surface over the complex numbers. We have the exponential

exact sequence

0→ Z→ OX
exp
−→ O

×
X → 1.

Consider the induced map H2(X,OX )
exp
−→ H2(X,O×X ), which, because H3(X, Z) = 0, is a surjection.

Given a class v ∈ H2(X,OX ), we note that exp(v) is contained in the torsion subgroup H2(X,O×X )tors =

H2(X, Gm) = Br(X) if and only if v is contained in the subgroup H2(X, Q) ¢ H2(X,OX ). Thus, this

map restricts to a surjection

exp : H2(X, Q)→ Br(X), (1)

which we denote by B 7→ ³B = exp(B). According to [Huybrechts and Stellari 2005], a B-field lift of a

class ³ ∈ Br(X) is a class B ∈ H2(X, Q) such that ³B = ³.

The relationship between B-fields and the Brauer group is expressed in the diagram

0 0

0 H2(X, Z) H2(X, Z)+Pic(X)¹ Q Pic(X)¹ (Q/Z) 0

0 H2(X, Z) H2(X, Q) H2(X, Z)¹ (Q/Z) 0

H2(X, Q)

H2(X, Z)+Pic(X)¹ Q
Br(X)

0 0

∼

(2)
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with exact rows and columns. In particular, we see that there are two sources of ambiguity in choosing a

B-field lift of a Brauer class, namely, integral classes in H2(X, Z) and rational classes in H1,1(X, Q)=

Pic(X)¹ Q ¢ H2(X, Q).

2B. ℓ-adic realization. Let k be an algebraically closed field of arbitrary characteristic. Fix a prime

number ℓ, not equal to the characteristic of k. We review the ℓ-adic B-fields and the ℓ-adic realization of

the twisted Mukai motive introduced in [Lieblich et al. 2014].

Let X be a K3 surface over k. By duality in étale cohomology, we have H3(X, µℓn )= 0 for all n g 1.

It follows that the natural map

H2(X, Zℓ(1))→ H2(X, µℓn ) (3)

is surjective, and hence we have an identification

H2(X, Zℓ(1))¹ Z/ℓn Z ∼= H2(X, µℓn ).

We consider the composition

H2(X, Zℓ(1))↠ H2(X, µℓn )↠ Br(X)[ℓn], (4)

where the second map is induced by the inclusion µℓn ¢ Gm .

Definition 2.1. Let ³ ∈ Br(X) be a Brauer class which is killed by a power of ℓ. An ℓ-adic B-field lift

of ³ is an element

B ∈ H2(X, Qℓ(1))
def
= H2(X, Zℓ(1))¹Zℓ Qℓ

such that if we write B = a/ℓn for some a ∈ H2(X, Zℓ(1)), then a maps to ³ under the composition (4).

We give the following alternative description. Define µℓ∞ =
⋃

n µℓn ¢ Gm . The Picard group of X

is torsion-free, which implies the vanishing H1(X, µℓ) = 0. It follows that the inclusions µℓn ¢ µℓn+1

induce injections on H2, and we have a natural identification H2(X, µℓ∞)=
⋃

n H2(X, µℓn ). Moreover,

for every n we have a commutative diagram

H2(X, Zℓ(1)) H2(X, Zℓ(1))

H2(X, µℓn ) H2(X, µℓn+m )

·ℓm

(5)

Taking the direct limit of the maps (3), we get a map

H2(X, Qℓ(1))→ H2(X, µℓ∞). (6)

This map may be explicitly described as follows: given B ∈ H2(X, Qℓ(1)), choose n g 0 such that

ℓn B ∈ H2(X, Zℓ(1)), and map B to the image of ℓn B under the left map of (4). Note that by the

commutativity of (5), this association is well defined, independent of our choice of n. Composing (6)

with the natural map H2(X, µℓ∞)→ Br(X), we get a map

H2(X, Qℓ(1))→ Br(X). (7)
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This is the ℓ-adic analog of the exponential map (1). The image of this map is exactly the subgroup

Br(X)[ℓ∞] ¢ Br(X) consisting of classes killed by some power of ℓ. Furthermore, an ℓ-adic B-field

lift of a class ³ ∈ Br(X)[ℓ∞] (in the sense of Definition 2.1) is exactly a preimage of ³ under (7). We

denote (7) by B 7→ ³B .

The relationship between ℓ-adic B-fields and the Brauer group is expressed by the diagram

0 0

0 H2(X, Zℓ(1)) H2(X, Zℓ(1))+Pic(X)¹ Qℓ Pic(X)¹ (Qℓ/Zℓ) 0

0 H2(X, Zℓ(1)) H2(X, Qℓ(1)) H2(X, µℓ∞) 0

H2(X, Qℓ(1))

H2(X, Zℓ(1))+Pic(X)¹ Qℓ

Br(X)[ℓ∞]

0 0

∼

(8)

with exact rows and columns, where the right-hand column is given by taking the direct limit of the exact

sequence induced by the Kummer sequence.

In particular, we have an isomorphism

Br(X)[ℓ∞] ∼= (Qℓ/Zℓ)
·22−Ä, (9)

where Ä is the Picard rank of X .

2C. The twisted ℓ-adic Mukai lattice. The ℓ-adic Mukai lattice associated to X [Lieblich et al. 2014,

Definition 3.3.1] is

H̃(X, Zℓ)= H0(X, Zℓ)(−1)·H2(X, Zℓ)·H4(X, Zℓ)(1),

which we equip with the Mukai pairing. Given a class B ∈ H2(X, Qℓ), we define the associated twisted

ℓ-adic Mukai lattice to be the submodule

H̃(X, Zℓ, B)= exp(B) H̃(X, Zℓ)¢ H̃(X, Qℓ).

Here, exp(B) denotes the isometry H̃(X, Qℓ)→ H̃(X, Qℓ) given by

(a, b, c) 7→
(
a, b+ aB, c+ b.B+ 1

2
aB2

)
. (10)

2D. Crystalline realization. Let k be an algebraically closed field of characteristic p > 0 and let X be a

K3 surface over k. We will define crystalline B-fields associated to Brauer classes on X whose order is

a power of p. There are some new phenomena which present themselves in the crystalline setting that

are not present in the Hodge and ℓ-adic theories. In particular, there is a nontrivial interaction between
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crystalline B-fields and the Frobenius operator on the crystalline cohomology. A related feature is that not

every class in rational crystalline cohomology is a crystalline B-field. We give a characterization of which

classes are B-fields using only the F–crystal structure on crystalline cohomology in Proposition 2.7. We

then construct the crystalline version of the twisted Mukai lattice, and show that this object has a natural

structure of a K3 crystal in the sense of Ogus [1979, Definition 3.1]. We conclude with some calculations

with the twisted Mukai crystals. In the special case when the Brauer class is killed by p, the results of

this section have appeared in [Bragg 2021; Bragg and Lieblich 2018].

Set Wn =W/pnW , so in particular W1 = k. Let Ã : k→ k be the Frobenius ¼ 7→ ¼p. We denote the

induced map Ã :W →W (abusively) by the same symbol.

2E. Crystalline B-fields. We begin by relating the flat cohomology of µpn to certain étale cohomology

groups. Consider the Kummer sequence

1→ µpn → Gm
x 7→x pn

−−−−→ Gm→ 1,

which is exact in the fppf topology. Let ε : Xfl→ X ét be the natural map from the big fppf site of X to the

small étale site of X . By a theorem of Grothendieck, the cohomology of the complex Rε∗Gm vanishes in

all positive degrees. Applying ε∗ to the Kummer sequence, we obtain an exact sequence

1→ Gm
x 7→x pn

−−−−→ Gm→ R1ε∗µpn → 1

of sheaves on the small étale site of X (because X is reduced, the restriction of µpn to the small étale site

of X is trivial). It follows that

R1ε∗µpn = Gm/G×pn

m ,

where the quotient is taken in the étale topology. We therefore obtain isomorphisms

Hi (Xfl, µpn ) ∼−→ Hi−1(X ét,Gm/G×pn

m ). (11)

We next relate the étale cohomology groups on the right to crystalline cohomology. We consider the map

of étale sheaves

d log : Gm→Wn �
1
X

given by x 7→ dx/x , where x = (x, 0, 0, . . . ) is the multiplicative representative of x in Wn OX . By

[Illusie 1971, Proposition I.3.23.2, p. 580] the kernel of d log is equal to the subsheaf G
×pn

m ¢ Gm , so

there is an induced injection

d log : Gm/G×pn

m ↪→Wn �
1
X . (12)

As the image of d log is contained in the kernel of d , we have a commutative diagram

0 Gm/G
×pn

m 0

Wn OX Wn �
1
X Wn �

2
X

d log

d d
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which we interpret as a map of complexes

d log : Gm/G×pn

m [−1] ↪→Wn �
•

X . (13)

An important fact is that the de Rham–Witt complex computes crystalline cohomology, in the sense

that there is a canonical isomorphism

H∗(X,Wn �
•

X )
∼−→ H∗(X/Wn) (14)

in each degree [Illusie 1971, Théoréme II.1.4, p. 606]. Taking cohomology of (13) and using the

identifications (11) and (14), we find a map

d log : H2(X, µpn )→ H2(X/Wn). (15)

Lemma 2.2. For each n g 1, the map (15) is injective.

Proof. We induct on n. By [Illusie 1971, Corollaire 0.2.1.18, p. 517], there is a short exact sequence

1→ Gm/G×p
m

d log
−−→ Z�1

X
W−C
−−→�1

X ′→ 0

of étale sheaves, where X ′ denotes the Frobenius twist of X over k. In particular, from the vanishing

of H0(X, �1
X ) and the injectivity of H1(X, Z�1

X )→ H2
dR(X/k) = H2(X/W1) (a consequence of the

degeneration of the Hodge–de Rham spectral sequence) we obtain injectivity of (15) for n = 1.

We recall that the crystalline cohomology groups H∗(X/W ) of a K3 surface are torsion-free. This

implies in particular that the maps

H2(X/W )¹Z Z/pn Z→ H2(X/Wn)

are isomorphisms. Hence, multiplication by pn on H2(X/W ) induces a short exact sequence

0→ H2(X/k)
·pn

−→ H2(X/Wn+1)→ H2(X/Wn)→ 0.

We also have a short exact sequence

1→ µp→ µpn+1
·p
−→ µpn → 1 (16)

of fppf groups. We claim that the diagram

0 H2(X, µp) H2(X, µpn+1) H2(X, µpn )

0 H2(X/k) H2(X/Wn+1) H2(X/Wn) 0

·p

·pn

(17)

commutes and has exact rows, where the top horizontal row is given by the second cohomology of (16),

and the vertical arrows are (15). The exactness of the top row follows from the vanishing of H1(X, µpn )
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(we remark that the top right horizontal arrow is surjective if and only if X has finite height). To see the

commutativity, note that applying R1ε∗ to (16) results in the short exact sequence

1→ Gm/G×p
m
·pn

−→ Gm/G×pn+1

m → Gm/G×pn

m → 1

of étale sheaves. Using diagram (17), the result follows immediately by induction. □

We arrive at a diagram

H2(X/W ) H2(X/Wn)

H2(X, µpn ) Br(X)[pn]

Ãn

¢ (18)

where Ãn denotes reduction modulo pn . This is the crystalline analog of (4).

Definition 2.3. Let ³ ∈ Br(X) be a Brauer class which is killed by a power of p. A crystalline B-field lift

of ³ is an element

B ∈ H2(X/K )
def
= H2(X/W )¹W K

such that if we write B = a/pn for some a ∈ H2(X/W ), then Ãn(a) is equal to d log(³′) for some

³′ ∈ H2(X, µpn ) whose image in Br(X) is equal to ³.

From the surjectivity of the horizontal maps in (18), we see that any p-power torsion Brauer class

admits a crystalline B-field lift. However, in contrast to the Hodge and ℓ-adic cases, not every element

of H2(X/K ) is a crystalline B-field lift of a Brauer class, because H2(X, µpn ) is only a subgroup

of H2(X/W )¹ Z/pn Z.

Definition 2.4. A class B ∈H2(X/K ) is a crystalline B-field if it is a B-field lift of some Brauer class. Let

B(X)¢ H2(X/K ) denote the subgroup of crystalline B-fields. Let Bn(X)¢B(X) denote the subgroup

of crystalline B-fields B such that pn B ∈ H2(X/W ).

We take the direct limit of the maps Bn(X)→ H2(X, µpn ) to obtain a map

B(X)↠ H2(X, µp∞), (19)

which may be explicitly described exactly as in the étale case (6): given a class B ∈B(X), we choose

n g 0 such that pn B ∈ H2(X/W ), and then reduce modulo pn . We compose (19) with the map to

the Brauer group to obtain a map

B(X)→ Br(X), (20)

which we denote by B 7→ ³B . This is the crystalline analog of the exponential map (1). As in the ℓ-adic

case, the image of this map is Br(X)[p∞] ¢Br(X), and a crystalline B-field lift of a class ³ ∈Br(X)[p∞]
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is exactly a preimage of ³ under (20). We have a diagram

0 0

0 H2(X/W ) H2(X/W )+Pic(X)¹ Q p Pic(X)¹ (Q p/Zp) 0

0 H2(X/W ) B(X) H2(X, µp∞) 0

B(X)

H2(X/W )+Pic(X)¹ Q p
Br(X)[p∞]

0 0

∼

(21)

with exact rows and columns.

2F. Description of the group of crystalline B-fields. We will now give some results describing the

subgroup B(X)¢ H2(X/K ) more explicitly.

We recall that the Tate module of a K3 crystal H (in the sense of Ogus [1979, Definition 3.1]) is

the Zp-module HÆ=1 ¢ H consisting of those elements h ∈ H satisfying Æ(h)= h, where Æ := p−18

and 8 is the Frobenius endomorphism of H . By a result of Illusie [1971, Théorème 5.14, p. 631], if X is

a K3 surface then we have an exact sequence

0→ H2(X, Zp(1))→ H2(X/W )
p−8
−−→ H2(X/W )

identifying H2(X, Zp(1)) with the Tate module H2(X/W )Æ=1 of the K3 crystal H2(X/W ), where the

left inclusion is given by the inverse limit of the inclusions (15). We have inclusions

Pic(X)¹ Q p ¢ H2(X, Q p(1))¢B(X),

where as usual H2(X, Q p(1))= H2(X, Zp(1))¹ Q p.

Remark 2.5. By analogy with the Lefschetz (1,1) theorem, one might imagine that the inclusion

Pic(X)¹ Q p ¢ H2(X, Q p(1)) is an equality. However, this is frequently false, e.g., for a very general

ordinary K3 surface. It is true if X is supersingular, as a consequence of the Tate conjecture for

supersingular K3 surfaces (of course, the Tate conjecture is known for all K3 surfaces, but it is only in the

supersingular case that there is such a consequence for K3 surfaces over general algebraically closed fields).

Proposition 2.6. Let X be a K3 surface.

(1) If X has finite height, then B(X)= H2(X/W )+H2(X, Q p(1)).

(2) If X is supersingular, then B(X)=B1(X)+H2(X, Q p(1)).
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Proof. In either case, we have H2(X/W )¢B1(X)¢B(X) and H2(X, Q p(1))¢B(X). It follows that

in both cases the right-hand side is contained in B(X). We prove the reverse containments. Consider the

commutative diagram

H2(X, Zp(1)) H2(X/W )

H2(X, µpn ) H2(X/Wn)

mod pn (22)

Suppose that X has finite height. Flat duality implies that H3(X, µpn )= 0 for all n g 1. Hence, the maps

H2(X, Zp(1))→H2(X, µpn ) are surjective. It follows that the restriction H2(X, Q p(1))→Br(X)[p∞] of

the exponential map (20) is surjective. This proves (1). We next prove (2). Suppose that X is supersingular.

For each n and i we consider the short exact sequence

0→ Ui (X, µpn )→ Hi (X, µpn )→ Di (X, µpn )→ 0.

As H1(X, µpn )= 0, flat duality shows that D3(X, µpn )= 0. Hence, the maps D2(X, µpn+1)→D2(X, µpn )

induced by the multiplication p : µpn+1 → µpn are surjective. Furthermore, the formal group associated

to U2(X, µpn ) is isomorphic to B̂r(X)∼= Ĝa , so U2(X, µpn )∼=Ga(k). In particular, the groups U2(X, µpn )

are p-torsion, and the maps U2(X, µpn )→ U2(X, µpn+1) induced by the inclusion µpn ¢ µpn+1 are

isomorphisms. Write U2(X, µp∞) for the union of the U2(X, µpn ) and D2(X, µp∞) for the union of

the D2(X, µpn ). It follows that the composition

H2(X, Q p(1))→ H2(X, µp∞)→ D2(X, µp∞)

is surjective, and that U2(X, µp)=U2(X, µp∞). Hence, the exponential map (20) restricts to a surjection

B1(X)+H2(X, Q p(1))→ Br(X)[p∞], which proves (2). □

The following describes the subgroup B(X) ¢ H2(X/K ) in terms of the F-crystal structure on

H2(X/W ), without explicit mention of flat cohomology or the Brauer group. The special case of classes

B ∈ p−1 H2(X/W ) is Lemma 3.4.11 of [Bragg and Lieblich 2018].

Proposition 2.7. A class B ∈ H2(X/K ) is a crystalline B-field if and only if

B−Æ(B) ∈ H2(X/W )+Æ(H2(X/W )), (23)

where Æ = p−18.

Proof. Write H =H2(X/W ). Suppose that X has finite height. It is immediate from Proposition 2.6(1) that

any B-field satisfies the claimed relation. Conversely, suppose that B = a/pn is an element satisfying (23).

Consider the Newton–Hodge decomposition

H2(X/W )= H<1· H1· H>1

of H2(X/W ) into subcrystals with the indicated slopes (see Section 2I below). Write a = (a<1, a1, a>1).

We have pH<1 ¢8(H<1) or, equivalently, H<1 ¢ Æ(H<1) (see for instance [Katz 1979, §1.2]). Consider
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the map

1−Æ : H<1→ Æ(H<1).

All slopes of H<1 are less than one, so this map is injective. By [Illusie 1971, Lemme II.5.3], it is

surjective, and hence an isomorphism. We have (1−Æ)(a<1) ∈ pnÆ(H<1), so in fact a<1 ∈ pn H<1. We

have Æ(H>1)¢ H>1. Thus, we have a map

1−Æ : H>1→ H>1,

which as before is both injective and surjective, and hence an isomorphism. We have (1−Æ)(a>1)∈ pn H>1,

so in fact a>1 ∈ pn H>1. Finally, note that H1 is a unit root crystal. It follows quickly that a1 = pnh+ t

for some h ∈ H1 and some t which is fixed by Æ. We conclude that B ∈B(X). This completes the proof

of Proposition 2.7 in the case when X has finite height.

Suppose that X is supersingular. By Lemma 3.4.11 of [Bragg and Lieblich 2018], we have that B1(X)

consists exactly of those classes B = a/p with a ∈ H that satisfy (23). By Proposition 2.6(2), any B-field

satisfies the claimed relation. We prove the converse. The inclusion of the Tate module is an isogeny,

meaning that the map T ¹K→ H¹K is an isomorphism. Thus, the natural map H ∼−→ H(→ T(¹W

is injective, and we may regard H as a subgroup of the dual lattice T(¹W . Note that if h ∈ H and t ∈ T ,

then Æ(h).t = Æ(h).Æ(t)= Ã(h.t). It follows that H +Æ(H)¢ T(¹W . Now, if B ∈H2(X/K ) satisfies

the claimed relation, then B is in the kernel of the map 1−Æ : T(¹W → T(¹ (K/W ), which is equal

to T(¹W + T ¹ Q p. We may therefore write B = B ′+ t/pn for some B ′ ∈ T(¹W and some t ∈ T .

As t is killed by 1− Æ, B ′ also satisfies the relation (23). But by [Ogus 1979, Lemma 3.10], we have

T(¹W ¢ p−1 H , so B ′ ∈ p−1 H . By Lemma 3.4.11 of [Bragg and Lieblich 2018] we have B ′ ∈B(X).

We also have t/pn ∈B(X), and we conclude that B ∈B(X), as desired. □

Remark 2.8. One can alternatively prove Proposition 2.7 by generalizing the method of [Bragg and

Lieblich 2018, Lemma 3.4.11], which we sketch. This proof has the advantage of avoiding flat duality

and being uniform in the height of X . The first step is to understand the cokernel of the map (12). This is

described by the short exact sequence [Colliot-Thélène et al. 1983, Lemma 2, p. 779]

0→ Gm/G×pn

m →Wn �
1
X

1−F
−−→Wn �

1
X/d(Wn OX )→ 0, (24)

where 1 denotes the projection and F is the map defined in [Illusie 1971, Proposition II.3.3]. One then

proceeds by analyzing the p-adic filtrations on crystalline and de Rham–Witt cohomology.

2G. p-primary torsion in the Brauer group. We make some observations connecting the group B(X) of

crystalline B-fields to the p-primary torsion in the Brauer group of X . Suppose that X has finite height h.

By Proposition 2.6, we have

B(X)= H2(X, Q p(1))+H2(X/W ).

In particular, (21) induces an isomorphism

H2(X, Q p(1))

H2(X, Zp(1))+Pic(X)¹ Q p

∼−→ Br(X)[p∞]. (25)
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The slope 1 part of H2(X/W ) has rank 22− 2h, so we have H2(X, Zp(1))∼= Z·22−2h
p . Thus, (25) gives

an isomorphism

Br(X)[p∞] ∼= (Q p/Zp)
·22−Ä−2h, (26)

where Ä is the Picard rank of X . This could also be seen from the fact that, in the finite-height case, the

diagram (8) with ℓ replaced by p (and étale cohomology with flat cohomology) still has exact rows and

columns.

Remark 2.9. The exponent appearing in the formula (26) for the p-primary torsion of the Brauer group

is smaller than that for the l-primary torsion (9) by a factor of 2h. These “missing” p-primary torsion

Brauer classes are the cause of the restriction at p in Theorem 1.2.

We now suppose X is supersingular. By Proposition 2.6, we have

B(X)=B1(X)+H2(X, Q p(1)).

By the Tate conjecture for supersingular K3 surfaces, the first crystalline Chern character induces an

isomorphism Pic(X)¹ Zp
∼−→ T ¹ Zp = H2(X, Zp(1)), and so H2(X, Q p(1)) is in the kernel of the

crystalline exponential map (20). Write N =Pic(X). We have Ä= 22, so Br(X) has no prime-to-p torsion

(see (9)). We conclude that (20) restricts to a surjection B1(X)→Br(X). We have a short exact sequence

0→ p−1 N/N →B1(X)/H → Br(X)→ 0.

In particular, Br(X) is p-torsion. As shown in the proof of Proposition 2.7, we have that B1(X) ¢

N(¹W + p−1 N ¢ p−1 N ¹W , where the latter inclusion holds because discriminant group of N is

p-torsion. Let B1(X)◦ =B1(X)∩ (N(¹W ). We have a short exact sequence

0→ N(/N →B1(X)
◦/H → Br(X)→ 0. (27)

The subgroup B1(X)◦ can be understood using Ogus’s results [1979] on the classification of supersingular

K3 crystals. Write K = H/N ¹W and V = N(/N ∼= F
2Ã0
p (here, Ã0 is the Artin invariant of X ). The

subspace K ¢ V ¹ k is Ogus’s characteristic subspace, and has dimension Ã0. Let Æ : V ¹ k→ V ¹ k

be the map Æ(v ¹ ¼) = v ¹ ¼p. Ogus showed that K is totally isotropic and is in a special position

with respect to Æ. Namely, K +Æ(K ) has dimension Ã0+ 1, and V ¹ k =
∑

i Æ
i (K ) has dimension 2Ã0.

This implies that there exists a characteristic vector for K , which is an element e1 ∈ V ¹ k such that,

writing ei = Æ
i−1(e1), we have that {e0, . . . , eÃ0−1} is a basis for K and {e0, . . . , e2Ã0−1} is a basis

for V ¹ k. We let fi denote the functional given by pairing with ei , so that { f0, . . . , fÃ0−1} is a basis

for K( = V ¹ k/K . By Proposition 2.7, the subgroup B1(X)◦/H ¢ V ¹ k/K is the kernel of the map

1−Æ : V ¹ k/K → V ¹ k/(K +Æ(K )). It follows that we have

B1(X)
◦/H = {¼ f1+ ¼

p f2+ · · ·+ ¼
pÃ0−1

fÃ0−1 | ¼ ∈ k}.
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We conclude that B1(X)◦/H is isomorphic to the underlying additive group Ga(k) of the group field k.

The left term of (27) is discrete, and hence there is an isomorphism

Br(X)∼= Ga(k).

Remark 2.10. Multiplying by p and then reducing modulo p, the characteristic subspace K is identified

with the kernel of the k-linearized first de Rham Chern character cdR
1 ¹k :Pic(X)¹k→H2

dR(X/k), and the

vector space V ¹ k/K is identified with its image. Furthermore, B1(X)/H is identified with H2(X, µp)

(regarded as a subgroup of H2
dR(X/k) via the map d log) and B1(X)◦/H is identified with U2(X, µp).

2H. The twisted Mukai crystal. We recall the Mukai crystal introduced in [Lieblich and Olsson 2015].

We set

H̃(X/W )= H0(X/W )(−1)·H2(X/W )·H4(X/W )(1).

As a result of the Tate twists on the first and third factors on the right-hand side, the Frobenius operator 8̃

on H̃(X/W ) is given by the formula

8̃(a, b, c)= (pÃ(a),8(b), pÃ(c)),

where we have identified H0 and H4 with W , and where 8 is the Frobenius operator on H2(X/W ). We

equip H̃(X/W ) with the Mukai pairing. It is immediate from the definitions that H̃(X/W ) is a K3 crystal

of rank 24.

Definition 2.11. Let B be a crystalline B-field. The twisted Mukai crystal associated to (X, B) is

H̃(X/W, B)= exp(B) H̃(X/W )¢ H̃(X/K ).

Here, exp(B) is the isometry of H̃(X/K ) defined by the formula (10).

The twisted Mukai crystal has a natural structure of a K3 crystal by the following result.

Theorem 2.12. Let B ∈ B(X) be a crystalline B-field. The endomorphism 8̃ of H̃(X/K ) restricts to

an endomorphism of H̃(X/W, B). When equipped with the restriction of the Mukai pairing, the twisted

Mukai crystal H̃(X/W, B) is a K3 crystal of rank 24.

Proof. When B ∈B1(X), this is Proposition 3.4.15 of [Bragg and Lieblich 2018]. Using Proposition 2.7,

the proof of loc. cit. applies verbatim to give the result for general B-fields as well. □

Note that if h ∈H2(X/W ) then exp(h)=
(
1, h, 1

2
h2

)
∈H∗(X/W ). Thus, as a submodule of H̃(X/K ),

H̃(X/W, B) depends only on the image of B in H2(X, µpn ). Furthermore, up to isomorphism (of K3

crystals), H̃(X/W, B) only depends on the Brauer class ³B (see [Bragg 2021, Lemma 3.2.4]).

Remark 2.13. For a K3 surface over the complex numbers, Huybrechts and Stellari [2005] define the

twisted Mukai lattice H̃(X, B, Z) to be equal to the untwisted lattice H̃(X, Z) with a modified Hodge

structure. This differs from our definition of the twisted Mukai crystal (as well as the twisted ℓ-adic

Mukai lattice), as we have defined H̃(X/W, B) by equipping the rational Mukai lattice H̃(X/K ) with a
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nonstandard integral structure, but the same crystal structure. The convention analogous to that of loc. cit.

would be to define H̃(X/W, B) to be equal to H̃(X/W ) as a W -module, but equipped with the twisted

Frobenius operator 8̃B = exp(−B) ◦ 8̃ ◦ exp(B)= exp(Æ(B)− B).

We record the following observation.

Proposition 2.14. Let X be a K3 surface and B be a crystalline B-field. If X has finite height h, then

H̃(X/W, B) is a K3 crystal of height h and, in particular, is abstractly isomorphic to H̃(X/W ). If X is

supersingular of Artin invariant Ã0, then H̃(X/W, B) is a supersingular K3 crystal whose Artin invariant

is equal to either Ã0 if ³B = 0 or Ã0+ 1 if ³B ̸= 0.

Proof. Suppose that X has finite height. The defining inclusion H̃(X/W, B)¢ H̃(X/K ) is compatible with

the pairing and Frobenius. Thus, H̃(X/W, B) and H̃(X/K ) are isogenous, and so H̃(X/W, B) has height h.

If h is finite, this implies the crystals are isomorphic integrally. Alternatively, we may reason as follows.

Because X has finite height, by Proposition 2.6 we may assume B satisfies B = Æ(B). The map exp(−B)

then defines an isomorphism H̃(X/W, B)∼= H̃(X/W ) of K3 crystals. If X is supersingular, then the Brauer

group of X is p-torsion. As the twisted Mukai crystal depends up to isomorphism only on the class ³B , we

may assume that B ∈B(X)1. The result then follows from [Bragg and Lieblich 2018, Corollary 3.4.23]. □

2I. The Newton–Hodge decomposition of the twisted Mukai crystal. Let H be a K3 crystal. The

Newton–Hodge decomposition of H is a canonical direct sum decomposition

H = H<1· H1· H>1

with the following properties. If H has finite height h and rank r , then H<1 has slope 1−1/h and rank h,

H1 has slope 1 and rank r − 2h, and H>1 has slope 1+ 1/h and rank h. Furthermore, H1 is orthogonal

to H<1· H>1, and under the pairing, H<1 and H>1 are dual. If H is supersingular, then H1 = H and

H<1 = H>1 = 0.

Let X be a K3 surface and let B be a crystalline B-field. We will relate the Newton–Hodge decomposi-

tions of H̃(X/W, B) and H2(X/W ).

Proposition 2.15. As submodules of H̃(X/K ),

H̃(X/W, B)<1 = H2(X/W )<1,

H̃(X/W, B)1 = exp(B)
(
H0(X/W )·H2(X/W )1·H4(X/W )

)
,

H̃(X/W, B)>1 = H2(X/W )>1.

Proof. If X is supersingular, then H̃(X/W, B) is also supersingular, and the result is trivial. Suppose X

has finite height. Write Hi = Hi (X/W ). By Proposition 2.6, B is congruent modulo H2 to a B-field B ′

satisfying Æ(B ′)= B ′. As H̃(X/W, B)= H̃(X/W, B ′), we may assume without loss of generality that B is

fixed by Æ and, in particular, B ∈ (H2)1¹K . We then have that H̃(X/W, B)<1= exp(B) H̃(X/W )<1, and

similarly for the slope 1 and> 1 parts. It is immediate that the Newton–Hodge decomposition of H̃(X/W )

is given by H̃(X/W )<1 = (H
2)<1, H̃(X/W )1 = H0·(H2)1·H4, and H̃(X/W )>1 = (H

2)>1. The result
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follows upon noting that H1¹K is orthogonal to (H2)<1 and (H2)>1, so exp(B)(H2)<1 = (H
2)<1 and

exp(B)(H2)>1 = (H
2)>1. □

Note that if B is a general B-field, the direct sum decomposition of H̃(X/W, B)1 described in the

statement of Proposition 2.15 may not be preserved by 8̃.

2J. Mixed realization. We define B-fields for Brauer classes whose order is not necessarily a prime

power. For simplicity we give the definitions only when char k = p > 0.

Definition 2.16. Let ³ ∈ Br(X) be a class of exact order m. Fix a prime q. Let qn be the largest power

of q dividing m, and set t = m/qn . If q = ℓ ̸= p, then an ℓ-adic B-field lift of ³ is an ℓ-adic B-field lift

(in the sense of Definition 2.1) of t³. Similarly, if q = p, then a crystalline B-field lift of ³ is a crystalline

B-field lift (in the sense of Definition 2.3) of t³.

Definition 2.17. Let ³ ∈ Br(X) be a Brauer class. A mixed B-field lift of ³ is a set B = {Bℓ}ℓ ̸=p ∪ {Bp}

consisting of a choice of an ℓ-adic B-field lift Bℓ of ³ for each prime ℓ ̸= p and a crystalline B-field

lift Bp of ³ (in both cases in the sense of Definition 2.16).

Given a mixed B-field B, we write B p for the component in H2(X, A
p
f ), and Bp = Bp for the

component in B(X)¢ H2(X/K ).

We say a few words to explain this definition. Let µ∗ =
⋃

m µm be the subsheaf of torsion sections

of Gm . Let p0 = p and let p1, p2, . . . be an enumeration of the remaining primes. We have a canonical

isomorphism

µp∞0 ·µp∞1 ·µp∞2 · · ·
∼= µ∗

given by multiplication. As described in the introduction, we have

H2(X, A
p
f )=

∏

ig1

′
H2(X, Q pi (1)),

where the restricted product on the right-hand side consists of tuples {Bi } such that for all but finitely

many i we have Bi ∈ H2(X, Zpi (1)). A mixed B-field lift of a class ³ is a preimage of ³ under the

composition

B(X)×H2(X, A
p
f )↠

⊕

i

H2(X, µp∞i )
∼−→ H2(X, µ∗)↠ Br(X), (28)

which we denote by B 7→ ³B . Here, the right horizontal map is induced by the inclusion µ∗ ¢ Gm .

3. Twisted Chern characters and action on cohomology

Let X be a smooth projective variety over a field k and let ³ ∈ Br(X) be a torsion Brauer class. In this

section we will define a certain twisted Chern character for ³-twisted sheaves on X . This will be a map

from the Grothendieck group of coherent ³-twisted sheaves on X to the rational Chow group A∗(X)Q of X .

There are multiple inequivalent definitions of twisted Chern characters appearing in the literature, several

of which are reviewed and compared in [Huybrechts and Stellari 2006, §3]. These all seem to be essentially
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equivalent in practice. We will use the notion appearing in [Lieblich et al. 2014; Bragg 2021; Bragg and

Lieblich 2018], which is also used in [Huybrechts 2019, §2]. This formulation seems to us to be the most

flexible, and has a uniform interaction with B-fields in each of the contexts we have considered. We remark

that our definition below is described in terms of cocycles in [Bragg 2021, Appendix A.1] and is compared

to the twisted Chern characters of Huybrechts and Stellari [2005] in [Bragg 2021, Appendix A.2].

Suppose that n³ = 0 for some positive integer n. To define our twisted Chern character we will make

an auxiliary choice of a preimage ³′ ∈ H2(X, µn) of ³ under the surjection

H2(X, µn)↠ Br(X)[n]

induced by the inclusion µn ¢ Gm .

We choose a Gm–gerbe Ã :X → X with cohomology class ³, and identify the category of ³-twisted

sheaves on X with the category of coherent sheaves on X of weight 1. We also choose aµn-gerbe X
′→ X

with cohomology class ³′, and an isomorphism X
′ 'µn Gm

∼= X (see [Olsson 2016, Chapter 12.3]).

There is then a canonical n-fold twisted invertible sheaf L on X . Given a locally free ³-twisted sheaf E

of finite rank, we note that E
¹n ¹L

( is a 0-twisted sheaf on X . We define

ch³
′

(E )= n
√

ch(Ã∗(E¹n ¹L ()),

where the n-th root is chosen so that rk is positive. One can check that ch³
′

depends only on ³′, and not

on the choice of gerbes or on L . We note that ch0 and ch1 are given by

ch³
′

(E )= (rk(E ), Ã∗(det(E )¹L
(), . . . ). (29)

Assume that X has the resolution property, so that every ³-twisted sheaf admits a finite resolution by

locally free ³-twisted sheaves. We then obtain by additivity a map

ch³
′

: K (X, ³)→ A∗(X)Q,

where K (X, ³) denotes the Grothendieck group of the category of ³-twisted sheaves. We note that this

definition is purely algebraic, and hence makes sense in any characteristic. Furthermore, we did not

need ³ to be topologically trivial, only torsion.

Suppose that X is a K3 surface. We explain the relationship between the choice of ³′ and the choice

of a B-field lift of ³. We first observe that, in any of the contexts we have considered, a choice of

B-field lift for ³ determines in particular a choice of preimage of ³ in H2(X, µn). More precisely, a

choice of singular B-field lift (if the ground field is the complex numbers) or of a mixed B-field lift

determines a preimage in H2(X, µn). If ³ is killed by ℓn , then a choice of ℓ-adic B-field lift determines a

preimage in H2(X, µℓn ), and if ³ is killed by pn a choice of crystalline B-field lift determines a preimage

in H2(X, µpn ). In any of these situations, we write

chB(E )= ch³
′

(E ),

where ³′ is the induced preimage. We also set

vB(E )= chB(E ).
√

td(X).
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3A. Twisted Chern characters on twisted K3 surfaces.

Definition 3.1. We assume now that k is an algebraically closed field of characteristic p > 0. If X is a

K3 surface over k, we define the extended Néron–Severi group of X by

Ñ (X)= ï(1, 0, 0)ð· N (X)·ï(0, 0, 1)ð = A∗(X)¢ A∗(X)Q.

As the Chern characters of a coherent sheaf on a K3 surface are integral, the extended Néron–Severi

group is a natural recipient for the Chern class map, and in fact the Chern class map

ch : K (X)→ Ñ (X)

is an isomorphism. Let ³ ∈ Br(X) be a Brauer class. For two ³-twisted sheaves E , F , we have the

Riemann–Roch formula

Ç(E ,F )=−ïvB(E ), vB(F )ð.

We will identify a subgroup of Ñ (X)¹ Q which contains the image of the twisted Chern class map

chB : K (X, ³)→ Ñ (X)¹ Q.

Definition 3.2. If B is an ℓ-adic B-field, we define the ℓ-adic twisted Néron–Severi group by

Ñ (X, Bℓ)= (Ñ (X)¹ Z[ℓ−1])∩ H̃(X, Zℓ, Bℓ).

If char k = p and B is a crystalline B-field, we define the crystalline twisted Néron–Severi group by

Ñ (X, Bp)= (Ñ (X)¹ Z[p−1])∩ H̃(X/W, Bp),

and if B = {Bℓ}ℓ̸=p ∪ {Bp} is a mixed B-field, we define the mixed twisted Néron–Severi group by

Ñ (X, B)=

( ⋂

ℓ ̸=p

Ñ (X, Bℓ)

)
∩ Ñ (X, Bp),

where the intersection is taken inside of Ñ (X)¹ Q. Note that for all but finitely many primes q the

B-field Bq is integral. Hence, the intersection defining Ñ (X, B) is finite.

The restriction of the Mukai pairing on Ñ (X)¹ Q to the ℓ-adic twisted Néron–Severi group takes

values in Z[ℓ−1] ∩ Zℓ = Z. Similarly, the Mukai pairing restricts to an integral pairing on the crystalline

twisted Néron–Severi group. The following is the crucial integrality result for twisted Chern characters,

generalizing the fact that the Chern characters of usual sheaves on K3 surfaces are integral.

Proposition 3.3. Let X be a K3 surface and B a mixed (resp. ℓ-adic, resp. crystalline) B-field lift of a

Brauer class ³ ∈ Br(X). For any twisted sheaf E ∈ Coh(1)(X, ³), the twisted Chern character chB(E )

lies in the mixed (resp. ℓ-adic, resp. crystalline) twisted Néron–Severi group Ñ (X, B).

Proof. This is proved in Appendix A of [Bragg 2021] (the quoted statement is written for a crystalline

B-field of the form B = a/p, but the proof applies essentially unchanged). □
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Remark 3.4. The analog of Proposition 3.3 for the Hodge realization follows immediately from the

existence of an invertible twisted sheaf in the differentiable category (in fact, this existence is used to

define twisted Chern characters in [Huybrechts and Stellari 2005]). The ℓ-adic case is proved in [Lieblich

et al. 2014, Lemma 3.3.7] by lifting to characteristic 0.

Proposition 3.5. For any mixed B-field lift of ³, the twisted Chern character

chB : K (X, ³)→ Ñ (X, B)

is surjective.

Proof. The analogous result over the complex numbers is [Huybrechts and Stellari 2005, Proposition 1.4].

The proof in our case is identical, up to our differences in convention. □

3B. Action on cohomology. Let (X, ³) and (Y, ´) be twisted K3 surfaces over k. Choose mixed B-field

lifts B of ³ and B′ of ´. As above, we define the twisted Chern character map

ch−B⊞B′ : K (X × Y,−³⊞´)→ Ñ (X × Y )¹ Q,

and set

v−B⊞B′(_)= ch−B⊞B′(_).
√

td(X × Y ).

Let 8P : Db(X, ³)→ Db(Y, ´) be a Fourier–Mukai equivalence. We consider the map

8v−B⊞B′ (P) := Ã2∗(Ã
∗
1 (_)∪ v

−B⊞B′(P)) : H∗(X)Q→ H∗(Y )Q, (30)

where Ã1 : X × Y → X and Ã2 : X × Y → Y are the respective projections. Using the same formula,

we define maps 8ℓv−Bℓ⊞B′
ℓ (P) on the rational ℓ-adic cohomologies and 8

cris
v
−Bp⊞B′p (P) on rational crystalline

cohomology. By definition, these maps are equal to the maps given by restricting (30) to the ℓ-adic and

crystalline components of H∗Q .

Theorem 3.6. Let 8P : Db(X, ³)→ Db(Y, ´) be a Fourier–Mukai equivalence. The map (30) restricts

to an isomorphism

8
ℓ
v−Bℓ⊞B′

ℓ (P) : H̃(X, Zℓ, Bℓ)→ H̃(Y, Zℓ, B ′ℓ) (31)

which is compatible with the Mukai pairings for each ℓ ̸= p, to an isomorphism

8
cris

v
−Bp⊞B′p (P) : H̃(X/W, Bp)→ H̃(Y/W, B ′p) (32)

of K3 crystals (that is, an isomorphism of W -modules which is compatible with the pairing and Frobenius

operators), and to an isometry

8v−B⊞B′ (P) : Ñ (X, B) ∼−→ Ñ (Y, B′). (33)

Proof. By definition, the map (31) is equal to the correspondence induced by the cycle v−Bℓ⊞B ′ℓ(P), and

the map (32) is equal to the correspondence induced by the cycle v−Bp⊞B ′p(P). The compatibility with

the pairing, and in the crystalline case, with the Frobenius, is proved exactly as in [Bragg 2021, §3.4]. It
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remains to show that the correspondences preserve the integral structures. Under the assumption that pg 5,

this is shown in [Bragg 2021, Appendix A]. The result in general can be shown by lifting to characteristic 0,

using the techniques of the following section. We omit further details. This proves the claims regarding (31)

and (32). To prove the claimed properties of (33), note that the indicated correspondence preserves the

subgroups of algebraic cycles, and so restricts to an isomorphism Ñ (X)¹ Q ∼−→ Ñ (Y )¹ Q. The result

then follows from the previous claims. □

4. Rational Chow motives and isogenies

Given a smooth proper variety X over and algebraically closed field k, we let h(X) denote its rational

Chow motive.

Definition 4.1 (cf. [Yang 2022, Definition 1.1]). Let X and X ′ be K3 surfaces over k. An isogeny

from X to X ′ is an isomorphism of motives f : h2(X ′) ∼−→ h2(X) whose cohomological realization

H2(X ′)Q → H2(X)Q preserves the Poincaré pairing. Two isogenies are said to be equivalent if they

induce the same map H2(X ′)Q
∼−→ H2(X)Q (see Section 1D).

Recall [Kahn et al. 2007, 14.2.2] that if X is a K3 surface over an algebraically closed field k then

there is a canonical decomposition

h2(X)= h2
alg(X)· h2

tr(X)

of the Chow motive in degree two into an algebraic part and a transcendental part. The algebraic

part h2
alg(X) is isomorphic to L¹NS(X), where L stands for the Lefschetz motive. Similarly, h(X)

decomposes as halg(X)· h2
tr(X), where halg = L0· h2

alg· L2.

Now suppose (X, ³) and (Y, ´) are twisted K3 surfaces with mixed B-field lifts B of ³ and B′ of ´. Let

8P : Db(X, ³)→ Db(Y, ´) be a Fourier–Mukai equivalence. Following Huybrechts [2019, Theorem 2.1],

we have that the correspondence v−B⊞B′(P) induces an isomorphism h(X) ∼−→ h(Y ), which restricts

to isomorphisms h2
tr(X)

∼−→ h2
tr(Y ) and halg(X) ∼−→ halg(Y ). By Witt’s cancellation theorem, we can

always find some isomorphism h2
alg(X)

∼−→ h2
alg(Y ) that preserves the Poincaré pairing. Adding this and

the isomorphism h2
tr(X)

∼−→ h2
tr(Y ) induced by v−B⊞B′(P), we obtain an isogeny h2(X) ∼−→ h2(Y ).

Definition 4.2. Let X, Y be K3 surfaces. An isogeny f : h2(X) ∼−→ h2(Y ) is a primitive derived isogeny

if its restriction h2
tr(X)

∼−→ h2
tr(Y ) agrees with the one induced by v−B⊞B′(P) for some choices of ³, ´,

B, B′ and 8P as above. A derived isogeny is a composition of finitely many primitive derived isogenies.

In particular, note that if there exists a primitive derived isogeny between X and Y , then X and Y are

twisted derived equivalent. Twisted derived equivalent K3 surfaces clearly have the same rational Chow

motive. In a recent paper, Fu and Vials proved that their motives are moreover isomorphic as Frobenius

algebra objects, and over C they also give a motivic characterization of twisted derived equivalent K3’s

[Fu and Vial 2021, Theorem 1, Corollary 2].
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5. Lifting derived isogenies to characteristic 0

The goal of this section is to give some lifting results for primitive derived isogenies. This requires

understanding deformations of twisted K3 surfaces and of twisted Fourier–Mukai equivalences in mixed

characteristic. Deformations of a twisted K3 surface (X, ³) over the complex numbers can be profitably

understood in terms of deformations of a pair (X, B), where B ∈ H2(X, Q) is a Hodge B-field lift

of ³ (see for instance [Reinecke 2019]). Considering deformations of (X, B) serves two purposes: first,

the B-field B allows one to algebraize formal deformations of the Brauer class, and second, B gives a

notion of twisted Chern characters in the deformation family. Suppose now that (X, ³) is a twisted K3

surface in positive characteristic. To similarly understand deformations of (X, ³) over a base of mixed

characteristic, we would need a notion of mixed characteristic B-field lift. The ℓ-adic theory works

essentially unchanged in this setting, but the analog of the crystalline theory seems more complicated. We

will avoid this issue by using instead of a B-field a simpler object, namely a preimage ³′ ∈H2(X, µn) of ³

under the map H2(X, µn)→ Br(X). The deformation theory of such pairs (X, ³′) has been considered

in [Bragg 2023]: the flat cohomology groups H2(X, µn) can be defined relatively in families, and their

tangent spaces can be understood in terms of de Rham cohomology. Moreover, it turns out that formal

projective deformations of such pairs (X, ³′) algebraize, and furthermore the class ³′ can be used to define

twisted Chern characters in families. Our approach to the deformation theory of twisted Fourier–Mukai

equivalences is based on the techniques of Lieblich and Olsson [2015], which we, in particular, extend to

the twisted setting.

Let (X, ³) and (Y, ´) be twisted K3 surfaces over an algebraically closed field k of characteristic

p > 0. Let 8P : Db(X, ³) ∼= Db(Y, ´) be a Fourier–Mukai equivalence induced by a complex P ∈

Db(X × Y,−³⊞´).

Definition 5.1. The equivalence 8P : Db(X, ³) ∼−→ Db(Y, ´) is filtered if there exist preimages ³′ ∈

H2(X, µn) of ³ and ´ ′ ∈ H2(Y, µm) of ´ such that the cohomological transform

8v−³′⊞´′ (P) : Ñ (X)Q
∼−→ Ñ (Y )Q

sends (0, 0, 1) to (0, 0, 1).

Note that the condition for being filtered does not depend on the choices of ³′ and ´ ′, and thus is an

intrinsic property of 8P . We consider the deformation functor Def(X,³′), whose objects over an Artinian

local W -algebra A are isomorphism classes of pairs (X A, ³
′
A) where X A is a flat scheme over Spec A

such that X A ¹ k ∼= X , and ³′A ∈ H2(X A, µn) is a cohomology class such that ³′A|X = ³
′ (see [Bragg

2023, Definition 1.1]).

Proposition 5.2. Suppose that8P is filtered. Given a preimage ³′ ∈H2(X, µn) of ³, there is a canonically

induced preimage ´ ′ ∈ H2(Y, µn) of ´ and a morphism

¶P : Def(Y,´ ′)→ Def(X,³′)

of deformation functors over W (depending on P and ³′).
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Proof. Let X → X and Y → Y be Gm-gerbes representing ³ and ´. The chosen preimage ³′ corresponds

to an n-twisted invertible sheaf L on X . Using Proposition 3.5, we find a complex of twisted sheaves E

on X with rank n and det E ∼= L . Using the assumption that 8P is filtered, we see that 8P(E ) is a

complex of twisted sheaves on Y of rank n. Thus, its determinant N = det(8P(E )) is an invertible

n-twisted sheaf on Y . Note that this implies n´ = 0. We let ´ ′ ∈ H2(Y, µn) be the preimage of ´

corresponding to N . Note that the class ´ ′ does not depend on our choice of E .

Let X
′→ X and Y

′→ Y be µn-gerbes corresponding to ³′ and ´ ′. Suppose given an Artinian local

W -algebra A and a deformation of (Y, ´ ′) over A. Up to isomorphism, this is the same as giving a

pair (Y ′A, ϕ), where Y
′

A is a µn-gerbe equipped with a flat proper map to Spec A and ϕ : Y ′A¹ k ∼= Y
′ is

an isomorphism of gerbes. We let DY
′

A/A be the stack of relatively perfect universally glueable simple

Y
′

A-twisted complexes over Spec A with twisted Mukai vector (0, 0, 1) (see [Lieblich and Olsson 2015,

Section 5]). We let P ′ be the pullback of P along the product of the maps X
′¢X and Y

′¢Y . Because

8P is filtered, the complex P ′ induces a map X
′→ DY

′
A/A¹ k. By reasoning identical to [Lieblich and

Olsson 2015, Lemma 5.5], this map is an open immersion. The image of X
′ is contained in the smooth

locus of the morphism Ã¹k, so there is a unique open substack X
′
A¢DY

′
A/A which is flat and proper over

Spec A whose restriction to the closed fiber is isomorphic to X
′. Via this isomorphism, the stack X

′
A has

a canonical structure of µn-gerbe. Thus, given a deformation of (Y, ´ ′) over A, we have produced (using

the complex P) a deformation of (X, ³′) over A. This defines a morphism Def(Y,´ ′)→ Def(X,³′). □

We now assume that 8P is a filtered Fourier–Mukai equivalence. We fix a preimage ³′ ∈ H2(X, µn)

of ³. Let ´ ′ ∈ H2(Y, µn), and let

¶P : Def(Y,´ ′)→ Def(X,³′) (34)

be the preimage and morphism produced by Proposition 5.2. We continue the notation introduced above,

so that ÃX : X → X and ÃY : Y → Y are Gm-gerbes corresponding to ³ and ´, X
′ and Y

′ are

µn-gerbes corresponding to ³′ and ´ ′, L and N are the corresponding n-fold twisted invertible sheaves

on X
′ and Y

′, and P ′ is the restriction of P to X
′×Y

′. Let B³ and B´ be mixed B-field lifts of ³ and ´

such that n B³ and n B´ are integral and such that n B³ (mod n) equals ³′ and n B´ (mod n) equals ´ ′.

Write 8 for the cohomological transform

8=8v−³′⊞´′ (P) : Ñ (X)Q→ Ñ (Y )Q.

Lemma 5.3. The transform 8 satisfies 8(0, 0, 1)= (0, 0, 1) and 8(1, 0, 0)= (1, 0, 0), and restricts to

an isometry N (X) ∼−→ N (Y ) of integral Néron–Severi lattices.

Proof. We are assuming that 8P is filtered, so we have 8(0, 0, 1) = (0, 0, 1). Consider a complex E

of twisted sheaves on X with rank n and det E ∼=L . It follows immediately from the definition of the

twisted Chern character that v³
′
(E )= (n, 0, s) for some integer s. Moreover, we see that the vector

8(n, 0, s)=8(v³
′

(E ))= v´
′

(8P(E ))
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has trivial second component. As 8 is an isometry, we conclude that 8(n, 0, s)= (n, 0, s). It follows

that 8(1, 0, 0)= (1, 0, 0), and that 8 restricts to an isometry on the rational Néron–Severi lattices.

We now prove that8 in fact restricts to an isometry between the integral Néron–Severi lattices. Consider

an invertible sheaf L on X . The complex 8P(E ¹ Ã
∗L) of twisted sheaves on Y has rank n. Let M

be its determinant. Using the formula (29), we see that the pushforward of the (0-twisted) invertible

sheaf M ¹N
( to Y has cohomology class 8(L). In particular, 8(L) is in N (Y ). □

The following result is our twisted analog of [Lieblich and Olsson 2015, Proposition 6.3].

Proposition 5.4. The morphism ¶P (34) is an isomorphism, and furthermore has the following properties:

(1) For any class L ∈ Pic(X), the map ¶ restricts to an isomorphism

Def(Y,´ ′,8(L)) ∼= Def(X,³′,L) .

(2) For any augmented Artinian W -algebra A and any lift (X A, ³
′
A) of (X, ³′) over A, there exists a

perfect complex PA ∈ Db(X A ×A YA,−³A ⊞ ´A) lifting P , where (YA, ´
′
A) = ¶

−1(X A, ³
′
A) and

³A and ´A are the Brauer classes associated to ³′A and ´ ′A.

Proof. To see that µP is an isomorphism, consider the same construction applied to the kernel Q = P(

of the inverse Fourier–Mukai transform and the preimage ´ ′ of ´, which yields a map

µQ : Def(X,³′)
∼−→ Def(Y,´ ′) .

We claim that µP and µQ are inverses. This may be verified exactly as in [Lieblich and Olsson 2015,

Proposition 6.3]. To see claim (2), note that the restriction along the open immersion

X
′
A×Y

′
A ¢ DY

′
A/A×Y

′
A

of the universal complex lifts P ′. To see (1), suppose that the deformation (X A, ³
′
A) is contained in the

subfunctor Def(X,³′,L). There is then an invertible sheaf L A on X A deforming L . Let EA be a relatively

perfect complex of ³A-twisted sheaves on X A with rank n and trivial determinant. Let ÃA :XA→ X A be

the coarse space map. The determinant of the complex 8PA(EA¹Ã
∗
A L A) is a 0-fold twisted sheaf on YA,

so its pushforward to YA is an invertible sheaf. Moreover, this sheaf has class lifting 8(L). □

Definition 5.5. We say that a filtered Fourier–Mukai equivalence 8P is polarized if there exists B-field

lifts B and B′ of ³ and ´ such that the isometry 8 : Pic(X)→ Pic(Y ) (see Lemma 5.3) sends the ample

cone CX of X to the ample cone CY of Y .

One checks that the condition to be polarized is independent of the choice of B-field lifts, in the sense

that it is verified for one choice of lifts if and only if it is verified for all choices of lifts.

We now prove our main lifting results. By results in [Bragg 2023], the twisted K3 surface (X, ³) can be

lifted to characteristic 0. Moreover, we can also compatibly lift the preimage ³′ of ³. As a consequence,

Proposition 5.4 shows that given such a lift there is an induced formal lift of (Y, ´), together with a lift

of ´ ′ and of the complex P inducing the equivalence. Under the assumption that 8P is polarized, we can

even produce a (nonformal) lift. We make this precise in the following result.
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Theorem 5.6. Suppose that 8P is a filtered polarized Fourier–Mukai equivalence. Let L be an ample

line bundle on X. Suppose we are given a complete DVR V with residue field k and a lift (XV , ³
′
V , LV ) of

(X, ³′, L) over V . There exists an ample line bundle M on Y , a lift (YV , ´
′
V ,MV ) of (Y, ´ ′,M) over V ,

and a perfect complex PV ∈ Db(XV ×V YV ,−³V ⊞ ´V ) (where ´V is the image of ´ ′V in the Brauer

group) which induces a Fourier–Mukai equivalence and whose restriction to Db(X × Y,−³ ⊞ ´) is

quasi-isomorphic to P.

Proof. Let M be the line bundle on Y corresponding to 8(L). By Proposition 5.4, we find compatible

deformations (YVn , ´
′
Vn
,MVn ) of (Y, ´ ′,M) over Vn = V/mn+1 for each n g 0, together with compatible

perfect complexes PVn ∈ Db(XVn×Vn YVn ,−³Vn⊞´Vn ) deforming P , where ´Vn is the image of ´ ′Vn
in the

Brauer group. As 8P is polarized, M is ample, so by the Grothendieck existence theorem, there exists a

scheme (YV ,MV ) over V restricting to the (YVn , ´
′
Vn
). By [Bragg 2023, Proposition 1.4] there exists a class

´ ′V ∈ H2(YV , µn) restricting to the ´ ′Vn
. Finally, by the Grothendieck existence theorem for perfect com-

plexes [Lieblich 2006, Proposition 3.6.1], there is a perfect complex PV ∈Db(XV×V YV ,−³V⊞´V )whose

restriction to Vn is quasi-isomorphic to PVn for each n. Moreover, arguing as in the proof of Theorem 6.1

of [Lieblich and Olsson 2015], we see that the complex PV induces a Fourier–Mukai equivalence. □

Definition 5.7. Let X be a K3 surface over a local ring and X be its special fiber. We say that X is a

perfect lifting of X if the restriction map Pic(X)→ Pic(X) is an isomorphism.

We remark that if X as above is over a DVR, the ample and the big and nef cones of the generic fiber

are canonically identified with those of the special fiber.

Theorem 5.8. Let (X, ³) and (Y, ´) be twisted K3 surfaces over k. Let 8P : Db(X, ³) ∼−→ Db(Y, ´) be

a Fourier–Mukai equivalence. There exists

(a) an autoequivalence 8′ of Db(Y, ´) which is a composition of spherical twists about (−2)-curves,

(b) a DVR V whose fraction field has characteristic 0 and with residue field k,

(c) projective lifts (XV , ³V ) and (YV , ´V ) of (X, ³) and (Y, ´) over V , and

(d) a perfect complex RV ∈ Db(XV ×V YV ,−³V ⊞ ´V ) which induces a Fourier–Mukai equivalence

and whose restriction to X × Y is quasi-isomorphic to the kernel R of the equivalence 8′ ◦8P .

Moreover, if X and Y have finite height, we may choose the above data so that 8′ is the identity and

XV and YV are perfect liftings.

Proof. Choose a preimage ³′ ∈ H2(X, µn) of ³. Given a choice of preimage of ´, we obtain an isometry

8 : Ñ (X)Q
∼−→ Ñ (Y )Q.

Consider the class v = (8)−1(0, 0, 1) ∈ ÑS(X)Q . Note that this class does not depend on the choice of

preimage of ´. By [Bragg 2023, Theorem 7.3], we may find a DVR V of characteristic 0 and residue

field k and a polarized lift (XV , ³
′
V ) of (X, ³′) over V over which the class v extends. Let ³V be the

image of ³′V in the Brauer group of XV . Let MV =M(XV ,³V )(v) be the relative moduli space of H -stable
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³V -twisted sheaves on XV → Spec V with twisted Mukai vector v³
′
V = v, where H is a v-generic

polarization. Let MV be the coarse space of MV . The morphism MV → Spec V is a projective family of

K3 surfaces, and there is a class µV ∈Br(MV ) such that the universal complex QV induces an equivalence

8QV : D
b(MV , µV )

∼−→ Db(XV , ³V ).

Let µ ∈ Br(M) be the restriction of µV to M , and let Q be the restriction of QV . The Fourier–Mukai

equivalence

8P ◦8Q : D
b(M, µ ) ∼−→ Db(Y, ´)

is filtered. As in [Lieblich and Olsson 2015, Lemma 6.2], we may find an autoequivalence 8′ as in the

statement of the theorem so that8′◦8P◦8Q is both filtered and polarized. Let R denote its kernel. Choose

a preimage µ ′V ∈H2(MV , µm) of µV , and write µ ′ for the restriction of µ ′V to M . Let ´ ′ be the corresponding

lift of ´ produced by Proposition 5.2. By Theorem 5.6, there is a lift (YV , ´
′
V ) of (Y, ´ ′) and RV of R

over V , corresponding to the lift (MV , µ
′
V ) of (M, µ ′). Consider the Fourier–Mukai equivalence

8RV ◦8
−1
QV
: Db(XV , ³V )→ Db(YV , ´V ).

This equivalence restricts over k to 8′ ◦8P . By the uniqueness of the kernel, we conclude that RV

restricts to the kernel of the equivalence 8′ ◦8P , as claimed.

Suppose that X and Y have finite height. We modify the above as follows. Choose ³′ so that p does

not divide n/ord(³). By [Bragg 2023, Theorem 7.3], we may choose the lift XV so that the restriction

map Pic(XV )→ Pic(X) is an isomorphism. It follows that Pic(YV )→ Pic(Y ) is also an isomorphism. In

particular, every (−2)-class in Pic(Y ) extends to YV . We now compose 8RV with an autoequivalence of

Db(Y, ´) lifting the inverse of8′. The kernel of the resulting equivalence then restricts to P , as desired. □

6. Existence theorems

The goal of this section is to construct isogenies with prescribed action on cohomology. In particular, we

will prove Theorems 1.2 and 1.4.

6A. Construction of derived isogenies. We begin with Theorem 1.2.

Let R be an integral domain whose field of fractions is of characteristic 0 (we have in mind R = Zℓ or

R =W ). Set R Q := R¹Z Q. Let M be a quadratic lattice such that 2−1m2 ∈ R for every m ∈ M .

Given an element b∈M such that ïb, bð ̸=0, the reflection in b is the isometry sb :M Q→M Q defined by

sb(x)= x −
2ïx, bð

ïb, bð
b.

Let H̃ be a lattice of the form R·M · R equipped with the Mukai pairing, i.e.,

ï(r,m, s), (r ′,m′, s ′)ð = ïm,m′ð− rs ′− r ′s,

and a multiplicative structure given by

(r,m, s) · (r ′,m′, s ′)= (rr ′, rm′+ r ′m, rs ′+ r ′s+ïm,m′ð).
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Lemma 6.1. Let b ∈ M be a primitive element such that ïb, bð ̸= 0. Set n := 1
2
b2 and B := b/n ∈ M Q :=

M ¹Z Q. Let B ′ ∈ M Q be another element. If 8 : H̃Q
∼−→ H̃Q satisfies

(a) 8(1, 0, 0)= (0, 0, 1/n) and 8(0, 0, 1)= (n, 0, 0), and

(b) eB8e−B ′ is R-integral (i.e., restricts to an isometry H̃ ∼−→ H̃ ),

then ϕ(M)= sb(M), where sb ∈ Aut(M Q) is the reflection in b and ϕ is the restriction of 8 to M Q .

Proof. We extend rb := −sb to an isometry 9 : H̃Q
∼−→ H̃Q by requiring that 9 satisfies (a). It is

straightforward to verify that eB9e−B is R-integral:

eB9e−B(0, 0, 1)= eB9(0, 0, 1)= eB(n, 0, 0)= (n, b, 1),

eB9e−B(1, 0, 0)= eB9(1,−B, 1/n)= eB(1,−B, 1/n)= (1, 0, 0),

eB9e−B(0,m, 0)= eB9(0,m,−ïB,mð)= eB(nï−B,mð, rb(m), 0)= (ï−b,mð,−m, 0).

We now consider the composition (eB9e−B)−1 ◦ (eB8e−B ′) = eB(9−1 ◦8)e−B ′ , which has to be

R-integral. Direct computation shows

eB(9−1 ◦8)e−B ′(0,m, 0)= eB(9−1 ◦8)(0,m,−ïB ′,mð)

= eB(
0, r−1

b (ϕ(m)),−ïB ′,mð
)

=
(
0, r−1

b (ϕ(m)), ïB, ϕ(m)ð− ïB ′,mð
)
.

As eB(9−1 ◦8)e−B ′ is R-integral, we deduce that r−1
b ◦ϕ is R-integral, and so rb(M)= ϕ(M). □

The next result is the key geometric input for the proof of Theorem 1.2. Let k be an algebraically closed

field of characteristic p. Given a K3 surface X over k and a class b∈H2(X), we let sb :H
2(X)Q→H2(X)Q

denote the isometry sbp1
×sbp2

×· · · . We say that a class b ∈H2(X) is primitive if nb′= b for an integer n

and b′ ∈ H2(X) implies n =±1.

Proposition 6.2. Let X be a K3 surface over k. Let b ∈ H2(X) be a primitive class such that n := 1
2
b2 is

an integer1 and such that b/n is a mixed B-field. There exists a K3 surface X ′ together with a primitive

derived isogeny f : h2(X ′)→ h2(X) such that f∗(H2(X ′))= sb(H
2(X)) in H2(X)Q .

Proof. Set B := b/n and let ³ = ³B be the Brauer class defined by B. Let X ′ be the moduli space

of stable ³-twisted sheaves with Mukai vector vB = (n, 0, 0) (where stability is taken with respect

to a sufficiently generic polarization). As b is primitive, the class (n, 0, 0) is primitive in Ñ (X, B).

Thus, X ′ is a K3 surface, and there exists a Brauer class ³′ ∈ Br(X ′) together with an equivalence

8E : Db(X ′, ³′) ∼−→ Db(X, ³). Choose a mixed B-field lift B′ of ³′. Then the cohomological action

8 : H(X ′)Q
∼−→ H(X)Q of the algebraic cycle v−B′⊞B(E ) sends (0, 0, 1) to (n, 0, 0).

Since 8 is an isometry, the vector u = (8)−1(0, 0, 1/n) satisfies u2 = 0 and ïu, (0, 0, 1)ð = −1.

Therefore, u is necessarily of the form e¶ =
(
1, ¶, 1

2
¶2

)
for some ¶ ∈H2

ét
(X ′)Q . As (0, 0, 1) is an algebraic

class, and 8 is induced by an algebraic cycle, we have ¶ ∈ NS(X ′)Q . After replacing B′ by B′ + ¶,

1That is, n is in the image of the diagonal embedding Z ↪→W × Ẑ p .
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we may assume that 8 sends (1, 0, 0) to (0, 0, 1/n). Now we may apply Lemma 6.1 to the ℓ-adic part

for each ℓ ̸= p and to the crystalline part. We conclude that the degree 0 part of the correspondence

v−B′⊞B(E ) sends H2(X ′) to sb(H
2(X)). □

6B. Cartan–Dieudonné theorems and strong approximation. To apply Proposition 6.2 towards the

proof of Theorem 1.2, we need to show that the reflections sb about classes b ∈ H2(X) satisfying the

conditions of Proposition 6.2 generate a sufficiently large subgroup of isometries of H2(X)Q . We need two

lattice-theoretic inputs. The first is the following generalized Cartan–Dieudonné theorem [Klingenberg

1961, Theorem 2].

Theorem 6.3. Let R be a local ring with residue characteristic ̸= 2 and let L be a unimodular quadratic

lattice over R. The group O(L) is generated by the set of reflections sb, where b ranges over the elements

of L such that b2 ∈ R×.

We also will use the following consequence of the strong approximation theorem. Recall that U

denotes the hyperbolic plane, which is a Z–lattice of rank 2.

Lemma 6.4. Let L be a nondegenerate indefinite quadratic lattice over Z of rank g 3. If q is a prime

such that L ¹ Zq contains a copy of U ¹ Zq as an orthogonal direct summand, then the double quotient

O(L ¹ Q)\O(L ¹ Qq)/O(L ¹ Zq)

is a singleton.

Proof. This is a slight variant of [Yang 2023, Lemma 2.1.12], whose proof follows from that of [Ogus

1979, Lemma 7.7]. We briefly summarize the argument: Let K ¦ Spin(L ¹ Qq) be the preimage of

SO(L ¹ Zq) under the natural map ad : Spin→ SO. Using the fact that L ¹ Zq contains U ¹ Zq as an

orthogonal direct summand, we show that the maps

Spin(L ¹ Q)\Spin(L ¹ Qq)/K→ SO(L ¹ Q)\SO(L ¹ Qq)/SO(L ¹ Zq)

→ O(L ¹ Q)\O(L ¹ Qq)/O(L ¹ Zq)

are both surjections. Now we conclude using the fact that the first double quotient is a singleton by the

strong approximation theorem. □

We now return to the setting of a K3 surface X over an algebraically closed field k of characteristic p.

Lemma 6.5. Let X be a K3 surface over k, and assume that p g 5. There exists a Z–lattice L of rank 22

and a primitive indefinite sublattice L ′ ¢ L such that

(a) for each ℓ ̸= p, there exists an isometry L ¹ Zℓ ∼= H2(X, Zℓ),

(b) there exists an isometry L ′¹ Zp
∼= T (X) := H2(X/W )ϕ=1, and

(c) the double quotients

O(L ¹ Z(p))\O(L ¹ A
p
f )/O(L ¹ Ẑ p) and O(L ′¹ Q)\O(L ′¹ Q p)/O(L ′¹ Zp)

are both singletons.
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Proof. Suppose that X has finite height h. We take L = 3 to be the K3 lattice. As L contains a

copy of U as an orthogonal direct summand, we may apply [Yang 2023, Lemma 2.1.12] to conclude

that the indicated double quotient is a singleton. We will now produce L ′. Suppose that h f 9. By

[Ito 2019, Theorem 6.4] (which requires p g 5), there exists a K3 surface Y over Fp such that h(Y )= h

and Ä(Y ) = 22− 2h. Set L ′ = Pic(Y ). The existence of a perfect lifting of Y to characteristic zero

shows that L ′ admits a primitive embedding into L =3. Condition (a) is immediate. The embedding

L ′→ H2(Y/W ) induces an isomorphism L ′¹ Zp
∼= T (Y )= T (X), giving (b). It remains to check that

the double quotient involving L ′ is a singleton. The pairing on H1 is perfect, and the inclusion T (X)¢H1

induces an isomorphism T (X)¹Zp W ∼= H1, so the discriminant of the pairing on T (X) ∼= L ′¹ Zp is

a p-adic unit. As L ′ has rank g 4, the classification of p-adic lattices [Ogus 1979, Lemma 7.5] implies

that L ′¹ Zp contains a copy of U ¹ Zp as an orthogonal direct summand. By the Hodge index theorem,

L ′ is indefinite. We conclude using Lemma 6.4. Suppose h = 10. We take L ′ = U . This is certainly a

primitive sublattice of L =3, and the double quotient involving L ′ is a singleton. It remains to check

that U ¹ Zp
∼= T (X). As explained by Ogus [1983, Remark 1.5], the discriminant of the pairing on H1

is −1. The same is then true for T (X), because T (X)¹Zp W ∼= H1. By the classification of quadratic

lattices over Zp, we conclude that U ¹ Zp
∼= T (X).

Suppose that X is supersingular. Let L ′ = L =3Ã0
be the supersingular K3 lattice of Artin invariant

Ã0= Ã0(X). The discriminant of the pairing on3Ã0
is equal to−p2Ã0 , which is an ℓ-adic unit for all ℓ ̸= p,

and so (a) holds. Condition (b) is immediate. Finally, by [Ogus 1979, Lemma 7.7], condition (c) holds. □

The following results could be phrased purely in terms of (semi)linear algebra, but for clarity we will

maintain the geometric notation.

We recall that O(H2(X, A
p
f )) is the subgroup of

∏
ℓ ̸=p O(H2(X, Zℓ)) consisting of those tuples 2 such

that 2ℓ is ℓ–integral for all but finitely many ℓ (here, we say that 2ℓ is ℓ-integral if 2ℓ(H
2(X, Zℓ))=

H2(X, Zℓ)). We let O8(H
2(X/K )) be the group of automorphisms of H2(X/K ) which are isometries with

respect to the pairing and which commute with8. We set O8(H
2(X))=O8(H

2(X/K ))×O(H2(X, A
p
f )).

Remark 6.6. Giving an isometric embedding º as in the statement of Theorem 1.2 is equivalent to

giving an isometry ºp : 3¹ W ↪→ H2(X/K ) of W -modules and for each prime ℓ ̸= p an isometry

ºℓ :3¹Zℓ ↪→H2(X, Qℓ) of Qℓ-modules such that for all but finitely many ℓ we have im(ºℓ)=H2(X, Zℓ).

A similar description holds for the isometric embedding in the statement of Theorem 6.13.

Lemma 6.7. Suppose that p g 5. If 2p ∈ O(H2(X, A
p
f )) is an isometry, then there exists a sequence

b1, . . . , br of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2
b2

i is an integer which is not divisible by p, and

(2) the isometry s := sb1
◦ · · · ◦ sbr satisfies s(H2(X, Ẑ p))=2p(H2(X, Ẑ p)).

Proof. Let L be a lattice as in Lemma 6.5, and choose an identification L ¹ Ẑ p = H2(X, Ẑ p). By

Lemma 6.4,

O(L ¹ Z(p))\O(L ¹ A
p
f )/O(L ¹ Ẑ p)
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is a singleton. Hence, there exists an isometry 9 ∈ O(L ¹ Z(p)) such that 9(L)¹ Ẑ p =2p(L ¹ Ẑ p).

We apply Theorem 6.3 with R = Z(p) to produce a sequence b1, . . . , br of elements of L ¹ Z(p) such

that b2
i ∈ Z×(p) for each i and 9 = sb1

◦ · · · ◦ sbr . For each i , we may write bi = v/m for some primitive

v ∈ L and an integer m which is coprime to p. Note that the integer 1
2
v2 = 1

2
m2b2

i is in Z×(p), and hence

is not divisible by p. Moreover, we have sbi = sv . So, by replacing each bi with the corresponding v, we

may arrange that the bi satisfy (1). Condition (2) holds by construction. □

Lemma 6.8. Suppose that p g 5. Let 2p ∈ O8(H
2(X/K )) be an isometry which restricts to the identity

on H2(X/W )<1. There exists a sequence b1, . . . , br of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2
b2

i is an integer and ϕ(bi )= bi , and

(2) the isometry s := sb1
◦ · · · ◦ sbr satisfies s(H2(X/W ))=2p(H

2(X/W )).

Proof. Write H=H2(X/W ), and consider the Newton–Hodge decomposition H=H<1·H1·H>1 of H.

The first and third factors are dual, and orthogonal to H1. Because 2p restricts to the identity on H<1, it

must also restrict to the identity on H>1, and hence 2p restricts to an element of O8(H1)= O(T (X)).

We fix lattices L , L ′ as in Lemma 6.5 and an identification L ′¹ Zp = T (X). By Lemma 6.4, we may find

9 ∈O(L ′¹ Q) such that 9(L ′)¹ Zp =2p|T (X)(L ′¹ Zp). By the classical Cartan–Dieudonné theorem,

we may find a sequence b1, . . . , br of elements of L ′¹ Q such that 9 = sp = sb1
◦ · · · ◦ sbr . By scaling,

we may assume that each bi is in L ′ and is primitive. Note that, as H<1 and H>1 are orthogonal to H1,

the reflections sbi are the identity on H<1·H>1. If follows that s satisfies condition (2). □

Lemma 6.9. Suppose that p g 5. Let 2 ∈ O8(H
2(X)Q) be an isometry such that 2p restricts to the

identity on H2(X/W )<1. There exists a sequence b1, . . . , bm of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2
b2

i is an integer and bi/ni is a mixed B-field, and

(2) the isometry s := sb1
◦ · · · ◦ sbm satisfies s(H2(X))=2(H2(X)).

Proof. We first choose elements b1, . . . , br ∈H2(X) by applying Lemma 6.8 to2p. We set s= sb1
◦· · ·◦sbr .

We apply Lemma 6.7 to (s−1 ◦2)p to obtain elements b′1, . . . , b′t ∈ H2(X). Set s ′ = sb′1
◦ · · · ◦ sb′t . We

claim that the sequence b1, . . . , br , b′1, . . . , b′t ∈H2(X) satisfies the desired conditions. We check (1). We

have that ni :=
1
2
b2

i and n′i :=
1
2
(b′i )

2 are integers. We have that ϕ((bi )p)= (bi )p, so by Proposition 2.7

each (bi )p/ni is a crystalline B-field. It follows that bi/ni is a mixed B-field. As n′i is not divisible by p,

(b′i )p/n′i is in H2(X/W ), so (b′i )p/n′i is a crystalline B-field, and b′i/n′i is a mixed B-field. We have

shown that (1) holds. To check (2), note that by construction, we have

(s ◦ s ′)p(H2(X, Ẑ p))=2p(H2(X, Ẑ p)).

Furthermore, as p does not divide 1
2
(b′i )

2, we have s ′p(H
2(X/W ))= H2(X/W ), and so

(s ◦ s ′)p(H
2(X/W ))= sp(H

2(X/W ))=2p(H
2(X/W )). □

Proof of Theorem 1.2. We prove the “only if” direction first. Suppose that f : h2(X ′) ∼−→ h2(X) is a

primitive derived isogeny. We may choose Brauer classes ³ ∈ Br(X) and ³′ ∈ Br(X ′), a Fourier–Mukai
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equivalence 8P : Db(X ′, ³′) ∼−→ Db(X, ³), and crystalline B-field lifts B and B ′ of ³ and ³′ such

that the cohomological transform 8v−B′⊞B (P) : H̃(X ′/K )→ H̃(X/K ) and the cohomological realization

H2(X ′/K ) ∼−→ H2(X/K ) of f restrict to the same map T 2(X ′/K ) ∼−→ T 2(X/K ), where T 2(X/K )

denotes the orthogonal complement to NS(X)¹K in H2(X/K ) (not to be confused with the Tate module

of H2(X/W )). By Theorem 3.6, 8v−B′⊞B (P) restricts to an isomorphism H̃(X ′/W, B ′) ∼−→ H̃(X/W, B)

of crystals. Thus, by Proposition 2.15, it induces an isomorphism

H2(X ′/W )<1 = H̃(X ′/W, B ′)<1
∼−→ H̃(X/W, B)<1 = H2(X/W )<1.

The transcendental part T 2(X/K ) contains H2(X/W )<1, so the cohomological realization of f also maps

the slope < 1 part to the slope < 1 part. This gives the result.

We now prove the “if” direction. For each ℓ ̸= p fix an isometry H2(X, Zℓ)∼=3¹ Zℓ. Assume first

that the K3 crystals Hp and H2(X/W ) are abstractly isomorphic. This is the case, for instance, if X

has finite height. We fix an isomorphism H2(X/W ) ∼= Hp of K3 crystals. Composing with the given

embedding º and tensoring with Q, we find an isometry 2 ∈ O8(H
2(X/K ))×O(H2(X, Ẑ p)) which

maps H2
ét
(X, Zℓ) to ºl(3¹ Zℓ) and H2(X/W ) to ºp(3¹W ). By Lemma 6.9, we may find a sequence

b1, . . . , bm ∈ H2(X) of primitive elements such that for every i , ni :=
1
2
b2

i is an integer and bi/ni is a

mixed B-field, and furthermore the isometry s := sb1
◦ · · · ◦ sbm satisfies s(H2(X)) = 2(H2(X)). The

result follows by repeatedly applying Proposition 6.2.

We now consider the case when X is supersingular and Hp and H2(X/W ) are not isomorphic. This

can certainly occur: any two supersingular K3 crystals over k of the same rank and discriminant are

isogenous, but by results of Ogus [1979], supersingular K3 crystals themselves have nontrivial moduli.

We argue as follows. By the global crystalline Torelli theorem [Ogus 1983], there exists a supersingular

K3 surface X ′ such that H2(X ′/W ) is isomorphic as a K3 crystal to Hp. By Theorem 6.11 below, there

exists a derived isogeny h2(X ′) ∼−→ h2(X), which induces an isometry H2(X ′/K )∼= H2(X/K ). We are

now reduced to the previous case, and we conclude the result. □

Remark 6.10. The only place where the assumption p g 5 is used in the above proof is in applying

the result of Ito [2019, Theorem 6.4]. If in Theorem 1.2, Hp = H2
cris(X/W ), i.e., 2p as above can be

taken to be the identity, then the assumption p > 2 suffices. In this case, in producing X ′ we only need to

iteratively take moduli of sheaves twisted by Brauer classes of prime-to-p order.

6C. Existence in the supersingular case. We make a few remarks specific to the supersingular case.

Here, very strong cohomological results are available: there is a global Torelli theorem [Ogus 1979;

1983; Bragg and Lieblich 2018], as well as a derived Torelli theorem [Bragg 2021]. Together, these

give a picture which closely parallels the case of complex K3 surfaces. We will show that any two

supersingular K3 surfaces are derived isogenous. More refined results (along the lines of [Huybrechts

2019, Theorem 0.1]) are possible, but we will omit this discussion here.

Theorem 6.11. Suppose that p g 3. Let X and Y be two supersingular K3 surfaces over k. There exists a

derived isogeny h2(X) ∼−→ h2(Y ).
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Proof. We use [Bragg and Lieblich 2018, Proposition 5.2.5]: if X is a supersingular K3 surface, then there

exists a sequence X0, X1, . . . , Xn of supersingular K3 surfaces together with Brauer classes ³i ∈ Br(X i )

such that X0 = X , Db(X i , ³i ) ∼= Db(X i+1, ³i+1) for each 0 f i f n − 1, and Xn = Z is the unique

supersingular K3 surface with Artin invariant 1. Applying this to both X and Y , we find derived isogenies

h2(X) ∼−→ h2(Z) ∼←− h2(Y ). □

Remark 6.12. Shioda [1977, Theorem 1.1] showed that supersingular Kummer surfaces are unirational.

By a result of Ogus [1979] and the crystalline Torelli theorem these are exactly the supersingular K3

surfaces with Artin invariant Ã0 f 2. The Chow motive of a unirational surface is of Tate type. Combining

this with Theorem 6.11 we deduce that for any supersingular K3 surface X we have h(X)= halg(X)=

L0· L·22· L2 and h2
tr(X) = 0. In particular, we have CH2(X) = Z. This result was first proved by

Fakhruddin [2002], using a related method.

6D. Existence in characteristic 0. It is possible to formulate a purely algebraic analog of Huybrechts’

Theorem 1.3 along the lines of Theorem 1.2, valid over any algebraically closed field of characteristic 0.

Theorem 6.13. Let X be a K3 surface over an algebraically closed field of characteristic 0. Let

H =3¹ Ẑ. Let º : H ↪→H2(X)Q be an isometric embedding. There exists a K3 surface X ′ and a derived

isogeny f : h2(X ′) ∼−→ h2(X) such that f∗(H2(X ′))= im(º).

Proof. This can be proved purely algebraically along the same lines as our proof of Theorem 1.2 (but

avoiding the extra complications at p). Alternatively, it can be deduced directly from Theorem 1.3. We

omit further details. □

6E. Nygaard–Ogus theory revisited. In preparation for the proof of Theorem 1.4, we briefly recap the

deformation theory of K3 crystals and K3 surfaces established in [Nygaard and Ogus 1985, §5]. For the

rest of Section 6, assume that k is a perfect field with char k = pg 5. We refer the reader to the paragraph

below the proof of Lemma 4.6 in loc. cit. for this restriction on p. Let R := k[ε]/(εe) for some e. Recall

that a K3 crystal over R is an F-crystal H on Cris(R/W ) equipped with a pairing H × H→ OR/W and

an isotropic line Fil¢ HR which satisfy some properties (see Definition 5.1 in loc. cit. for details).2

Definition 6.14. Suppose V is a finite flat extension of W such that V/(p)= R. A deformation of H

to V is a pair (H, F̃il) where F̃il¢ HV is an isotropic direct summand which lifts Fil¢ HR .

Theorem 6.15 (Nygaard and Ogus). Let X be a K3 surface over k and R be as above.

(a) The natural map X R 7→ H2
cris(X R) defines a bijection between deformations X R of X to R to

deformations of the K3 crystal H2
cris(X/W ) to R, i.e., K3 crystals H over R with H|k =H2

cris(X/W ).

(b) If X R is a deformation of X to R, then the map XV 7→ (H2
cris(X R),Fil2 H2

dR(XV /V )) defines a

bijection between deformations XV of X R to V and deformations of the K3 crystal H2
cris(X R) to V ,

in the sense of Definition 6.14.
2In fact, [Nygaard and Ogus 1985, Definition 5.1] defined K3 crystals over a more general base which satisfies a technical

assumption [Nygaard and Ogus 1985, (4.4.1)]. For our purposes it suffices to consider bases of the form k[ε]/(εe).
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Proof. This follows from [Nygaard and Ogus 1985, Theorem 5.3] and its proof. □

For the rest of Section 6E, X denotes a K3 surface of finite height over k. Recall that there is a

canonical slope decomposition (cf. [Nygaard and Ogus 1985, Proposition 5.4])

¶can : H
2
cris(X/W )= D(B̂r

∗
X )·D(D∗)·D(B̂rX )(−1). (35)

We define a map K which sends a deformation of B̂rX to R to a deformation of the K3 crystal

H2
cris(X/W ) to R by setting K(G R) := D(G∗R)·D(D∗R)·D(G R)(−1), where DR denote the canonical

lift of D to R. The K3 crystal structure on K(G R) is given as follows: Let PG R : D(G
∗
R)×D(G R)→

OR/W (−1) be the canonical pairing and let PDR :D(D
∗
R)×D(D∗R)→OR/W (−2) be the pairing inherited

from that on D(D∗). The pairing on K(G R) is PG R (−1)·PDR . Finally, the isotropic direct summand Fil

in K(G R)R is given by [Fil1 D(G R)R](−1). We define a decreasing filtration on K(G R)R by setting

0= Fil3 ¢ Fil2 := Fil¢ Fil1 := (Fil2)§ ¢ Fil0 = K(G R)R. (36)

If we further lift G R to a p-divisible group GV for a finite flat extension V of W with V/(p) = R,

then we can attach a deformation of K(G R) to V by setting F̃il= [Fil1 D(GV )V ](−1), which we denote

by K(GV ). We define a filtration on K(GV )V using (36) with K(G R)R replaced by K(GV )V .

Definition 6.16. If XV is a formal scheme over Spf V which deforms X , we say XV is a Nygaard–Ogus

lifting if it comes from K(GV ) for some p-divisible group GV lifting B̂rX to V via Theorem 6.15. That

is, setting R := V/(p), G R := (GV )¹ R and X R := (XV )¹ R, we have an isomorphism

(H2
cris(X R),Fil2 H2

dR(XV /V )) ∼−→ K(GV )

lifting ¶can in the obvious sense. If XV is an algebraic space over Spec V which deforms X , then we say

XV is a Nygaard–Ogus lifting if its formal completion at the special fiber is a Nygaard–Ogus lifting.

Proposition 6.17. If a formal scheme XV is a Nygaard–Ogus lifting of X , then the natural map Pic(XV )→

Pic(X) is an isomorphism. In particular, XV is algebraizable.

Proof. See Proposition 4.5 and Remark 4.6 of [Yang 2022]. □

Using integral p-adic Hodge theory, we can characterize Nygaard–Ogus liftings:

Theorem 6.18. Let F be a finite extension of K with V := OF . Let XV be a formal scheme over Spf V

which lifts X and let X F denote its rigid-analytic generic fiber. Then XV is a Nygaard–Ogus lifting

if and only if there are GalF -stable Zp-sublattices T 0, T 1, T 2 in H2
ét
(X F , Zp) of ranks h, 22− 2h, h

respectively, such that, as crystalline GalF -representations,

(a) T 1(1) is unramified,

(b) T 0 has Hodge–Tate weight 1 with multiplicity h− 1 and 0 with multiplicity 1,

(c) T 2(1) has Hodge–Tate weight 1 with multiplicity 1 and 0 with multiplicity h− 1.
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Proof. We recap in the Appendix the results from the integral p-adic Hodge theory used in this proof.

Let S denote Breuil’s S-ring. Using the data Fil•H2
dR(X F/F), we equip H2

cris(X/W )¹W SK with the

structure of an object in MF
ϕ,N
SK

. For any GV which lifts B̂rX to V , we set

Tp(GV ) := TpGV · Tp DV · TpG∗V (−1).

Suppose first that XV is Nygaard–Ogus, so that it comes from some GV lifting G := B̂rX . Combining

(41) and (45), we obtain isomorphisms

H2
ét(X F , Zp)¹

Zp

Bcris
∼= H2(X/W )¹

W
Bcris = K(G)¹

W
Bcris
∼= Tp(GV )(−1)¹

Zp

Bcris,

which give rise to a rational isomorphism H2
ét
(X F , Zp)¹Zp Q p

∼−→ Tp(GV )(−1)¹Zp Q p. We now

show that the this restricts to an integral isomorphism

H2
ét(X F , Zp)∼= Tp(GV )(−1). (37)

It is easy to check that the object (K(G)K ,Fil• K(GV )F ) in MF
ϕ

F admits a decomposition into

(D(B̂r
∗
X )K ,Fil• D(G∗V )F )· (D(D

∗)K ,Fil• D(D∗V )F )· (D(B̂rX )K ,Fil• D(GV )F )(−1).

By the construction of Nygaard–Ogus liftings, there is an isomorphism

D(G∗R)S ·D(D∗R)S ·D(G R)(−1)S
∼= H2

cris(X R)S

of strongly divisible S-modules which is compatible with the isomorphism

H2(X/W )¹
W

SK
∼= K(G)¹

W
SK

induced by ¶can. By applying the functor Tcris, we obtain (37), which readily implies the “only if” part of

the theorem.

Now we show the “if” part. The proof is essentially a reincarnation of the proof of [Nygaard and

Ogus 1985, Proposition 5.5]. The hypothesis implies that there exists an isomorphism H2
ét
(X F , Zp)∼=

Tp(GV )(−1) for some GV which lifts B̂rX to V . By Theorem A.3, there exists a unique isomorphism

D(G∗R)S ·D(D∗R)S ·D(G R)(−1)S
∼= H2

cris(X R)S (38)

which gives this isomorphism, H2
ét
(X F , Zp)∼= Tp(GV )(−1), under Tcris.

The only thing we need to check is that this isomorphism of S-modules comes from an isomorphism

of F-crystals on Cris(R/W )

K(G R)= D(G∗R)·D(D∗R)·D(G R)(−1)∼= H2
cris(X R) (39)

which restricts to ¶can.

Let e be the ramification degree of V over W and j be any positive number f e. Set R j := R/(ε j ). We

claim that there exists a sequence of isomorphisms ¶ j :K(G R j )
∼=H2

cris(X R) of F-crystals on Cris(R j/W )

such that ¶ j is the restriction of ¶ j+1 for each j < e such that ¶1 = ¶can, and ¶e gives the desired
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isomorphism (39). Suppose we have constructed ¶ j for some j < e. Note that (ε j ) is a square-zero

ideal in R j+1 and we can view R j+1 as an object of Cris(R j/W ) by equipping (ε j ) with the trivial

PD structure. By [Nygaard and Ogus 1985, Theorem 5.2], to construct ¶ j+1 it suffices to show that

[Fil1 D(G R j+1
)R j+1
](−1) is sent to Fil2 H2

dR(X R j+1
/R j+1) via the composition

K(G R j+1
)R j+1
∼= K(G R j )R j+1

∼

(¶ j )R j+1

−−−−→ H2
cris(X R j )R j+1

∼= H2
dR(X R j+1

/R j+1).

However, this follows directly from the fact that (38) respects the filtrations. Indeed, viewing R j+1 as an

S-algebra via S→ OF → R→ R j+1, we get the above isomorphism by tensoring (38) with R j+1. □

Remark 6.19. When X is ordinary, XV is Nygaard–Ogus if and only if it is obtained via base change

from the canonical lifting, because in this case deformations of B̂rX are completely rigid. Therefore, the

above theorem is a generalization of [Taelman 2020, Theorem C] when p g 5. It also follows from (37)

in the above proof that when XV is a Nygaard–Ogus lifting, for the enlarged formal Brauer group 9XV

of XV , there is a natural injective map of GalF -modules

Tp9XV → H2
ét(X F , Zp(1)),

which generalizes [Taelman 2020, Theorem 2.1]. Indeed, we have9XV = B̂rXV ·DV for a Nygaard–Ogus

lifting.

6F. Construction of liftable isogenies. We now prove Theorem 1.4.

Proof of Theorem 1.4. Again write ºp and ºp for the prime-to-p and crystalline component of º. If a

Frobenius-preserving isometric embedding ºp : Hp ↪→ H2(X/W ) as in the hypothesis exists, then the K3

crystal Hp has to be abstractly isomorphic to H2(X/W ) and hence to K(B̂rX ). We choose an isomorphism

Hp
∼−→K(B̂rX ) and consider (ºp)K := ºp¹ K as an isometric automorphism of the F-isocrystal K(B̂rX )K .

Then (ºp)K determines, and is conversely determined by, a pair (h, g), where h ∈ End(B̂rX )[1/p]

and g ∈ End(D)[1/p]. Our goal is to produce an isogeny f : h2(X ′) → h2(X) for some other K3

surface X ′ over k = Fp such that f∗(H2
ét
(X ′, Ẑ p))= ºp(3¹ Ẑ p) and f∗(H2(X ′/W ))= (ºp)K (K(B̂rX )).

By Theorem 1.2, we first reduce to the case when ºp(3¹ Ẑ p)= H2
ét
(X, Ẑ p) and (ºp)K sends the slope 1

part, i.e., D(D∗), isomorphically onto itself.

By Lubin–Tate theory, for some finite flat extension V of W , there exists a lift GV of B̂rX to V

such that h lifts to End(GV )[1/p] [Yang 2022, Lemma 4.8]. Note that Fil• K(GV )F equips K(B̂rX )K

with the structure of an object in MF
ϕ

F and M := K(GV )S defines a strongly divisible S-lattice in the

corresponding object D :=K(B̂rX )¹ SK in MF
ϕ,N
SK

. It is clear that ºK preserves Fil• K(GV )F and extends

to an automorphism ºSK of D .

Let XV be the Nygaard–Ogus lifting of X which corresponds to GV . We have Tcris(M )=H2
ét
(X F , Zp)

inside H2
ét
(X F , Q p) by the proof of Theorem 6.18, and Vcris((ºp)K ) is an automorphism of the GalF -

module H2
ét
(X F , Q p) which preserves the Poincaré pairing. The image of H2

ét
(X F , Zp) under Vcris((ºp)K )

can also be interpreted as Tcris(ºSK (M )). Denote this GalF -stable Zp-lattice by 3′p. By Theorem 6.13,



1106 Daniel Bragg and Ziquan Yang

up to replacing F by a finite extension, we can find another K3 surface X ′ over F with a derived isogeny

f : h2(X ′) ∼−→ h2(X F ) such that

f∗(H
2
ét(X

′
F
, Ẑ))=3′p×

∏

ℓ̸=p

(3′ℓ := º
p(3¹ Zℓ)= H2

ét(X F , Zℓ)).

We argue that f induces an integral isomorphism Pic(X ′F )
∼−→ Pic(X F ). Indeed, f induces an

isomorphism

Pic(X ′F )
∼−→ Pic(X F )Q ∩

∏

ℓ

3′ℓ(1).

However, we know that the image of Pic(X ′F ) lies in the unramified part of H2
ét
(X F , Zp(1)), and the

unramified part of 3′p(1) coincides with that of H2
ét
(X F , Zp(1)). This implies that the target of the above

isomorphism is just Pic(X F ).

It follows that Pic(X ′F ) also satisfies hypothesis (a), (b) or (c) if Pic(X F )∼= Pic(X) does. For (a) and (c)

this is clear; for (b) this follows from [Lieblich et al. 2014, Lemma 2.3.2]. In any case, by [Matsumoto

2015, Theorem 1.1; Ito 2019, §2] and Theorem 8.10 to be proved below, X ′F admits potentially good

reduction. Up to replacing F by a further extension, we can find a smooth proper algebraic space X ′V
over V such that X ′F is the generic fiber of X ′V . The map induced on crystalline cohomology of special

fibers is Dcris( f ), which sends H2(X ′/W ) onto (ºp)K (K(B̂rX )). □

7. Uniqueness theorems

In this section we prove Theorem 1.5 by lifting to characteristic 0 (as outlined in the introduction).

7A. Shimura varieties. Let p > 2 be a prime and L be any self-dual quadratic lattice over Z(p) of rank

m g 5 and signature (2+, (m − 2)−). Set G̃ := CSpin(L(p)), G := SO(L(p)), Kp := CSpin(L ¹ Zp),

Kp :=SO(L ¹ Zp) and� := {É∈ P(L ¹C) : ïÉ,Éð=0, ïÉ, É̄ð>0}. Let S̃Kp(L) (resp. SKp(L)) denote

the canonical integral model of ShKp(G̃, �) (resp. ShKp(G, �)) over Z(p) given by [Kisin 2010] (see

also [Madapusi Pera 2016, §4]). We choose a compact open subgroup Kp of G̃(Ap
f ) and set K=KpK

p.

Similarly, set Kp to be the image of Kp and K :=KpK
p. Denote by S̃hK(L), S̃K(L), ShK(L), and SK(L)

the stacky quotients S̃hKp(L)/K
p, S̃Kp(L)/K

p, ShKp(L)/K
p, and SKp(L)/K

p respectively.

The model S̃K(L) is equipped with a universal abelian scheme A up to prime-to-p isogeny whose

cohomology gives rise to sheaves H∗ (∗ = B, cris, ℓ, dR) on suitable fibers of S̃ (L). The abelian

scheme A is equipped with a Cl(L)-action and Z/2Z-grading, and the sheaves H∗ are equipped with

tensors π∗ ∈ H
¹(2,2)
∗ . We call the triple of Z/2Z-grading, Cl(L)-action and various realizations of Ã the

CSpin structures on A or H∗. The dual of the images of π∗ are denoted by L∗. We refer the reader to

[Madapusi Pera 2016, §4] for details of these constructions or [Yang 2022, (3.1.3)] for a quick summary.

Here is another way to view the sheaves L∗: On the double quotient ShK(L)C =G(Q)\�×G(A f )/K,

the standard representation SO(L)→GL(L) produces a variation of Z-Hodge structures [Madapusi Pera

2016, §3.3], which is nothing but (L B, LdR,C := LdR|ShK(L)C ). The filtered vector bundle LdR,C is

commonly called the automorphic vector bundle associated to this representation, and by the general
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theory of automorphic vector bundles, we know that it admits a canonical descent to the canonical

model ShK(L) over the reflex field Q. This canonical descent is nothing but LdR (when restricted

to ShK(L)). In fact, the pair (L B, LdR,C) is the variation of Z-Hodge structures associated to a family of

Z-motives L over ShK(L)C in the sense of [Madapusi Pera 2015, §1.4]. This family of motives descend

to the canonical model ShK(L), whose ℓ-adic realizations give Lℓ|ShK(L) and whose de Rham realization

gives LdR|ShK(L). Once we extend ShK(L) to SK(L) over Z(p), these sheaves arising from cohomological

realizations of motives over ShK(L) also extend. This motivic point of view is discussed in more detail in

[Madapusi Pera 2015, §4.7].

It is explained in [Yang 2022, (3.1.3)] that the sheaves L∗ are equipped with an orientation tensor

δ∗ : det (L) ∼−→ det(L∗) (∗ = B, ℓ ̸= p). Here det (L) denotes the constant sheaf whose stalks are

det(L) on S̃ (L) in the appropriate Grothendieck topology. In short, δ∗’s come up because the adjoint

representation of G̃ on L(p) factors through SO(L(p)), i.e., it preserves a choice of orientation ¶ on L(p).

It is possible to discuss de Rham or crystalline realizations of ¶, but for our purposes it suffices to use

the 2-adic realization δ2. The sheaves L∗ and the tensors π∗ and δ∗ descend to S (L).

We will repeatedly make use of the following key fact about LdR and HdR:

Proposition 7.1. Let s be any point on S̃K(L). Fil1 LdR,s is one-dimensional, and Fil1 HdR,s = ker(x)

for any nonzero element x ∈ Fil1 LdR,s .

Proof. If char k(s)= 0, we can simply base change to C and apply Hodge theory (see [Yang 2022, p. 8]).

If char k(s)= p, we can check this by a lifting argument or read it off from [Madapusi Pera 2016, §4.9]. □

We recall the definition of a CSpin-isogeny [Yang 2022, Definition 3.2]:

Definition 7.2. Let » be a perfect field with algebraic closure »̄ , and let s, s ′ be »-points on S̃K p(L). We

call a quasi-isogeny As→ As′ a CSpin-isogeny if it commutes with the CSpin structures, i.e., it respects

the Z/2Z-grading, Cl(L)-action and sends πℓ,s¹ »̄ to πℓ,s′¹ »̄ for every ℓ ̸= char » and in addition πcris,s

to πcris,s′ if char » = p.

We remark that CSpin-isogenies are stable under liftings and reductions:

Lemma 7.3. Let » be a perfect field of characteristic p, and let s, s ′ be two k-points on S̃K(L). Let K

denote W (»)[1/p] and F ¦ K be a finite extension of K , and let sF , s ′F be F-valued points on S̃K(L)

which specialize to s, s ′. Suppose ÈF : AsF → As′F
is a quasi-isogeny which specializes to È : As→ As′ .

Then È is a CSpin-isogeny if and only if ÈF is also a CSpin-isogeny.

Proof. Clearly, È respects the Z/2Z-grading and the Cl(L)-actions if and only if ÈF also respects these

structures. Let sK and s ′
K

denote the K -valued geometric points over sF and s ′F . To check whether ÈF

sends πℓ,sK
to πℓ,s′

K
for every ℓ, it suffices to check this for one ℓ, as one can always take a base change

to C and use Betti realizations. Therefore, the only part of the statement which does not follow directly

from the smooth and proper base change theorem is that if ÈF is a CSpin-isogeny, then È sends πcris,s

to πcris,s′ . This follows from [Yang 2022, Remark 3.1]. □
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Lemma 7.4. Let sC , s ′C be two C-points on S̃K(L). For every Hodge isometry

g : L B,s′C
¹ Q ∼−→ L B,sC

¹ Q

which sends δ2,sC
to δ2,s′C

, there exists a CSpin-isogeny AsC

∼−→ As′C
which induces g by conjugation.

Proof. From the construction of the local system HB (see [Madapusi Pera 2016, §3.3]) it is clear that

there exists an isomorphism of free Z(p)-modules H ∼−→ HB,sC
which respects the CSpin-structures,

i.e., it respects the Z/2Z-grading, Cl(L)-action and sends Ã to πB,sC
. The same is true for s ′C , so there

exists an isomorphism of Z(p)-modules È ′ : HB,sC

∼−→ HB,s′C
which respects the CSpin structures. The

map g′ : L B,sC
¹ Q ∼−→ L B,s′C

¹ Q induced by È ′ by conjugation sends δ2,sC
to δ2,s′C

. Therefore, the

composition g−1 ◦ g′ lies in SO(L B,sC
¹ Q). Since the natural morphism CSpin(L Q)→ SO(L Q) is

surjective, we may lift g−1◦g′ to an automorphism of HB,sC
which preserves the CSpin structures and use

it to adjust È ′ to obtain a morphism È which induces g by conjugation. It follows from Proposition 7.1

that f preserves the Hodge structures, so that g̃ comes from a CSpin-isogeny. □

7B. Hilbert squares and period morphisms. We will apply the period morphism construction to Hilbert

squares of K3 surfaces, so we recollect some basic facts and set up some notation here. Let k be any

algebraically closed field of characteristic 0 or p > 2, X be any K3 surface over k and Y := X [2] be the

Hilbert scheme of two points on X . The lemma below implies that Y is a K3[2]-type variety in the sense

of [Yang 2023, Definition 1].

Lemma 7.5. When char k = p > 2 or 0, Y has the same Hodge numbers as those of a complex K3[2]-type

variety, and the Hodge–de Rham spectral sequence of Y degenerates at the E1-page.

Proof. Let Y ′ := Bl1(X × X) be the blowup of X × X along the diagonal 1 ¢ X × X . Let E ¢ Y ′ be

the exceptional divisor, which is isomorphic to the projectivization of the tangent bundle of X . There is

an action of Z/2 on X × X given by permuting the factors, which lifts to an action on Y ′ that is trivial

on E , and there is a natural map q : Y ′→ Y that identifies Y with the quotient Y ′/(Z/2). The map q is a

double cover branched over the divisor D = q(E)¢ Y , which may be described explicitly as the locus of

nonreduced subschemes. Using our assumption that 2 is invertible in k, we obtain a canonical direct sum

decomposition

q∗OY ′ = OY ·L ,

where L is the cokernel of the pullback map OY → q∗OY ′ . From this and the projection formula we

deduce the equality

H j (Y ′, q∗�i
Y )= H j (Y, �i

Y )·H j (Y, �i
Y ¹L ).

All of these data may be defined in a flat family over a flat finite type Z-scheme. By semicontinuity, the

dimensions of both summands on the right-hand side must be greater than or equal to their corresponding

values over the complex numbers. Thus, it will suffice to verify that the groups H j (Y ′, q∗�i
Y ) have the
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same dimensions as over the complex numbers. This can be done via a direct computation. In more detail,

we compute using the identification q∗�1
Y
∼=�1

Y ′(−E), which yields isomorphisms

q∗�i
Y
∼=�i

Y ′(−i E).

The cohomology of these sheaves may be related to the Hodge cohomology of X by pushing forward

along the blowup morphism Y ′→ X × X . The result then follows (eventually) from the fact that the

Hodge numbers of X do not depend on the characteristic of the ground field.

The degeneration of the Hodge–de Rham spectral sequence at the E1-page follows from the fact that

Hi (Y, � j
Y )= 0 for i + j odd. □

Let H∗(−) be a Weil cohomology with coefficient field K.3 We will only make use of Betti, ℓ-adic,

crystalline, de Rham when appropriate. When there is a specified polarization, let P∗(−) denote the

corresponding primitive cohomology. We will view NS(Y ) as a Z-lattice inside H
2(Y ) via c1, and will not

write c1 explicitly. H2(Y ) is equipped with natural Beauville–Bogomolov forms (BBF). When char k = 0,

these forms are well known. When char k = p> n+1, the étale and crystalline versions of these forms for

K3[n]-type varieties were defined in [Yang 2023, §2.1]. Since Y is a Hilbert square on a K3 surface X , as

opposed to a general deformation of such a variety, the Beauville–Bogomolov form on Y is easily described

by the Poincaré pairing on X : Let ¶ be the class of the exceptional divisor. Then ¶2 =−2 under the BBF.

The incidence correspondence between X and Y embeds H2(X) isometrically into H
2(Y ) such that H2(Y )

admits a natural orthogonal decomposition H
2(X)·K¶. Similarly, NS(Y ) decomposes as NS(X)· Z¶.

Lemma 7.6. Let À be a polarization on X and · be a polarization on Y of the form mÀ − ¶. Denote by

proj
P2(Y ) ¶ the projection of ¶ to P

2(Y ) and by Isom(−,−) the set of isometries between two quadratic

lattices. Now let X ′ be another K3 surface over k, take Y ′, À ′, ¶′ similarly, and suppose Y ′ is polarized by

· ′ := mÀ − ¶′. There are natural identifications

Isom(P2(X),P2(X ′))= { f ∈ Isom(H2(X),H2(X ′) : f (À)= À ′}

= { f ∈ Isom(H2(Y ),H2(Y ′)) : f (· )= · ′, f (¶)= ¶′}

= { f ∈ Isom(P2(Y ),P2(Y ′) : f (proj
P2(Y ) ¶)= proj

P2(Y ′) ¶
′}. (40)

Assume now p g 5 to apply the results of [Yang 2023]. Let X be a K3 surface and Y := X [2]. Let ·

be any primitive polarization on Y such that p is prime to the top intersection number · 4. Let Def(Y ; · )

denote the deformation functor of the pair (Y, · ), i.e., the functor which sends an Artin W -algebra A

to the set of isomorphism classes of the flat deformations of (Y, · ) over A. We have that Def(Y ; · ) is

representable by a formal scheme isomorphic to Spf(R) for R := W [[x1, . . . , x20]]. Let (Y , ζ ) denote

the universal family over Def(Y ; · ). Note that ζ algebraizes Y into a scheme over Spec(R). Again we

use the symbol P2(−) for the primitive cohomologies of (Y, · ). There are natural pairings on P2(Y, Ẑ p)

and P2(Y/W ) given by restricting the Beauville–Bogomolov forms (see [Yang 2023, §2.1]).

3Here we are using a different font for H∗(−) to distinguish from the H∗(−) in Section 1D.
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Let F ¢ K be any finite extension of K and b̃ be any OF -point on Def(X; · ). Choose an isomorphism

º : K ∼−→ C . Let L be the quadratic lattice P2(Yb̃(C), Z(p)), equipped with the restriction of the negative

Beauville–Bogomolov form. We remark that since H2(Yb̃(C), Z) is always isomorphic to the lattice

3[2] := 3 · Z(−2) and p ∤c1(ζb̃C
)2, the isomorphism class of L as a quadratic lattice over Z(p) is

completely determined by the number c1(ζb̃C
)2 [Milnor and Husemoller 1973, I, Lemma 4.2].

Let b be the closed point of Def(X, · ). We pack the input we need from the Kuga–Satake period

morphism into the following proposition:

Proposition 7.7. Assume p g 5. There exists a local period morphism Ä : SpecR→ SKp(L) which

identifies SpecR with the complete local ring Ôs of s := Ä(b) on S (L)W such that:

(a) There exist an isometry ³dR : P2
dR

∼−→ Ä∗LdR(−1) of filtered vector bundles and an isometry

³cris : P
2
cris

∼−→Ä∗Lcris(−1) of F-crystals that are compatible via the crystalline–de Rham comparison

isomorphisms.

(b) There is an isometry ³A f ,b : P
2
ét
(Yb,A f )→ L A f ,b such that for any geometric b̃′ of characteristic zero

on SpecR, the pair of isometries (³A f ,b̃′
, ³dR,b̃′), where ³A f ,b̃′

: P2
ét
(Yb̃′, A f )→ L A f ,b̃′

is induced

by the smooth and proper base change theorem, is absolute Hodge.

Moreover, for any choice of trivialization ϵ2 : det(L ¹ Q2)
∼−→ det(P2

ét
(Y, Q2)), s can always be chosen

such that det(³2,b) sends ϵ2 to δ2,s .

Proof. See [Yang 2023, §3.3], which is a direct generalization of the results in [Madapusi Pera 2015, §5]. □

Remark 7.8. We remark that in order to construct the local period morphism Ä, we actually have to

choose an appropriate Z-integral structure for the Z(p)-lattice L . However, once it is constructed, we are

allowed to forget about the Z-integral structure, as the integral models of the relevant Shimura varieties

only depend on the Z(p)-lattice L .

7C. Twisted derived Torelli theorem.

Definition 7.9. Let X and X ′ be K3 surfaces over an algebraically closed field k of characteristic p > 0.

Let f : h2(X ′) ∼−→ h2(X) be an isogeny. We say that f is liftable if for some finite extension F of K

with V := OF and projective schemes XV and X ′V over V which deform X and X ′ to V , f lifts to an

isogeny fF : h
2(X ′F )

∼−→ h2(X F ). If X and X ′ are nonsupersingular, we say that f is perfectly liftable if

XV and X ′V can be chosen to be perfect liftings.

For the rest of Section 7C, let k be an algebraically closed field of p g 5.

Lemma 7.10. Let (X0, À0), . . . , (Xm, Àm) be finitely many nonsupersingular polarized K3 surfaces over k

and let fi :h
2(X i )

∼−→h2(X i+1) be a perfectly liftable isogeny which sends Ài to Ài+1 for i=0, 1, . . . ,m−1.

If f := fm−1◦· · ·◦ f0 : (h
2(X0), À0)

∼−→ (h2(Xm), Àm) induces an integral isomorphism H2
cris(X0/W ) ∼−→

H2
cris(Xm/W ), then f is perfectly liftable to K up to equivalence.

Proof. Set Yi := X [2]i and let ¶i be the exceptional divisor on Yi . For some number N k 0, ·i := pN Ài−¶i

is a polarization on Yi for each i . The number ï·i , ·i ð under the Beauville–Bogomolov form on Yi
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is an integer M which is independent of i . Let L denote a Z(p)-lattice which is isomorphic to the

orthogonal complement of an element ¼ ∈ 3[2]¹ Z(p) with ï¼, ¼ð = M . We choose trivializations

ϵi : det(L ¹ Q2)
∼−→ det(P2

ét
(Yi , Q2)) such that fi sends ϵi to ϵi+1. Let Äi denote a local period

morphism obtained by applying Proposition 7.7 to (Yi , ·i ) and ϵi , and let si denote the image of the

basepoint under Äi . Let s̃i be a lift of si to S̃Kp(L).

We claim that there exists a CSpin-isogeny Èi : As̃i → As̃i+1
which induces the same isometries

Lℓ,si
∼−→ Lℓ,si+1

and Lcris,si
∼−→ Lcris,si+1

as fi for each i = 0, . . . ,m − 1. Indeed, fix an i and let X i,V , X i+1,V be perfect liftings of X i , X i+1

over some finite extension V of W such that f lifts to fF : X i,F
∼−→ X i+1,F , where F = V [1/p]. Let

Yi,V , Yi+1,V be the Hilbert squares of X i,V , X i+1,V . Note that Yi,V and Yi+1,V carry liftings of ·i and ·i+1,

so via the local Torelli morphisms Äi and Äi+1, X i,V and X i+1,V induce V -points si,V , si+1,V on SK(L).

Lift these points to V -points s̃i,V , s̃i+1,V on S̃K(L), which is étale over SK(L). Now choose an isomor-

phism F ∼−→C . The isogeny fi,F (C) induces a Hodge isometry P2(X i,F (C), Q) ∼−→ P2(X i+1,F (C), Q),

which canonically extends to a Hodge isometry P2(Yi,F (C), Q) ∼−→ P2(Yi+1,F (C), Q) via Lemma 7.6.

By Proposition 7.7, the latter can be identified with a Hodge isometry L B,si,F (C)¹ Q ∼−→ L B,si+1,F (C)¹ Q.

Note that we have required that fi send ϵi to ϵi+1. By Lemma 7.4, we obtain a CSpin-isogeny

Èi,C : As̃i,F (C)
∼−→ As̃i+1,F (C). By Lemma 7.3, Èi,C specializes to a CSpin-isogeny Èi , which can

be easily checked to have the desired properties.

By [Lieblich and Maulik 2018, Corollary 4.2], we can find a lifting X0,W of X0 which also lifts all line

bundles on X0. We transport the induced Hodge filtration on H2
cris(X0/W ) to H2

cris(Xm/W ) using f , which

induces a lift Xm,W of Xm over W . It is easy to check that Xm,W also carries liftings of all line bundles

on Xm using [Ogus 1979, Proposition 1.12]. Just as in the previous paragraph, after taking Hilbert squares

of the liftings, we obtain via the local period morphisms K -valued points s0,K , sm,K , s̃0,K , s̃m,K which

lift s0, sm , s̃0, s̃m . It follows from Proposition 7.1 that the crystalline realization of È := Èm−1 ◦ · · · ◦È0

preserves the Hodge filtrations of As0,K and Asm,K via the Berthelot–Ogus comparison isomorphisms. By

[Berthelot and Ogus 1983, Theorem 3.15], È lifts to a CSpin-isogeny ÈK : As0,K
∼−→ Asm,K . Choose

an isomorphism K ∼= C. By running the arguments in the preceding paragraph backwards, we obtain a

rational Hodge isometry H2(X0,K (C), Q) ∼−→ H2(Xm,K (C), Q), which by Huybrechts’ theorem [2019,

Theorem 0.2] is induced by an isogeny fC . We get the desired isogeny f by specializing fC . □

Proof of Theorem 1.5.. The forward direction is immediate (and does not need the restriction on p). For

the converse, suppose that f : h2(X ′) ∼−→ h2(X) is polarizable and Z-integral. It is easy to see that if X

is supersingular, then so is X ′. In this case, the result follows from the crystalline Torelli theorem of Ogus

[1983, Theorem II] (cf. [Yang 2022, Theorem 6.5]). Therefore, we reduce to the case when X and X ′ have

finite height. We first remark that f maps NS(X ′) isomorphically onto NS(X), so that by the structure of

ample cones of K3 surfaces [Ogus 1983, Proposition 1.10], f (À ′) is ample for any ample À . By definition,

there exists a sequence of K3 surfaces X ′ = X0, . . . , Xm = X over k and primitive derived isogenies

fi : h
2(X i )

∼−→ h2(X i+1) such that f = fm−1 ◦ · · · ◦ f0.
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We now show that there exists a sequence ¶i : h
2(X i )

∼−→ h2(X i ) given by compositions of reflections

in (−2)-curves up to a sign and a sequence of ample class Ài ∈ NS(X i )Q such that (¶i+1 ◦ fi )(Ài )= Ài+1

for each i . We do this by slightly refining the argument of [Yang 2022, Lemma 6.2]. Set ¶0 to be the

identity. Choose any ample class ·0 ∈ NS(X0)Q and ϵ0 > 0, such that the open ball B(·0, ϵ0) centered

at ·0 of radius ϵ0 in NS(X0)R lies inside the ample cone. By [Ogus 1979, Lemma 7.9], there exists

some ¶1, such that · ′1 := ¶1 ◦ f0(·0) is big and nef. The image of B(·0, ϵ0) in NS(X1)R under ¶1 ◦ f0 is

an open neighborhood of · ′1 which necessarily intersects the ample cone of X1. Therefore, we may now

choose ·1 together with ϵ1 > 0 such that (¶1◦ f0)
−1 B(·1, ϵ1)¦ B(·0, ϵ0). We iterate this process to obtain

a sequence of open balls B(·i , ϵi )¢ NS(X i )R which lie inside the ample cones, and a sequence of ¶i ’s

such that (¶i+1 ◦ fi )
−1(B(·i+1, ϵi+1))¦ B(·i , ϵi ). Now we win by choosing an element Àm ∈ B(·m, ϵm),

and iteratively set Ài := (¶i+1 ◦ fi )
−1(Ài+1). By clearing denominators we may assume that each Ài is

integral.

Set À = Àm , À ′ = À0, hi := ¶i+1 ◦ fi for each i < m, and f ′ := hm−1 ◦ · · · ◦ h0 = f . For each i ,

consider T (X i ) :=NS(X i )
§¢H2(X i ). Clearly fi and hi induce the same maps on transcendental lattices

T(X i )Q
∼−→T(X i+1)Q . Therefore, f and f ′ induce the same maps T(X ′)Q

∼−→T(X)Q but their induced

maps NS(X ′) ∼−→NS(X) may differ by an automorphism of NS(X) which preserves the ample cone. By

Theorem 5.8, each hi is liftable, so that by Lemma 7.10, f ′ : h2(X ′) ∼−→ h2(X) admits a perfect lifting

f ′K : h
2(X ′K )

∼−→ h2(X K ). Therefore, f ′, and hence f , lifts to a Hodge isometry H2(X ′K (C), Q) ∼−→

H2(X K (C), Q) for a chosen isomorphism K ∼= C. Using the smooth and proper base change theorem

for étale cohomology, we see that this rational Hodge isometry is Z[1/p]-integral. Now we show that

it is Z-integral. Indeed, we first note that f induces isomorphism f p : H
2
ét
(X ′

K
, Q p)

∼−→ H2
ét
(X K , Q p)

and fcris : H
2
cris(X

′/W )[1/p] ∼−→ H2
cris(X/W )[1/p]. We have f p¹Zp Bcris = fcris¹W Bcris under the

p-adic comparison isomorphism (see (41) in the Appendix) as it is compatible with cycle class maps,

Poincaré duality and trace maps [Ito et al. 2018, Corollary 11.6]. Let S be Breuil’s S-ring. Then we

have an identification H2
cris(X/W )¹W S = H2

cris(X/S) and a similar one for X ′. Now, we are given that

fcris¹W Bcris sends the S-module H2
cris(X

′/S) isomorphically onto H2
cris(X/S). By [Cais and Liu 2019,

Theorem 5.2] (see also Theorem A.5 and Remark A.4 below), f p sends the Zp-lattice H2
ét
(X ′

K
, Zp)

isomorphically onto H2
ét
(X K , Zp). Therefore, we have shown that f in fact induces an integral Hodge

isometry H2(X ′K (C), Z) ∼−→ H2(X K (C), Z) which preserves the ample cones. We may now conclude

using the global Torelli theorem and [Matsusaka and Mumford 1964, Theorem 2]. □

8. Isogenies and Hecke orbits

We briefly recall the definition of prime-to-p Hecke orbit on the orthogonal Shimura varieties. Let 3 be

the K3 lattice U·3· E·2
8 , ¼∈3 be a primitive element with d := ¼2 and p> 2 be a prime such that p ∤d .

We shall use the same notation for orthogonal and spinor Shimura varieties as in Section 7A with L = Ld

and fix Kp = G(Zp). The only difference is that this time Ld has a Z-structure, so that the sheaf L A
p
f

also has a Ẑ p-structure. Let K
p
0 denote the image of CSpin(Ld ¹ Ẑ p) in G(Ap

f ). More concretely, K
p
0
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can be described as the maximal subgroup of SO(Ld ¹ Ẑ p) which acts trivially on the discriminant group

disc(Ld ¹ Ẑ p)= disc(Ld). A more helpful alternative description for us is that K
p
0 can be viewed as the

stabilizer of the element ¼¹ 1 of SO(3¹ Ẑ p), which can naturally be viewed as a subgroup of G(Ap
f ).

The limit ShKp(Ld) is equipped with a (right) G(Ap
f )-action. By the extension property of the canonical

integral models, this action extends to SKp(Ld). Recall the complex uniformization of ShKp(Ld)

ShKp(Ld)(C)= G(Z(p))\�×G(Ap
f ),

where � is the period domain parametrizing Hodge structures of K3 type on Ld [Madapusi Pera 2016,

§3.1, 3.2; Yang 2022, Definition 3.1]. Given a point (É, g) ∈�×G(Ap
f ) and an element g′ ∈ G(Ap

f ), g′

sends the class of (É, g) in ShKp(Ld)(C) to that of (É, gg′). Let k be an algebraically closed field of charac-

teristic 0 or p. Let M2d,Kp be the moduli stack over Z(p) of oriented quasipolarized K3 surfaces of degree 2d

with hyperspecial level structure at p (see [Yang 2022, 3.3.4], where it is denoted by M̃2d,Kad
p ,Z(p)

). By the

modular interpretation of M2d,Kp , M2d,Kp(k) is in natural bijection with the set of tuples (X, À, ϵ, ¸), where

• (X, À) is a quasipolarized K3 surface of degree 2d over k,

• ϵ is an isometry

det(Ld ¹ Q2)
∼−→ P2

ét(X, Q2),

which naturally extends to an isometry4

ϵ p : det(Ld ¹ A
p
f )
∼−→ P2

ét(X, A
p
f ),

• ¸ is an isometry

3¹ Ẑ p ∼−→ H2
ét(X, Ẑ p)

which sends ¼¹ 1 to c1(À) and is compatible with the isometry ϵ p.

Using these explicit descriptions, it is easy to write down the map M2d,Kp(C)→ ShKp(Ld)(C) explicitly:

Let (X, À, ϵ, ¸) be the tuple which corresponds to a point s ∈ M2d,Kp(C). Choose an isomorphism

³ : (3¹ Z(p))
∼−→ (H2(X, Z(p)), c1(À)) which is compatible with ϵ. Then s is sent to the class of

(É, ¸−1 ◦ (³¹ A
p
f )), where É is the Hodge structure on Ld endowed by ³. This map is clearly well

defined. The integral extension M2d → SK0
(Ld) is constructed and studied in [Madapusi Pera 2015].

The reader can also look at [Yang 2022, §3.3] for a quick summary of the properties.

Theorem 8.1. Assume char k = p > 2. If any point x ∈SKp(Ld)(k) lies in the image of M2d,Kp(k), then

so does x · g for any g ∈ G(Ap
f ).

Proof. Let s ∈M2d,Kp(k) be a point such that x = ÄK(s). Let (X, À, ¸, ϵ) be the tuple which corresponds

to s. We view G(Ap
f ) as the subgroup of SO(3¹ A

p
f ) which fixes ¼¹ 1.

By Theorem 1.2 and Remark 6.10, there exists a K3 surface X ′ together with a derived isogeny

f :h2(X ′)→h2(X) such that f∗(H2(X ′))=H2
cris(X/W )×im(g)¢H2(X)Q . Moreover, f is a composition

4For details on how to obtain this extension, see [Yang 2022, §3.3.3 or Corollary 3.3.7].
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of primitive derived isogenies which come from twisted derived equivalences involving Brauer classes of

prime-to-p order. Since f∗(NS(X ′))= f∗(H2(X ′))∩NS(X)Q , À ∈ f∗(NS(X ′)), so that NS(X ′) contains

a primitive vector of degree 2d . By [Ogus 1979, Lemma 7.3], we can find a derived auto-isogeny ¶ on X

which is given by reflections in (−2)-curves up to a sign such that ¶ ◦ f sends À to a quasipolarization À ′.

Now we use ¶ ◦ f to transport (ϵ, ¸) to similar structures (ϵ′, ¸′) on (X ′, À ′) so that we obtain a point

s ′ ∈M2d,Kp(k). We claim that Ä(s ′)= x · g. Although SKp(Ld) lacks a direct modular interpretation, we

can do this by a lifting argument.

We claim that there exist liftings (XW , ÀW ) and (X ′W , À
′
W ) of (X, À) and (X ′, À ′) together with an

isogeny (h2(X ′K ), À
′
K )→ (h2(X K ), ÀK ) whose étale realization agrees with ¶ ◦ f via the smooth and

proper base change theorem. If X and X ′ are of finite height, by Theorem 5.8, ¶ ◦ f can be lifted to an

isogeny on the nose. In the supersingular case, we first choose a lifting (XW , ÀW ). Then XW induces a

Hodge filtration on H2
cris(X/W ), which can be transported to a filtration on H2

cris(X
′/W ) lifting the one

on H2
dR(X

′/k). By the local Torelli theorem, this defines a lifting X ′W of X ′. One easily checks by [Ogus

1979, Proposition 1.12] that À ′ lifts to X ′W . Now we apply [Yang 2023, Lemma 4.3.5] and Theorem 6.13.

Liftings as above induce W -points sW and s ′W on M2d,Kp which lift s and s ′. Let xW := Ä(sW )

and x ′W := Ä(s
′
W ). Using the G(Ap

f )-action, the lifting xW of x induces a lifting x ′′W of x ′′ := x · g. Using

the complex uniformization one quickly checks that x ′′W ¹C = x ′W ¹C for any embedding K ¢ C . Since

SKp(Ld) is a limit of separated schemes, we conclude that x ′ = x ′′ as desired. □

Choose a small enough compact open K
p ¦ K

p
0 such that for K := KpK

p, SK(Ld) is a scheme and

denote the period morphism M2d,K→ SK(Ld) by ÄK. For any k-point x ∈ SK(Ld), the image of the

G(Ap
f )-orbit of a lift x̃ ∈SKp(Ld)(k) under the natural projection SKp(Ld)→SK(Ld) is what we call

the prime-to-p Hecke orbit of x .

Let X denote the universal family over M2d,K. The mod p fiber M2d,K,Fp (resp. SK(Ld)Fp ) of moduli

space M2d,K admits a stratification M2d,K,Fp =M
1 §M

2 § · · · §M
20 (resp. SK(Ld)Fp =S

1 §S
2 §

· · · § S
20) such that for 1 f i f 10, a geometric point s lies in M

i (resp. S
i ) if and only if Xs

(resp. Lcris,s(−1)) has height g i , and for 11f i f 20, a geometric point s lies in M
i (resp. S

i ) if and

only if Xs (resp. Lcris,s(−1)) is supersingular and has Artin invariant f 21− i . Set M̊i :=M
i −M

i−1

and S̊
i :=S

i −S
i−1. Heights and Artin invariants are rather classical invariants. For a more modern

interpretation in terms of Newton and Ekedahl–Oort (E–O) strata for SK(Ld)Fp , see for example [Shen

2020, §8.4]. It follows from [Madapusi Pera 2015, Corollary 5.14] that the period morphism respects

these stratifications in the sense that Mi =S
i ×SK(Ld )M2d,K. We remark that the Zariski closure of the

locally closed subscheme S̊
i is S

i . By [Shen and Zhang 2022, Corollaries 7.2.2 and 7.3.4], if 1f i f 10,

then S
i is a central leaf. The locus S

20 is the superspecial locus (the unique closed E–O stratum), and is

also a central leaf (see [Shen and Zhang 2022, Remark 3.2.2, Examples 6.2.4]).

In our case, the Hecke orbit conjecture predicts the following:

Conjecture 8.2. For 1 f i f 10 or i = 20, the prime-to-p Hecke orbit of every s ∈S
i (Fp) is Zariski

dense in S
i .
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We remark that once the above conjecture is known for Fp, it is automatically true for any algebraically

closed field over Fp by a specialization argument. Conjecture 8.2 has been proved by Maulik, Shankar,

and Tang [2022, Theorem 1.4] when i = 1 and pg 5. We prove another special case below (Theorem 8.6).

We use NÃ to denote the supersingular lattice of Artin invariant Ã . We restrict to considering the p> 2

case, when these lattices are characterized by [Huybrechts 2016, §17, Proposition 2.20]. The original

reference [Rudakov and Shafarevich 1978] also treated the p = 2 case.

Lemma 8.3. For each d > 0 and i = 0, 1, there exist a primitive element À ∈ N1 with À 2 = 2d and

an ³i ∈ O(N1) such that ³i fixes À and interchanges the two isotropic lines in (N(1 /N1)¹ Fp2 and

det(³i )= (−1)i .

Proof. The supersingular K3 surface with Artin invariant 1, which is unique up to isomorphism, is given

by the desingularization of A/A[2], where A = E × E for a supersingular elliptic curve E [Ogus 1979,

Corollary 7.14]. Since E admits a model over Fp, so does X . Let ϕ be a topological generator of GalFp .

We fix an isomorphism between N1 and NS(X Fp
), so that N is equipped with a GalFp -action such that

NS(X) is identified with the ϕ-invariants Nϕ .

Let NS(A)(2) denote the lattice NS(A) but with the quadratic form multiplied by a factor of 2. As

a result of the Kummer construction, there exist 16 (−2)-curves ¶1, . . . , ¶16 on X and an isometric

embedding

NS(A)(2)·

( 16⊕

i=1

Z¶i

)
↪→ NS(X).

Let µ ∈ NS(A)(2) be a primitive element such that µ2 > 0. For some coprime numbers a and b,

(aµ + b¶1)
2 = 2d. The generator ϕ fixes À := aµ + b¶1 and interchanges the isotropic lines in

(N(1 /N1)¹ Fp2 (cf. the paragraph below [Liedtke 2016, Examples 4.20]).

Let s¶2
be the reflection in ¶2. Note that s¶2

fixes µ and ¶1, and hence À . Moreover, it is not hard to

check that s¶2
acts trivially on N(/N . Therefore, we can simply set ³0 and ³1 to be ϕ and s¶2

◦ϕ, up to

permutation. □

Lemma 8.4. M̊
i ̸=∅ for all i .

Proof. Each M
i+1 ¦M

i is locally cut out by a single equation. M2d,K,Fp is smooth of dimension 19, and

we know that M20 is zero-dimensional (cf. [Artin 1974, §7]). Therefore, it suffices to show that M20 ̸=∅,

i.e., there exists a quasipolarization of degree 2d on the superspecial K3 surface, which is unique up to

isomorphism. This follows from the preceding lemma and [Ogus 1979, Lemma 7.9]. □

Let K ¢ G̃(Ap
f ) be the preimage of K. Before proceeding we recall that for any geometric point

t ∈ S̃K(Ld), there is a distinguished subspace LEnd(At) of End(At) which consists of the elements whose

cohomological realizations lie in L A
p
f ,t

and Lcris,t ([Yang 2022, Definition 3.10]; cf. [Madapusi Pera

2016, Definition 5.11]). When t is on the supersingular locus, the natural maps LEnd(At)¹ Ẑ p→ Lℓ,t

and LEnd(At)¹ Zp→ LF=1
cris,t are isomorphisms [Yang 2023, Proposition 3.2.3].
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Lemma 8.5. Let k be an algebraically closed field with char k = p. Let x be a k-point on S
i for

some i g 11 and t be a k-point on S̃K(Ld) which lifts x , and set P := LEnd(At). Then there exists a

primitive element ¿ ∈ NÃ with Ã := 21− i and ¿2 = 2d such that P ∼= ¿§.

Proof. Let Z¿ be a quadratic lattice of rank 1 generated by ¿ with ¿2= 2d . By the theory of gluing lattices

(see [McMullen 2011, §2] for a quick summary), primitive extensions of P · Z¿ corresponds to the data

(G1,G2, Æ), where G1, G2 are subgroups of disc(P) and disc(Z¿) and Æ is an isometry G1
∼−→ G2.

Therefore, constructing N amounts to choosing appropriate (G1,G2, Æ).

In our case, we take G1 to be the prime-to-p part of disc(P), i.e., disc(P ¹ Ẑ p), and G2 = disc(Z¿),

which is isomorphic to Z/(2d)Z as an abelian group. Then we construct Æ by a lifting argument: Let xW

be a W -point on S (Ld) which lifts x and let xC be xW for some embedding W ↪→ C. The period

morphism ÄK is known to be surjective on C-points, so there exists a quasipolarized K3 surface (XC , ÀC)

such that the Z-Hodge structure L B,xC
is naturally identified with P2(XC , Z). We have that the natural map

P ¹ Ẑ p→ L Ẑ p,x is an isomorphism [Yang 2023, Proposition 3.2.3] and L Ẑ p,x
∼= L B,xC

¹ Ẑ p by smooth

and proper base change and the Artin comparison isomorphisms. Therefore, there is an isomorphism

´1 : G1
∼−→ disc(P2(XC , Z)¹ Ẑ p)= disc(P2(XC , Z)). On the other hand, let ´2 : G2

∼−→ disc(ZÀC)

be the isomorphism given by sending ¿ to ÀC ∈ H2(XC , Z).

We may transport the gluing data given by the primitive embedding P2(XC , Z)· ZÀ ¢ H2(XC , Z)

to a gluing data Æ for G1,G2 via ´1, ´2. Let N be the lattice given by (G1,G2, Æ). We check that it is

a supersingular K3 lattice. Clearly, by our construction, N ¹ Ẑ p ∼=3¹ Ẑ p. As P is negative definite,

N has signature (1+, 21−). Finally, disc(N ¹ Zp) = disc(P ¹ Zp) ∼= (Z/pZ)2Ã as an abelian group.

Therefore, N ∼= NÃ . □

We now prove another special case of Conjecture 8.2:

Theorem 8.6. Conjecture 8.2 holds for i = 20.

Proof. Take two Fp-points x, x ′ ∈ S
20. Choose lifts t, t ′ for x, x ′ in S̃K (Ld). We only need to show

that there exists a CSpin-isogeny At → At ′ which is prime to p. Indeed, this follows from an explicit

description of the isogeny classes in S̃Kp(Ld)(Fp) and their images on SKp(Ld)(Fp) [Yang 2022, §3.2.3].

Let P and P ′ denote LEnd(At) and LEnd(At ′) respectively.

We first show that every isometry PQ
∼−→ P ′Q whose induced isomorphism L2,t ¹ Q ∼−→ L2,t ′ ¹ Q

sends ¶2,t to ¶2,t ′ is induced by a CSpin-isogeny È : At → At ′ by conjugation. Indeed, by [Yang 2023,

Proposition 3.2.4], there exists some CSpin-isogeny È ′ : At → At ′ , which induces some isomorphism

PQ
∼−→ P ′Q whose induced isomorphism L2,t ¹ Q ∼−→ L2,t ′ ¹ Q sends ¶2,t to ¶2,t ′ . The group of CSpin-

isogenies from At to itself is identified with CSpin(PQ), which surjects to SO(PQ). By composing È ′

with some CSpin-isogeny At → At , we get the desired È .

We only need to show that there exists a CSpin-isogeny At → At ′ which is prime to p. By a Cartan

decomposition trick [Yang 2023, Lemma 3.2.6], we only need to show the following claim:

Claim. There exists an isometry P ¹ Z(p)
∼−→ P ′¹ Z(p) which sends ¶2,x to ¶2,x ′ and extends to an

isomorphism Lcris,x
∼−→ Lcris,x ′ .
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By Lemma 8.5, for some primitive vectors À, À ′ in N1 with À 2 = (À ′)2 = 2d, we have P ∼= À§

and P ′ ∼= (À ′)§. Since some reflection of N ¹ Z(p) takes À to À ′ [Milnor and Husemoller 1973, I,

Lemma 4.2], P ¹ Z(p) ∼= P ′¹ Z(p) as quadratic lattice over Z(p). Now P ¹ Zp and P ′¹ Zp are the

Tate modules of the supersingular K3 crystals Lcris,t(−1) and Lcris,t ′(−1) respectively. By Ogus’s

theory of characteristic subspaces [1979, Theorem 3.20], Lcris,t (resp. Lcris,t ′) determines an isotropic

line of (P(/P)¹ Fp (resp. ((P ′)(/P ′)¹ Fp) and the isomorphism P ¹ Zp→ P ′¹ Zp extends to an

isomorphism Lcris,t
∼−→ Lcris,t ′ if and only these isotropic lines are respected. Now the claim follows

from Lemma 8.3. □

Remark 8.7. As the reader can readily tell, the heart of the above theorem is the claim. Here we have

proved the claim in a rather ad hoc way. We go through Lemma 8.5 because there does not seem to be a

good classification theory for quadratic lattices over Z(p). Moreover, P and P ′ are negative definite, so

one cannot apply, say, Nikulin’s theory to generate automorphisms, which only handles indefinite lattices.

Luckily, in our special case, there is a geometric way of constructing the automorphisms we need.

Lemma 8.8. Let k be an algebraically closed field with char k = p > 2. Let R be a DVR over k with

fraction field » and let X» be a supersingular K3 surface over » such that X »̄ has Artin invariant Ã0.

There exists a DVR S over k with fraction field L , a finite separable map R→ S, and an NÃ0
-marked

supersingular K3 surface X S over S such that (X S)L
∼= (X»)L .

Proof. By a result of Rudakov and Shafarevich (see [Rudakov and Shafarevich 1976, Theorem 50],

and [Bragg and Lieblich 2018, Theorem 5.2.1] for p = 3) there exists a DVR S, a finite separable map

R→ S, and a supersingular K3 surface X S over S such that (X S)L
∼= (X»)L . The Picard scheme PicX L

is formally étale over Spec L . As Pic(X L) is finitely generated, after taking a further finite separable

extension we may ensure that the restriction map Pic(X L)∼= Pic(X L) is an isomorphism. Thus, X L admits

an NÃ0
-marking. As S is a DVR, we have Pic(X L)= Pic(X), so the generic marking extends uniquely to

an NÃ0
-marking of X S . □

Theorem 8.9. If Conjecture 8.2 holds for i , or i g 11, then S
i ¢ im(ÄK).

Proof. If Conjecture 8.2 holds for i then the conclusion is a direct consequence of Theorem 8.1 and the

fact that im(ÄK) is open. Now assume i g 11 and take k = Fp. Note that by Theorem 8.6, S
20 ¢ im(ÄK).

Since the Zariski closure of S̊
i is S

i , the intersection im(ÄK)∩S
i is open and dense in S

i . Take a

closed point x ∈ S̊
i
k . Let R be the ring k[[t]] and F be its fraction field. Choose an R-valued point x̃

which extends x such that x̃F lies in im(ÄK)∩S
i . Such an x̃ can always be found: we can always choose

a smooth curve which passes through x and whose generic point lies in im(ÄK)∩S
i . Then we simply

take the completion of this curve at x . Let XF be a supersingular K3 surface over the generic point of x̃F.

Note that the geometric fiber of XF has Artin invariant Ã := 21− i . By the preceding lemma, there exists

a DVR R′ over R, whose fraction field F′ is a finite extension of F, such that there is an NÃ -marked

supersingular K3 surface X over R′.

We argue that the special fiber Xk of X has Artin invariant Ã . There are two families of supersingular

K3 crystals over R′ (see [Ogus 1979, §5] for the definition): One is obtained by pulling back Lcris,x̃(−1)
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along R→ R′. The other is given by H2
cris(X

′). By construction, these two families agree on the generic

fiber. By Proposition 4.6 and Theorem 5.3 of [Ogus 1979], there exists a universal family of supersingular

K3 crystals over a smooth projective space M such that these two families are both obtained by pulling

back the universal family along morphisms R→ M. Since M is in particular separated, these two

morphisms have to agree. Therefore, H2
cris(X

′/R′) is precisely the pullback of Lcris,x̃(−1). Now we

conclude by the hypothesis that x ∈S
i
k .

Now we know that X
F
:= X¹F and Xk have the same Artin invariant. This guarantees that the

specialization map Pic(XF′)→ Pic(Xk) must be an isomorphism, and hence must send the ample cone

isomorphically onto the ample cone. Since the big and nef cone is the closure of the ample cone, the

quasipolarization on XF′ extends to a quasipolarization on Xk . This shows that x ∈ im(ÄK). □

Finally we discuss some implications of the surjectivity of the period morphism to the good reduction

theory of K3 surfaces. As Conjecture 8.2 is known for i = 1 and p g 5 (by [Maulik et al. 2022,

Theorem 1.4]), the following result in particular implies the unconditional Theorem 1.7.

Theorem 8.10. Let k be a perfect field of characteristic p> 2. Let F be a finite extension of K =W [1/p].

Let X F be a K3 surface over F equipped with a quasipolarization À of degree 2d with p ∤d. Suppose that

the GalF -action on H2
ét
(X F , Qℓ) is potentially unramified for some ℓ ̸= p. Then we have:

(a) H2
ét
(X F , A

p
f ) and H2

ét
(X F , Q p) are potentially unramified and crystalline respectively.

(b) If H2
ét
(X F , Q p) is crystalline, then Dcris(H

2
ét
(X F , Q p)) is a K3 crystal.

(c) Suppose that the hypothesis of (b) is satisfied and Dcris(H
2
ét
(X F , Q p)) is a K3 crystal of height i . If

Conjecture 8.2 holds for i or if i =∞, then X F has potential good reduction.

We recall that X F as above is said to have potential good reduction if, up to replacing F by a finite

extension, there exists a smooth proper algebraic space X over OF , whose special fiber is a K3 surface

over k and whose generic fiber is X F (cf. [Liedtke and Matsumoto 2018, Definition 2.1]).

Proof. (a) and (b) Up to replacing F by a finite extension, we may equip (X, À) with a K-level structure

and an orientation so that it is given by an F-point s on M2d,K, and find a lift t ∈ S̃K(Ld)(F) of ÄK(s).

Consider the abelian variety At . One easily adapts the argument of Deligne [1981, §6.6] to see that, up to

replacing F by a further extension, At admits good reduction. By the extension property of the integral

models, we can extend t to an OF -valued point Ä on SK(Ld). This implies both (a) and (b).

(c) We have Ä ¹ k ∈ S
i . If the hypothesis is satisfied, then S

i ¢ im(ÄK). Now we conclude by the

étaleness of ÄK. Indeed, the global Torelli theorem implies that if two C-points of M2d,K are mapped to

the same points under ÄK, then the K3 surfaces they correspond to are (noncanonically) isomorphic. If

there is a quasipolarized K3 surface over k whose moduli point is sent to Ä ¹ k, then the étaleness of ÄK

tells us that there exists an F-point s ′ of M2d,K such that ÄK(s)= ÄK(s ′). Up to replacing F by a finite

extension, the K3 surfaces defined by s and s ′ are isomorphic. □
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Appendix: Some results from integral p-adic Hodge theory

We review some basic results in p-adic Hodge theory. Let k be a perfect field of characteristic p > 0.

We write W for W (k) and K0 for W [1/p]. Let K be a totally ramified extension of K0 and let Ã be a

uniformizer of its ring of integers OK .5 Let G K denote the absolute Galois group GalK . Set R :=OK /(p).

Let f :X→ SpecOK be a smooth and proper scheme (more generally, the following discussion applies

also when X is only a formal scheme and XK denotes the rigid analytic generic fiber). The subject of

p-adic Hodge theory is concerned with how to recover the following tuples of data from one another

under suitable assumptions:

(A) The Zp-module Hi
ét
(XK , Zp) equipped with a G K -action.

(B) The F-crystal Ri fR,cris∗OX R over Cris(R/W ) together with the filtered OK -module Hi
dR(X/OK ).

(B′) The F-crystal Hi
cris(Xk/W ) together with the filtered OK -module Hi

dR(X/OK ).

Remark A.1. Let e be the ramification degree of OK over W . When e f p− 1, R ∼= k[ε]/εe has a PD

structure, so that the category of crystals of quasicoherent sheaves over Cris(R/W ) is equivalent to

that over Cris(k/W ) [Berthelot and Ogus 1978, Corollary 6.7]. Therefore, under mild torsion-freeness

assumptions on various cohomology modules of X , (B) and (B′) are equivalent data. Moreover, as OK is

a PD thickening of W , the crystalline de Rham comparison theorem gives us a canonical isomorphism

Hi
cris(Xk/W )¹

W
OK
∼= Hi

dR(X/OK ).

If e > p− 1, then (B) contains strictly more information than (B′). The above isomorphism no longer

holds integrally in general. However, there is still a canonical isomorphism after inverting p:

Hi
cris(Xk/W )¹

W
K ∼= Hi

dR(X/OK ) ¹
OK

K .

This isomorphism is often called the Berthelot–Ogus isomorphism because it was first introduced in

[Berthelot and Ogus 1983]. Below we will often make use of this isomorphism implicitly. Note that in the

above isomorphisms, the left-hand side only depends on the special fiber Xk , whereas the right-hand side

is equipped with the additional data of a Hodge filtration, which in general depends on the lifting X of Xk .

Here is an overview of the relationship between the above tuples: The classical (rational) p-adic

comparison isomorphisms tell us how to recover (A) and (B′) from one another after inverting p. Integral

p-adic Hodge theory (e.g., the seminal paper of Bhatt, Morrow, and Scholze [Bhatt et al. 2018]) tells

us how to recover (B) from (A). For our purposes, we are mainly concerned with how to recover (A)

from (B). Roughly speaking, the way to do this is to evaluate the F-crystal Ri fR,cris∗OX R on a certain

PD-thickening S of R (S is often called Breuil’s S-ring), so that we obtain an S-module. This S-module is

equipped with a Frobenius action from the F-crystal structure on Ri fR,cris∗OX R , and is moreover equipped

with a filtration which absorbs the data of the Hodge filtration on Hi
dR(X/OK ). The main result of

5This notation is chosen to be in line with most references in p-adic Hodge theory. In the main text, the letters K and F take

the roles of K0 and K respectively. We apologize for this inconsistency of notation.
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[Cais and Liu 2019] tells us that by applying a certain functor (denoted by Tcris below) to this S-module,

we recover (A). Of course, [Bhatt et al. 2018] already treats the relationship between (A) and (B), but the

conclusions there are packaged in a more abstract way.

After inverting p. Let MF
ϕ,N
K denote the category of filtered (ϕ, N )-modules. An object of this category

is a K0-vector space D which is equipped with

• a Frobenius semilinear injection ϕ : D→ D;

• a K0-linear map N : D→ D such that Nϕ = pNϕ;

• a descending filtration on DK such that Fili DK = DK for i j 0 and Fili DK = 0 for i k 0.

Let MF
ϕ

K denote the subcategory with N = 0. The motivation to consider this category is that the

data in (A) is naturally an object in MF
ϕ

K after inverting p, because there is a canonical Berthelot–

Ogus isomorphism Hi
cris(Xk/W )¹W K ∼= Hi

dR(X/OK )¹OK K . We will use this isomorphism repeatedly

without explicitly mentioning it. We remark that in most references the operator N is in MF
ϕ,N
K to

treat varieties with semistable reductions. Since we are assuming good reduction, we may restrict to

considering the category MF
ϕ

K .

Let RepG K
denote the category of G K -representations over Q p and let Repcris

G K
denote the subcategory

of crystalline representations. Given an object Q ∈ Repcris
G K

, one may define an object in MF
ϕ

K using

the (covariant) Fontaine’s functors Dcris and DdR, which are defined by Dcris(Q) = (Q¹Q p Bcris)
G K

and DdR(Q) = (Q¹Q p BdR)
G K . The pair (Dcris(Q), DdR(Q)) are equipped with a Frobenius action

and filtrations respectively, and hence define an object in MF
ϕ

K . We abusively denote the resulting

functor RepG K
→MF

ϕ

K also by Dcris. We define a functor from the essential image of Dcris to Repcris
G K

by

Vcris = Fil0(D¹K0
Bcris)

ϕ=1. There is an equality of Q p-submodules

Q = Vcris(Dcris(Q))

of (Q¹Q p Bcris)¹K0
Bcris, which specifies a natural transformation Vcris ◦ Dcris⇒ id on Repcris

G K
.6 The

reader may look at [Brinon and Conrad 2009, Part I, Sections 8 and 9] for more details about these objects.

By [Bhatt et al. 2018, Proposition 5.1, Theorem 14.6], there is a p-adic comparison isomorphism

Hi
cris(Xk/W )¹

W
Bcris

∼−→ Hi
ét(XK , Zp)¹

Zp

Bcris (41)

which respects the GalF -actions and filtrations. Therefore, we obtain an isomorphism of objects in MF
ϕ

K

Dcris(H
i
ét(XF , Q p))

∼−→ (Hi
cris(Xk/W )[1/p],Hi

dR(XK /K )). (42)

There are multiple rational p-adic comparison isomorphisms of the form (41) (e.g., those constructed

earlier by Faltings [1999], Tsuji [1999], and others). We choose to use the one from [Bhatt et al. 2018]

because this is the one used in [Cais and Liu 2019], to be cited below. Once we fix this choice of rational

p-adic comparison isomorphism, then the isomorphism (42) is also fixed.

6Note that the natural transformations between two functors between 1-categories (or locally small categories in the usual

sense) do form a set (as opposed to a groupoid), so it makes sense to specify an element in this set.
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Recovering integral lattices. We now explain how to recover the natural integral lattices in the objects

of (42) from one another. Let S := W [[u]], and let ¹ : S → OK be the map sending u to Ã . Let

Repcris◦
GalK

denote the category of G K -stable Zp-lattices in objects of Repcris
G K

. Let M(−) be the functor as

in [Kisin 2010, Theorem 1.2.1] which sends an object in Repcris◦
G K

to a Breuil–Kisin module in the sense

of [Bhatt et al. 2018, Theorem 4.4], so that there exist canonical isomorphisms

ϕ∗M(T )¹
S

K0
∼−→ Dcris(T [1/p]) and ϕ∗M(T ) ¹

S,¹
K ∼−→ DdR(T [1/p]) (43)

which preserve Frobenius actions and filtrations respectively. Then we have the following result [Bhatt

et al. 2018, Theorem 14.6].

Theorem A.2. Assume that Hi
cris(Xk/W ) and Hi+1(Xk/W ) are torsion-free. Then for T = Hi

ét
(XK , Zp)

the isomorphisms (43) map M(T )¹S W and M(T )¹S,¹ OK isomorphically onto Hi
cris(Xk/W ) and

Hi
dR(X/OK ) respectively, when composed with the isomorphisms in (41).

We refer the reader also to [Ito et al. 2018, Theorem 3.2] for an exposition which is closer to ours

in notation. The above theorem tells us how to recover (B′) from (A). Under the additional assumption

that i < p− 1, [Cais and Liu 2019, Theorem 5.4] tells us how to recover (A) from (B). Before doing so

we need to introduce the intermediate category of Breuil’s S-modules, which packages the data of (B) in

a different way.

Breuil’s S-modules. Let S denote the p-adic completion of the PD envelope of (S, ker ¹). Let SÃ denote

the ring W [[u−Ã ]]. Then there is an embedding º : S ↪→ SÃ which sends u to u−Ã . Let fÃ : SÃ → OK

(resp. f0 : S→W ) be the projection which sends u−Ã to 0 (resp. u to 0). Then there is a commutative

diagram of W -algebras

S SÃ

W OK

º

f0 fÃ

In [Breuil 1997], the above ring S is denoted by S0
min. The letter S in loc. cit. denotes a certain extension

of S0
min,K0

. For our purposes, one may simply take S = S0
min,K0

when reading [Breuil 1997]. The letter S

in our notation is in line with [Cais and Liu 2019] and [Liu 2008].

Let MF
ϕ,N
SK0

denote the category of filtered (ϕ, N )-modules over SK0
.7 There is an equivalence of

categories

¸ :MF
ϕ,N
K →MF

ϕ,N
SK0

(44)

which sends (D,Fil• DK , ϕ, N ) to an object (D,Fil•D, ϕD , ND) with D = D¹W S ([Cais and Liu

2019, p. 1215]; see also [Breuil 1997, Theorem 6.1.1]). The quasi-inverse ¸−1 is defined by (D ¹ f0
W,

D ¹ fÃ◦ºOK ), for which the Frobenius action and filtration are inherited from those on D . There is a

7This is just the category denoted by MF(ϕ, N ) in [Liu 2008, §2.2], except that we have not restricted to positive objects, so

that we replace the condition Fil0 D = D by Fil j
D = D for j j 0.
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canonical natural transformation ¸−1 ◦ ¸⇒ id on MF
ϕ

K which underlies the tautological identification of

modules

(D, DK )= (D¹
W

S¹
f0

W, DK ¹
W

S ¹
fÃ◦º

OK ).

A strongly divisible S-lattice (of height r ) in an object D ∈MF
ϕ,N
SK

with Fil0 D =D is an S-lattice such

that M [1/p] = D , ND(M )¦M , and ϕD(Filr M )¦ pr
M , where Filr M :=M ∩ Filr D . Let MF

ϕ,N
S

denote the category of strongly divisible S-lattices in objects of MF
ϕ,N
SK0

.

Theorem A.3 (Liu). Suppose that Q ∈ Repcris
G K

has Hodge–Tate weights in {0, 1, . . . , p − 2}. Let D

denote ¸(Q). The covariant functor Tcris :M 7→ Fil0(M ¹S Acris)
ϕ=1 defines a bijection between the set

of strongly divisible S-lattices in D and that of G K -stable Zp-lattices in Vcris(Dcris(Q))= Q.

Proof. Theorem 2.3.5 of [Liu 2008] tells us that the above theorem holds for Breuil’s functor Tst. The

contravariant version of this functor is reviewed in Section 2.2 of loc. cit. If we use the superscript (resp.

subscript) ∗ to indicate contravariance (resp. covariance), then T ∗st (−)= T∗st((−)
(). Proposition 3.5.1 of

loc. cit. tells us that Tst(M )= Tcris(M ) as Q is crystalline. □

Remark A.4. Let C denote the full subcategory of MF
ϕ,N
S whose image in MF

ϕ,N
SK0

lies in the essential

image of MF
ϕ

K (as a subcategory of MF
ϕ,N
K ) under ¸. To sum up, we now have a commutative diagram

of categories

Repcris
G K

MF
ϕ

K MF
ϕ,N
K MF

ϕ,N
SK0

Repcris◦
G K

C MF
ϕ,N
S

Dcris

Vcris

¸

¸−1

Tcris

in which the vertical arrows are given by inverting p. Moreover, the natural transformations Vcris◦Dcris⇒ id

and ¸−1 ◦¸⇒ id are tautological. By the above theorem, Tcris is an equivalence of categories. We remark

that since Acris is a W -subalgebra of Bcris and the inclusion Acris¦ Bcris respects the filtration and Frobenius

structures, Tcris(M ) is a priori a Zp-submodule of Vcris(Dcris(Q)). The reason that we emphasize the

natural transformations used is to decategorify the language, so that Tcris, which is often stated as an

equivalence of categories, is concretely an equality of sets.

Theorem A.5 (Cais and Liu). Assume that H i
cris(Xk/W ) and H i+1

cris (Xk/W ) are torsion-free and i f p−2.

Set M := Hi
cris(XR/S). Let p : M → Hi

cris(Xk/W ) be the canonical projection induced by f0. Let

D ∈MF
ϕ,N
SK0

be given by the object (Hi
cris(Xk)K ,Fil•Hi

dR(XK /K )) in MF
ϕ

K via ¸. Then we have:

(a) There is a canonical section s to p[1/p] such that s is ϕ-equivariant and s¹W S induces an isomor-

phism M [1/p] ∼−→ D .

(b) Under the isomorphism in (a), M defines a strongly divisible S-lattice in D and Tcris(M ) =

Hi
ét
(XK , Zp).
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Proof. Part (a) is a variant of the Berthelot–Ogus isomorphism [Cais and Liu 2019, Proposition 5.1].

Part (b) follows from [Cais and Liu 2019, Theorem 5.4(2)] and its proof, which proceeds by reducing to

proving the equality of two lattices.

Let T be an object of Repcris◦
G K

and let M(T ) be the Breuil–Kisin module associated to T . Let M(−)

be the functor defined by ϕ∗(M(−)). Then M (M(T )) := M(T )¹S S can be equipped with additional

structures so that it becomes an object in MF
ϕ,N
S . The base-change-to-S functor M used here is defined

in (3.6) of loc. cit. There is a natural isomorphism M (M(T ))[1/p] ∼−→ ¸(Dcris(T [1/p])) which lifts

the isomorphism M(T )¹S K0
∼−→ Dcris(T [1/p]) in (43). Moreover, Tcris sends the strongly divisible

S-lattice M (M(T )) to T . The reader may also check out the proof of [Snowden 2014, Lemma A.3] for

entirely similar considerations.

Now let T be Hi
ét
(XK , Zp). Since Tcris establishes a bijection between strongly divisible S-lattices in D

and G K -stable Zp-lattices in T [1/p], one reduces to showing an equality of S-lattices M =M (M(T ))

under the isomorphisms

M (M(T ))[1/p] ∼= D ∼=M [1/p].

This is the main step in the proof of [Cais and Liu 2019, Theorem 5.4(2)] (see the second paragraph on

page 1226). □

Remark A.6. In the above setting, let f :XR→Spf(R) be the structure morphism and let H i
cris(XR) denote

the F-crystal Ri fcris∗OXR . Then Hi
cris(XR/S) (resp. Hi

cris(XR/OK )) can be viewed as a the S-module given

by evaluating H i
cris(XR) on the object S (resp. OK ) of Cris(R/W ). The morphism ¹ : S→ OK defines a

canonical isomorphism ¹∗H i
cris(XR)S

∼−→ H i
cris(XR)OK . The lifting X of XR to OK endows H i

cris(XR)OK

with a Hodge filtration via the crystalline de Rham comparison H i
cris(XR)OK

∼= Hi
dR(X/OK ). The S-

module H i
cris(XR)S , being an object of MF

ϕ,N
S , is also equipped with a natural filtration, which maps

isomorphically onto the Hodge filtration on H i
dR(X/OK ). However, note that the filtration on H i

cris(XR)S

is defined in a more formal way, with the Hodge filtration on H i
dR(X/OK ) being the key input. Namely,

one first constructs D out of (Hi
cris(Xk/W ),Hi

dR(X/OK )), and then defines a filtration on M by inter-

secting with Fil•D under the isomorphism in part (a) of the above theorem. One naturally wonders

whether this filtration has a more direct cohomological construction. This question is addressed in

[Cais and Liu 2019, §6.1]. However, we won’t make use of this cohomological interpretation.

Remark A.7. If X is a smooth proper scheme over OK , or more generally a smooth proper algebraic space

over OK whose special and generic fibers are schemes, then the above results hold for XK interpreted as

the generic fiber in the usual sense. The point is that the analytification of the generic fiber is functorially

isomorphic to the rigid analytic generic fiber of the formal completion of X at the special fiber. The reader

may look at [Ito et al. 2018, §11.2] for details.

Applications to p-divisible groups. Let G be a p-divisible group over OK and assume p g 3. Let Tp(−)

denote the Tate module functor, D(−) denote the contravariant Dieudonné module functor and G
∗ denote
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the Cartier dual of G . There is a p-adic comparison isomorphism

D(Gk)¹
W

Bcris
∼−→ TpG

∗(−1)¹
Zp

Bcris (45)

which induces an isomorphism Dcris(TpG
∗(−1)¹Zp Q p)

∼−→ D(Gk)[1/p]. Tcris(D(GR)S) recovers the

Zp-lattice TpG
∗(−1) inside TpG

∗(−1)¹Zp Q p [Kisin 2006, Lemma 2.2.4]. Note that TpG
∗(−1) is

canonically isomorphic to (TpG )(.
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